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Abstract we developed a physics-aware denoising diffusion based probabilistic model for estimating
subsurface soil moisture from surface observations. Unlike traditional physical-based methods that rely on site-
specific soil parameters, our approach leverages a data-driven framework constrained by smoothness and
Fickian diffusion principles to ensure physically consistent predictions. The model is trained and evaluated on
hourly soil moisture data from 20 globally distributed sites, and further validated on high-resolution 10-min
observations from four African stations. The results demonstrate robust performance across depths (10—40 cm),
with the model maintaining high accuracy and low bias, even under varying temporal resolutions. We also
analyzed the effect of input noise through a structured uncertainty experiment, highlighting the model's stability
and reliability. By eliminating the need for explicit physical inputs and enabling uncertainty quantification, this
framework offers a scalable solution for operational soil moisture monitoring, particularly in data-sparse or
heterogeneous regions.

Plain Language Summary Soil moisture is important for agronomy, weather prediction, and
managing water resources. However, it is difficult to measure soil moisture in deeper layers of the soil because
sensors are expensive and not available everywhere. In this work, we created a model that can estimate sub-
surface soil moisture using only the surface soil moisture measurements. The model uses patterns learned from
real data and follows how water naturally spreads underground. We tested it using data from 20 different places
around the world and also on more detailed data collected every 10 min in Africa. The results show that our
model gives accurate estimates, even in places with limited information. It can also tell us how certain or
uncertain the estimates are. This tool can help farmers, scientists, and weather services make better decisions
where detailed soil data is not available.

1. Introduction

Soil moisture plays an important role in regulating land-atmosphere interactions, influencing processes such as
infiltration, evapotranspiration, and surface runoff (Li et al., 2022; McColl et al., 2017; A. Singh et al., 2025a).
Accurate soil moisture information, particularly at the subsurface depths, is key for hydrological modeling,
agricultural decision-making, and climate risk assessment (Wagner et al., 2024). However, in situ measurements
of subsurface soil moisture remain spatially sparse and temporally discontinuous due to instrumentation limi-
tations and logistical constraints, especially in remote or under-resourced regions. As a result, there is an acute
need for models that can estimate sub-surface soil moisture information from surface observations, which are
comparatively easier to obtain from satellites and ground-based sensors (Ahmad et al., 2022; A. Singh &
Gaurav, 2024; A. Singh, Niranjannaik, & Gaurav, 2025).

We can broadly categorize the existing approaches to estimate subsurface soil moisture into empirical, physically-
based, and data-driven models. Empirical models use simplified relationships derived from site-specific obser-
vations, which can be useful for localized applications, but typically lack transferability (Verma & Nema, 2022).
Physical models such as the Richards equation or Green-Ampt infiltration rely on well-established hydrological
theory but require detailed knowledge of site-specific parameters such as hydraulic conductivity, porosity, and
soil water retention characteristics (Lee et al., 2020; Zeng et al., 2018). These parameters are often unavailable or
difficult to obtain. The data-driven models, including statistical regressions and machine learning algorithms (Du
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et al., 2024), offer flexibility in capturing nonlinear relationships. Such models are often limited by their
dependence on large training data sets and a lack of physical interpretability (V. Singh et al., 2025).

Recent advances in deep learning have opened up new opportunities for modeling soil moisture dynamics,
particularly through the use of generative models and physics-informed architectures. These approaches enable
the incorporation of structural constraints that reflect physical processes, while retaining the adaptability of data-
driven learning frameworks (Xi et al., 2025). Despite recent progress, many existing models continue to depend
on explicit physical inputs or predefined soil parameters, which restricts their applicability across diverse
landscapes. In addition, moving from hourly to higher-frequency data introduces further challenges, as models
must remain stable under increased temporal variability and potential measurement noise (A. Singh et al., 2025a).

