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Aims The increasing frequency of heat events driven by climate change poses a serious challenge to cardiovascular health. This 
study aimed to investigate the relationship between high temperature and acute cardiovascular disease (CVD) incidence 
in China and to quantify the heat-related burden of CVD.

Methods 
and results

A total of 856 357 incident acute CVD cases were used from CVD surveillance in China in 2023. A distributed lag non-linear 
model was applied to evaluate the dose–response relationship between temperature and CVD incidence, as well as the best 
linear unbiased prediction of the minimum incidence temperature (MIT). The heat-related burden was quantified using at
tributable fraction and attributable number for two temperature ranges: all heat and extreme heat. Higher temperatures 
were associated with an increased risk of acute CVD incidence. Extreme heat exposure resulted in a cumulative relative 
risk (RR) of 1.17 [95% confidence interval (CI) 1.05–1.30], with the highest cumulative risk observed on the fourth day fol
lowing exposure. All heat exposure accounted for 3.19% of CVD cases, while extreme heat contributed to 0.08%. The bur
den was particularly pronounced among individuals aged ≥65 years (RR = 1.20, 95% CI 1.05–1.37), rural populations (RR =  
1.18, 95% CI 1.01–1.37), and those living in temperate monsoon and temperate continental climates (RR = 1.25, 95% CI 
1.05–1.49). Minimum incidence temperature varied geographically, ranging from 16.0°C in northern regions to 26.2°C in 
southern regions, with the highest MITs concentrated in tropical areas.

Conclusion These findings emphasize the urgent need for region-specific public health strategies that integrate climate change adapta
tion and CVD prevention to mitigate the growing health risks associated with rising temperatures.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Lay summary This study examined the relationship between high temperatures and acute cardiovascular disease (CVD) incidence in China 

and quantified the heat-related burden.  

• Higher temperatures increased the risk of acute CVD, with extreme heat exposure leading to a 17% higher risk, peaking 
on the fourth day after exposure.

• The heat-related burden was more pronounced among older adults (≥65 years), rural populations, and residents of the 
northern region, highlighting the need for targeted public health strategies.
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Introduction
Significant public health achievements in cardiovascular disease (CVD) 
prevention have been achieved in recent decades, largely attributed to 
interventions targeting traditional risk factors such as high blood pres
sure, elevated cholesterol, and smoking.1–3 Despite this progress, the 
burden of CVD remains substantial, particularly with the increasing 
trends of urbanization and ageing populations. In 2022, CVD was re
sponsible for an estimated 19.8 million deaths worldwide, resulting in 
396 million years of life lost (YLLs) and an additional 44.9 million years 
lived with disability (YLDs).4 Entering the era of precision medicine, fur
ther reductions of the CVD burden require expanding prevention 
strategies beyond conventional risk factors to incorporate non- 
traditional ones, such as environmental exposures, which can provide 
novel insights into CVD prevention. Due to increased greenhouse 
gas emissions from human activities, global warming has become in
creasingly severe. This leads to a significant rise in both the frequency 
and the intensity of extreme heat,5 imposing a substantial burden on 
cardiovascular health.

High temperature can lead to physiological changes, including in
creased heart rate, heightened blood viscosity, and dehydration due 
to excessive sweating, which collectively place additional strain on the 
heart and increase the risk of CVD.6 Numerous studies have documen
ted heat-related CVD mortality, consistently showing trends that align 
with established physiological mechanisms7–10 . With the shift in CVD 
prevention strategies towards early health interventions, it becomes 
even more critical to explore the relationship between high tempera
ture and CVD incidence, and the burden on the healthcare system 
should also be measured in terms of incidence. However, relatively 
few studies have investigated the relationship between high tempera
ture and the risk of incident CVD,11–13 and even fewer have quantified 

heat-related incidence burden in terms of attributable fraction (AF) or 
attributable number (AN),14 particularly across multiple counties in 
China. Furthermore, the effect of ambient temperature on CVD hospi
talizations varies by population characteristics.12 This highlights the im
portance of better understanding heat-related risks in the context of 
CVD and underscores the need for targeted, population-specific pre
vention strategies.

To address these gaps, we use the most up-to-date and comprehen
sive registration data to investigate the relationship between heat ex
posure and acute CVD incidence in China. Moreover, we calculate 
the AF and AN, which serve as burden measures that extend beyond 
relative risk (RR) by estimating the actual impact of heat exposure on 
population health. These measures are critical for informing targeted 
interventions and policies to ultimately strengthen resilience against 
the health impacts of climate change.

