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We present a detailed study of elliptic fibrations on Fourier-Mukai partners of K3 surfaces, which we
call derived elliptic structures. We fully classify derived elliptic structures in terms of Hodge-theoretic
data, similar to the Derived Torelli Theorem that describes Fourier-Mukai partners. In Picard rank two,
derived elliptic structures are fully determined by the Lagrangian subgroups of the discriminant group.
As a consequence, we prove that for a large class of Picard rank 2 elliptic K3 surfaces all Fourier-Mukai
partners are Jacobians, and we partially extend this result to non-closed fields. We also show that
there exist elliptic K3 surfaces with Fourier-Mukai partners, which are not Jacobians of the original K3
surface. This gives a negative answer to a question raised by Hassett and Tschinkel.

1 Introduction

Study of derived equivalence for complex K3 surfaces goes back to the work of Mukai. By the Derived
Torelli Theorem [21, 25], derived equivalence translates to a Hodge-theoretic concept. Building on the
Derived Torelli theorem, and Nikulin’s work on lattices [22], one can deduce a formula for the number
of Fourier-Mukai partners for a complex K3 surface [9, 24].

Derived equivalences of elliptic K3 surfaces have been studied in [7, 30]. One way to produce Fourier-
Mukai partners of an elliptic surface f : X — P!, is to take Jacobians J¥(X), which are moduli spaces
parametrising stable torsion sheaves supported on a fibre of f and having degree k € Z. If k is coprime
to the multisection index of f, then J*(X) is derived equivalent to X and we refer to J*(X) as a coprime
Jacobian of X. This raises the question of whether the converse is also true:

Question 1.1. s every Fourier-Mukai partner of an elliptic surface X a coprime Jacobian of X?

Question 1.1 was asked in 2014 by Hassett and Tschinkel in the case X is a K3 surface [8, Question 20].
In fact, since elliptic K3 surfaces can have several non-isomorphic elliptic fibrations, one can interpret
this question differently depending on whether we fix a fibration on X in advance or not.

For elliptic surfaces of non-zero Kodaira dimension, as well as for bielliptic and Enriques surfaces, [2,
3], Question 1.1 has an affirmative answer. We do not know the answer in the abelian case.

One of our main results is the following answer to Question 1.1 for K3 surfaces:
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10140 | R.Meinsma and E. Shinder

Theorem 1.2 (See Corollaries 5.13 and 5.14). Let X be an elliptic K3 surface of Picard rank 2. Let t be
the multisection index of X and let 2d be the degree of a polarisation on X. Denote m = ged(d, t).

(i) If m = 1, then every Fourier-Mukai partner of X is isomorphic to a coprime Jacobian of a fixed
elliptic fibration on X;
(i) If m = p¥, for a prime p, then every Fourier-Mukai partner of X is isomorphic to a coprime Jacobian
of one of the two elliptic fibrations on X;
(iii) If m is not a power of a prime, and X is very general with these properties, then X admits Fourier-
Mukai partners that are not isomorphic to any Jacobian of any elliptic fibration on X.

Our method of proof of Theorem 1.2 relies on the Ogg-Shafarevich theory for elliptic surfaces, the
Derived Torelli Theorem and lattice theory. In addition we introduce a new ingredient: a derived elliptic
structure. The notion of the derived elliptic structure goes into the direction of describing an elliptic
structure on X and its Fourier-Mukai partner in terms of the derived category DP(X). We define a derived
elliptic structure on a K3 surface X as a choice of an elliptic fibration on a Fourier-Mukai partner of X.
Using this language, Question 1.1 translates to the question whether every derived elliptic structure on
X is isomorphic to a coprime Jacobian of an actual elliptic structure on X.

We proceed to completely classify derived elliptic structures, for an elliptic K3 surface X of Picard
rank two, in terms of certain Lagrangian subgroups of the discriminant lattice Ansx) of the Neron-Severi
lattice of X. The final answer, at least when X is very general, is that the number of derived elliptic
structures on X, up to coprime Jacobians, equals 2™ where m is as in Theorem 1.2 and w(m) is the
number of distinct prime factors of m, thatis w(1) = 0, w(p*) = 1 and w(m) > 1 otherwise. This explains
the condition on m appearing in Theorem 1.2.

Let us explain some difficulties that we encounter along the way. First of all, elliptic K3 surfaces of
Picard rank two can have one or two elliptic fibrations, and in the latter case these elliptic fibrations
are sometimes isomorphic. Thus, a direct comparison between the number of coprime Jacobians and
Fourier-Mukai partners is complicated.

