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We present a detailed study of elliptic fibrations on Fourier-Mukai partners of K3 surfaces, which we
call derived elliptic structures. We fully classify derived elliptic structures in terms of Hodge-theoretic
data, similar to the Derived Torelli Theorem that describes Fourier-Mukai partners. In Picard rank two,
derived elliptic structures are fully determined by the Lagrangian subgroups of the discriminant group.
As a consequence, we prove that for a large class of Picard rank 2 elliptic K3 surfaces all Fourier-Mukai
partners are Jacobians, and we partially extend this result to non-closed fields. We also show that
there exist elliptic K3 surfaces with Fourier-Mukai partners, which are not Jacobians of the original K3
surface. This gives a negative answer to a question raised by Hassett and Tschinkel.

1 Introduction

Study of derived equivalence for complex K3 surfaces goes back to the work of Mukai. By the Derived

Torelli Theorem [21, 25], derived equivalence translates to a Hodge-theoretic concept. Building on the

Derived Torelli theorem, and Nikulin’s work on lattices [22], one can deduce a formula for the number

of Fourier-Mukai partners for a complex K3 surface [9, 24].

Derived equivalences of elliptic K3 surfaces have been studied in [7, 30]. One way to produce Fourier-

Mukai partners of an elliptic surface f : X → P1, is to take Jacobians Jk(X), which are moduli spaces

parametrising stable torsion sheaves supported on a fibre of f and having degree k ∈ Z. If k is coprime

to the multisection index of f , then Jk(X) is derived equivalent to X and we refer to Jk(X) as a coprime

Jacobian of X. This raises the question of whether the converse is also true:

Question 1.1. Is every Fourier-Mukai partner of an elliptic surface X a coprime Jacobian of X?

Question 1.1 was asked in 2014 by Hassett and Tschinkel in the case X is a K3 surface [8, Question 20].

In fact, since elliptic K3 surfaces can have several non-isomorphic elliptic fibrations, one can interpret

this question differently depending on whether we fix a fibration on X in advance or not.

For elliptic surfaces of non-zero Kodaira dimension, as well as for bielliptic and Enriques surfaces, [2,

3], Question 1.1 has an affirmative answer. We do not know the answer in the abelian case.

One of our main results is the following answer to Question 1.1 for K3 surfaces:
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10140 | R. Meinsma and E. Shinder

Theorem1.2 (See Corollaries 5.13 and 5.14). LetX be an elliptic K3 surface of Picard rank 2. Let t be

themultisection index of X and let 2d be the degree of a polarisation on X. Denotem = gcd(d, t).

(i) If m = 1, then every Fourier-Mukai partner of X is isomorphic to a coprime Jacobian of a fixed

elliptic fibration on X;

(ii) If m = pk, for a prime p, then every Fourier-Mukai partner of X is isomorphic to a coprime Jacobian

of one of the two elliptic fibrations on X;

(iii) If m is not a power of a prime, and X is very general with these properties, then X admits Fourier-

Mukai partners that are not isomorphic to any Jacobian of any elliptic fibration on X.

Our method of proof of Theorem 1.2 relies on the Ogg-Shafarevich theory for elliptic surfaces, the

Derived Torelli Theorem and lattice theory. In addition we introduce a new ingredient: a derived elliptic

structure. The notion of the derived elliptic structure goes into the direction of describing an elliptic

structure on X and its Fourier-Mukai partner in terms of the derived categoryD
b(X).We define a derived

elliptic structure on a K3 surface X as a choice of an elliptic fibration on a Fourier-Mukai partner of X.

Using this language, Question 1.1 translates to the question whether every derived elliptic structure on

X is isomorphic to a coprime Jacobian of an actual elliptic structure on X.

We proceed to completely classify derived elliptic structures, for an elliptic K3 surface X of Picard

rank two, in terms of certain Lagrangian subgroups of the discriminant lattice ANS(X) of the Neron-Severi

lattice of X. The final answer, at least when X is very general, is that the number of derived elliptic

structures on X, up to coprime Jacobians, equals 2ω(m) where m is as in Theorem 1.2 and ω(m) is the

number of distinct prime factors of m, that is ω(1) = 0, ω(pk) = 1 and ω(m) > 1 otherwise. This explains

the condition on m appearing in Theorem 1.2.

Let us explain some difficulties that we encounter along the way. First of all, elliptic K3 surfaces of

Picard rank two can have one or two elliptic fibrations, and in the latter case these elliptic fibrations

are sometimes isomorphic. Thus, a direct comparison between the number of coprime Jacobians and

Fourier-Mukai partners is complicated.

Secondly, many results that we state for arbitrary elliptic K3 surfaces X of Picard rank two simplify

considerably when X is very general. Indeed in this case, the group GX of Hodge isometries of the

transcendental lattice T(X) is trivial, that is GX = {±1}. In general this is a finite cyclic group of even

order |GX| ≤ 66. This group appears in various bijections, similarly to how it appears in the counting

formula of Fourier–Mukai partners [9]. The set of isomorphism classes of derived elliptic structures on

X is in natural bijection with the set

L̃(AT(X))/GX,

see Theorem 5.10. Here AT(X) is the discriminant lattice of the transcendental lattice T(X), and L̃(AT(X))

denotes the set of Lagrangian elements (Definition 3.5). Taking a coprime Jacobian Jk of an elliptic

structure translates into multiplying the corresponding Lagrangian element by k and changing elliptic

fibrations on a given surface corresponds to an involution which can be described intrinsically in terms

ofAT(X). For very general X,GX = {±1}, and this group acts bymultiplying Lagrangian elements by −1.On

the other hand, special Xwill have fewer Fourier-Mukai partners and fewer coprime Jacobians, however

they will still match perfectly in cases (1) and (2) of Theorem 1.2. See Example 3.13 for the most special

(in terms of the size of GX and Aut(X)) elliptic K3 surface.

Similarly, when considering very general elliptic K3 surfaces, every isomorphism preserving the fibre

class is necessarily an isomorphism over the base. This is false in general, and this is important, because

the Ogg-Shafarevich theory works with elliptic surfaces over the base, whereas the natural equivalence

relation is that of preserving the elliptic pencil. We provide a careful analysis of the difference between

isomorphism over P1 and isomorphism as elliptic surfaces,which can be of independent interest. In par-

ticular, we are able to state which of the coprime Jacobians Jk(X) of an elliptic K3 surfaces X are isomor-

phic as elliptic surfaces (resp. over P1). Indeed, very general elliptic K3 surfaces with multisection index

t have at most φ(t)
2 coprime Jacobians, and the explicit number can be computed in all cases as follows:

Proposition 1.3. (see Proposition 4.15) Let X be a complex elliptic K3 surface. There exist explicitly

defined cyclic subgroups BX ⊂ B̃X of (Z/tZ)∗, such that the number of isomorphism classes
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Elliptic K3 Surfaces and Jacobians | 10141

of coprime Jacobians Jk(X) considered up to isomorphism over the base (resp. preserving the

elliptic pencil) equals φ(t)/|BX| (resp. φ(t)/|̃BX|).

The group BX can only be non-trivial if X is isotrivial with j-invariant 0 or 1728. We give examples

when BX and B̃X are non-trivial, and when they are different.

Applications
We deduce from Theorem 1.2 that zeroth Jacobians of derived equivalent elliptic K3 surfaces are non-

isomorphic in general (Corollary 5.16), that is passing to the Jacobian can not be defined solely in terms

of the derived category (Remark 5.17).

Furthermore, Theorem 1.2 is relevant every time potential consequences of derived equivalence

between K3 surfaces are considered. Let us explain two non-trivial situations when the explicit or

geometric form of derived equivalence is desirable. The first is rational points over non-closed fields

and the second is L-equivalence.

The motivation of Hassett–Tschinkel [8] was the question of existence of rational points on derived

equivalent elliptic K3 surfaces over non-closed fields. Namely, since X and any of its coprime Jacobians

Jk(X) are isogenous, it follows that X has a rational point if and only if Jk(X) has a rational point by

the Lang-Nishimura theorem. Using Galois descent, as we know automorphism groups of elliptic K3

surfaces quite explicitly, we can partially extend Theorem 1.2 to subfields k ⊂ C, and deduce the

implication about rational points of Fourier-Mukai partners (see Corollary 5.21). We note that the

question about the simultaneous existence of rational points on derived equivalent K3 surfaces still

seems to be open.

Another application for Theorem 1.2 is to the question of L-equivalence of derived equivalent K3

surfaces X, Y [16]. For elliptic K3 surfaces the natural strategy is to prove L-equivalence for the generic

fibres, which are genus one curves over the function field of the base, and then spread-out the L-

equivalence over the total space. This strategy has been realised in [28] for elliptic K3 surfaces of

multisection index five. It follows from Theorem 1.2 that the same approach can work when the

mutlisection index t is a power of a prime (and d is arbitrary).

Structure of the paper
In Section 2, we recall basic classical results about lattices and complex K3 surfaces, and moduli

spaces of sheaves on K3 surfaces. In Section 3, we describe in detail the elliptic K3 surfaces of rank

two, including their Neron-Severi lattices, Lagrangian elements in their discriminant lattices, Hodge

isometries of the transcendental lattices and the group of automorphisms. Most results in this section

are standard except the focus on the Lagrangian elements. In Section 4, we recall the Ogg–Shafarevich

theory and explain in detail when different Jacobians of a given elliptic fibration are isomorphic. In

Section 5, we introduce derived elliptic structures and Hodge elliptic structures on a K3 surface and

fully classify them in terms of Lagrangian elements in the case of Picard rank two.

2 Preliminary Results
2.1 Lattices
Ourmain reference for lattice theory is [22]. A lattice is a finitely generated free abelian group L together

with a symmetric non-degenerate bilinear form b : L × L → Z. We consider the quadratic form q(x) =

b(x, x) and sometimes we write x · y for b(x, y) and x2 for q(x). A morphism of lattices between (L, b)

and (L′, b′) is a group homomorphism σ : L → L′ which respects the bilinear forms, meaning b(x, y) =

b′(σ (x), σ(y)) for all x, y ∈ L. An isomorphism of lattices is called an isometry.We write O(L) for the group

of isometries of L. The lattice L is called even if x2 is even for all x ∈ L. All the lattices we consider will

be assumed to be even.

The dual of a lattice L is defined as L∗ := Hom(L,Z). It comes equipped with a natural bilinear form

taking values in Q. The bilinear form gives rise to a natural map L → L∗ which is injective because we

assume b to be non-degenerate; furthermore, we have a canonical isomorphism

L∗ ≃
{
x ∈ L ⊗ Q | ∀y ∈ L : x · y ∈ Z

}
⊆ L ⊗ Q. (2.1)
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10142 | R. Meinsma and E. Shinder

The quotient L∗/L = AL is called the discriminant group of L. If the discriminant group is trivial, we call

L unimodular. The discriminant group comes equipped with a quadratic form q : AL → Q/2Z. There is

an orthogonal direct sum decomposition

AL =
⊕

p

A
(p)
L (2.2)

where A
(p)
L consists of elements annihilated by a power of a prime p. The group A

(p)
L coincides with the

discriminant group of the p-adic lattice L⊗ Zp. Two lattices L, L′ are said to be in the same genus if they

have the same signature and have isometric discriminant groups.