This study proposes a probabilistic, physics-aware denoising diffusion model designed to estimate soil moisture
at subsurface depths using only surface moisture measurements. The model integrates smoothness and curvature
regularization terms inspired by Fickian diffusion theory as weak physics to guide the learning process, without
relying on explicit physical parameters. This approach eliminates the dependency on difficult-to-obtain variables
while incorporating essential physical principles, thereby enhancing its practicality and ensuring broader appli-
cability across diverse sites and climatic conditions. We evaluate the model across 20 sites with hourly soil
moisture observations, representing diverse hydro-climatic conditions, and test its adaptability using 10-min data
from four stations in Zambia. This study aims to answer the following key research questions;

e Can a purely data-driven model, augmented with physics-inspired regularization, generalize across diverse
hydro-climatic conditions?

o How does the ensemble size affect the stability and reliability of predictions?

o What is the sensitivity of the model to input uncertainty?

¢ Can the model maintain predictive performance when applied to high-frequency input data?

2. Data and Methods
2.1. In Situ Observations

We have compiled soil moisture data from the International Soil Moisture Network repository (Dorigo
et al., 2011, 2021; Gruber et al., 2013). This includes the data from 20 stations across seven globally distributed
networks: AMMA-CATCH (2) (Lebel et al., 2009), CTP-SMTMN (7) (Yang et al., 2013), MAQU (1), NAQU
(4), NGARI (4) (Dente et al., 2012; Su et al., 2011), SKKU (1) (Nguyen et al., 2017), and TWENTE (1) (van der
Velde et al., 2023). Our database covers six different Koppen—Geiger climate classes (Beck et al., 2023). These
stations are located in the regions of Benin, China, South Korea, and Netherlands (Figure S1 in Supporting
Information S1).

We have used the soil moisture recorded at depths of 5, 10, 20, and 40 cm. This provides a representative
subsurface profile of the soil column. Observations are available at an hourly resolution, with temporal coverage
ranging from 7 months to 12 years across stations (Table S1 in Supporting Information S1). The AMMA-CATCH
stations employed CS616 sensors (Time Domain Reflectometry), while other networks predominantly used
Frequency Domain Reflectometry sensors, including ECH20 EC-TM, EC-TM, and 5TM. Additionally, these
stations cover a wide spectrum of soil textures and land cover types, enabling a firm evaluation of the model's
generalizability. For further validation, we use soil moisture observations available at 10-min resolution at
comparable depths from four stations in Zambia: Bbondo (Cwa), Kapululira (BSh), Kasamanda (Aw), and
Margaret (Cwa) are managed by the Zambia Meteorological Department (ZMD). These sites are situated in
distinct hydro-climatic settings with monitoring duration extending over 2-5 years.

2.2. Methodology

We formulated the problem as a conditional generative modeling, where our goal is to predict soil moisture at 10,
20, and 40 cm depths, denoted as the response variable y, = [SMq, SMyy, SM,g] € R3, given the surface soil
moisture at 5 cm, represented as the conditional input X,.,q = SMs € R!. A single multi-output model is trained
to jointly predict these three depths from the surface input. This formulation is physically motivated by the fact
that water transport in unsaturated soils is primarily governed by capillary forces and matric potential gradients,
processes formalized by Richards' equation, which extends Darcy's law to incorporate nonlinear hydraulic
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properties and gravity-driven flow. While not derived from Fick's law, Richards' equation can be viewed as akin
to a nonlinear generalization of Fickian diffusion, where the diffusivity varies with moisture content and the
driving gradient is the matric potential (Wu, 2003). Fick's First Law relates moisture flux to concentration gra-
dients, while Fick's Second Law governs the spatiotemporal evolution of moisture content through its second
spatial derivative (Paul et al., 2014). To align with this physical understanding, we employ a denoising diffusion
probabilistic model (DDPM), which enables stochastic generation of subsurface profiles conditioned on surface
data (Nichol & Dhariwal, 2021). Importantly, we embed domain-specific regularization, namely smoothness and
curvature constraints derived from discretized diffusion operators, directly into the learning objective. This en-
sures that the generated moisture profiles are not only data-consistent but also physically plausible, providing a
principled bridge between statistical modeling and hydrological theory. To ensure proper temporal generalization
and to avoid any leakage of seasonal patterns, the data set for each station was divided chronologically, with the
first 70% of the time series used for training and the remaining 30% reserved for testing.