Secondly, many results that we state for arbitrary elliptic K3 surfaces X of Picard rank two simplify
considerably when X is very general. Indeed in this case, the group Gx of Hodge isometries of the
transcendental lattice T(X) is trivial, that is Gx = {£1}. In general this is a finite cyclic group of even
order |Gx| < 66. This group appears in various bijections, similarly to how it appears in the counting
formula of Fourier-Mukai partners [9]. The set of isomorphism classes of derived elliptic structures on
X is in natural bijection with the set

L(A1x)/Gx,

see Theorem 5.10. Here At is the discriminant lattice of the transcendental lattice T(X), and f(AT<X))
denotes the set of Lagrangian elements (Definition 3.5). Taking a coprime Jacobian J* of an elliptic
structure translates into multiplying the corresponding Lagrangian element by k and changing elliptic
fibrations on a given surface corresponds to an involution which can be described intrinsically in terms
of Ar,). For very general X, Gx = {£1}, and this group acts by multiplying Lagrangian elements by —1. On
the other hand, special X will have fewer Fourier-Mukai partners and fewer coprime Jacobians, however
they will still match perfectly in cases (1) and (2) of Theorem 1.2. See Example 3.13 for the most special
(in terms of the size of Gx and Aut(X)) elliptic K3 surface.

Similarly, when considering very general elliptic K3 surfaces, every isomorphism preserving the fibre
class is necessarily an isomorphism over the base. This is false in general, and this is important, because
the Ogg-Shafarevich theory works with elliptic surfaces over the base, whereas the natural equivalence
relation is that of preserving the elliptic pencil. We provide a careful analysis of the difference between
isomorphism over P! and isomorphism as elliptic surfaces, which can be of independent interest. In par-
ticular, we are able to state which of the coprime Jacobians J*(X) of an elliptic K3 surfaces X are isomor-
phic as elliptic surfaces (resp. over P1). Indeed, very general elliptic K3 surfaces with multisection index
thave at most &2 coprime Jacobians, and the explicit number can be computed in all cases as follows:

Proposition 1.3. (see Proposition 4.15) Let X be a complex elliptic K3 surface. There exist explicitly
defined cyclic subgroups Bx C Bx of (Z/tZ)*, such that the number of isomorphism classes

G20z 49q0)Q L} uo 3sanb Aq 6.£6€9.2/6€L0L/EL/720Z/o101B/UIWI/WOD dNO"DlWSPEdE//:Sd)Y WO} PapEOjUMO(



Elliptic K3 Surfaces and Jacobians | 10141

of coprime Jacobians J¥(X) considered up to isomorphism over the base (resp. preserving the
elliptic pencil) equals ¢ (t)/|Bx| (resp. ¢(t)/|§x|).

The group Bx can only be non-trivial if X is isotrivial with j-invariant 0 or 1728. We give examples
when By and By are non-trivial, and when they are different.

Applications

We deduce from Theorem 1.2 that zeroth Jacobians of derived equivalent elliptic K3 surfaces are non-
isomorphic in general (Corollary 5.16), that is passing to the Jacobian can not be defined solely in terms
of the derived category (Remark 5.17).

Furthermore, Theorem 1.2 is relevant every time potential consequences of derived equivalence
between K3 surfaces are considered. Let us explain two non-trivial situations when the explicit or
geometric form of derived equivalence is desirable. The first is rational points over non-closed fields
and the second is L-equivalence.

The motivation of Hassett-Tschinkel [8] was the question of existence of rational points on derived
equivalent elliptic K3 surfaces over non-closed fields. Namely, since X and any of its coprime Jacobians
J¥(X) are isogenous, it follows that X has a rational point if and only if J*(X) has a rational point by
the Lang-Nishimura theorem. Using Galois descent, as we know automorphism groups of elliptic K3
surfaces quite explicitly, we can partially extend Theorem 1.2 to subfields k ¢ C, and deduce the
implication about rational points of Fourier-Mukai partners (see Corollary 5.21). We note that the
question about the simultaneous existence of rational points on derived equivalent K3 surfaces still
seems to be open.