An overlattice of a lattice T is a lattice L together with an embedding of lattices T →֒ L of finite index.

We say that two overlattices T →֒ L and T′ →֒ L′ are isomorphic if there exists a commutative diagram

where σ and τ are isometries.

For any overlattice T →֒ L, there is a natural embedding of the cokernel HL := L/T in the discriminant

group of T via the chain of embeddings

T →֒ L →֒ L∗ →֒ T∗.

The subgroup HL is isotropic with respect to the quadratic form on AT, and conversely any isotropic

subgroup of AT gives rise to an overlattice of T. The following result gives a complete classification of

all overlattices of a given lattice T, up to isomorphism.

Lemma 2.1 ([22, Proposition 1.4.2]). Let T be a lattice, and let T →֒ L and T →֒ M be two overlattices

of T. An isometry σ ∈ O(T) fits into a commutative diagram of the form

(2.3)

if and only if the induced isometry σ ∈ O(AT) satisfies σ(HL) = HM. Moreover, the assignment

(T →֒ L) �→ HL is a bijection between the set of isomorphism classes of overlattices of T and the

set of O(T)-orbits of isotropic subgroups of AT.

Note that (2.3) can be completed as follows:

(2.4)

2.2 K3 surfaces
Our basic reference for K3 surfaces is [11]. If X is a complex projective K3 surface, H2(X,Z) is a free

abelian group of rank 22. Moreover, the cup product is a symmetric bilinear form on H2(X,Z), turning

H2(X,Z) into an even, unimodular lattice isometric to �K3 = U⊕3 ⊕ E8(−1)⊕2. Here, U is the hyperbolic

lattice given by the symmetric bilinear form

(
0 1

1 0

)
,

and E8 is the unique even, unimodular, positive-definite lattice of rank 8 (see [1, §VIII.1] for details).

The Néron-Severi lattice NS(X) is a sublattice of H2(X,Z), defined as the image of the first Chern class
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Elliptic K3 Surfaces and Jacobians | 10143

c1 : Pic(X) →֒ H2(X,Z). We have Pic(X) ≃ NS(X); it is a free abelian group of rank ρ, which is called the

Picard number of X.

The orthogonal complement T(X) = NS(X)⊥ ⊆ H2(X,Z) is called the transcendental lattice of X. The

image of the line H2,0(X) = Cσ ⊂ H2(X,C) under any isometry H2(X,Z) → �K3 is called a period of X. Since

σ 2 = 0 and σ · σ > 0, any period of X lies in the open subset

D :=
{
ℓ ∈ P(�K3 ⊗ C) | ℓ2 = 0 and ℓ · ℓ > 0

}
,

called the period domain. The following two results are among the most fundamental results about K3

surfaces.

Theorem 2.2 (Surjectivity of the Period Map). [32] Any point in the period domain is a period of

a K3 surface, i.e., for any ℓ ∈ D, there is a K3 surface X with an isometry H2(X,Z) → �K3 such

that H2(X,C) → �K3 ⊗ C maps H2,0(X) to ℓ.

Theorem 2.3 (Torelli Theorem for K3 Surfaces). [26] (see [11, Theorem 5.5.3]) Let X and Y be K3

surfaces. Then X and Y are isomorphic if and only if there exists a Hodge isometry H2(X,Z) ≃

H2(Y,Z). Moreover, for any Hodge isometry ψ : H2(X,Z) → H2(Y,Z), which preserves the ample

cone, there is a unique isomorphism f : X → Y such that ψ = f∗.

The Hodge structure on the transcendental lattice determines X up to derived equivalence due to

what is known as the Derived Torelli Theorem.

Theorem 2.4 (Derived Torelli Theorem). [21], [25] Let X and Y be two K3 surfaces. Then there

exists an equivalence D
b(X) ≃ D

b(Y) if and only if there exists a Hodge isometry T(X) ≃ T(Y).

If Db(X) ≃ D
b(Y), we say that X and Y are derived equivalent and that Y is a Fourier-Mukai partner

of X. Theorem 2.4 implies that two derived equivalent K3 surfaces must have equal Picard numbers. If

we denote � = NS(X), there is an isometry [22, Corollary 1.6.2]

(A�, q�) ≃ (AT(X),−qT(X)). (2.5)

Thus derived equivalent K3 surfaces have isomorphic discriminant lattices, and it follows easily that

their Néron-Severi lattices must be in the same genus. Instead of (AT(X),−qT(X)), we usually write

AT(X)(−1).

For a K3 surface X, we write GX for the Hodge isometries group of T(X). Then GX ≃ Z/2gZ for some

g ≥ 1, and we have φ(2g) | rkT(X) [9, Appendix B] .

From the Derived Torelli Theorem one can deduce:

Theorem 2.5 (Counting Formula). [9] Let X be a K3 surface, and write FM(X) for the set of

isomorphism classes of Fourier-Mukai partners of X. Then

|FM(X)| =
∑

�

|O(�) \ O(A�)/GX|

where the sum runs over isomorphism classes of lattices � which are in the same genus

as the Néron-Severi lattice NS(X). Furthermore, each summand computes the number of

isomorphism classes of Fourier-Mukai partners Y of X with NS(Y) ≃ �.

It follows from the Counting Formula that an elliptic K3 surface S → P1, which admits a section has

no non-trivial Fourier-Mukai partners [9, Proposition 2.7(3)].

Definition 2.6. We say that a K3 surface X is T-general if GX =
{
± id

}
. A K3 surface that is not

T-general is called T-special.

When X is T-general, the Counting Formula shows that the number of Fourier-Mukai partners is

maximal (for a fixed NS(X)) and only depends on NS(X). A similar effect holds for the invariants we
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10144 | R. Meinsma and E. Shinder

study, see Theorem 5.10. Thus, it is important to have explicit criteria for T-generality. If the Picard

number ρ of X is odd, then φ(2g) must be odd, so |GX| = 2 and X is T-general. Furthermore, we have the

following result going back to Oguiso [24]:

Lemma 2.7 ([28, Lemma 3.9]). If X is a very general K3 surface in any lattice polarised moduli

space of K3 surfaces, with Picard number ρ < 20, then X is T-general.

See Example 3.13 for an explicit T-special K3 surface.

2.3 Căldăraru class for a non-fine moduli space
The Brauer group of an elliptic K3 surface with a section is one of the main technical tools used in

this paper. We follow the discussions in [4] and [7]. For every complex K3 surface, we have a canonical

isomorphism

Br(X) ≃ Hom(T(X),Q/Z). (2.6)

In particular, Br(X) is an infinite torsion group and for all integers t ≥ 1 we have

Br(X)t−tors ≃ Hom(T(X),Z/tZ) ≃ (Z/tZ)22−ρ , (2.7)

where ρ is the Picard number of X.

We explain the explicit description of the Brauer class associated to a moduli space of sheaves on a

K3 surface [21], [4]. Let X be a complex K3 surface, and consider a Mukai vector

v = (r,D, s) ∈ N(X) := Z ⊕ NS(X) ⊕ Z.

We assume that v is a primitive vector such that v2 = 0, i.e.,D2 = 2rs.

LetM be the moduli space of stable sheaves on X of class v. By Mukai’s results, ifM is nonempty, then

it is again a K3 surface, see, e.g., [11, Corollary 3.5] (we assume v is primitive, so stability coincides with

semistability for a generic choice of a polarisation). Let t be the divisibility of v, that is

t = gcd
u∈N(X)

u · v = gcd

(
r, s, gcd

E∈NS(X)

E · D

)
.

We consider the obstruction αX ∈ Br(M) for the existence of a universal sheaf on X × M; under the

isomorphism (2.6), we will equivalently consider αX as a homomorphism T(M) → Q/Z. If the divisibility

of v equals t, then αX has order t and we have

0 → T(X) → T(M)
αX
→ Z/tZ → 0.

Here Z/tZ is the subgroup of Q/Z generated by 1/t. Note that the t = 1 case corresponds to fine moduli

spaces, in which case T(X) ≃ T(M). In general, we have

Z/tZ = T(M)/T(X) ⊂ T(X)∗/T(X) = AT(X). (2.8)

We call the image w of 1 under (2.8) the Căldăraru class of M (or of v). By construction, the Căldăraru

class w generates the isotropic subgroup of AT(X) given by Lemma 2.1 corresponding to the overlattice

T(X) ⊂ T(M).

Lemma 2.8 ([4]). Under the isomorphism (2.5), the Căldăraru class w of the Mukai vector v =

(r,D, s) of divisibility t corresponds to − 1
t D.

Proof. By [21, Proposition 6.4(3)], the cokernel of i : T(X) →֒ T(M) is generated by 1
t λ, where λ ∈ T(X) is

chosen such that D + λ = ta for some a ∈ H2(X,Z). Here D and λ correspond to each other under the

natural isomorphism (2.5):

AT(X)(−1) → H2(X,Z)/(T(X) ⊕ NS(X)) → ANS(X)

1
t λ �→ 1

t (D + λ) = a �→ 1
t D.
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Furthermore the defining equation for λ can be equivalently written in the full integral cohomology of

X as

v + λ = t̃a

where ã = (r/t, a, s/t) (this vector is integral). We claim that − 1
t λ is the Căldăraru class of (r,D, s). To

show this, we compute the value of the Brauer class αX, considered as a map T(M) → Q/Z (with image

( 1
t Z)/Z ≃ Z/tZ), on the element 1

t λ ∈ T(M). Set u ∈ H∗(X,Z) such that u · v = 1 (this vector exists by

unimodularity). Then, we have

αX(λ/t) = u · λ/t = u · (̃a − v/t) = u · ã − u · v/t ≡ −1/t (mod Z).

Here we used [4, Theorem 5.3.1] in the first equality and the definition of ã in the second one. Thus, we

have w = − 1
t λ by definition of the Căldăraru class and the corresponding element in ANS(X) is − 1

t D. �

2.4 Elliptic K3 surfaces
Recall that an elliptic surface is a surface X, which admits a surjective morphism f : X → C where C is

a smooth curve, such that the fibres of f are connected and the genus of the generic fibre is 1 [13, §10].

Our elliptic surfaces will be assumed to be relatively minimal, i.e. contain no (−1)-curves in the fibres

of f ; this is automatic for K3 surfaces. We say that an elliptic surface is isotrivial if all smooth fibres are

isomorphic.

For an elliptic K3 surface we have the base C ≃ P1. There are two natural concepts of an isomorphism

between elliptic K3 surfaces f : X → P1 and φ : Y → P1.

Definition 2.9. (1) The surfaces X, Y are isomorphic as elliptic surfaces if there exists an

isomorphism X ≃ Y preserving the fibre classes, or equivalently there is a commutative

diagram

(2.9)

In this case, we say that the isomorphism X ≃ Y twists the base by β.