2.2.1. Forward Diffusion Process

The first component of our model is a forward noising process that perturbs the true subsurface soil moisture
profiles y, € R3 over a series of T discrete time steps. This process simulates the gradual corruption of the
original data by Gaussian noise, thereby transforming the data distribution into an approximately isotropic
Gaussian as ¢t — T. The forward process is defined as a Markov chain, as shown in Equations 1 and 2.

T
q(y1.rlyo) = l}q(yfly,_l), (1
4y lyi—1) = Mysva yior (1 —a) L), 2)

where @, = 1 — f3, € (0, 1) controls the amount of information retained from the previous step, and f, is a small
variance hyperparameter. Due to the properties of Gaussian distributions, it is possible to sample y, directly from
Y, using Equation 3.

q(y,|y0) = 'A/(Yt; \/(_i Yo, (1 — @) 13)- 3)

where @, = H§=10‘s- This closed-form solution significantly simplifies the training procedure, allowing the
model to learn from single-step noise corruption instead of simulating the full Markov chain.

2.2.2. Reverse Denoising Process and Conditional Generation

To generate realistic subsurface moisture predictions, we model the reverse diffusion process using a neural
network that learns to denoise corrupted representations of the true signal at each timestep. The goal is to
approximate the reverse-time conditional probability distribution, as shown in Equation 4.

Po (yt—l |y1 s Xcond)v (4)

where y, is the noisy version of the clean subsurface profile y,, and X.o,q € R denotes the surface soil moisture at
5 cm used as a conditioning variable.

Rather than modeling the full reverse distribution directly, we adopt a DDPM and train a neural network
& : R x{0,...., T — 1} x R! > R® to predict the additive Gaussian noise at step ¢ from (y,,xcond). As
described in Section 2.2.1, the forward process allows us to simulate y, in closed form as

