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Abstract

In this work, we report the growth of 300 nm c-axis oriented barium titanate (BTO) films on
(001)-strontium titanate (STO) substrates via off-axis radio frequency (RF) sputtering. The
as-grown films exhibit exceptional crystallinity, with a rocking curve full width at half maximum of
~0.03°, and atomically smooth surface morphology with a root mean square roughness of

0.23 nm, ensuring minimal optical losses. Transmission ellipsometric characterization of the film
reveals a record-high electro-optic (EO) coefficient, r5; ~ 550 pm V™! that exceeds by a factor of 3
compared to the previously reported values for RF-sputtered BTO. This high-quality,
industry-compatible material paves the way for the development of efficient and compact EO
modulators based on hybrid BTO-on-silicon waveguides.

1. Introduction

The demand for high-speed, energy-efficient, and integrable electro-optic (EO) devices has spurred extensive
research into advanced materials [1-4]. Silicon photonics, while CMOS-compatible, relies on the plasma
dispersion effect, which suffers from high insertion loss, limited modulation speed, and significant power
consumption [5, 6]. To address these limitations, ferroelectric-based modulators have gained interest due to
their superior EO properties. In particular, thin-film ferroelectric materials are attractive because they
combine strong intrinsic functional properties—such as large spontaneous polarization, nonlinear optical
response, and strong dielectric tunability—with the scalability required for integration into micro- and
nanoscale devices. Beyond EO modulators, they enable a broad range of applications in non-volatile
memories, tunable microwave devices, and multifunctional oxide electronics [7]. Importantly, their
integration in thin-film form makes it possible to harness these properties at reduced size, weight, and power,
enabling compact photonic and electronic systems [8]. Among these, thin-film lithium niobate-on-insulator
modulators, inspired by bulk LN, have demonstrated >100 GHz bandwidths [9, 10] with an EO coefficient
of ~30 pm V™! [11]. This progress has driven the exploration of materials with higher EO coefficients, such
as lead zirconate titanate (PZT) [12], BTO [13-15]. Pockels-effect modulators offer a high EO coefficient for
efficient low-voltage phase modulation and ultrafast picosecond response times, making them ideal for
high-speed optical communication and low-power integrated photonics [16].

BTO has emerged as a highly promising candidate for next-generation high-density integrated EO
devices, primarily due to its exceptionally high Pockels coefficient, which exceeds 1300 pm V~! in bulk form

© 2025 The Author(s). Published by IOP Publishing Ltd
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[13, 17]. Despite its promise, scalable, cost-effective growth of high-quality BTO thin films remains
challenging. Conventional methods including molecular beam epitaxy (MBE) [15] and pulsed laser
deposition (PLD) [18] achieve exceptional crystallinity and EO coefficients ~1000 pm V! but are expensive
and unsuitable for wafer-scale production [19]. To overcome these challenges, cost-effective and
industry-compliant radio frequency (RF) sputtering techniques [20-22] are currently investigated for the
scalable growth of high-quality BTO thin films. An optimized RF sputtering process provides precise control
over stoichiometry, crystallinity comparable to MBE or PLD and scalability of grown films.

The growth of 300 nm c-axis-oriented (‘c-cut’) BTO films on STO (001) substrates using RF magnetron
sputtering is reported in this experimental study. By optimizing deposition conditions and employing
low-energy off-axis sputtering to minimize energetic bombardment, we achieve atomically smooth surface
morphology and excellent material crystallinity, as evidenced by atomic force microscopy (AFM) and x-ray
diffraction (XRD), respectively. EO characterization confirmed an rs; coefficient of ~550 pm V1,
highlighting the strong Pockels effect in the sputtered BTO films. We also evaluated the feasibility of EO
devices using the grown material, an essential step toward realizing low-size, weight, power, and cost
(SWaP-C) EO modulators for diverse applications.