(2) The surfaces X and Y are isomorphic over P1 if there is an isomorphism X ≃ Y twisting the

base by the identity, or equivalently if there exists a commutative diagram

Being isomorphic over P1 is more restrictive than being isomorphic as elliptic surfaces. For example,

for every β ∈ Aut(P1), f : X → P1 and βf : X → P1 are isomorphic as elliptic surfaces, but usually not

over P1.

Let S → P1 be an elliptic K3 surface with a fixed section. We denote by AutP1 (S) (resp. Aut(S, F)) the

group of automorphisms of S over P1 (resp. automorphisms of S preserving the fibre class). We have

AutP1 (S) ⊂ Aut(S, F). We denote by AP1 (S) (resp. A(S, F)) the group of automorphisms of S over P1 (resp.

preserving the fibre class) which also preserve the zero-section. Such automorphisms will be called

group automorphisms (see e.g. [5]).

Remark 2.10. The category of relatively minimal elliptic surfaces and their isomorphisms over P1

is equivalent to the category of genus one curves overC(t) and their isomorphisms. The functor

is given by taking the generic fibre. This functor is an equivalence, e.g., by [13, Theorem 7.3.3]

or [5, Theorem 3.3].
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10146 | R. Meinsma and E. Shinder

3 Elliptic K3 Surfaces of Picard Rank 2
3.1 Néron-Severi lattices
We recall some basic facts about elliptic K3 surfaces of Picard rank 2 following [7, 30]. Let f : X → P1 be a

complex projective elliptic K3 surface. Let F ∈ NS(X) be the class of a fibre. Recall that the multisection

index t of f is the minimal positive t > 0 such that there exists a divisor D ∈ NS(S) with D · F = t.

Proposition 3.1. [7, Remark 4.2], [28, Lemma 3.3] Let X be an elliptic K3 surface of Picard rank 2.

Then there exists a polarisation H on X such that H, F form a basis of NS(X) and H · F = t. In

particular, the Néron-Severi lattice of X is given by a matrix of the form

(
2d t

t 0

)
. (3.1)

We write �d,t for the lattice of rank 2 with matrix (3.1) with respect to some basis H, F. It is easy to

see that the lattice �d,t has exactly two isotropic primitive vectors up to sign: one is F, and the other is

F′ =
1

gcd(d, t)
(tH − dF). (3.2)

The following lemma describes when the class F′ gives rise to another elliptic fibration on X.

Lemma 3.2. [7, §4.7] A K3 surface X with NS(X) ≃ �d,t has two elliptic fibrations if and only if

d �≡ −1 (mod t). If d ≡ −1 (mod t), X admits one elliptic fibration. If X is T-general, t > 2 and

d �≡ −1 (mod t), then the two fibrations are isomorphic (as elliptic surfaces) if and only if d ≡ 1

(mod t).

We denote by Ad,t the discriminant lattice of �d,t and we have

|Ad,t| = t2. (3.3)

It is easy to compute (see, e.g., [30, Proof of Lemma 3.2]) that the dual lattice �∗
d,t is generated by

F∗ =
−2d

t2
F +

1

t
H, H∗ =

1

t
F (3.4)

so that the images of (3.4) generate Ad,t. Furthermore for a, b ∈ Z, we have

q(aF∗ + bH∗) =
2a(bt − ad)

t2
. (3.5)

Lemma 3.3. The discriminant group Ad,t is isomorphic to Z/aZ ⊕ Z/bZ with a = gcd(2d, t) and

b = t2/a. In particular, Ad,t is cyclic if and only if gcd(2d, t) = 1.

Furthermore, if � is a lattice in the same genus as �d,t then � ≃ �e,t with gcd(2e, t) = gcd(2d, t).

Proof. The first claim follows by putting �d,t into Smith normal form.

Let � be a lattice in the same genus as �d,t. Following the proof of [8, Proposition 16], � contains a

primitive isotropic vector v. Hence, � ≃ �e,s for some e, s ∈ Z, s > 0. Comparing discriminant groups of

�d,t and �e,s we obtain t = s and gcd(2d, t) = gcd(2e, s). �

Example 3.4. Let d = 0, then by Lemma 3.3, A0,t ≃ Z/tZ ⊕ Z/tZ. Explicitly, generators (3.4) of the

dual lattice �∗
0,t are F

∗ = 1
t H and H∗ = 1

t F and their images in A0,t are the two order t generators,

which are isotropic elements in A0,t.
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Elliptic K3 Surfaces and Jacobians | 10147

We introduce some properties of the discriminant groups which we will need to count Fourier-Mukai

partners.

Definition 3.5. We call an isotropic element of order t in Ad,t a Lagrangian element. We call a

cyclic isotropic subgroup H ⊆ Ad,t of order t a Lagrangian subgroup.

We denote by L̃(Ad,t) (resp. L(Ad,t)) the set of Lagrangian elements (resp. Lagrangian subgroups) of

Ad,t. The main reason we are interested in studying Lagrangians of Ad,t is their correspondence with

Fourier-Mukai partners, which we establish in Section 5.

Proposition 3.6. Let d, t be integers and let m = gcd(d, t). Then, we have

| L̃(Ad,t)| = φ(t) · 2ω(m), |L(Ad,t)| = 2ω(m). (3.6)

Even though gcd(2d, t) is responsible for the structure of Ad,t, it is gcd(d, t) that appears in Proposi-

tion 3.6. For instance, if d and t are coprime and t is even, the discriminant group Ad,t is not cyclic, but

|L(Ad,t)| = 1.

Proof. Any cyclic subgroupH ⊂ Ad,t of order t has φ(t) generators.H is a Lagrangian subgroup if and only

if its generator is a Lagrangian element. Thus, the two formulas in (3.6) are equivalent, and it suffices

to prove the second one.

Let t =
∏

p p
kp be the prime factorisation of t. For any prime p, we have an isomorphism of p-adic

lattices �d,t ⊗ Zp ≃ �d,pkp ⊗ Zp (the isometry is given by H �→ H and F �→ αF, where α is the unit in Zp

given by αpkp = t). By [22, Proposition 1.7.1], Ad,t is isometric to the orthogonal direct sum of Ad,pkp over

all primes p. Therefore, we have

|L(Ad,t)| =
∏

p

|L(Ad,pkp )|.

Therefore, we need to prove that |L(Ad,pk )| = 1 if d is coprime to p and |L(Ad,pk )| = 2 otherwise. The result

follows from Lemma 3.7 to Lemma 3.8 below. �

Lemma 3.7. The elements

v =
1

t
F, v′ =

1

t
F′ (3.7)

are primitive isotropic vectors in �∗
d,t and their images v and v′ in Ad,t generate Lagrangian

subgroups in Ad,t. We have 〈v〉 = 〈v′〉 if and only if m := gcd(d, t) = 1, in which case

v′ = −d · v. (3.8)

Proof. The first part is a simple computation. The corresponding Lagrangian subgroups are equal if and

only if v′ = 1
tm (tH−dF) = 1

mH− d
tmF is a multiple of v = 1

t Fmodulo �d,t. This is only the case whenm = 1.�

Lemma 3.8. Let t = pk with p a prime number and k ≥ 1. Then, the subgroups 〈v〉, 〈v′〉 are the only

Lagrangian subgroups of Ad,t.

Proof. Write d = ℓ · pn for some ℓ ∈ Z coprime to p and some n ≥ 0. Note that whenever n ≥ k, we have

d ≡ 0 (mod pk), so that �d,pk ≃ �0,pk and we can assume that d = 0. In this case we have v′ = F∗ and it

is easy to see that 〈H∗〉 and 〈F∗〉 are the only Lagrangian subgroups of A0,pk (see Example 3.4). Therefore,

we may assume 0 ≤ n < k.
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10148 | R. Meinsma and E. Shinder

In terms of generators (3.4) the quadratic form is given by

q(aF∗ + bH∗) =
2a

p2k−n

(
bpk−n − aℓ

)
. (3.9)

To find all Lagrangian subgroups,we start by describing the subgroup of elements inAd,t having order

dividing t = pk. We consider the vectors (3.7) which in our case are given by

v =
F

pk
, v′ =

H

pn
−

ℓF

pk
.

Furthermore, the orders of v and v′ are equal to pk, and these elements satisfy a relation

pn(ℓv + v′) = 0. (3.10)

There are two cases to consider now. If p > 2, then

(Ad,t)pk−tors =

〈
F

pk
,
H

pn

〉
= 〈v,v′〉.

The vectors v and v′ are isotropic and the discriminant form in terms of these elements equals

q(av + bv′) =
2ab

pn
.

Hence, an element av+ bv′ is isotropic if and only pn divides ab. On the other hand, if av+ bv′ has order

precisely pk, then at least one of a or b is coprime to p. Hence, isotropic elements of Ad,t of order pk are

given by

av + bpn+jv′, apn+jv + bv′,

with both a and b coprime to p and j ≥ 0. Using (3.10) we can rewrite these types of elements as

a′v, b′v′,

with a′ and b′ coprime to p. This finishes the proof in the p > 2 case.

If p = 2, then

1

2n+1
H · F =

2k

2n+1
and

1

2n+1
H2 = 2ℓ ·

2n

2n+1

are both integers. This means that 1
2n+1 H is an element of Ad,2k by (2.1), and we have

(Ad,t)2k−tors =

〈
F

2k
,

H

2n+1

〉
� 〈v,v′〉 =

〈
F

2k
,
H

2n

〉
.

However, a simple computation shows that all isotropic vectors are actually contained in 〈v,v′〉 and

the proof works in the same way as in the p > 2 case. �

Lemma 3.8 allows us to define a canonical involution on the set of Lagrangian subgroups of Ad,t as

follows. For H ⊂ Ad,t a Lagrangian, we take its primary decomposition with respect to (2.2)

H =
⊕

p

Hp, Hp ⊂ A
(p)
d,t
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with each Hp a Lagrangian in A
(p)
d,t . We set ιp(Hp) to denote the other Lagrangian subgroup as determined

by Lemma 3.8; in the case p does not divide d, ιp(Hp) = Hp. We set

ι(H) :=
⊕

p

ιp(Hp) ⊂ Ad,t. (3.11)

The geometric significance of this involution is explained in Theorem 5.10. For now we note that

ι(〈v〉) = 〈v′〉 (3.12)

for v, v′ defined in Lemma 3.7.

3.2 Automorphisms and Hodge isometries
Recall the Hodge isometries group GX defined in Section 2.2.

Lemma 3.9. If X is a K3 surface of Picard rank 2, then GX is a cyclic group of one of the following

orders:

2, 4, 6, 8, 10, 12, 22, 44, 50, 66.