Vi=Vay,+Vi-ae  e~NO L), ®

which enables efficient training without explicitly simulating the full Markov chain.
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The denoising network then takes this noisy input, the timestep ¢, and the conditional feature x.,,q to predict the
original noise using Equation 6.
&y = Denoiser(y,, 7, Xconq) 6)
With the predicted noise, a reconstruction of the clean data can be obtained using Equation 7.
. 1 — .
Yo = \/7&—<yt —yl- a; €y (Yt’ f Xcond)) (7)
1
To train the model, we minimize the mean squared error between the predicted noise and the true noise used to
generate y,, as shown in Equation 8.
A 2
£dala = Eyu, t,s[ || €9 (yts f, Xcond) —€ ||2] (8)
Substituting the expression for y, from Equation 5, we arrive at the explicit training objective, as shown in
Equation 9.
A _ _ 2
Edata = Eyu,t,e[ ‘60 (\/;, Yo + 1- a; €, 1, Xcond) _euz] (9)
This training formulation simplifies the learning process, as it circumvents the need to approximate the full
reverse transition distribution and instead learns to directly denoise a noisy input at each timestep.
2.2.3. Physics-Informed Regularization: Smoothness and Curvature
To integrate physical constraints based on Fickian diffusion theory, we introduce two regularization terms into the
training objective. The first is a smoothness penalty, as shown in Equation 10.
n—1 )
‘C'smooth = z (éi+1 - éz) ’ (10)
i=1
which discourages large gradients between adjacent depths and encourages physically coherent, smoothly
varying moisture profiles. The second term is a curvature regularization that penalizes high second-order de-
rivatives of the predicted noise profile, as shown in Equation 11.
n—1 )
Loy = Z (1 — 26+ 61)" (11)
i=2
This term is inspired by Fick's Second Law of diffusion, which states that the temporal change in concentration (or
moisture) is proportional to the second spatial derivative of concentration (Paul et al., 2014). In a vertical soil
profile with uniform diffusivity D, the law takes the form shown in Equation 12.
00(z, ¢ 0%0(z,
(z )_ .ok )_ (12)
ot 0z?
Since the model operates over depth layers, we discretize the second derivative and impose it as a penalty on the
predicted noise. The final objective is a weighted sum of all three components, as shown in Equation 13.
[:total = [:dala + j'smooth : £smooth + lfick . £’ﬂckv (1 3)
where Ago0m and Age are hyperparameters. In practice, both Ago0m and Age Were fixed globally to 0.1 across all
sites and depths. This choice was guided by preliminary sensitivity tests, where values in the range {0.01,0.1, 1.0}
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were evaluated. A weight of 0.1 consistently provided a balance between discouraging unrealistic oscillations and
preserving predictive accuracy, whereas larger values led to over-smoothing and smaller values made the con-
straints negligible. Fixing the weights globally avoids site-specific tuning and maintains the domain-agnostic
character of the framework. While the computational form of the smoothness and curvature terms resembles
classical penalization schemes used in statistics (e.g., difference penalties in spline smoothing) (Eilers &
Marx, 1996), here these operators are explicitly grounded in the physics of subsurface water transport. The first-
order difference penalty discourages unrealistic vertical gradients in moisture, aligning with capillary-driven
redistribution, whereas the second-order difference penalty corresponds to the discretized form of Fick's Sec-
ond Law. In this sense, the penalties act as weak, domain-agnostic physical constraints rather than generic
regularizers, enabling physically interpretable predictions without requiring site-specific soil parameters. Further
details regarding the optimization strategy, including the gradient formulation and Adam update rules (Dubey
et al., 2019; Kingma & Ba, 2014; Xie et al., 2024), are provided in the Section S1 in Supporting Information S1.
The sampling procedure used to generate ensemble forecasts and quantify uncertainty is also described therein
(Section S2 in Supporting Information S1). Additionally, the full set of evaluation metrics and their formulations
are outlined in Section S3 in Supporting Information S1 for completeness and reproducibility. The complete
pseudocode outlining the proposed algorithm is presented in Algorithm 1 in Supporting Information S1.

3. Results and Discussion
3.1. Model Performance

To evaluate the model performance, we plotted scatter plots between observed and predicted subsurface soil
moisture values, along with normalized error histograms representing the distribution of prediction errors
(Figures 1a and 1b). To maintain clarity in the visual representation and avoid over-crowding, one representative
station was selected from each of the six distinct Koppen—Geiger climate classifications present in the full set of
20 stations for 10 cm depth. The selected sites span diverse climatic regimes: AMMA-CATCH_Belefoungou-Top
(Aw)—tropical savanna, CTP-SMTMN_LO03 (ET)—tundra, MAQU_NST-24 (Dwc)—cold continental with dry
winters, NGARI_SQ14 (BWk)—cold desert, SKKU_SKKU-Jinwicheon-1 (Cwa)—humid subtropical with dry
winters, and Twente_ITCSM-11c (Cfb)—temperate oceanic. This selection facilitates the assessment of model
performance across varying hydro-climatic conditions.

Across these stations, the model achieved high accuracy, with coefficient of determination (RQ) values ranging
from 0.91 to 0.99. The best performance was observed at MAQU_NST-24 (Dwc), where the model yields
R? = 0.991, normalized Root Mean Square Error (nRMSE) = 0.099, and 6 = 0.00126, indicating minimal error
and high stability in capturing snow-influenced seasonal soil moisture dynamics. AMMA-
CATCH_Belefoungou-Top (Aw) also exhibits excellent results (R® = 0.989, nRMSE = 0.112), likely due to
the pronounced wet and dry seasons that define soil moisture variability in tropical savanna climates.

The Twente_ITCSM-11c (Cfb) site exhibits an R? of 0.951 and an nRMSE of 0.36, reflecting the influence of a
temperate oceanic climate characterized by evenly distributed precipitation and mild temperature variability.
Similarly, CTP-SMTMN_L03 (ET) shows relatively higher uncertainty. Despite a strong R> = 0.913, the station
had an nRMSE (0.320) and error dispersion (¢ = 0.0226), attributed to complex freeze-thaw processes and
shallow active layers common in tundra environments.