2. Material growth

Conventional on-axis RF-sputtering often leads to energetic ion bombardment due to a higher energy (E) of
the emitted atoms, which degrades crystalline quality and introduces structural defects. To overcome this
challenge, off-axis RF sputtering (see figure 1(a)) was employed in this study, which minimizes ion-induced
damage due to lower E of the emitted atom while preserving the stoichiometric precision necessary for
high-quality film growth with its crystallinity comparable to MBE and PLD. In our configuration, the target
is mounted on a horizontally oriented sputtering source, and the substrate is positioned below the target
facing upward. The horizontal distance between the target and the center of the substrate is 5.7 cm, while the
vertical distance between the center of the target and the substrate is 7.6 cm, yielding a target-to-substrate
distance of 9.5 cm and an off-axis angle of 53°. With this optimized off-axis geometry, 300 nm c-cut BTO
thin films were deposited on STO (001), as schematically shown in figure 1(b), at a substrate temperature of
550 °C, under 10 mTorr Ar pressure with 0.125% O,. The 300 nm thickness is selected to optimize
high-quality growth, the primary objective of this work, using off-axis RF sputtering, and to provide a
foundation for future thickness adjustments tailored to EO modulator designs. Given that BTO exhibits a
tetragonal lattice structure at room temperature (a = b = 3.99 A, c = 4.03 A), epitaxial growth on STO (001)
with its in-plane square lattice constant of 3.905 A results in compressive strain within the BTO film. This
strain forces c-axis orientation of the film normal to the growth surface. Figure 1(c) shows the optical
micrograph of the films. AFM measurements were performed to examine the surface morphology of the
films. The measured root mean square roughness over a 2.5 yum x 2.5 ym BTO area was 0.23 nm, as
presented in figure 1(d). This exceptionally smooth surface is crucial for reducing optical scattering and
enhancing EO efficiency, making these films highly suitable for photonic and optoelectronic applications.

3. Material characterization

The BTO film growth conditions were systematically optimized by varying substrate temperature,
RE-sputtering power, and oxygen partial pressure on STO(001) substrates. From this process, a growth
temperature of 550 °C, RF power of 50 W, and oxygen partial pressure of 0.125% were identified as the most
optimized parameters, yielding the best crystalline quality. All subsequent BTO films reported in this work
were grown under these optimized conditions. To evaluate the structural characteristics, XRD measurements
were performed using the 6—26 scan geometry. BTO films of varying thicknesses, such as 10 nm, 30 nm,

100 nm, and 300 nm were deposited on STO(001) substrates to study thickness-dependent crystallinity, as
shown in figure 2(a). With increasing thickness, the c-BTO (001) diffraction peaks suggest that the grown
films retain its crystallinity. Additionally, a clear peak shift to larger 26 values is observed for thicker films,
suggesting strain relaxation. The detailed calculation of the relaxation from the XRD data, including the
quantitative values, is provided in the supplementary section S1. To directly probe the in-plane lattice
parameter and confirm this relaxation, reciprocal space mapping (RSM) around the asymmetric (103)
reflection was performed for the optimized 300 nm BTO film, as shown in figure 2(b). The map reveals two
distinct diffraction peaks: a sharp, intense peak at higher g, from the STO substrate, and a broader,
lower-intensity peak at g, ~ 0.25 A~! and g, ~ 0.74 A~! from the BTO film. If the BTO film were fully
strained to the substrate, its peak would align vertically with the STO peak along gy, sharing the same
in-plane lattice constant. Instead, the clear horizontal offset of the BTO peak indicates that the in-plane
lattice constant has relaxed away from the substrate value toward the bulk BTO parameter. The peak position
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Figure 1. (a) Schematic of the RF-sputtering process, emphasizing off-axis deposition and its role in reducing energy-induced
damage, (b) schematic of the grown structure, (c) optical microscope image, and (d) atomic force microscopy scan of the 300 nm
c-cut BTO thin film on STO (001) substrates.
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Figure 2. (a) XRD 06-20scans of BTO films of varying thicknesses under the same oxygen partial pressures, substrate temperature,
and RF-sputtering power, (b) RSM around the asymmetric (103) reflection for the 300 nm BTO film, confirming that the film is
fully relaxed in-plane, and (c) XRD rocking curve of the 300 nm BTO (001) films.

confirms that the 300 nm BTO film is fully relaxed in-plane, while its broadening relative to the substrate
reflects mosaicity and residual strain distribution, as expected for thicker epitaxial films undergoing
relaxation. Together, the 626 strain analysis and the RSM provide complementary evidence that the 300 nm
BTO film is essentially relaxed both out-of-plane and in-plane. Figure 2(c) presents the rocking curve of the
(002) diffraction peak from the 300 nm-thick BTO film (corresponding to the blue curve in figure 2(a)),
fitted with a Lorentzian function. The peak is centered at 22.7° with a full width at half maximum of 0.03°,
indicating excellent crystallinity, low mosaicity, and a high degree of single-crystalline ordering. These results
confirm that BTO films grown under optimized conditions maintain their structural quality even at
increased thicknesses.
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Figure 3. XPS spectra of BTO/STO: (a) survey, (b) Ba 3d, (c) O 1s, (d) Ti 2p, and (e) Sr 3d. Clear Ba, Ti, and O signals confirm the
BTO film, while the absence of Sr 3d indicates full substrate coverage.