Methods
Data sources
This study was based on the CVD surveillance in China, a nationwide sur
veillance launched in 2021. This system covered ∼238 million people, ac
counting for 16.9% of the population of China, and aimed to assess the 
incidence of acute CVD among Chinese residents aged 18 years and older. 
All medical institutions within the surveillance network are required to re
port CVD cases using a standardized case report form. In-hospital CVD 
cases—including those from inpatient, emergency, and outpatient/clinic set
tings—are recorded by the responsible clinicians or trained staff at each in
stitution. For fatal out-of-hospital CVD events and cross-regional medical 
incidents, certified physicians from primary healthcare institutions conduct 
on-site investigations during routine public health activities to complete 
case reports. Additionally, annual mortality registration data are cross- 

2                                                                                                                                                                                                      X. Pei et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/eurjpc/advance-article/doi/10.1093/eurjpc/zw
af643/8286449 by guest on 10 N

ovem
ber 2025



referenced with the surveillance database, with subsequent verification and 
supplementary data collection conducted also by primary care physicians. 
More detailed information can be found in the Supplementary material.

Major cardiovascular outcomes were monitored, classified using the 
International Classification of Diseases, 10th Revision (ICD-10), coding sys
tem, ensuring precise and standardized categorization. Stroke encompassed 
a spectrum of conditions, ranging from subarachnoid haemorrhage to ischae
mic stroke, broadly classified under Codes I60, I61, I63, and I64, while expli
citly excluding Code I62. Coronary heart diseases (CHDs) with accurate and 
reliable diagnoses were selected, including acute myocardial infarction, angina 
pectoris, and sudden cardiac death. Acute myocardial infarction was classified 
as Codes I21–I22, and angina pectoris was represented by Code I20, specif
ically highlighting cases treated with percutaneous transluminal coronary 
angioplasty (PTCA), stent implantation, and/or coronary artery bypass graft
ing (CABG). Sudden cardiac death was categorized under Code I46.1. Cases 
with chronic or recovering CVD were explicitly excluded.

All districts were defined as urban areas, and all counties, including 
county-level cities and banners, were defined as rural areas. The classifica
tion was based on the participant’s habitual residence, defined as having 
lived in the location for 6 months or more.

To ensure data reliability, the quality of each monitoring site was rigor
ously evaluated through assessments of validity, completeness, uniqueness, 
and comparability. Data for cases diagnosed between 1 January 2023 and 31 
December 2023 were extracted from the database. After data quality con
trol, a total of 856 357 CVD onset cases were included in this study.

Environmental exposure
We acquired daily meteorological observations in 2023, including max
imum, minimum, and mean temperatures, along with relative humidity, 
from over 2400 meteorological stations via the China Meteorological 
Data Sharing Service System (see Supplementary material online, 
Figure S1). Bilinear interpolation was applied to estimate specific daily envir
onmental exposures for each participant. We also evaluated the results 
using other interpolation methods, including bicubic and inverse distance 
weighting. The Pearson correlation coefficients between these results 
and those obtained using bilinear interpolation were all close to 1 and stat
istically significant at the 99% confidence level. The extreme heat was de
fined as the 95th percentile of daily maximum temperatures. In addition, 
daily air pollution data for particulate matter <2.5 μm in diameter (PM2.5) 
and maximum 8-h average ozone in 2023 were sourced from the environ
mental monitoring centres of each county. The surface elevation data were 
obtained from ETOPO 1 Arc-minute global relief model.15

Statistical analysis
This study employed a two-stage approach to examine the relationship be
tween high temperature and the incidence of acute CVD. In the first stage, 
we applied a distributed lag non-linear model (DLNM)16 to assess the 
county-specific effects of daily maximum temperatures on acute CVD inci
dence. A cross-basis function has been refined to integrate exposure– 
response and lag–response associations. To address overdispersion, we 
employed quasi-Poisson regression models, adjusting for confounders 
such as PM2.5, relative humidity, seasonality, and day-of-week effects. A nat
ural cubic spline with four degrees of freedom (df) was used for both tem
perature exposure and lag effects.