NGARI_SQ14 (BWk) demonstrates robust performance under arid conditions (R? = 0.933, nRMSE = 0.266),
with nearly zero bias, suggesting the model's capability to predict soil moisture even under conditions of low
vegetation and infrequent precipitation. SKKU_SKKU-Jinwicheon-1 (Cwa), located in a monsoon-driven region,
shows R? = 0.987 with nRMSE = 0.155. The moderate increase in prediction error may be linked to rapid
transitions between dry winters and wet summers, introducing nonlinearity in soil moisture dynamics.

In summary, our model demonstrates strong generalization across all climatic zones. Stations located in regions
with well-defined and predictable seasonal patterns (Aw, Dwc, and Cfb) exhibited lower error metrics and
reduced uncertainty. In contrast, regions influenced by freeze-thaw transitions (ET) or monsoonal rainfall vari-
ability (Cwa) presented greater challenges, as reflected in increased nRMSE and error dispersion. These results
highlights the importance of accounting for regional climate characteristics when evaluating model performance
for sub-surface soil moisture prediction. The results for all depths and all stations are summarized in Table S3 in
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Figure 1. (a) Scatter plot of observed versus predicted sub-surface soil moisture values, where each point represents a prediction instance for a given station. Error bars
indicate the ensemble standard deviation (model uncertainty) around the predicted mean. The dashed black line denotes the 1:1 reference line. (b) Normalized error
histograms (prediction error = predicted — observed) overlaid with Gaussian fits for each site. Histogram densities and fitted probability density functions are
normalized to unity to enable consistent comparison across sites. A vertical dashed line at zero error highlights the bias direction. Inset panels display site-wise summary
metrics: R%, normalized Root Mean Square Error (nRMSE), and bias for the observed versus predicted comparison (left); and fitted y and & of prediction error
distributions (right). Each marker corresponds to a station, color-coded consistently across the figure. (c) Dolan-Moré performance profiles for nRMSE (top row) and
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Supporting Information S1, where a similar performance pattern is observed among stations sharing the same
climate classification, further supporting the influence of regional hydro-climatic conditions on model behavior.

3.2. Comparison With Benchmark

For a comprehensive evaluation, the proposed model is compared with a diverse set of 17 other regression al-
gorithms, encompassing ensemble methods, linear regression techniques, support vector machines, and neural
networks. The models considered in this study include: AdaBoost, BayesianRidge, DecisionTree, ExtraTrees,
GradientBoosting, HuberRegressor, KNeighbors, LinearRegression, LinearSVR, MLP, PLSRegression, Passi-
veAggressive, PolySVR, Proposed, RBF_SVR, RandomForest, Ridge, and SVR. This wide-ranging comparison
framework allows for a systematic assessment of predictive capabilities under varying model structures.
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To quantify the generalization ability of each model across stations and soil depths, we constructed the Dolan—
Moré performance profiles (Figure 1c). This technique involves computing a performance ratio 7 for each model
m and station s, normalized relative to the best-performing model at that station. Specifically, for nRMSE and
coefficient of determination (Rz), the performance ratios are defined as:

maxR?,
! m:,s

. T = (14)

m,s

vviss __MRMSE,
,S milnnRMSEm/ B

m

Lower values of 7 correspond to better relative performance. The cumulative performance profile p,,(z) is then
computed as the fraction of stations for which a model's performance ratio is less than or equal to a given
threshold:

L

152 (s <) (15)

ses

() =

where |S| denotes the total number of stations and I is the indicator function. These profiles are plotted over the
interval = € [1,2]. Models that achieve higher p,,(7) values at lower 7 thresholds are considered more robust and
generalizable across different test locations. The profiles are interpreted as follows: a model that reaches a higher
proportion of stations (closer to 1.0 on the y-axis) at lower values of 7 demonstrates superior consistency in
performance.