Another application for Theorem 1.2 is to the question of L-equivalence of derived equivalent K3
surfaces X, Y [16]. For elliptic K3 surfaces the natural strategy is to prove L-equivalence for the generic
fibres, which are genus one curves over the function field of the base, and then spread-out the L-
equivalence over the total space. This strategy has been realised in [28] for elliptic K3 surfaces of
multisection index five. It follows from Theorem 1.2 that the same approach can work when the
mutlisection index t is a power of a prime (and d is arbitrary).

Structure of the paper

In Section 2, we recall basic classical results about lattices and complex K3 surfaces, and moduli
spaces of sheaves on K3 surfaces. In Section 3, we describe in detail the elliptic K3 surfaces of rank
two, including their Neron-Severi lattices, Lagrangian elements in their discriminant lattices, Hodge
isometries of the transcendental lattices and the group of automorphisms. Most results in this section
are standard except the focus on the Lagrangian elements. In Section 4, we recall the Ogg-Shafarevich
theory and explain in detail when different Jacobians of a given elliptic fibration are isomorphic. In
Section 5, we introduce derived elliptic structures and Hodge elliptic structures on a K3 surface and
fully classify them in terms of Lagrangian elements in the case of Picard rank two.

2 Preliminary Results
2.1 Lattices

Our main reference for lattice theoryis [22]. A lattice is a finitely generated free abelian group L together
with a symmetric non-degenerate bilinear form b : L x L — Z. We consider the quadratic form q(x) =
b(x,x) and sometimes we write x - y for b(x,y) and x? for q(x). A morphism of lattices between (L, b)
and (L', b’) is a group homomorphism o : L — L’ which respects the bilinear forms, meaning b(x,y) =
b'(o(x),0(y)) for all x,y € L. An isomorphism of lattices is called an isometry. We write O(L) for the group
of isometries of L. The lattice L is called even if x? is even for all x € L. All the lattices we consider will
be assumed to be even.

The dual of a lattice L is defined as L* := Hom(L, Z). It comes equipped with a natural bilinear form
taking values in Q. The bilinear form gives rise to a natural map L — L* which is injective because we
assume b to be non-degenerate; furthermore, we have a canonical isomorphism

*~{xel®Q|Vyel:x-yeZ}SL®Q. (2.1)
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The quotient L*/L = Ay is called the discriminant group of L. If the discriminant group is trivial, we call
L unimodular. The discriminant group comes equipped with a quadratic form q : A; — Q/2Z. There is
an orthogonal direct sum decomposition

AL =Pay (2.2)
v

where A(Lp ) consists of elements annihilated by a power of a prime p. The group A(Lp ) coincides with the
discriminant group of the p-adic lattice L ® Z,. Two lattices L, L’ are said to be in the same genus if they
have the same signature and have isometric discriminant groups.

An overlattice of a lattice T is a lattice L together with an embedding of lattices T < L of finite index.
We say that two overlattices T < L and T < L’ are isomorphic if there exists a commutative diagram

T—1L

where o and t are isometries.
For any overlattice T < L, there is a natural embedding of the cokernel H; := L/T in the discriminant
group of T via the chain of embeddings

Tes Les L* < T,

The subgroup H; is isotropic with respect to the quadratic form on Ar, and conversely any isotropic
subgroup of At gives rise to an overlattice of T. The following result gives a complete classification of
all overlattices of a given lattice T, up to isomorphism.

Lemma 2.1 ([22, Proposition 1.4.2]). Let T be a lattice,and let T < Land T < M be two overlattices
of T. An isometry o € O(T) fits into a commutative diagram of the form
T——1L
T——M (2.3)

if and only if the induced isometry & € O(Ar) satisfies o(H;) = Hy. Moreover, the assignment
(T < L) — Hy is a bijection between the set of isomorphism classes of overlattices of T and the
set of O(T)-orbits of isotropic subgroups of Ar.

Note that (2.3) can be completed as follows:

T L HiC Ar
T
T M HC A (2.4)

2.2 K3 surfaces

Our basic reference for K3 surfaces is [11]. If X is a complex projective K3 surface, H?(X,Z) is a free
abelian group of rank 22. Moreover, the cup product is a symmetric bilinear form on H?(X, Z), turning
H?(X,Z) into an even, unimodular lattice isometric to Axs = U®* @ Eg(—1)®2. Here, U is the hyperbolic
lattice given by the symmetric bilinear form

and Eg is the unique even, unimodular, positive-definite lattice of rank 8 (see [1, §VIIL.1] for details).
The Néron-Severi lattice NS(X) is a sublattice of H*(X, Z), defined as the image of the first Chern class
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¢1 : Pic(X) = H?(X,Z). We have Pic(X) ~ NS(X); it is a free abelian group of rank p, which is called the
Picard number of X.