In the second stage, risk estimates from individual counties were pooled 
to obtain an overall estimate. A two-level random-effects model was con
structed to capture both between- and within-province variability by nest
ing counties within their respective provinces. We computed best linear 
unbiased predictions (BLUPs)17 at the county level using the multilevel 
model. This approach enables geographically clustered counties within 
the same province to share information effectively with each other.

The BLUP values were used to determine the minimum incidence tem
perature (MIT) for each county and at the national level. The MIT corre
sponds to the temperature associated with the lowest risk of CVD 

incidence, providing critical insights for identifying vulnerable populations 
and guiding public health interventions aimed at mitigating heat-related 
health risks.

To examine the delayed effects of high temperature, we analysed lag periods 
ranging from lag 0–2 to lag 0–7 days and used the lag period with the largest 
cumulative effect in the model. Furthermore, we performed stratified analyses 
to explore the differential effects of high temperature on various demographic 
groups. Specifically, we compared the impacts of extreme heat across genders, 
age groups, urban vs. rural populations, and climate zones.

A series of sensitivity analyses were also performed to assess the robust
ness of the findings. First, we tested alternative definitions of extreme heat, 
using the 90th, 92.5th, and 99th percentiles of daily maximum tempera
tures. Second, given that previous studies have shown that ozone18 and alti
tude19 may modify the effect of temperature on CVD, we additionally 
introduced ozone and altitude as linear terms in the main model. 
Furthermore, we varied the df for meteorological variables from 3 to 5 
to check if there was any change in the results.

To quantify the heat-related burden of incident acute CVD, we followed 
the methodology that Gasparrini et al.20 developed to calculate AF and AN. 
Attributable fraction was computed as

AFx = 1 − exp ( − βx) 

and AN was calculated as

ANx = n · AFx 

where n is the total number of CVD onset cases and βx represents the 
exposure–response coefficient for a given temperature x. Two tempera
ture ranges were considered: (i) all heat, referring to the temperature ef
fects above the MIT, and (ii) extreme heat, referring to temperatures 
above the 95th percentile of the daily maximum temperature distribution. 
Subgroup analysis was performed for AF, and empirical confidence intervals 
(CIs) (95%) were calculated through 1000 Monte Carlo simulations, assum
ing a multivariate normal distribution of the BLUP.21

All statistical analyses in this study were carried out using the ‘dlnm’ and 
‘mixmeta’ packages in R version 4.4.0. Continuous variables were described 
as means ± standard deviation (SD) and categorical variables as frequencies 
and percentages. All tests were two-sided, and a P-value of less than 0.05 
was considered statistically significant.

Results
Demographic characteristics
In this study, we analysed 856 357 incident acute CVD cases. The ma
jority of cases were male, comprising 58.82% (n = 503 780). In terms of 
age distribution, 68.65% (n = 587 973) were elderly (aged ≥65 years). 
The overwhelming majority cases were of Han ethnicity, accounting 
for 97.60% (n = 835 907). Almost half (48.97%, n = 410 682) were 
from rural areas. The cardiovascular outcomes monitored included 
acute stroke (79.36%, n = 679 436) and acute CHD (20.64%, n =  
176 921) (Table 1).

Given China’s extensive geographical diversity, cases were distribu
ted across various climate zones with distinct characteristics. Nearly 
half (41.92%, n = 358 892) occurred in temperate monsoon climate, 
characterized by moderate temperatures and seasonal rainfall. 
Another 54.12% (n = 463 267) occurred in subtropical monsoon cli
mate, marked by hot and humid summers. A smaller proportion of 
cases were located in tropical monsoon climate (0.98%, n = 8399) 
and in temperate continental climate (3.00%, n = 25 688).

In China, across all study counties in 2023, the mean daily maximum 
temperature was 22.01°C (ranged from −30.03 to 41.09°C), with 
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mean relative humidity of 70.64%, PM2.5 concentration of 31.30 μg/m³, 
and ozone concentration of 97.86 μg/m³ (Table 2).

Lag pattern of the incidence response at 
extreme heat
Figure 1 illustrated the lag effects of extreme heat on CVD incidence, 
with the corresponding effect estimates provided in Supplementary 
material online, Table S1. The cumulative RR of CVD incidence exhib
ited an initial upward trend, peaking around lag 0–4 days, and then grad
ually declined. At lag 0–6 days, the RR was 1.10 (95% CI 0.95–1.27), 
indicating that the elevated risk associated with extreme heat exposure 
persists for up to 1 week. These findings suggested that the impact of 
elevated temperatures on CVD incidence was acute, with the highest 
risk occurring within the initial few days following exposure.