Proof. The fact that GX is a finite cyclic group of even order 2g such that φ(2g)| rkT(X) is proved in [9,

Appendix B].We solve the equation φ(2g) | 20. Possible primes that can appear in the prime factorization

of 2g are 2, 3, 5, 11. Maximal powers of these primes such that φ(pk) | 20 are 23, 3, 52, 11 and the result

follows by combining these or smaller prime powers. �

Proposition 3.10. Let X be an elliptic K3 surface of Picard rank 2. Then we have a canonical

isomorphism

Aut(X) ≃ Ker
(
GX → O(AT(X))/O

+(NS(X))
)
, (3.13)

where O+(NS(X)) is the group of isometries of NS(X) that preserve the ample cone. In particular,

Aut(X) is a finite cyclic group and |Aut(X)| ≤ 66. Moreover, for any elliptic fibration X → P1,

the isomorphism above induces an isomorphism

Aut(X, F) ≃ Ker
(
GX → O(AT(X))

)
, (3.14)

where Aut(X, F) is the group of automorphisms which fix the fibre class F of the elliptic fibration.

Proof. By the Torelli Theorem 2.3, there is a bijection between automorphisms of X and Hodge

isometries of H2(X,Z) which preserve the ample cone. Using [22, Corollary 1.5.2], we can write

Aut(X) ≃
{
(σ , τ) ∈ GX × O+(NS(X)) | σ = τ ∈ O(AT(X))

}
. (3.15)

This isomorphism induces a surjective map (σ , τ) �→ σ

Aut(X) → Ker
(
GX → O(AT(X))/O

+(NS(X))
)
. (3.16)

The kernel of this map consists of the pairs (idT(X), τ) ∈ GX × O+(NS(X)) such that τ = idAT(X)
.

We claim that the homomorphism O+(NS(X)) → O(AT(X)) is injective. Since NS(X) contains four

isotropic vectors ±F,±F′, and −1 ∈ O(NS(X)) never preserves the ample cone, we note that O+(NS(X))

must be either trivial, or isomorphic to Z/2Zwith non-trivial element swapping Fwith F′. The latter case

is only possible when F′ represents a class of an elliptic fibration on X, which by Lemma 3.2 corresponds

to the case d �≡ −1 (mod t). Then 1
t F and

1
t F

′ represent distinct classes inAT(X) (see (3.8)) and the element

of O+(NS(X)) swapping F and F′ has a non-trivial image in O(AT(X)). Thus, since O+(NS(X)) → O(AT(X))

is injective, the map (3.16) is a bijection. The claim about isomorphism type of |Aut(X)| follows from

Lemma 3.9. For the last statement, note that the only element of O+(NS(X)), which fixes F is the identity.

Therefore, (3.14) also follows from (3.15). �

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
4
/1

3
/1

0
1
3
9
/7

6
3
9
3
7
9
 b

y
 g

u
e
s
t o

n
 1

7
 O

c
to

b
e
r 2

0
2
5



10150 | R. Meinsma and E. Shinder

Example 3.11. Let X be an elliptic K3 surface with NS(X) ≃ �d,t and assume that gcd(2d, t) = 1. In

this caseAd,t is cyclic of order t2 by Lemma3.3.An isometry σ ∈ O(Ad,t) is given bymultiplication

by a unit α ∈ Z/t2Z with α2 ≡ 1 (mod t), so that the group O(Ad,t) is 2-torsion. Thus by

Proposition 3.10, Aut(X) ⊂ GX is a cyclic subgroup of index one or two.

Lemma 3.12. Let S and S′ be K3 surfaces of Picard rank 2 which admit elliptic fibrations with

a section. Then every Hodge isometry between T(S) and T(S′) lifts to a unique isomorphism

between S and S′. In particular, we have Aut(S) ≃ GS. Finally, S admits a unique elliptic fibration

with a unique section, hence every automorphism of S is a group automorphism.

Proof. By Proposition 3.1 we have NS(S) ≃ �d,1, which is isomorphic to the hyperbolic lattice U, in

particular NS(S) is unimodular and ANS(S) = 0. If there is a Hodge isometry between T(S) and T(S′),

extending it to a Hodge isometry between H2(S,Z) and H2(S′,Z) preserving the ample cones, we obtain

S ≃ S′, by the Torelli Theorem, as in the proof of Proposition 3.10. Thus, we may assume that S = S′ in

which case the result follows Proposition 3.10.

By Lemma 3.2, S admits a unique elliptic fibration. Since NS(S) = U, there is a unique (−2)-curve

which intersects the fibres of the elliptic fibration with multiplicity 1, i.e., a unique section. �

Example 3.13. Let S → P1 be the elliptic K3 surface with a section given by the Weierstrass

equation y2 = x3 + t12 − t. This surface is isotrivial with j-invariant 0. It was studied in [14]

and [15]. We have rkNS(S) = 2, and S is T-special. In fact, the group GS is cyclic of order 66,

and S is unique with this property. Furthermore, Aut(S) ≃ Z/66Z by Lemma 3.12. The action of

the subgroup Z/6Z ⊂ Aut(S) commutes with projection to P1 and rescales x and y coordinates,

and the subgroup Z/11Z ⊂ Aut(S) preserves the fibre class F ∈ NS(S) and induces an order 11

automorphism t �→ ζ11t on P1.

Corollary 3.14. Let X be a T-general elliptic K3 surface of Picard rank 2 and multisection index

t > 2, then Aut(X, F) =
{
id

}
.

Proof. By Proposition 3.10, there is an isomorphism Aut(X, F) ≃ Ker(GX → O(AT(X))). We have GX = {±1}

by assumption. Since t > 2, and AT(X) has order t2, we see that −1 acts non-trivially on AT(X). Thus

Ker(GX → O(AT(X))) is trivial. �

4 Jacobians
4.1 Ogg-Shafarevich Theory
Given an elliptic K3 surface f : X → P1 and k ∈ Z we can define an elliptic K3 surface Jk(f ) : Jk(X) → P1,

called the k-th Jacobian of X, as the moduli space of sheaves supported at the fibres of f and having

degree k [11, Chapter 11]. In particular, we have S := J0(X) which is an elliptic K3 surface with a

distinguished section.

Inwhat follows,we sometimeswrite C,C′ for bases of elliptic fibrationswhen they are not canonically

isomorphic.

Lemma 4.1. LetX → C andX′ → C′ be elliptic K3 surfaceswith zeroth Jacobians S → C and S′ → C′,

respectively. Then an isomorphism of elliptic surfaces γ : X ≃ X′ which twists the base by

β : C → C′ (see Definition 2.9), induces a group isomorphism J0(γ ) : S ≃ S′ twisting the base by β.

Proof. When β is the identity, this is a standard result which follows immediately from Remark 2.10.

For the general case, see [5, §3, (3.3)]. �

The Ogg–Shafarevich theory relates elements in the Brauer group Br(S) of an elliptic K3 surface S

with a section, to S-torsors. For our purposes, the following definition of a torsor is convenient. See [6],

[11, Proposition 5.6] for the equivalence with the standard definition.

Definition 4.2. Let f : S → P1 be an elliptic K3 surface with a section. An f -torsor is a pair (g : X →

P1, θ) where g : X → P1 is an elliptic K3 surface and θ : J0(X) → S is an isomorphism over P1

preserving the zero-sections, i.e., a group isomorphism over P1.
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An isomorphism of f-torsors (g : X → P1, θ) and (h : Y → P1, η) is an isomorphism γ : X → Y over P1

such that

commutes.

Example 4.3. If X is an elliptic K3 surface, then X has a natural structure (X, idJ0(X)) of a torsor over

J0(X). Since J0(Jk(X)) = J0(X) (this can be checked e.g. using Remark 2.10), all Jacobians Jk(X) also

have a natural J0(X)-torsor structure.

The set of isomorphism classes of f-torsors is in bijection with the Tate–Shafarevich group of f : S →

P1 [11, 11.5.5(ii)], and we denote it Ш(f : S → P1) or just Ш(S) if it can not lead to confusion. If S → P1 is

an elliptic K3 surface with a section, then there is an isomorphism

Br(S) ≃ Ш(S), (4.1)

see [4], [11, Corollary 11.5.5].We recall the construction of the Tate–Shafarevich group and of (4.1) in the

proof of Lemma 4.5. For an S-torsor (X, θ) we write αX ∈ Br(S) for the class corresponding to [X] ∈ Ш(S)

under (4.1). It would be more precise to include θ in the notation, but we do not do that, assuming that

the torsor structure on X is fixed. We also write αX : T(X) → Q/Z for the corresponding element with

the respect to (2.6).

Lemma 4.4. Let (X, θ) be an S-torsor. Let t be the order of αX ∈ Br(S).

(i) X has a section if and only if αX = 0, in which case X is isomorphic to S as an S-torsor.

(ii) For all k ∈ Z we have αJk(X) = k · αX.

(iii) The multisection index of X equals t.

(iv) We have a Hodge isometry T(X) ≃ Ker(αX : T(S) → Z/tZ).

Proof. (i) It follows by construction that all S-torsor structures on S are isomorphic, and correspond

to 0 ∈ Br(S) under (4.1). Thus, if αX = 0, then X is isomorphic as S-torsor to S, in particular X and S

are isomorphic as elliptic surfaces, hence X has a section. Conversely, if X has a section, then we have

S ≃ J0(X) ≃ X hence X is isomorphic as a torsor to some torsor structure on S, so that αX = 0 by the

argument above.

Part (ii) is [4, Theorem 4.5.2] and part (iv) is [4, Theorem 5.4.3].

(iii) For a K3 surface X with a chosen elliptic fibration let us write ind(X) for the multisection index

of the fibration. Since Jind(X)(X) admits a section, we have Jind(X)(X) ≃ S as torsors by (i). It follows using

(ii) that 0 = αJind(X)(X) = ind(X)αX hence ord(αX) divides ind(X). To prove their equality, we use [10, Ch. 4,

(4.5), (4.6)] to deduce that for all k ∈ Z

ind(Jk(X)) =
ind(X)

gcd(ind(X), k)
.

In particular,

1 = ind(Jord(αX)(X)) =
ind(X)

gcd(ind(X),ord(αX))
=

ind(X)

ord(αX)

so that ind(X) = ord(αX), which proves part (ii). �

Let S → P1 be an elliptic K3 surface with a section. Recall that we denote by AP1 (S) (resp.A(P1, F)) the

group of group automorphisms of S over P1 (resp. group automorphisms of S preserving the fibre class

F ∈ NS(S)). We have AP1 (S) ⊂ A(S, F), and we are interested in the orbits of these two groups acting on

the Brauer group Br(S). We do this more generally, by explaining functoriality of Ш(S) and Br(S) with

respect to S.
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10152 | R. Meinsma and E. Shinder

Let f : S → C and f ′ : S′ → C′ be elliptic K3 surfaces with fixed sections. Assume that there exists a

group isomorphism β : S ≃ S′ twisting the base by β : C ≃ C′. We define a map β∗ : Ш(f : S → C) →

Ш(f ′ : S′ → C′) as follows:

β∗(g : X → C, θ) = (β ◦ g : X → C′,β ◦ θ).