To complement the structural studies, x-ray photoelectron spectroscopy (XPS) was performed to
investigate the elemental composition, chemical states, and defects of the optimized BTO films. XPS was
performed for a 300 nm BTO thin film on STO, with survey spectra collected at 100 eV pass energy and
high-resolution spectra at 20 eV pass energy. The resulting spectra were calibrated based on the C-C peak at
284.6 eV and fitted using Khervefitting software. The survey spectrum (figure 3(a)) shows the Ba 3d, O 1s, Ti
2p, C 1s, and Sr 3d regions, consistent with a clean perovskite-oxide surface.

The high-resolution Ba 3d spectra of the BTO films are shown in figure 2(b). Two overlapping
spin—orbit-split doublets (i) and (ii) corresponding to Ba 3ds/, (i) and Ba 3ds/, (ii) are observed, separated
by ~1.4 eV, with a spin—orbit splitting (ABa 3d) of ~15.2 eV. These values are consistent with previously
reported data [23-25]. The lower-binding-energy doublet (i) is assigned to barium in the perovskite BTO
lattice [24-26]. In contrast, the higher-binding-energy doublet (ii) is attributed to surface barium species
such as BaCO; or Ba(OH), [23, 27].

The high-resolution O 1s spectrum of the thin BTO films is shown in figure 3(c). The deconvolution of
the O 1s peaks for the BTO films yields two distinct components (i) and (ii), fitted using a
Gaussian—Lorentzian function. These features are consistent with previous reports [28-31]. The
higher-binding-energy peak (ii) is attributed to lattice oxygen in the perovskite BTO structure, specifically
the Ti—O-Ti bonding environment [28, 32]. The lower-binding-energy peak (i) is likely associated with
oxygen in the form of M—O-Ti bonds (M = metal) [28, 33]. Importantly, no additional high-binding-energy
features were detected, which are typically associated with oxygen vacancies or surface adsorbates [28, 34].

The deconvolution of the high-resolution XPS spectrum of Ti 2p is shown in figure 2(d), exhibiting the
characteristic spin—orbit doublet with the Ti 2p3/, component more intense than the Ti 2p;/, component,
consistent with the expected 2:1 area ratio. The spin—orbit splitting (ATi 2p) between Ti 2p3/, and Ti 2p,/, is
~5.73 eV in the BTO film. For these films, the spectra show two main peaks at i, in good agreement with
previously reported binding energies of Ti** [28, 33]. Additionally, weak features at ii are attributed to Ti**
states [28, 33]. The presence of negligible Ti*" indicates negligible oxygen vacancies. This is consistent with
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Figure 4. (a) XPS depth profile of BTO/STO showing strong Ba 3d and O 1s signals at the surface. With sputtering, the Sr 3d
signal emerges while Ba 3d decreases, confirming the transition from the BTO film to the STO substrate near 300 nm, and (b)
XRR scan of a ~30 nm BTO film on STO, showing Kiessig fringes used to determine thickness and calibrate the deposition rate.

the negligible oxygen vacancies coming from the O 1s spectrum, where the absence of higher-energy
components confirmed negligible oxygen vacancies. This is particularly advantageous for our case, as
excessive oxygen vacancies pin domain walls, suppress polarization, and reduce the dielectric constant.
Moreover, vacancy-induced Ti*" states absorb visible light, thereby increasing optical losses—detrimental to
photonic and EO applications, such as modulators or frequency conversion devices. High vacancies also
compromise the chemical stability of BTO, making it more prone to leakage currents.

The Sr 3d XPS region (126-142 eV) of figure 2(e) does not exhibit any discernible Sr-related peaks,
indicating that the STO substrate signal is fully suppressed by the overlying BTO film. This absence of Sr
signature is consistent with the surface sensitivity of XPS and confirms the continuous coverage of the STO
substrate by the BTO layer.

Ar™ sputter depth profiling with XPS (figure 4(a)) further validates the film-substrate interface. A sharp
Ba—Sr crossover is observed near 300 nm, while O 1s remains broadly constant with only a subtle kink
across the interface. The delayed emergence of the Sr 3d signal until this depth indicates full film coverage
without Sr enrichment at the outer surface. Although Ti 2p scans were not recorded during sputtering, the
Ba 3d and Sr 3d profiles provide sufficient evidence of depth distribution and confirm the abrupt
film—substrate interface. These results demonstrate both the chemical integrity of the BTO film and its sharp
interface with the underlying STO substrate.