Temperature–incidence relationship 
cumulated over 4 days
As shown in Figure 2, the pooled relationship between temperature and 
acute CVD incidence demonstrated a non-linear association, cumu
lated over a 4-day lag period. As the temperature exceeded ∼30°C, 

a notable rise in risk was observed. The pooled RR of CVD incidence 
associated with extreme heat (95th percentile vs. MIT, ∼38.9°C 
vs.19.3°C) was 1.17 (95% CI 1.05–1.30). Subgroup analysis further 
showed that the RR of CVD incidence due to extreme heat was higher 
in individuals aged 65 years and above (RR = 1.20, 95% CI 1.05–1.37, 
P < 0.01), female (RR = 1.19, 95% CI 1.01–1.40, P = 0.78), the rural 
population (RR = 1.18, 95% CI 1.01–1.37, P = 0.03), and those living 
in temperate monsoon/continental climates (RR = 1.25, 95% CI 1.05– 
1.49, P = 0.04), compared with their respective counterparts (Figure 2
and Figure 3A).

Geographical distribution of the minimum 
incidence temperature (°C)
The geographical distribution of the MITs varied in China (Figure 4), ran
ging from 16.0 to 26.2°C. The MIT distribution showed a clear increas
ing trend from north to south, with all values exceeding 24°C south of 
the Tropic of Cancer. This spatial pattern highlighted the variation in 
temperature-related health risks across different climatic zones in 
China, with the highest MITs concentrated in tropical regions with 
warmest climates.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Demographic characteristics and cardiovascular disease outcomes of the study population

Characteristics Female Male Total P-value
n = 352 577 (%) n = 503 780 (%) n = 856 357(%)

Age
18–64 81 159 (23.02) 187 225 (37.16) 268 384 (31.35)

≥65 271 418 (76.98) 316 555 (62.84) 587 973 (68.65) <0.001
Ethnic

Han 344 968 (97.84) 490 939 (97.45) 835 907 (97.60)

National minority 7609 (2.16) 12 841 (2.55) 20 450 (2.40) <0.001
Urbanity

Urban 177 252 (50.27) 268 423 (53.28) 445 675 (52.03)

Rural 175 325 (49.73) 235 357 (46.72) 410 682 (48.97) <0.001
Career

White collar 12 099 (3.43) 24 180 (4.80) 36 279 (4.23)

Administrator 3702 (1.05) 13 075 (2.60) 16 777 (1.96)
Blue collar 3864 (1.10) 5526 (1.10) 9390 (1.10)

Other 221 880 (62.93) 306 746 (60.89) 528 626 (61.76)

Missing 111 032 (31.49) 154 253 (30.62) 265 285 (30.96) <0.001
Marital status

Married/remarried/living together 214 743 (60.91) 324 193 (64.35) 538 936 (62.98)

Separated or divorced 1481 (0.42) 3790 (0.75) 5271 (0.62)
Single 3735 (1.06) 12 556 (2.49) 16 291 (1.90)

Widowed 23 844 (6.76) 12 192 (2.42) 36 036 (4.21)

Missing 108 774 (30.85) 151 049 (29.98) 259 823 (30.32) <0.001
Diseases

CHD 61 447 (17.43) 115 474 (22.92) 176 921 (20.64)

Stroke 291 130 (82.57) 388 306 (77.08) 679 436 (79.36) <0.001
Climate zones

Temperate monsoon climate 150 835 (42.84) 208 057 (41.30) 358 892 (41.92)

Subtropical monsoon climate 187 545 (53.33) 275 722 (54.62) 463 267 (54.12)
Tropical monsoon climate 3418 (0.97) 4981 (0.99) 8399 (0.98)

Temperate continental climate 10 086 (2.86) 15 602 (3.10) 25 688 (3.00) <0.001

*P-values represent comparisons between groups for each characteristic.
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Burden of acute cardiovascular disease 
incidence attributable to all heat and 
extreme heat
In 2023, the AF of acute CVD incidence due to all heat exposures was 
3.19% (95% CI 1.34–4.98%), which corresponded to 27 298 CVD on
set cases, resulting in a large heat burden. Regarding extreme heat, we 
found that 0.08% (95% CI 0.02–0.15%) of the total sample occurred 
during the 5% hottest days of the year, representing 685 CVD onset 
cases. Figure 3 illustrated that rural residents and the elderly were 
more affected by high temperature and experienced a higher health 
burden of CVD both during all heat and extreme heat (Figure 3 and 
Supplementary material online, Table S2).