The orthogonal complement T(X) = NS(X)* € H?(X, Z) is called the transcendental lattice of X. The
image of the line H>°(X) = Co ¢ H?(X, C) under any isometry H*(X, Z) — Axs is called a period of X. Since
6?2 =0ando -7 > 0, any period of X lies in the open subset

D:={tePAxs®C)|[¢?=0and ¢ € >0},

called the period domain. The following two results are among the most fundamental results about K3
surfaces.

Theorem 2.2 (Surjectivity of the Period Map). [32] Any point in the period domain is a period of
a K3 surface, i.e,, for any ¢ € D, there is a K3 surface X with an isometry H*(X,Z) — Ags such
that H*(X,C) — Axs ® C maps H*°(X) to ¢.

Theorem 2.3 (Torelli Theorem for K3 Surfaces). [26] (see [11, Theorem 5.5.3]) Let X and Y be K3
surfaces. Then X and Y are isomorphic if and only if there exists a Hodge isometry H*(X, Z) =~
H?(Y, Z). Moreover, for any Hodge isometry v : H?(X, Z) — H?(Y, Z), which preserves the ample
cone, there is a unique isomorphism f : X — Y such that ¢y = f,.

The Hodge structure on the transcendental lattice determines X up to derived equivalence due to
what is known as the Derived Torelli Theorem.

Theorem 2.4 (Derived Torelli Theorem). [21], [25] Let X and Y be two K3 surfaces. Then there
exists an equivalence DY(X) ~ Db(Y) if and only if there exists a Hodge isometry T(X) >~ T(Y).

If DP(X) =~ DP(Y), we say that X and Y are derived equivalent and that Y is a Fourier-Mukai partner
of X. Theorem 2.4 implies that two derived equivalent K3 surfaces must have equal Picard numbers. If
we denote A = NS(X), there is an isometry [22, Corollary 1.6.2]

(Aa,qn) = (At —1x))- (2.5)

Thus derived equivalent K3 surfaces have isomorphic discriminant lattices, and it follows easily that
their Néron-Severi lattices must be in the same genus. Instead of (Arx), —qrx)), we usually write
Aty (—=1).

For a K3 surface X, we write Gy for the Hodge isometries group of T(X). Then Gx =~ Z/2gZ for some
g > 1, and we have ¢(2g) | tkT(X) [9, Appendix B] .

From the Derived Torelli Theorem one can deduce:

Theorem 2.5 (Counting Formula). [9] Let X be a K3 surface, and write FM(X) for the set of
isomorphism classes of Fourier-Mukai partners of X. Then

|EM(X)| = D" 10(A) \ O(A4)/Gx|

A

where the sum runs over isomorphism classes of lattices A which are in the same genus
as the Néron-Severi lattice NS(X). Furthermore, each summand computes the number of
isomorphism classes of Fourier-Mukai partners Y of X with NS(Y) >~ A.

It follows from the Counting Formula that an elliptic K3 surface S — P!, which admits a section has
no non-trivial Fourier-Mukai partners [9, Proposition 2.7(3)].

Definition 2.6. We say that a K3 surface X is T-general if Gx = {£id}. A K3 surface that is not
T-general is called T-special.

When X is T-general, the Counting Formula shows that the number of Fourier-Mukai partners is
maximal (for a fixed NS(X)) and only depends on NS(X). A similar effect holds for the invariants we
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10144 | R.Meinsma and E. Shinder

study, see Theorem 5.10. Thus, it is important to have explicit criteria for T-generality. If the Picard
number p of X is odd, then ¢(2g9) must be odd, so |Gx| = 2 and X is T-general. Furthermore, we have the
following result going back to Oguiso [24]:

Lemma 2.7 ([28, Lemma 3.9]). If X is a very general K3 surface in any lattice polarised moduli
space of K3 surfaces, with Picard number p < 20, then X is T-general.

See Example 3.13 for an explicit T-special K3 surface.