The proposed model exhibits strong performance consistency across all tested depths and evaluation metrics. It
was the only model whose profile curve reached a value of 1.0 on the y-axis at the lowest 7, signifying that it either
matched or exceeded the best-performing model at every station with the least performance loss. This result
highlights the robustness and adaptability of the proposed approach, particularly in handling spatial heteroge-
neity, and supports its suitability for deployment in diverse environmental conditions.

To evaluate the statistical significance of model performance differences, we conducted a pairwise comparison of
absolute errors using Tukey's Honest Significant Difference test across 20 monitoring sites at the 10 cm depth.
The resulting heatmaps offer a comprehensive visual summary, where each subplot corresponds to a specific site
and highlights model pairs with statistically significant differences (p < 0.05), marked by black “X” (Figure S2 in
Supporting Information S1). The proposed diffusion-based model stands out by consistently showing significant
differences from baseline and benchmark models across a majority of sites. This suggests that its predictive
performance is not only superior in magnitude but also statistically distinguishable. The proposed model exhibits
the highest number of statistically significant pairwise differences at 12 sites (out of 20), with each registering 17
significant comparisons. These sites include Site 2 to Site 10 and Site 15, 16, and 18. This consistently strong
performance across multiple locations reflects the model's broad applicability and effectiveness. Notably, Sites 1,
13, and 19 also demonstrated substantial improvements, each with 14 significant differences, while Site 12
showed 12. Even at Site 11, where overall distinctions among models were less prominent, the proposed model
achieved five significant comparisons, further indicating its robustness. These findings highlights the model's
robustness and its consistent advantage in estimating subsurface soil moisture under diverse environmental
conditions. Results for the 20 and 40 cm depths follow a similar trend and are provided in the Section S5 in
Supporting Information S1.

3.3. Stochastic Robustness Analysis

We conducted a stochastic robustness analysis by training the model across 30 independent runs using different
random seeds. This approach evaluates the consistency and reliability of model performance under varying initial
conditions, a critical consideration in deep learning-based models prone to converging at different local minima.
For each run, we computed key performance metrics (R? and nRMSE), across all stations and depths (10, 20, and
40 cm). To visualize the results, we used violin plots, which provide a comprehensive representation of the metric
distributions, including central tendency, spread, and the presence of outliers (Figure 2a). This evaluation
framework enables a robust statistical assessment of the model behavior, extending beyond single-seed reporting
practices.
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Figure 2. (a) Violin plots showing the distribution of evaluation metrics (normalized Root Mean Square Error (nRMSE) and R?) for subsurface soil moisture predictions
at three depths (10, 20, and 40 cm) across 20 different sites. Each violin represents the variability in performance over 30 independent training seeds for a given site,
identified here as Site 1-Site 20 (sorted alphabetically). The top row illustrates the nRMSE while the bottom row displays R?. Medians are shown as central white bars.
(b) Station-wise performance of the ensemble diffusion model in predicting 10 cm soil moisture, evaluated using the coefficient of determination and nRMSE. Each subplot
represents 1 of 20 selected stations. The x-axis shows the ensemble size (), varying from 5 to 100 in steps of 5. For each N, the solid line depicts the mean value across all
random seeds, while the shaded area represents the standard deviation, capturing uncertainty due to seed-based variability.

The violin plots and statistical summaries demonstrate that the model maintains high stability and consistency
across different random seeds, particularly at the 10 cm depth. For instance, the average standard deviation of R?
at 10 cm across all sites is approximately 0.0066, with 75% of sites exhibiting a range below 0.01, indicating
minimal sensitivity to initialization. In contrast, at 40 cm, the standard deviation of R? increases by an average of
158% compared to 10 cm, and the performance range exceeds 0.02 in over 30% of the sites, suggesting greater
variability in deeper predictions. A similar trend is observed in nRMSE values, where the median range increases
from approximately 0.0075 at 10 cm to 0.0098 at 40 cm, highlighting how subsurface predictions are more prone
to uncertainty propagation from input perturbations. Despite this, approximately 60% of the stations maintain
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stable R? values above 0.60 even at 40 cm, confirming the model's ability to generalize effectively under sto-
chastic perturbations while capturing depth-dependent soil moisture dynamics.