Sensitivity analyses
Sensitivity analyses were performed to validate our main findings. The 
association between extreme heat and acute CVD incidence remained 

consistent when using alternative thresholds to define extreme heat, 
specifically by replacing the 95th percentile of daily maximum tempera
ture with the 90th, 92.5th, and 99th percentiles. Additionally, altering 
the df for meteorological variables from 3 to 5, or extending the 
main model to include ozone and altitude as covariates to account 
for potential confounding, did not change the findings substantially, fur
ther indicating the robustness of the results (see Supplementary 
material online, Table S3).

Discussion
This study was a national-level investigation in China to investigate the 
relationship between heat exposure and acute CVD incidence and es
timated the heat burden across diverse geographical regions. The study 
also examined the MIT for CVD incidence, accounting for both cumu
lative and delayed health impacts. Our primary findings demonstrate 

Figure 1 Cumulative lag effects of extreme heat on cardiovascular disease incidence over 1 week. RR, relative risk. The effect of extreme heat was 
summarized as the relative risk of incidence at the 95th temperature percentiles vs. the minimum incidence temperature.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Distributions of daily ambient environment conditions in China in 2023

Environmental factors Mean Minimum Q1 Q2 Q3 Maximum

Maximum temperature (°C) 21.00 −30.03 14.20 22.91 29.19 41.09

Relative humidity (%) 70.64 5.80 56.29 75.72 87.99 100.00
PM2.5 (μg/m³) 31.30 1.00 14.50 24.50 39.80 334.90

Ozone (μg/m³) 97.86 5.90 71.80 91.70 120.10 274.00

Altitude (m) 232.43 1.70 18.30 49.70 244.10 2524.80

Incidence and burden of CVD due to extreme heat in China                                                                                                                                 5
D

ow
nloaded from

 https://academ
ic.oup.com

/eurjpc/advance-article/doi/10.1093/eurjpc/zw
af643/8286449 by guest on 10 N

ovem
ber 2025

http://academic.oup.com/eurjpc/article-lookup/doi/10.1093/eurjpc/zwaf643#supplementary-data
http://academic.oup.com/eurjpc/article-lookup/doi/10.1093/eurjpc/zwaf643#supplementary-data
http://academic.oup.com/eurjpc/article-lookup/doi/10.1093/eurjpc/zwaf643#supplementary-data


that extreme heat significantly elevates the risk of acute CVD incidence, 
with the risk peaking within the first 4 days following exposure. We 
also found that the heat-related risk and burden varied by age and urban
ization level. These results advanced the existing body of knowledge by 
emphasizing the broader health impacts of extreme heat exposure on in
cidence. Importantly, our findings highlighted the urgent need for tailored 
public health interventions, especially in light of ongoing climate change.

Our findings regarding the association between high temperatures 
and CVD aligned closely with previous research from different climate 
zones. Achebak et al.12 conducted a quantitative analysis on the associ
ation between heat and CVD hospitalizations in Spain, showing that ele
vated temperatures slightly increased the risk of hospitalization for 
diseases of arteries, arterioles, and capillaries [RR: 1.104 (1.038– 
1.175)] and ischaemic heart diseases [RR: 1.083 (1.052–1.114)]. 

A

B C

D E

Figure 2 Temperature–incidence relationship and relative risk of cardiovascular disease over a 4-day lag period. (A) Pooled non-linear relationship 
between temperature and cardiovascular disease incidence. (B) Relative risk of cardiovascular disease incidence by gender. (C ) Relative risk of cardio
vascular disease incidence by age group. (D) Relative risk of cardiovascular disease incidence by urbanicity. (E) Relative risk of cardiovascular disease 
incidence by climate zone. RR, relative risk. Dashed vertical lines in each panel indicate the threshold for extreme heat, defined as the 95th percentile 
of daily temperature distribution. Asterisk (*) indicates P < 0.05, and double asterisk (**) indicates P < 0.01 for differences in relative risk between ex
treme heat and cardiovascular disease incidence.
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Although the demographic characteristics of patients varied, Achebak’s 
study mainly focused on Whites with a lower proportion of elderly 
(aged ≥65 years), at 18.9%. Similarly, Tao et al.22 observed that excess 
hot days were associated with an increased risk of CVD in China [RR: 
1.10 (1.05–1.15)]. However, Tao’s study was limited to data solely from 
the largest hospitals in 15 cities, excluding rural areas and other 
provinces.