2.3 Caldararu class for a non-fine moduli space

The Brauer group of an elliptic K3 surface with a section is one of the main technical tools used in
this paper. We follow the discussions in [4] and [7]. For every complex K3 surface, we have a canonical
isomorphism

Br(X) ~ Hom(T(X), Q/Z). (2.6)
In particular, Br(X) is an infinite torsion group and for all integers t > 1 we have
Br(X)t—tors =~ Hom(T(X), Z/tZ) ~ (Z/tZ)**~", (2.7)

where p is the Picard number of X.
We explain the explicit description of the Brauer class associated to a moduli space of sheaves on a
K3 surface [21], [4]. Let X be a complex K3 surface, and consider a Mukai vector

v=(r,D,s) e NX) =Z®NSX) & Z.

We assume that v is a primitive vector such that v? = 0,1.e.,D? = 2rs.

Let M be the moduli space of stable sheaves on X of class v. By Mukai’s results, if M is nonempty, then
itis again a K3 surface, see, e.g., [11, Corollary 3.5] (we assume v is primitive, so stability coincides with
semistability for a generic choice of a polarisation). Let t be the divisibility of v, that is

t= ged u»u:gcd(r,s, ged E~D)4

ueN(X) EeNS(X)

We consider the obstruction ax € Br(M) for the existence of a universal sheaf on X x M; under the
isomorphism (2.6), we will equivalently consider ax as a homomorphism T(M) — Q/Z. If the divisibility
of v equals t, then ax has order t and we have

0> TX) —> TM) 3 z/tZ — 0.

Here Z/tZ is the subgroup of Q/Z generated by 1/t. Note that the t = 1 case corresponds to fine moduli
spaces, in which case T(X) >~ T(M). In general, we have

LI = TM)/TX) € TXO)*/TX) = At (2.8)

We call the image w of 1 under (2.8) the Cdlddraru class of M (or of v). By construction, the Caldararu
class w generates the isotropic subgroup of Arx, given by Lemma 2.1 corresponding to the overlattice
TX) c T(M).

Lemma 2.8 ([4]). Under the isomorphism (2.5), the Calddraru class w of the Mukai vector v =
(r,D, s) of divisibility t corresponds to 7%D.

Proof. By [21, Proposition 6.4(3)], the cokernel of i : T(X) < T(M) is generated by %A, where A € T(X) is
chosen such that D + A = ta for some a € H?(X,Z). Here D and A correspond to each other under the
natural isomorphism (2.5):

At (=1 = HXX,2)/(TX) ®NS(X) = Ans
I - 1D+ =a + 1D.
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Furthermore the defining equation for A can be equivalently written in the full integral cohomology of
X as

U+ A =ta

where @ = (r/t,a,s/t) (this vector is integral). We claim that — is the C&ldédraru class of (r,D,s). To
show this, we compute the value of the Brauer class ax, considered as a map T(M) — Q/Z (with image
(%Z)/Z ~ Z/tZ), on the element %A e T(M). Set u € H*(X,Z) such that u-v = 1 (this vector exists by
unimodularity). Then, we have

ax(M /) =u-A/ft=u-@-v/)=u-d—u-v/t=-1/t (mod Z).

Here we used [4, Theorem 5.3.1] in the first equality and the definition of @ in the second one. Thus, we
have w = — 12 by definition of the Cdlddraru class and the corresponding element in Axse is —+D. W

2.4 Elliptic K3 surfaces
Recall that an elliptic surface is a surface X, which admits a surjective morphism f : X — C where Cis
a smooth curve, such that the fibres of f are connected and the genus of the generic fibre is 1 [13, §10].
Our elliptic surfaces will be assumed to be relatively minimal, i.e. contain no (—1)-curves in the fibres
of f; this is automatic for K3 surfaces. We say that an elliptic surface is isotrivial if all smooth fibres are
isomorphic.

For an elliptic K3 surface we have the base C ~ P!. There are two natural concepts of an isomorphism
between elliptic K3 surfaces f : X — Pl and ¢ : Y — PL.

Definition 2.9. (1) The surfaces X, Y are isomorphic as elliptic surfaces if there exists an
isomorphism X =~ Y preserving the fibre classes, or equivalently there is a commutative
diagram

X ==Y

]
I
Pl = PL
B (2.9)
In this case, we say that the isomorphism X ~ Y twists the base by 8.
(2) The surfaces X and Y are isomorphic over P! if there is an isomorphism X ~ Y twisting the
base by the identity, or equivalently if there exists a commutative diagram

X— Y

N

Being isomorphic over P* is more restrictive than being isomorphic as elliptic surfaces. For example,
for every B € Aut(Pl), f : X — P! and Bf : X — P! are isomorphic as elliptic surfaces, but usually not
over PL.