Note that the element on the right-hand side belongs to Ш(f ′) by Lemma 4.1.

Furthermore, in the same setting, we define β∗ : Hom(T(S),Q/Z) → Hom(T(S′),Q/Z) by β∗(α) = α ◦ β∗,

where β∗ : T(S′) → T(S) is the Hodge isometry induced by β. It is important for applications that these

two pushforwards are compatible with (4.1):

Lemma 4.5. Let f : S → C and f ′ : S′ → C′ be elliptic K3 surfaces with fixed sections, and let

β : S ≃ S′ be a group isomorphism twisting the base by β. Then there is a commutative square

of isomorphisms

(4.2)

where the vertical arrows are induced by (2.6) and (4.1).

Proof. The vertical arrows in (4.2) are the compositions of the vertical maps in the following diagram,

with cohomology groups in étale and analytic topology, respectively:

(4.3)

c.f. [11, Corollary 11.5.6]. Here X0 and X
′
0 are the sheaves of étale local sections of f and f ′, respectively.

The horizontal arrows (1), (2), (3) are induced by β∗X0 ≃ X
′
0 and β∗Gm ≃ Gm. Arrows (4) are induced

by the exponential sequence. One can check commutativity for each square in (4.3), and this gives the

desired result. �

Proposition 4.6. Let f : S → C, f ′ : S′ → C′ be elliptic K3 surfaces with sections. Let (g : X → C, θ),

(g′ : X′ → C′, θ ′) be torsors for f and f ′, respectively. Then there is a group isomorphism β : S ≃ S′,

twisting the base by β : C ≃ C′ and such that β∗(g, θ) ≃ (g′, θ ′) if and only if there is an elliptic

surface isomorphism X ≃ X′ twisting the base by β.

Proof. Suppose there is a group isomorphism β : S ≃ S′ twisting the base by β and such that

β∗(g, θ) = (g′, θ ′). Then it follows from the definition of β∗ that there is an elliptic surface isomorphism

X ≃ X′ twisting the base by β. Conversely, suppose there is an elliptic surface isomorphism γ : X ≃ X′

twisting the base by β. Consider the isomorphism β := θ ′ ◦ J0(γ ) ◦ θ−1 : S → S′. We can compute β∗(g, θ),

decomposing β∗ as a composition of isomorphisms

Ш(S)
θ−1
∗
→ Ш(J0(X))

J0(γ )∗
−−−→ Ш(J0(X′))

θ ′
∗

→ Ш(S′)

to see that β∗(g, θ) = (g′, θ ′). �
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Remark 4.7. The proof of Proposition 4.6 in fact shows that given (g, θ), (g′, θ ′) as in the statement,

the set of isomorphisms between elliptic fibrations g and g′ twisting the base by β (and ignoring

the choice of θ , θ ′) is in natural bijection with the set of group isomorphisms β between S and

S′ twisting the base by β together with a chosen isomorphism γ between β∗(g, θ) and (g′, θ ′).

It will bemore convenient for us toworkwith the Brauer group instead of the Tate–Shafarevich group:

Proposition 4.8. Using the same notation as in Proposition 4.6, there is a group isomorphism

β : S ≃ S′, twisting the base by β : C ≃ C′ and such that β∗αX = αX′ if and only if there is an

elliptic surface isomorphism X ≃ X′ twisting the base by β.

Proof. This follows immediately from Proposition 4.6 and Lemma 4.5. �

Corollary 4.9. Let g : X → C, g′ : X′ → C′ be elliptic K3 surfaces which are isomorphic via an

isomorphism which twists the base by β : C → C′. Then for all k ∈ Z, there exists an elliptic

surface isomorphism Jk(X) ≃ Jk(X′) twisting the base by β.

Proof. Let S → C and S′ → C′ be the zeroth Jacobians of X → C and X′ → C′, respectively. By Proposition

4.8, there is a group isomorphism β : S → S′ such that β∗αX = αX′ . This means that β∗(k · αX) = k · β∗αX =

k · αX′ for all k ∈ Z. Since the Brauer classes of Jk(X) → C and Jk(X′) → C′ are k · αX and k · αX′ , the result

follows from Proposition 4.8. �

Corollary 4.10. Let S → C be an elliptic K3 surface with a section. The set of A(S, F)-orbits (resp.

AC(S)-orbits) of Br(S) parametrizes S-torsors up to isomorphism as elliptic surfaces (resp. up to

isomorphism over C).

Proof. We put S = S′ in Proposition 4.8, consider S-torsors (X, θ) and (X′, θ ′) and write αX,αX′ ∈ Br(S) for

the corresponding Brauer classes. By Proposition 4.8 there is an isomorphism between elliptic surfaces

X, X′ twisting the base (resp. over the base) if and only if there exists β ∈ A(S, F) (resp. β ∈ AC(S)) such

that β∗(αX) = αX′ . Thus, the resulting sets of orbits are as stated in the Corollary. �

Example 4.11. The automorphism β = −1 ∈ AC(S) acts on Br(S) as multiplication by −1. This

way we always have (at least) two torsor structures on every elliptic K3 surface X. If X has no

sections, these two torsor structures are isomorphic if and only if αX ∈ Br(X) has order two,

which by Lemma 4.4 is equivalent to X having multisection index two.

We write EllK3 for the set of isomorphism classes of elliptic K3 surfaces (isomorphisms are allowed

to twist the base). We can express Ogg–Shafarevich theory as a natural bijection between EllK3 and the

set of isomorphism classes of twisted Jacobian K3 surfaces.

Definition 4.12. A twisted Jacobian K3 surface is a triple (S, f ,α) where S is a K3 surface with elliptic

fibration f together with a fixed section, and α is a Brauer class on S.

An isomorphism of two twisted Jacobian K3 surfaces (S, f : S → C,α) and (S′, f ′ : S′ → C′,α′) is a group

isomorphism β : S ≃ S′ such that β∗α = α′. We write BrK3for the set of isomorphism classes of twisted

Jacobian K3 surfaces. The above results show the following.

Theorem 4.13. The map EllK33 given by (X, g) �→ (J0(X), J0(g),αX) is a bijection.

Proof. From Proposition 4.8, it follows that the map EllK3BrK3 is well-defined and injective. For

surjectivity, let (S, f ,α) ∈ BrK3 Using the isomorphism (4.1), we obtain an S-torsor (g : X → P1, θ : J0(X) ≃

S) ∈ Ш(f ) corresponding to α. In particular, the map EllK3BrK3 assigns (X, g) �→ (J0(X), J0(g), θ−1
∗ α) ≃

(S, f ,α). �

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
4
/1

3
/1

0
1
3
9
/7

6
3
9
3
7
9
 b

y
 g

u
e
s
t o

n
 1

7
 O

c
to

b
e
r 2

0
2
5



10154 | R. Meinsma and E. Shinder

4.2 Isomorphisms of Jacobians
We work with an elliptic K3 surface X; recall from Example 4.3 that X and all its Jacobians Jk(X) have a

natural structure of a torsor over J0(X).

Lemma 4.14. [4, Theorem 4.5.2] Let X be an elliptic K3 surface, and let k, ℓ ∈ Z. Then we have

Jk(Jℓ(X)) ≃ Jkℓ(X) as torsors over J0(X).

Proof. By Lemma 4.4, in the Tate–Shafarevich group of J0(X), we have [Jk(Jℓ(X))] = k · [Jℓ(X)] = kℓ · [X] =

[Jkℓ(X)]. In particular, we have Jk(Jℓ(X)) ≃ Jkℓ(X) as torsors over J0(X). �

Let t be the multisection index of X. We are especially interested in those Jacobians for which

gcd(k, t) = 1. We call these coprime Jacobians of X. By Theorem 5.1 below, every coprime Jacobian is a

Fourier-Mukai partner of X. For all k ∈ Z, we have well-known isomorphisms over P1:

Jk+t(X) ≃ Jk(X), J−k(X) ≃ Jk(X). (4.4)

Here the first isomorphism follows by adding the multisection on the generic fibre, and then spreading

out as in Remark 2.10, and the second isomorphism can be obtained, by the same token, from the

dualization of line bundles, or alternatively deduced from Proposition 4.8 with β acting by −1 on the

fibres (see Example 4.11).

We see that there are at most φ(t)/2 isomorphism classes of coprime Jacobians of X. The goal of the

next result is to be able to compute this number precisely, see (4.7) for what this count will look like.

Proposition 4.15. Let X → P1 be an elliptic K3 surface of multisection index t > 2. Then Jk(X) ≃

Jℓ(X) as J0(X)-torsors if and only if k ≡ ℓ (mod t). Furthermore there exist subgroups BX ⊂ B̃X ⊂

(Z/tZ)∗, such that for k, ℓ ∈ (Z/tZ)∗ we have

Jk(X) ≃ Jℓ(X)over P1 ⇐⇒ kℓ−1 ∈ BX,

and

Jk(X) ≃ Jℓ(X) as elliptic surfaces ⇐⇒ kℓ−1 ∈ B̃X.

Furthermore, BX is a cyclic group of order 2, 4 or 6, containing {±1} and the case BX ≃ Z/4Z (resp.

the case BX ≃ Z/6Z) can occur only if X is an isotrivial elliptic fibration with j-invariant j = 1728

(resp. j = 0).

Finally, if X is T-general, then BX = B̃X = {±1}, that is in this case Jk(X) and Jℓ(X) are isomorphic

over P1 if and only if they are isomorphic as elliptic surfaces if and only if k ≡ ±ℓ (mod t).

In the statement, we excluded the trivial cases t = 1, 2 because such elliptic K3 surfaces do not admit

non-trivial coprime Jacobians.

Before we give the proof of the proposition, we need to set up some notation. Let S be an elliptic

K3 with a section. For any subgroup H ⊂ A(S, F) and any class α ∈ Br(S) let Hα be the subgroup of H

consisting of elements β ∈ H with the property β∗(〈α〉) ⊂ 〈α〉. Considering the action of Hα on 〈α〉 = Z/tZ

we get a natural homomorphism Hα → (Z/tZ)∗ and we define

H
α
:= Im(Hα → (Z/tZ)∗).

Proof of Proposition 4.15. Write S = J0(X). We consider the following subgroups of (Z/tZ)∗:

BX := AP1 (S)
αX

(4.5)

B̃X := A(S, F)
αX
. (4.6)

We have BX ⊂ B̃X, and −1 ∈ AP1 (S) induces −1 ∈ (Z/tZ)∗, in particular {±1} ⊂ BX. Note that we are

assuming t > 2, hence −1 �≡ 1 (mod t).
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By Corollary 4.9, Jk(X) and Jℓ(X) are isomorphic over P1 if and only if Jℓ
−1

(Jk(X)) and Jℓ
−1

(Jℓ(X)) are

isomorphic over P1. Here ℓ−1 is any integer such that ℓℓ−1 ≡ 1 (mod t). By Lemma 4.14, we have

Jℓ
−1

(Jk(X)) ≃ Jkℓ
−1

(X) and Jℓ
−1

(Jℓ(X)) ≃ Jℓℓ
−1

(X) ≃ J1(X) over P1, where the last isomorphism follows from

(4.4). By Corollary 4.10, this occurs if and only if kℓ−1 ∈ BX. By the same argument, Jk(X) and Jℓ(X) are

isomorphic as elliptic surfaces if and only if Jkℓ
−1

(X) and X are isomorphic as elliptic surfaces if and

only if kℓ−1 ∈ B̃X. The group BX is a quotient of a subgroup of A(S, F). The latter group, by Remark 2.10,

is isomorphic to the group of elliptic curve automorphisms of the generic fibre of S. Thus, A(S, F) (and

hence B) is isomorphic to Z/2Z, unless the j-invariant equals 1728 or 0 in which case A(S, F) (and hence

BX) can be Z/4Z or Z/6Z respectively.