Previous studies on heat-related health burden have mainly focused 
on mortality and all-cause incidence, while few studies so far have spe
cifically examined the heat-related health burden of CVD incidence.14

Concentrating on all-cause outcomes could dilute the heat–incidence 
relationship, making it challenging to detect the specific effects of 
heat.23 Our study extended this understanding by demonstrating that 
total and extreme heat contributed to 3.19% and 0.08% of CVD inci
dence, respectively. Bai et al.24 reported that in Ontario, Canada, 
1.2% of CHD hospitalizations and 1.8% of stroke hospitalizations 
were due to heat exposure, with 0.16% and 0.19% attributable to ex
treme heat. However, their analysis focused solely on hospitalizations 
(both new and preexisting cases), excluding outpatient settings such 
as emergency visits. Another study in Shenzhen, a southern Chinese 
city, found that 2.5% of first-ever stroke incidence was attributable to 
heat,25 underscoring the significant burden of heat on CVD in urban 
areas. These emphasizes the importance of calculating the AF and 
AN, which, by translating individual risk (represented by RR) into 
population-level impact, could be indispensable for public health service 
evaluation and planning.

Another key finding of this study was the geographic variation in MIT, 
showing a north–south gradient that likely reflects human physiologic
al,26–28 behavioural, and cultural adaptations to the local climate.29

Individuals in tropical regions, accustomed to consistently warmer cli
mates, generally exhibit higher MITs, while those in northern areas 
were more susceptible to the heat’s effects. This corresponds with 
our subgroup analysis, which showed that populations in northern cli
mate zones had higher risk compared with those in more southern cli
mate zones. Although no previous studies have specifically examined the 
MIT for CVD, similar trends were observed in studies of the minimum 

mortality temperature. A study found that countries with hotter cli
mates or close proximity to the equator tend to have higher minimum 
mortality temperatures, suggesting a degree of population adaptation to 
local climatic conditions.30 Yin et al.31 analysed 420 locations and found 
that minimum mortality temperatures closely aligned with the most fre
quently observed local temperatures during the same period. This cor
relation highlights how long-term climate exposure shapes physiological 
and behavioural adaptations to environmental conditions. Recognizing 
these geographic differences highlights the importance of incorporating 
regional climate characteristics into public health strategies.

Our findings confirmed that extreme heat exerts acute and short- 
term lag effects on cardiovascular health. Consistent with existing lit
erature from China, we observed that the heat effect on CVD was im
mediate and can persist for up to ∼1 week following exposure.32,33 This 
lag effect indicated that individuals might remain at heightened risk for 
CVD even after extreme heat had dissipated, underscoring the neces
sity for timely public health interventions during heatwave events and 
continued monitoring in the days afterwards.

The findings of our study were in line with previous meta-analyses,34,35

which demonstrate that the association between heat and CVD varied by 
population characteristics and geographical location. Subgroup analyses 
further revealed disparities in the effects of extreme heat across different 
demographic and regional groups. Older individuals appeared to be at 
greater risk, likely due to physiological differences in thermoregulation. 
Elderly individuals were more vulnerable because of age-related impair
ments in temperature regulation and the increased prevalence of co
morbidities, which amplified their susceptibility to heat-related health 
impacts.29,36 Rural populations also appeared more vulnerable to ex
treme heat, likely due to limited access to healthcare services and greater 
exposure to outdoor work. Specifically, many rural residents in China are 
farmers or labourers and live in underdeveloped housing,29,37 which can 
exacerbate heat exposure. In 2023, the average number of air- 
conditioning units in rural areas was 105.7 units per 100 households, sig
nificantly lower than the 171.7 units per 100 households in urban areas.38

Our findings are supported by physiological plausibility. Exposure to 
extreme heat induces various stress responses in the cardiovascular 

Figure 3 Subgroup analysis by age, sex, urbanicity, and climate zone (A) Relative risk and 95% confidence interval of cardiovascular disease incidence 
associated with extreme heat. (B) Attributable fraction and 95% confidence interval of extreme heat exposures. (C ) Attributable fraction and 95% 
confidence interval of all heat exposures. RR, relative risk. AF, attributable fraction.