Let S — P! be an elliptic K3 surface with a fixed section. We denote by Autp: (S) (resp. Aut(S, F)) the
group of automorphisms of S over P! (resp. automorphisms of S preserving the fibre class). We have
Autp (S) C Aut(S, F). We denote by Ap: (S) (resp. A(S, F)) the group of automorphisms of S over P! (resp.
preserving the fibre class) which also preserve the zero-section. Such automorphisms will be called
group automorphisms (see e.g. [5]).

Remark 2.10. The category of relatively minimal elliptic surfaces and their isomorphisms over P!
is equivalent to the category of genus one curves over C(t) and their isomorphisms. The functor
is given by taking the generic fibre. This functor is an equivalence, e.g., by [13, Theorem 7.3.3]
or [5, Theorem 3.3].
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3 Elliptic K3 Surfaces of Picard Rank 2
3.1 Néron-Severi lattices
We recall some basic facts about elliptic K3 surfaces of Picard rank 2 following [7,30]. Let f : X — P! be a

complex projective elliptic K3 surface. Let F € NS(X) be the class of a fibre. Recall that the multisection
index t of f is the minimal positive t > 0 such that there exists a divisor D € NS(S) with D - F = t.

Proposition 3.1. [/, Remark 4.2], [28, Lemma 3.3] Let X be an elliptic K3 surface of Picard rank 2.
Then there exists a polarisation H on X such that H, F form a basis of NS(X) and H-F =t. In
particular, the Néron-Severi lattice of X is given by a matrix of the form

2d t
(1) o

We write Aq; for the lattice of rank 2 with matrix (3.1) with respect to some basis H, F. It is easy to
see that the lattice A4 has exactly two isotropic primitive vectors up to sign: one is F, and the other is

' 1 _
F= m(ﬂ{ dF). (3.2)

The following lemma describes when the class F’ gives rise to another elliptic fibration on X.

Lemma 3.2. [/, §4.7] A K3 surface X with NS(X) ~ Aq4: has two elliptic fibrations if and only if
d# -1 (modt). If d = —1 (mod t), X admits one elliptic fibration. If X is T-general, t > 2 and
d # —1 (mod t), then the two fibrations are isomorphic (as elliptic surfaces) if and only ifd = 1
(mod t).

We denote by Ay the discriminant lattice of A4 and we have

|Ag:l = t2. (3.3)

It is easy to compute (see, e.g,, [30, Proof of Lemma 3.2]) that the dual lattice A}, is generated by

-2, 1

1
FF=—F+-H, H*=-F 3.4
t2 + t t (3.4)

so that the images of (3.4) generate Ag;. Furthermore for a,b € Z, we have

_ 2a(bt — ad)

q(aF* + bH") 7

(3.5)

Lemma 3.3. The discriminant group Ag; is isomorphic to Z/aZ & Z/bZ with a = gcd(2d,t) and
b =t?/a. In particular, Ag; is cyclic if and only if ged(2d, t) = 1.
Furthermore, if A is a lattice in the same genus as A4 then A >~ A, with ged(2e,t) = ged(2d, t).

Proof. The first claim follows by putting A4, into Smith normal form.

Let A be a lattice in the same genus as Ag4;. Following the proof of [8, Proposition 16], A contains a
primitive isotropic vector v. Hence, A >~ A, for some e, s € Z, s > 0. Comparing discriminant groups of
Agr and A.s we obtain t = s and ged(2d, t) = ged(2e, s). [ |

Example 3.4. Let d = 0, then by Lemma 3.3, Ao >~ Z/tZ & Z/tZ. Explicitly, generators (3.4) of the
dual lattice Af are F* = 1H and H* = iF and their images in Ao are the two order t generators,
which are isotropic elements in Ag.
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We introduce some properties of the discriminant groups which we will need to count Fourier-Mukai
partners.

Definition 3.5. We call an isotropic element of order t in A4 a Lagrangian element. We call a
cyclic isotropic subgroup H € Ay of order t a Lagrangian subgroup.

We denote by L(Aq;) (resp. L(Aqy)) the set of Lagrangian elements (resp. Lagrangian subgroups) of
A4 The main reason we are interested in studying Lagrangians of Ay, is their correspondence with
Fourier-Mukai partners, which we establish in Section 5.