It remains to prove that BX = B̃X = {±1} if X is T-general. By Proposition 4.8, an isomorphism X ≃ Jk(X)

as elliptic surfaces would induce a group automorphism β of S = J0(X) satisfying β∗αX = k · αX. This

means that T(S) admits a Hodge isometry σ , which maps T(X) = Ker(αX) to itself. By T-generality, we get

σ = ± id so that β∗ = ±1 and hence k ≡ ±1 (mod t). �

Corollary 4.16. If A(J0(X), F) = AP1 (J0(X)) then isomorphism classes of coprime Jacobians over P1

are the same as isomorphism classes of coprime Jacobians as elliptic surfaces.

Proof. This follows from Proposition 4.15 as in this case BX = B̃X by construction. �

Corollary 4.16 applies when singular fibres of X → P1 lie over a non-symmetric set of points Z ⊂ P1,

that is when β ∈ Aut(P1) satisfies β(Z) = Z only for β = id. On the other hand, if Z is symmetric, and this

symmetry can be lifted to an automorphism of J0(X), we typically have BX � B̃X. For an explicit such

surface, see Example 4.19.

4.3 j-special isotrivial elliptic K3 surfaces
By a j-special isotrivial elliptic K3 surface we mean an elliptic K3 surface with smooth fibres all having

j-invariant 0 or 1728.

Remark 4.17. There exist Picard rank 2 isotrivial K3 surfaces with j = 0 (see Example 3.13),

however for j = 1728 the minimal rank is 10 for the following reason. Let X be an isotrivial

elliptic K3 surface X with j = 1728. The zeroth Jacobian S of X will have a Weierstrass equation

y2 = x3 + F(t)x with F(t) a degree 8 polynomial in t. We have ρ(S) = ρ(X). By semicontinuity of

the Picard rank, we may assume that F(t) has distinct roots. In this case S has eight singular

fibres, and theWeierstrass equation has ordinary double points at the singularities of the fibre,

so S is the result of blowing up the Weierstrass model at these 8 points. Thus, in addition to

the fibre class and the section class, S has 8 reducible fibres, so ρ(S) ≥ 10. Isotrivial K3 surfaces

with j �= 0, 1728 are all Kummer and hence have Picard rank at least 17 [27, Corollary 2].

We do not claim a direct relationship between the concepts of j-special and T-special, however both

of these concepts require extra automorphisms.

Let X → P1 be an elliptic K3 surface of multisection index t > 2, and let S → P1 be its zeroth Jacobian.

Let H = AP1 (S); this group is Z/2Z unless S is j-special, in which case it can be equal to Z/4Z (resp. Z/6Z)

when j = 1728 (resp. j = 0). By Proposition 4.15 the number of coprime Jacobians of X up to isomorphism

over P1 equals φ(t)/|BX|, which is

⎧
⎪⎪⎨
⎪⎪⎩

φ(t)/2 if X → P1 is not isotrivial with j = 0 or j = 1728;

φ(t)/4 for some isotrivial X with j = 1728, and H = Z/4Z;

φ(t)/6 for some isotrivial X with j = 0 and H = Z/6Z.

(4.7)

We now show that the last two cases are indeed possible. For simplicity we assume that t = p, an odd

prime.

Proposition 4.18. Let S → P1 be an elliptic K3 surface with a section. Assume S is isotrivial with

j = 1728 (resp. j = 0) and H = Z/4Z (resp. H = Z/6Z). Let p > 2 be a prime. Then S admits

a torsor X → P1 of multisection index p with exactly φ(p)
4 (resp. φ(p)

6 ) coprime Jacobians up to

isomorphism over P1 if and only if p ≡ 1 (mod 4) (resp. p ≡ 1 (mod 3)).
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Proof. Existence of such a torsorX implies the required numerical condition on p since 4 (resp. 6) divides

φ(p) = p − 1.

Conversely, assume that p satisfies the numerical condition. For every non-trivial element β ∈ H, the

fixed subspace (T(S) ⊗ C)〈β〉 is zero; this is because S/〈β〉 admits a birational P1-fibration over P1, hence

must be a rational surface. Thus T(S) ⊗ C, considered as a representation of a cyclic group H is a direct

sum of one-dimensional representations corresponding to primitive roots of unity of order |H|.

This allows to describe T(S)⊗Q as anH-representation, because irreducibleQ-representations ofH are

direct sums of Galois conjugate one-dimensional representations. Thus in both cases T(S)⊗Q = V
⊕

(
22−ρ

2

)

,

where V is the 2-dimensional representationQ[i] = Q[x]/(x2 +1) andQ[ω] = Q[x]/(x2 +x+1) respectively.

At this point it follows that under our assumptions the Picard number ρ = ρ(X) is even.

On the other hand, decomposition of the H-representation T(S) ⊗ Q is induced from decomposition

of T(S) ⊗ Z[1/|H|], hence since |H| is coprime to p, it induces a decomposition T(X) ⊗ Fp ≃ V
⊕

(
22−ρ

2

)

p with

Vp defined by Fp[x]/(x2 + 1) and Fp[x]/(x2 + x + 1) respectively. Under the numerical condition on p, the

corresponding polynomial has roots and the representation Vp is a direct sum of two one-dimensional

representations Vp = χ ⊕ χ ′.

It follows that the dual representation Br(S)p−tors (2.7) splits into 1-dimensional representations χ , χ ′

as well. Take a generator α ∈ Br(S)p−tors for one of these representations, and let X be the corresponding

torsor. The explicit description (4.5) shows that BX = H. �

For explicit examples of surfaces satisfying conditions of Proposition 4.18, see Example 3.13 and

Remark 4.17. Finally, we illustrate the difference between isomorphism over P1 and isomorphism as

elliptic surfaces.

Example 4.19. Consider the j = 0 isotrivial elliptic K3 surface S → P1 of Example 3.13, and let

β ∈ A(S, F) be an automorphism of order 11. Note that β �∈ AP1 (S) so we may have BX � B̃X
in Proposition 4.15. By Lemma 3.12, β acts nontrivially on T(S). As in the proof of Proposition

4.18, we deduce that for every prime p ≡ 1 (mod 11), the number of coprime Jacobians up to

isomorphism as elliptic surfaces for an eigenvector torsor will be 11 times less than when they

are considered up to isomorphism over P1.

5 Derived Equivalent K3 Surfaces and Jacobians

The following well-known result goes back to Mukai, see also [4, Remark 5.4.6].We provide the proof for

completeness as it follows easily from what we have explained so far.

Theorem 5.1. Let S → P1 be an elliptic K3 surface with a section, and let X → P1 be a torsor over

S → P1. Let t ∈ Z be the multisection index of X → P1. Then, Jk(X) is a Fourier-Mukai partner of

X if and only if gcd(k, t) = 1.

Proof. Let αX ∈ Br(S) be the Brauer class of X → P1. From Lemma 4.4 it is easy to deduce that

det(T(X)) = t2 · det(T(S)) (5.1)

(cf [12, Remark 3.1]).

Recall that t = ord(αX) by Lemma 4.4. We know T(Jk(X)) is Hodge isometric to the kernel of k · αX :

T(S) → Z/tZ, again by Lemma 4.4. If gcd(k, t) = 1, then αX and kαX have the same kernel so that

T(Jk(X)) ≃ ker(k · αX) = ker(αX) ≃ T(X),

so Jk(X) is a Fourier-Mukai partner of X by the Derived Torelli Theorem.

Let us prove the converse implication. From (5.1), we get that for any k ∈ Z, we have

det(T(X))

det(T(Jk(X)))
=

(
ord(α)

ord(kα)

)2

= gcd(k,ord(α))2.

Thus if X and Jk(X) are derived equivalent, then the left-hand side equals one by the Derived Torelli

Theorem, hence k is coprime to t = ord(α). �
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5.1 Derived elliptic structures
In this subsection, we set up the theory of derived elliptic structures and Hodge elliptic structures.

Definition 5.2. Let X be a K3 surface. A derived elliptic structure on X is a pair (Y,φ), where Y is a K3

surface such that Y is derived equivalent to X and φ : Y → P1 is an elliptic fibration.

We say that two derived elliptic structures are isomorphic if they are isomorphic as elliptic surfaces.

We denote by DE(X) (resp. DEt(X)) the set of isomorphism classes of derived elliptic structures on X

(resp. derived elliptic structures on X of multisection index t).

Lemma 5.3. Let X be a K3 surface. Then, we have:

(i) DE(X) is a finite set;

(ii) DE(X) is nonempty if and only if X is elliptic;

(iii) DEt(X) can be nonempty only for t such that t2 divides the order of the discriminant group AT(X);

(iv) If X is elliptic with ρ(X) = 2 andmultisection index t, then every elliptic structure on every Fourier-

Mukai partner of X also has multisection index t, that is DE(X) = DEt(X).

Proof. (i) The set of isomorphism classes of Fourier-Mukai partners of X is finite [3, Proposition 5.3], [9],

and each of them has only finitely many elliptic structures up to isomorphism [31]. It follows thatDE(X)

is a finite set.

(ii) If X elliptic, then X with its elliptic structure is an element of DE(X), hence it is nonempty.

Conversely, if DE(X) is nonempty, then X admits a Fourier-Mukai partner which is an elliptic K3 surface.

Then by the Derived Torelli Theorem NS(X) and NS(Y) are in the same genus, and since Y is elliptic, the

intersection form NS(Y) represents zero, hence a standard lattice theoretic argument shows that NS(X)

also represents zero, and X is elliptic.

(iii) If (Y,φ) is a derived elliptic structure on X of multisection index t, then we have

|AT(X)| = |AT(Y)| = t2 · |AT(J0(Y))|

where the first equality follows from the Derived Torelli Theorem and the second one can be deduced

from (5.1) (cf [12, Remark 3.1]). In particular, DEt(X) is empty whenever t2 does not divide the order of

AT(X).