3.4. Performance at Different N

To assess prediction stability and performance across ensemble configurations, we conducted a stochastic
robustness analysis by running the model with 30 random seeds for ensemble sizes ranging from N =5 to
N = 100 (Figure 2b). At the 10 cm depth, we observed a steady but saturating improvement in model accuracy
with increasing ensemble size. The mean R? increased from 0.9084 at N = 5to0 0.9143 at N = 100, reflecting a
relative improvement of approximately 0.65%. In parallel, the mean normalized RMSE (nRMSE) decreased from
0.2857 to 0.2739, a 4.14% reduction. Standard deviations across seeds remained low (averaging approximately
0.0066 for R? and 0.0104 for nRMSE), indicating high stability of predictions. Beyond N = 50, the performance
metrics began to saturate, suggesting diminishing returns with further increases in ensemble size. These results
highlight that while ensembling contributes to robustness and marginal accuracy gains, a moderately sized
ensemble may be sufficient for effective sub-surface soil moisture estimation. A similar trend of saturating
improvements is observed at 20 and 40 cm depths, and these results are presented and described in detail in the
Section S5 in Supporting Information S1.

3.5. Uncertainty Analysis

To evaluate how uncertainties in input measurements propagate through the model, we conducted a systematic
input uncertainty analysis. In doing so, the model was trained to predict subsurface soil moisture at 10, 20, and
40 cm depths using surface soil moisture at 5 cm as input. After training on 70% of each station's time series and
validating on the remaining 30%, we generated 100 ensemble predictions to capture natural stochasticity in model
outputs for reference. To quantify the sensitivity of the model to input noise, we introduced artificial perturbations
to 5 cm input using three representative types of uncertainty: White Noise (WN), Autocorrelated Noise (AN), and
Structured Noise (SN). WN simulates high-frequency sensor noise, while AN emulates low-frequency or
persistent sensor drift over time, and SN represents systematic, cyclic patterns such as those induced by diurnal or
seasonal biases. For each noise type, we applied perturbations at £1%, £5%, and £10% levels to 50% of the test
samples, reflecting realistic ranges of sensor or preprocessing errors. These perturbed inputs were passed through
the trained model, and the resulting predictions are compared to the outputs from the unperturbed baseline. The
uncertainty effect is quantified as the mean absolute percentage deviation in predicted soil moisture at each depth.
The results highlight distinct patterns in sensitivity with respect to both depth and the nature of the input
perturbation (Figure 3).

WN induced moderate output deviations across depths. At 10 cm depth, the average effect ranged from
approximately 6.76% for £1% perturbations to 7.42% for £10%, with site-specific variation between 2.1% and
12.5%. The 20 cm layer showed the greatest sensitivity, with average changes increasing from 10.28% (*1%) to
10.78% (*10%), and deviations reaching up to 24.2% at Site 14. In contrast, the 40 cm predictions were
comparatively stable, with average effects ranging from 7.82% to 8.18%, and maximum deviations staying below
18.3%, indicating a dampening of WN impacts with depth. On the other hand, AN shows the most significant
influence among all noise types. At 10 cm depth, its impact is comparable to WN, with average deviations ranging
from 6.78% (*1%) t0 9.06% (*+10%). However, the effects became notably more pronounced at deeper layers. The
model's sensitivity peaked at the 20 cm depth, where the average deviation under +£10% input noise reached
12.14%, with Site 14 exhibiting the highest observed change of 24.77%. Even at 40 cm, the average deviation
remained substantial, rising from 7.84% to 9.30% across noise levels, highlighting the pronounced impact of
persistent input biases on deeper soil moisture predictions. Finally, the SN also led to consistent performance
degradation, particularly at the intermediate depth. At 20 cm, the average impact reached up to 10.51%, indicating
notable vulnerability in this layer. In comparison, the perturbation effects at 10 and 40 cm remained lower, with
average deviations not exceeding 7.18% and 8.00%, respectively. These results suggest that while structured
surface anomalies are less severe than autocorrelated drifts, they still systematically influence soil moisture
dynamics, especially in the intermediate soil zone. Overall, 20 cm depth consistently exhibits the highest sus-
ceptibility to input noise, with an average deviation of 10.65% across all noise types, indicating that this inter-
mediate layer is most sensitive to uncertainties originating from surface perturbations. The 10 cm layer showed
moderate sensitivity (7.26%), while the 40 cm depth is relatively more robust (8.11%). Among the noise types,
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Figure 3. Impact of input uncertainty on model output predictions across all 20 soil monitoring stations. Each subplot represents a distinct site (Site 1-Site 20), ordered
alphabetically by station name. The heatmaps display the percentage change in model outputs in response to three types of input perturbations, White Noise,
Autocorrelated Noise, and Structured Noise, applied at three uncertainty levels: +1%, 5%, and £10%. Columns represent specific combinations of noise type and
uncertainty level (e.g., WN1%, AN5%, SN10%), while rows indicate soil depths (10, 20, and 40 cm). Annotated values in each cell indicate the magnitude of output
deviation (in %), and the color intensity reflects the scale of impact.