Incidence and burden of CVD due to extreme heat in China                                                                                                                                 7
D

ow
nloaded from

 https://academ
ic.oup.com

/eurjpc/advance-article/doi/10.1093/eurjpc/zw
af643/8286449 by guest on 10 N

ovem
ber 2025



system. To dissipate heat, the body activates mechanisms such as in
creased skin blood flow and sweating, which elevate cardiac output 
to maintain blood pressure and support thermoregulation.39,40

Dehydration caused by extreme heat further exacerbates cardiovascu
lar stress by reducing blood volume and decreasing the heart’s filling 
pressure, which can lead to ischaemia or infarction.41 Heat exposure 
can trigger an inflammatory response, with mediators such as cytokines 
disrupting cellular homeostasis and impairing organ function, thereby 
exacerbating damage to vulnerable tissues and organs.42 In addition, ex
treme heat may also impact cardiovascular health through indirect 
behavioural and psychological pathways. The E(e)SEEDi lifestyle frame
work integrates environmental exposures with four core domains of 
health—sleep, emotion, exercise, and diet.43 According to this frame
work, environmental stressors such as extreme heat can compromise 
the quality of these essential lifestyle factors, thereby increasing cardio
vascular vulnerability.

Although this study focused on the adverse effects of extreme ambi
ent heat exposure, it is important to acknowledge that not all forms of 
heat exposure are harmful. For instance, controlled and time-limited 
exposures such as Finnish sauna bathing have been associated with 
cardiovascular benefits, including improved vascular function, reduced 
blood pressure, and lower risk of cardiovascular events and mortality.44

This study has several notable advantages. First, it stands as one of the 
largest studies to date to examine the effects of extreme heat on CVD 

incidence in China, covering multiple counties across a range of climate 
zones. Such extensive cases, combined with broad geographic cover
age, allow for a more comprehensive and robust assessment of the re
lationship between high temperature and CVD risk. Secondly, this 
study explored MIT variations across different climate zones, providing 
novel insights into CVD prevention and serving as a valuable reference 
for region-specific public health interventions. Additionally, few studies 
have conducted subgroup analyses that differentiate urban and rural 
populations,6,12,45 and this study addressed this gap. By identifying spe
cific vulnerable groups, such as rural residents and elderly individuals, 
this study contributed to the design of targeted adaptation strategies 
for more effective health outcomes.

However, this study has several limitations. First, as an ecological 
study, this study was subject to ecological fallacies, and caution was 
needed when generalizing the findings to other contexts or regions. 
Second, although we controlled for environmental confounding factors 
such as humidity and air pollution, individual-level factors such as life
style and behaviour still influence the results. Additionally, since most 
individuals spent the majority of their time indoors,46,47 relying on out
door temperature observations might not fully reflect actual heat ex
posure at the individual level. Beyond coronary heart disease and 
stroke, extreme heat may also increase the risk of other major adverse 
cardiovascular events (MACEs), including arrhythmias and heart failure. 
However, as these conditions are not included in the current scope of 

Figure 4 Geographical distribution of minimum incidence temperature across China.
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the CVD surveillance system in China, they were not assessed in this 
analysis. Furthermore, the study was based on data from one single 
year, limiting its ability to assess long-term trends over time. Future re
search should address these limitations by incorporating more precise 
individual-level exposure data, exploring compound exposure to other 
environmental risk factors, using composite biometeorological indica
tors such as net effective temperature,48 and examining long-term 
trends across diverse global contexts to provide a more comprehensive 
understanding of heat-related cardiovascular risks.

In conclusion, our study demonstrated that extreme heat significant
ly elevated the risk of acute CVD incidence in China, with notable var
iations across geographic regions and demographic groups. These 
findings underscore the urgent need of implementing targeted mea
sures to mitigate heat exposure, particularly for vulnerable populations. 
For example, establishing early warning systems and enhancing public 
awareness can enable communities to better anticipate and respond 
to extreme heat events. And developing tailored interventions to re
duce heat exposure for high-risk populations is essential. Together, 
these strategies provide a comprehensive approach to reduce the ad
verse health effects of extreme heat on the Chinese population, miti
gate CVD risk, and enhance community resilience in the context of 
ongoing climate change.
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