(iv) Every Fourier-Mukai partner Y of X also has Picard number ρ(Y) = 2. By Proposition 3.1, the

multisection index of every elliptic fibration on Y equals the square root of |AT(Y)| = |AT(X)| = t2. �

We can take coprime Jacobians of a derived elliptic structure (Y,φ), which we denote by Jk(Y,φ). By

Lemma 4.14 and Theorem 5.1 this defines a group action of (Z/tZ)∗ on DEt(X). The set of (Z/tZ)∗-orbits

on DEt(X) parametrizes derived elliptic structures up to taking coprime Jacobians, and it is sometimes

a more natural set to work with.

We now explain Hodge-theoretic analogues of derived elliptic structures. The following definition is

motivated by the Derived Torelli Theorem.

Definition 5.4. Let X be a K3 surface. A Hodge elliptic structure on X is a twisted Jacobian K3 surface

(S, f ,α) (see Definition 4.12) such that there exists a Hodge isometry Ker(α) ≃ T(X).

The index of a Hodge elliptic structure is defined to be the order of its Brauer class α. An isomorphism

of Hodge elliptic structures (S, f ,α), (S′, f ′,α′) is an isomorphism γ : S → S′ of elliptic surfaces such that

γ∗(α) = α′. We denote by HE(X) the set of isomorphism classes of Hodge elliptic structures on X. We

write HEt(X) for the set of isomorphism classes of Hodge elliptic structures of index t. The operation

k ∗ (S, f ,α) = (S, f , kα) defines a group action of (Z/tZ)∗ on HEt(X).

Example 5.5. Let X be an elliptic K3 surface of Picard rank 2 and multisection index t. Let (S, f ,α)

be a Hodge elliptic structure on X. Since the discriminant of X equals t2, from the sequence

0 → T(X) → T(S) → Z/tZ → 0,
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we deduce that T(S) is unimodular. Thus S is an elliptic K3 surface of Picard rank two, and it has

a unique elliptic fibration, which has a unique section (see Lemma 3.2). We see that in the

Picard rank two case f can be excluded from the data of a Hodge elliptic structure and we have

a bijection

HEt(X) = {(S,α)}/ ≃, (5.2)

with isomorphisms understood as isomorphisms between K3 surfaces respecting the Brauer

classes.

Proposition 5.6. Let X be a K3 surface and let t be a positive integer. Then the bijection EllK3BrK3

of Theorem 4.13 induces a (Z/tZ)∗-equivariant bijection DEt(X) ≃ HEt(X).

Proof. First of all note that by definition DEt(X) is a subset of EllK3 consisting of isomorphism classes

(Y,φ) with Y derived equivalent to X and φ having a multisection index t. Similarly,HEt(X) is a subset of

BrK3 consisting of (S, f ,α) such that ord(α) = t and Ker(α) ≃ T(X). If (Y,φ) ∈ EllK3 then by Lemma 4.4,

(Y,φ) belongs to DEt(X) if and only if the corresponding triple (J0(Y), J0(φ),αY) ∈ BrK3 belongs to HEt(X).

The (Z/tZ)∗-equivariance of the map is a direct consequence of the fact that kαY = αJk(Y), which holds

again by Lemma 4.4. �

Definition 5.7. Let T be a lattice. For t ∈ Z, we write It(AT) for the set of cyclic, isotropic subgroups

of order t in AT, and we write Ĩt(AT) for the set of isotropic vectors of order t in AT.

For a K3 surface X, there is a natural action of GX, on It(AT(X)) and Ĩt(AT(X)). Let (S, f ,α) be a Hodge elliptic

structure on X of index t. There is a unique isomorphism rα : Z/tZ ≃ T(S)/Ker(α) such that the diagram

(5.3)

commutes. In particular, the Brauer class α singles out a generator rα(1) of T(S)/Ker(α). Fix any Hodge

isometry T(X) ≃ Ker(α). The natural inclusion T(S)/T(X) ⊂ AT(X) allows us to view rα(1) as an element

of AT(X), which we denote by wα . We denote the subgroup of AT(X) generated by wα by Hα . Note that wα ,

and hence Hα , is only well-defined up to the GX action on AT(X), since its construction depends on the

original choice of Hodge isometry T(X) ≃ Ker(α). On the other hand isomorphic Hodge elliptic structures

on X give rise to isotropic vectors in the same GX-orbit by Lemma 2.1. We define the map

w : HEt(X) → Ĩt(AT(X))/GX, w(S, f ,α) = wα . (5.4)

The operation k ∗ w = k−1w, where k−1 is an inverse to k modulo t, defines a group action of (Z/tZ)∗

on Ĩt(AT)/GT.

Lemma 5.8. The map (5.4) is (Z/tZ)∗-equivariant.

Proof. Recall from Lemma 4.4(ii) that αJk(Y) = k · αY in Br(J0(Y)) for all k ∈ Z. It follows from (5.3) that we

have rkα = k−1rα . Thus from the definitions, we get

wkα = rkα(1) = k−1rα(1) = k−1wα = k ∗ wα ,

which means that the map w is equivariant. �

Proposition 5.6 and Lemma 5.8 give rise to the following commutative diagram with the vertical

arrows being quotients by the corresponding (Z/tZ)∗-actions:

(5.5)
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For (Y,φ) a derived elliptic structure of X, we consider wφ := wαY , the image of (Y,φ) under the

composition of maps in the top row of (5.5). In particular, if f : X → P1 is an elliptic fibration with fibre

class F ∈ NS(X), then by construction, wf is the Căldăraru class of the moduli space J0(X) of sheaves

with Mukai vector (0, F, 0) on X, thus by Lemma 2.8 wf corresponds to

1

t
F ∈ It(ANS(X))/GX (5.6)

(we can get rid of the minus sign in the formula at this point, as −1 ∈ GX).

5.2 Fourier-Mukai partners in rank 2
In this subsection,weworkwith an elliptic K3 surface of Picard rank 2, so that by Proposition 3.1 we have

NS(X) ≃ �d,t given by (3.1). The following result is one of the reasons why it is natural to concentrate on

Picard rank two elliptic surfaces.

Lemma 5.9. For an elliptic K3 surface X with NS(X) ≃ �d,t, all derived elliptic structures and all

Hodge elliptic structures on X have the same index t.

Proof. This follows from Lemma 5.3 and Proposition 5.6. �

For X as in Lemma 5.9, we have DE(X) = DEt(X). In particular, there is an action of (Z/tZ)∗ on DE(X) by

taking coprime Jacobians. Recall that for a K3 surface X with NS(X) ≃ �d,t, we have AT(X) ≃ ANS(X)(−1) ≃

Ad,t(−1), and it has order t2 by Lemma 3.3. Thus isotropic elements (resp. cyclic isotropic subgroups) of

order t are precisely Lagrangian elements (resp. Lagrangian subgroups), see Definition 3.5:

It(AT(X)) = L(AT(X)), Ĩt(AT(X)) = L̃(AT(X)),

The following result is related to [19, Proposition 3.3].

Theorem 5.10. Let X be an elliptic K3 surface of Picard rank 2 and multisection index t. Then the

map w (5.4) is a bijection. Furthermore, we have a bijection

DE(X)/(Z/tZ)∗ ≃ L(AT(X))/GX. (5.7)

Action (3.11) induces a Z/2Z-action on L(AT(X))/GX which under bijection (5.7) corresponds to the

action on DE(X) swapping the two elliptic fibrations on Fourier-Mukai partners of X.

Proof. We first show that w is bijective. We start with bijection (5.2). For the injectivity of w, take (S,α)

and (S′,α′) with T(X) ≃ Ker(α) ≃ Ker(α′). Assume that there exists a Hodge isometry σ ∈ GX with the

property σ(wα) = wα′ . Then Lemma 2.1 implies that σ can be extended to a Hodge isometry T(S) → T(S′).

Since S and S′ have Picard rank 2, Lemma 3.12 implies that this Hodge isometry is induced by a group

isomorphism β : S ≃ S′. From σ(wα) = wα′ , it follows that (S,α) and (S′,α′) are isomorphic.

For the surjectivity of w, let u ∈ AT(X) be an isotropic vector of order t and H = 〈u〉. Via Lemma 2.1, H

corresponds to an overlattice i : T(X) →֒ T which inherits a Hodge structure from T(X), i.e., i : T(X) →֒ T

is a Hodge overlattice. Note that T is unimodular, since the index of T(X) ⊂ T is t and AT(X) has order

t2. Hence T ⊕ U is an even, unimodular lattice of rank 22 and signature (3, 19). This means that it is

isomorphic to the K3-lattice �K3. By the surjectivity of the period map (Theorem 2.2), we obtain a K3

surface S with T(S) ≃ T and NS(S) ≃ U. Therefore the overlattice i : T(X) →֒ T(S) is a Hodge overlattice

with T(S)/T(X) = H. We define the Brauer class α : T(S) → H ≃ Z/tZ where the second map is given by

u �→ 1. Thus, we have constructed a pair (S,α) with Căldăraru class u and Ker(α) ≃ T(X).

Since w is bijective, the diagram (5.5) immediately implies (5.7). The action (3.11) induces the action

on L(AT(X))/GX because ι commutes with GX. Indeed this can be checked on each primary part (2.2),

where there are at most two Lagrangian subgroups (see Lemma 3.8), hence the action of GX factors

through the action generated by ιp. To show that ι corresponds to swapping the elliptic fibrations on

Fourier-Mukai partners Y, we can use the identification L(AT(X))/GX = L(AT(Y))/GY, and assume Y = X.
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The result follows from (3.12) because Lagrangian subgroups generated by v and v′ correspond to the

two elliptic fibrations on X via (5.7) by (5.6). �

Recall from Lemma 3.2 that a K3 surface X with NS(X) ≃ �d,t admits two elliptic fibrations, except

when d ≡ −1 (mod t), in which case X admits only one elliptic fibration. Using Theorem 5.10 we can

easily compare the coprime Jacobians of these two fibrations.

Example 5.11. Let X be an elliptic K3 surface of Picard rank two with NS(X) ≃ �d,t such that

gcd(d, t) = 1 and d �≡ −1 (mod t). Let (X, f ) and (X, g) be two elliptic fibrations on X (see Lemma

3.2), and let wf and wg be their Căldăraru classes, which are Lagrangian elements in Ad,t. By

Lemma 3.8, Ad,t admits a unique Lagrangian subgroup, thus we have 〈wf 〉 = 〈wg〉. By Theorem

5.10 this implies that f and g are coprime Jacobians of each other. We can make this more

precise as follows. Recall that by (5.6), wf and wg correspond to classes v, v′ (3.7) respectively.

Using (3.8), we compute

wg = v′ = −dv = −dwf = −d−1 ∗ wf .

Here d−1 is the inverse to d modulo t. Thus, we have an isomorphism of elliptic surfaces

(X, g) ≃ J−d−1
(X, f ) ≃ Jd

−1
(X, f )

and (X, f ) ≃ Jd(X, g).

Corollary 5.12. LetX be an elliptic K3 surface of Picard rank two.The set of Fourier-Mukai partners

of X considered up to isomorphism as surfaces, and up to coprime Jacobians (on every derived

elliptic structure of X) is in natural bijection with the double quotient

〈ι〉\L(AT(X))/GX.