Furthermore, the film thickness was calibrated using x-ray reflectivity (XRR). For this purpose, a
reference BTO film with a nominal thickness of ~30 nm was grown under the optimized conditions and
analyzed by XRR, as shown in figure 4(b). The reflectivity profile exhibits clear Kiessig fringes, from which
the film thickness was extracted to be ~31.6 nm. Using this calibration, the deposition rate was determined,
and the thicknesses of the thicker films (100 nm and 300 nm) were subsequently obtained by multiplying the
deposition rate by the deposition time. The detailed calculation is provided in supplementary section S2.

In addition to crystallinity, chemical composition, and thickness calibration, the role of defect
formation—particularly oxygen vacancies, non-stoichiometry, and dislocation density—must also be
considered, as these play a critical role in determining the ferroelectric and EO behavior of BTO thin films.
Given that Ba>* and Ti** BTO are the most stable oxidation states while sufficient oxygen is provided by the
target and oxygen gas during sputtering, the oxygen vacancies in BTO should be minimal (which is the case
for other oxides that we have grown by us, such as [35-39]). This is consistent with the negligible oxygen
vacancy-related features in the XPS spectra (figure 3). Regarding dislocations, the XRD results indicate that
the 30 nm BTO film is already largely relaxed (figure 2(b)), implying that strain relaxation—and the
associated formation of dislocations—is mostly accommodated within the first 10-30 nm of growth.
Consequently, the vast majority (>90%) of the 300-nm films used for EO measurements are bulk-like, with
the influence of interfacial dislocations confined to a small fraction (~3%-10%) near the substrate.
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Figure 5. (a) Piezoresponse force microscopy (PFM) image of ferroelectric (FE) switching in a 10 nm BTO film on an SRO

(10 nm)/DSO(110) substrate under applied biases, (b) schematic of the EO measurement setup used in the study, (c) schematics
of patterned BTO films with gold electrodes for EO testing with polarization modulation along the x—y plane indicated by arrows,
and (d) measured AC/DC EO response at three different test points on the BTO film, showing a linear electro-optic effect with a
strong correlation between applied field and modulation signal. Top view of the sample with the tested regions (not to scale) is
shown as inset.

4, Ferroelectric and EO characterization

The ferroelectric polarization and nonlinear optical response in BTO arise from the broken inversion
symmetry in its tetragonal crystal lattice, making an understanding of its ferroelectric domain structure
critical for optimizing integration into photonic devices. To investigate this, piezoresponse force microscopy
(PFM) was employed to image and manipulate ferroelectric domains in the grown BTO films. The PFM
image in figure 5(a) illustrates the ferroelectric switching behavior of BTO. For this test, a 10 nm-thick BTO
layer was deposited on 10 nm of SrRuO; (SRO) on (110)-oriented DyScO3 (DSO) substrate, which serves as
a bottom electrode to facilitate ferroelectric switching. The XRD and AFM information of the sample used
for PFM is added in the supplementary section S3. A sequence of +4 V, —2 'V, and +2 V voltage biasing was
applied to three concentric square regions of decreasing size to induce controlled polarization switching. The
observed contrast in the image represents domains polarized ‘up’ (light regions) and ‘down’ (dark regions).
The ability to reversibly switch ferroelectric domains with well-defined polarization boundaries confirms
that the BTO epitaxial films are single-crystalline, and uniformly switchable. This uniform switching
response, coupled with the high-quality epitaxial growth of BTO, ensures stable and reproducible
ferroelectric polarization, which is essential for nonlinear optical applications and EO modulation.

The transmission ellipsometric measurement setup, shown in figure 5(b), comprised a signal generator
(SG), a 100 kHz bandwidth photodiode (PD), a lock-in amplifier, and a DC voltmeter to analyze the
modulation response. The SG applied an alternating voltage with a DC bias to the BTO thin-film modulator,
triggering the EO effect. The lock-in amplifier enhances the signal-to-noise ratio by isolating the EO
modulation signal from background interference, while the DC voltmeter provides the PD’s DC offset
relative to the strength of the laser coming through the measurement setup. The lock-in signal is relative to
the optical intensity, the SG applied voltage, and the EO coefficient.
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Table 1. RF-sputtered BTO thin films reported in literature.

Year Substrate Thickness EO coefficient References

rqp ~ 27 pm v!