AN had the strongest impact (up to 11.10% at 20 cm), followed by structured and WN, which showed similar
effects. Variability across stations further emphasized site-specific responses, with Site 8 consistently displaying
the highest average sensitivity (14.73%), while Site 20 exhibits the most stable behavior (3.66%).

3.6. Performance at High Temporal Resolution Data Sets

Finally, beyond evaluating the model on hourly soil moisture data across 20 diverse stations, we also assessed its
performance using higher temporal resolution data from four sites in Zambia, where observations are available at
10-min intervals. This shift from hourly to 10-min data introduces additional challenges, including increased
temporal noise, sharper variability in soil moisture signals, and heightened sensitivity to missing or inconsistent
measurements. These conditions require the model to demonstrate strong temporal generalization capabilities,
particularly in regions where supporting metadata may be sparse. Despite these challenges, the model maintained
strong predictive performance at most sites (Figure S7 in Supporting Information S1). Three stations (Bbondo,
Kapululira, and Margaret) exhibited high R? values ranging from 0.95 to 0.96, with normalized RMSE (nRMSE)
values of 0.27 (Kapululira), 0.32 (Margaret), and 0.61 (Bbondo). Kasamanda showed relatively lower accuracy
(R? = 0.82, nRMSE = 0.49), potentially due to increased sub-hourly variability or site-specific noise. Across all
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sites, prediction errors remained centered around zero, with low standard deviations, indicating unbiased and
consistent performance. These findings demonstrate the model's suitability for high-frequency soil moisture
forecasting and its potential for supporting early warning systems and short-term water resource management in
data-limited environments.

4. Conclusion

This study presents a physics-aware, probabilistic framework for subsurface soil moisture estimation using a
diffusion-based generative model. By formulating the task as a conditional generation problem, the model learns
to infer deeper soil moisture profiles solely from surface measurements without any ancillary physical parameters
or soil-specific hydraulic constants. This makes the approach inherently scalable and adaptable across hetero-
geneous landscapes and climate zones. Unlike conventional physics-based models such as Richards' equation or
the Green-Ampt infiltration method which require site-specific calibration of parameters like saturated hydraulic
conductivity, porosity, or soil water retention curves, our formulation relies entirely on data-driven learning,
guided by domain-inspired regularizations. The smoothness and curvature terms derived from Fickian diffusion
theory function as weak physical constraints, improving the representation of system behavior while avoiding
dependence on hard-to-measure variables and remaining free of parametric assumptions. Extensive evaluation
across 20 global sites with hourly observations and four high-resolution African stations with 10-min data
confirms the model's ability to produce accurate, robust, and physically consistent predictions. Its generalization
across spatial, temporal, and climatic variability highlights the potential of diffusion-based models as a light-
weight and transferable alternative for hydrological forecasting in data-scarce or operationally constrained
environments.
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