Proof. This is the consequence of the action of ι on L(AT(X))/GX by swapping the two elliptic fibrations

as explained in Theorem 5.10. �

Corollary 5.13. Let X be an elliptic K3 surface of Picard rank 2. Let d, t ∈ Z such that NS(X) ≃ �d,t,

and write m = gcd(d, t).

(i) If m = 1, then DE(X) is a single (Z/tZ)∗-orbit. Explicitly, every Fourier-Mukai partner of X will be

found among the coprime Jacobians of a fixed elliptic fibration (X, f ).

(ii) If m = pk, for a prime p and k ≥ 1, then DE(X) consists of at most two (Z/tZ)∗-orbits, permuted

by the involution ι. Explicitly every Fourier-Mukai partner of X will be found among the coprime

Jacobians of one of the two elliptic fibrations on X.

(iii) If m has at least seven distinct prime factors then DE(X) has at least three (Z/tZ)∗-orbits. In

particular, there exist Fourier-Mukai partners of X, which are not isomorphic, as surfaces, to any

of the Jacobians of elliptic structures on X.

Proof. In each case we use Theorem 5.10 combined with the count of Lagrangians given in Proposition

3.6.

(i) Fix an elliptic fibration f : X → P1 and let Hf ⊆ AT(X) be the corresponding Lagrangian

subgroup. Since m = 1, Proposition 3.6 implies that Hf ⊆ AT(X) is the only Lagrangian subgroup.

Therefore all derived elliptic structures are of the form Jk(X) → P1 for k ∈ Z coprime to t by

Theorem 5.10.

(ii) By Proposition 3.6, AT(X) contains precisely two Lagrangian subgroups. The condition m = pk

implies in particular that d �≡ −1 (mod t), hence the surface X admits two elliptic fibrations f : X → P1

and g : X → P1. By Lemma 3.7, arguing like in Example 5.11, we see that the subgroups of AT(X) induced

by the two elliptic fibrations are not equal. Hence Hf and Hg are the only two Lagrangians of AT(X), so

every derived elliptic structure on X is either a coprime Jacobian of f or of g by Theorem 5.10.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
4
/1

3
/1

0
1
3
9
/7

6
3
9
3
7
9
 b

y
 g

u
e
s
t o

n
 1

7
 O

c
to

b
e
r 2

0
2
5



Elliptic K3 Surfaces and Jacobians | 10161

(iii) Assume ω(m) ≥ 7. Since −1 ∈ GX acts trivially on L(AT(X)) and |GX| ≤ 66, by Proposition 3.6, the

set L(AT(X))/GX has cardinality at least 2ω(m)/33 ≥ 128/33, that is there are at least three elements. The

final statement follows from Corollary 5.12. �

Corollary 5.14. Assume that X is a T-general elliptic K3 surface with NS(X) = �d,t with t > 2, and

let m = gcd(d, t). Then

|DE(X)| = 2ω(m)−1 · φ(t), |DE(X)/(Z/tZ)∗| = 2ω(m). (5.8)

In particular, if m is not a power of a prime, then X has Fourier-Mukai partners not isomorphic, as

surfaces, to any Jacobian of an elliptic structure on X.

Proof. The second formula in (5.8) is an immediate consequence of Theorem 5.10, the fact that GX =

{±1} acts trivially on L̃(AT(X)) and the Lagrangian count (3.6).

By Proposition 4.15, coprime Jacobians of a T-general elliptic K3 surface form φ(t)/2 isomorphism

classes. In otherwords, the orbits of the (Z/tZ)∗-action onDE(X) are all of size φ(t)/2 and the first formula

in (5.8) follows from the second one.

The final statement follows from Corollary 5.12 because ifm is not a power of a prime,DE(X)/(Z/tZ)∗

has at least four elements by (5.8) which thus cannot form a single ι-orbit. �

5.3 The zeroth Jacobian
In this subsection, we apply the results of Section 5.2 to investigate whether derived equivalent elliptic

K3 surfaces have isomorphic zeroth Jacobians. A priori, this is a weaker question than Question 1.1.

However, we now show that the two questions are equivalent in the very general case. In particular, the

answer is negative.

Proposition 5.15. Let f : X → P1 be an elliptic K3 surface of Picard rank 2, and write S := J0(X).

Assume that T(X) has no non-trivial rational Hodge isometries, that is

OHodge(T(X)Q) ≃ Z/2Z. (5.9)

Let (Y,φ) be a derived elliptic structure on X such that S′ := J0(Y) ≃ S. Then (Y,φ) is isomorphic to

a coprime Jacobian of (X, f ).

Proof. Fixing any Hodge isometry T(X) ≃ T(Y) we view T(X) ≃ T(Y) →֒ T(S′) as an overlattice of T(X). By

assumption there exists a Hodge isometry β∗ : T(S′) ≃ T(S) induced by an isomorphism β : S ≃ S′. Now

β∗ induces the rational Hodge isometry

T(X)Q ≃ T(S′)Q
β∗
Q

≃ T(S)Q ≃ T(X)Q

which by assumption equals ± id, hence β∗ preserves T(X) as a sublattice of T(S) and T(S′). In particular,

β∗αX = kαY for some k ∈ Z, hence Y is a coprime Jacobian of X. �

It is well-known that if X is a very general �d,t-polarised elliptic K3 surface then (5.9) is satisfied, see

e.g. the argument of [28, Lemma 3.9]. Thus, if X is a very general elliptic K3 surface of Picard rank two

with two elliptic fibrations, Proposition 5.15 allows us to compare the corresponding zeroth Jacobians,

which generalises [7, Proposition 4.8].

Corollary 5.16. Let X be an elliptic K3 surface of Picard rank two with NS(X) ≃ �d,t and suppose

d �≡ ±1 mod t, so that X admits two non-isomorphic elliptic fibrations by Lemma 3.2. Assume

(5.9) holds for X. Then the zeroth Jacobians of the two elliptic fibrations on X are isomorphic if

and only if gcd(d, t) = 1.

Proof. If gcd(d, t) = 1, the two fibrations on X are coprime Jacobians of each other by Corollary 5.13,

hence the zeroth Jacobians are isomorphic. If gcd(d, t) �= 1, then by T-generality of X, the Căldăraru
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classes of the two fibrations on X are not proportional in AT(X), hence the two fibrations are not coprime

Jacobians of each other and the result follows from Proposition 5.15. �

Remark 5.17. In the setting of Corollary 5.16, if zeroth Jacobians are not isomorphic, then they are

also not derived equivalent. Indeed, elliptic K3 surfaces with a section do not admit nontrivial

Fourier-Mukai partners [9, Proposition 2.7(3)].

5.4 Question by Hassett and Tschinkel over non-closed fields
In this subsection, we will use the theory of twisted forms to extend our results to a subfield k ⊂ C.

Let f : X → P1 be a complex elliptic K3 surface with NS(X) ≃ �d,t. Recall that we denote by Aut(X, F)

the group of automorphisms of X which fix the class of the fibre in NS(X). By Corollary 3.14, the group

Aut(X, F) is trivial whenever t > 2 and X is T-general.

Let k ⊂ L be a field extension. An L-twisted form of an elliptic K3 surface (Y,φ : Y → C) over k is any

elliptic K3 surface (Y′,φ′ : Y′ → C′) over k such that (YL,φL) is isomorphic to (Y′
L,φ

′
L) as elliptic surfaces.

Lemma 5.18. Let (Y,φ) be an elliptic K3 surface over k such that Aut(YC, F) =
{
id

}
. Then every

C-twisted form of (Y,φ) is isomorphic to Y as a surface.

Proof. Any C-twisted form (Y′,φ′) of (Y,φ) is also a k-twisted form of (Y,φ) [20, Lemma 16.27]. Thus

it suffices to show that for any Galois extension L/k all L-twisted forms of (Y,φ) are isomorphic to Y.

Let (Y′,φ′) be an L-twisted form of (Y,φ), and let g : YL ≃ Y′
L be an isomorphism of elliptic surfaces,

possibly twisting the base by an automorphism. Then for any σ ∈ Gal(L/k), the map h := g ◦ (σg)−1 is an

automorphism of YL as an elliptic surface.

Using injectivity of the map Aut(YL) → Aut(YC), c.f. [29, Lemma 02VX], and the assumption about

automorphisms of YC, we see that h is the identity, that is g commutes with the Galois action. Therefore

g descends to an isomorphism Y ≃ Y′ [20, Proposition 16.9]. �

Lemma 5.19. If (X, f ) is an elliptic K3 surface over k such that ρ(XC) = 2, then all elliptic fibrations

of XC are induced by elliptic fibrations of X.

Proof. By Lemma 3.2 XC has one or two elliptic fibrations. If there is only fibration, it must come from

the given elliptic fibration f . If there are two elliptic fibrations on XC, they are defined over some Galois

extension L/k. Let F and F′ be the corresponding divisor classes on XL. These classes cannot be permuted

by the Galois group, because one of them corresponds to f , hence is fixed by the Galois group. Thus, the

other class is also fixed by the Galois group and the corresponding morphism X → C is defined over k,

see, e.g. [18, Proposition 2.7, Theorem 3.4(2)]. �

Proposition 5.20. Let X be an elliptic K3 surface over k with NS(XC) ≃ �d,t. Assume Aut(XC, F) ={
id

}
. If d and t are coprime or have only one prime factor in common, then every Fourier-Mukai

partner of X is isomorphic, as a surface, to a coprime Jacobian of one of the elliptic fibrations

on X.

Proof. Let Y be a Fourier-Mukai partner of X, and let φ : Y → C be an elliptic fibration of Y, which exists

by [8, Proposition 16]. By Corollary 5.13(i, ii),φC : YC → CC is isomorphic to a coprime Jacobian Jk(XC, fC) as

elliptic surfaces, for some elliptic fibration fC on XC. By Lemma 5.19, fC comes from an elliptic fibration

f on X, hence (Y,φ) is a C-twisted form of Jk(X, f ).

From the description of the automorphism groups given in Proposition 3.10 we deduce that

Aut(Jk(XC), F) ≃ Aut(XC, F)

and by assumption this group is trivial. It follows from Lemma 5.18 that Y is isomorphic to Jk(X) as a

surface. �

Proposition 5.20 implies the following:

Corollary 5.21. Let X be as in Proposition 5.20. Let Y be any Fourier-Mukai partner of X. Then X

has a k-rational point if and only if Y has a k-rational point.
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Proof. From Proposition 5.20, it follows that there is an elliptic fibration f : X → C′ and an integer ℓ ∈ Z

such that Y ≃ Jℓ(X, f ) as surfaces. There is a rational map X ��� Jℓ(X) ≃ Y given by P �→ ℓ · P. By the

Lang-Nishimura Theorem [17], [23], it follows that X(k) �= ∅ implies Y(k) �= ∅. Conversely, since X is also

a coprime Jacobian of Y, the same argument shows that Y(k) �= ∅ implies X(k) �= ∅. �
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