2017 MBE STO + MBE BTO/Si 96 nm = 41 pm V! [41]
2017 Si 102 nm e =6pm V™! [41]
2021 STO/SOI 100-1000 nm Tegr = 157 pm V! [21]
2023 STO/SOI 100 nm 33> 130 pm V! [42]
2025 STO 300 nm r51 ~ 550 pm V! This work

In order to perform the transmission ellipsometric measurement, the 300 nm BTO film grown on
dual-side polished STO substrates was then patterned with gold electrodes as schematically shown in
figure 5(c). These electrodes facilitate the application of both DC and AC electric fields, inducing
polarization modulation along the x-z plane of the film. The setup utilized circularly polarized input light at
1550 nm, focused through a 20 pm gap between the objectives with an analyzer set at 45° relative to the
direction of the applied field. DC and AC electric fields (1.5 kHz) were applied to modulate the EO response
of the film. As supported by both experimental data and theoretical modeling, the EO modulation signal was
absent at the fundamental SG frequency (1.5 kHz) unless a DC bias was applied, confirming the role of the
applied field in enabling EO response. This configuration ensures that the EO effect is primarily influenced
by the off-diagonal EO tensor component rs;, a key parameter for phase modulation in integrated photonic
applications.

To evaluate the EO effect, modulation response measurements were conducted at several spatial locations
of our large-area BTO films (figure 5(d)). The experimental results demonstrate a linear correlation between
the applied electric field and the resulting modulation signal, indicating the presence of the linear EO
(Pockels) effect in the material. This study presents a novel direct measurement of the EO coefficient 5, in
our system—equivalent to r4; in the standard BTO crystallographic notation— yielding a value of
approximately 550 pm V! for 300 nm-thick BTO. While some insights into the measurement setup can be
obtained from [40], the detailed derivation of the measurement technique, including the mathematical
model and numerical analysis, shall be presented in a future publication. Using this approach, the EO
response was found to be reproducible across multiple spatial locations on the same film, as demonstrated by
measurements at three different sample positions of figure 3(d). In addition, repeatability tests performed at
a fixed position over ten consecutive bias cycles showed no hysteresis, drift, or degradation. These additional
results, included in the supplementary section S4, confirm that the r5; coefficient remains stable under
repeated cycling. Based on the published data summarized in table 1, the measured EO-coefficient
~550 pm V~! in this work represents a significant advancement over previously reported RF-sputtered BTO
thin films approaching the EO performance of bulk BTO materials.

5. Modulator design and future work

The large r5; EO coefficient achieved in off-axis RF-sputtered BTO motivates the development of photonic
devices that leverage this strong ‘off-diagonal’ EO response. One such device concept, illustrated in

figure 6(a), is a hybrid Si-on-BTO polarization mode modulator. In this design, 100 nm thick high-quality Si
layer would be deposited via an appropriate deposition process onto the BTO surface, patterned to define the
waveguide, and engineered to ensure strong optical confinement in BTO, as shown in figures 6(b) and (c).

A key challenge in this architecture is achieving phase matching between the fundamental transverse
electric (TE) and transverse magnetic (TM) modes, which is essential for efficient EO polarization
modulation. This can be addressed using two complementary strategies: (1) dispersion engineering, by
precisely tuning the waveguide dimensions to align the phase velocities of the TE and TM modes [21],
thereby optimizing their overlap with BTO’s r5; coefficient; and (2) implementing a periodic interdigital
electrode structure [43], which enables selective modulation of the effective refractive indices through
controlled birefringence, facilitating quasi-phase matching for improved modulation efficiency.
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Figure 6. (a) Schematic of a hypothetical hybrid BTO-on-silicon modulator structure, where Si ridge guides the optical mode, and
metal contacts on the SiO, buffer layer for electro-optic modulation. (b) Simulated refractive index n distribution and (c) electric
field intensity (|E|*) with a mode confinement in the hybrid BTO-Si waveguide.

S| (100 nm)

STO Substrate

6. Conclusion

This work positions RE-sputtered BTO thin films as a highly scalable platform suitable for compact,
low-power EO devices, unlocking new possibilities for next-generation high-speed photonic and quantum
technologies. Our optimized off-axis RF-sputtering process enabled the deposition of single-crystalline

300 nm BTO films with ultra-smooth surfaces. EO characterization confirmed a large rs; coefficient of
~550 pm V!, surpassing both lithium niobate and other RF-sputtered BTO demonstrations. Additionally,
we demonstrated a method to integrate the grown material into Si-BTO hybrid waveguides for realizing a
polarization mode converter leveraging rs;-based EO modulation. Future work will focus on device
integration, including traveling-wave electrodes for high-speed operation and growth optimization of a-cut
BTO. These findings pave the way for scalable, high-performance EO devices, advancing low-power, ultrafast
photonic and quantum technologies.
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