Proposition 3.6. Let d, t be integers and let m = ged(d, t). Then, we have

IL(Ag)| = ¢(D) - 2°™,  |L(Agp)] = 2°™. (3.6)

Even though gecd(2d, t) is responsible for the structure of Ay, it is ged(d, t) that appears in Proposi-
tion 3.6. For instance, if d and t are coprime and t is even, the discriminant group Aq; is not cyclic, but
LA = 1.

Proof. Any cyclic subgroup H c Ag; of order t has ¢(t) generators. H is a Lagrangian subgroup if and only
if its generator is a Lagrangian element. Thus, the two formulas in (3.6) are equivalent, and it suffices
to prove the second one.

Lett =[], p% be the prime factorisation of t. For any prime p, we have an isomorphism of p-adic
lattices Aqt ® Zp = Agyn ® Zp (the isometry is given by H > H and F > oF, where « is the unit in Z,
given by ap® = t). By [22, Proposition 1.7.1], Ag4; is isometric to the orthogonal direct sum of Ag i OVEr
all primes p. Therefore, we have

IL(Ag0l = [ ]ILA )l
b

Therefore, we need to prove that | LAgp)l =1 if dis coprime top and | L(Agp)l =2 otherwise. The result
follows from Lemma 3.7 to Lemma 3.8 below. |

Lemma 3.7. The elements
1 1
v=-F Vv==F (3.7)
t t
are primitive isotropic vectors in A%, and their images U and v’ in Ag; generate Lagrangian

subgroups in Ay ;. We have (U) = (7) if and only if m := ged(d, t) = 1, in which case

vV =-d-U. (3.8)

Proof. The first partis a simple computation. The corresponding Lagrangian subgroups are equal if and
onlyif v = & (tH—dF) = LH— L Fis a multiple of v = 1F modulo Ag,. This is only the case when m =l

Lemma 3.8. Let t = p* with p a prime number and k > 1. Then, the subgroups (U), (V') are the only
Lagrangian subgroups of Ag;:.

Proof. Write d = ¢ - p" for some ¢ € Z coprime to p and some n > 0. Note that whenever n > k, we have
d =0 (mod p¥), so that Agp = Aoy and we can assume that d = 0. In this case we have V' = F* and it
is easy to see that (H*) and (F*) are the only Lagrangian subgroups of A, ;. (see Example 3.4). Therefore,
we may assume 0 <n < k.
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In terms of generators (3.4) the quadratic form is given by

2a
q(aF* + bH*) = o7 (bpk’“ - ae) . (3.9)

To find all Lagrangian subgroups, we start by describing the subgroup of elements in A, having order
dividing t = p*. We consider the vectors (3.7) which in our case are given by

F _ H (F

ﬁ:ﬁ' U :p” pk'

Furthermore, the orders of U and V' are equal to p*, and these elements satisfy a relation

p"(€U+v) = 0. (3.10)

There are two cases to consider now. If p > 2, then

F H

(Ad,t)pk—tors = <E) p7> = (Uv W>

The vectors U and v’ are isotropic and the discriminant form in terms of these elements equals

q(av + bv') = Qgib

at

Hence, an element av + bv’ is isotropic if and only p* divides ab. On the other hand, if av + bv’ has order
precisely p¥, then at least one of a or b is coprime to p. Hence, isotropic elements of Ay, of order p* are
given by

av 4+ bp™v,  ap™v 4 bv,

with both a and b coprime to p and j > 0. Using (3.10) we can rewrite these types of elements as

av, bv,

with a’ and b’ coprime to p. This finishes the proof in the p > 2 case.
If p=2,then

1 2k 1, on
2n+1H F= on+l and 2n+1H =2t on+l

are both integers. This means that Z,.%H is an element of A« by (2.1), and we have
F H _— F H
(Aot —rors = <§| W> 2 W)= <§, §>
However, a simple computation shows that all isotropic vectors are actually contained in (U, v’) and

the proof works in the same way as in the p > 2 case. |

Lemma 3.8 allows us to define a canonical involution on the set of Lagrangian subgroups of Az as
follows. For H C Ag4; a Lagrangian, we take its primary decomposition with respect to (2.2)

H=H, H,cA]
p
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with each H, a Lagrangian in Afft) . We set (,(Hp) to denote the other Lagrangian subgroup as determined

by Lemma 3.8; in the case p does not divide d, ,(Hy) = Hp. We set

(H) = P ypHy) € Agy. (3.11)
b

The geometric significance of this involution is explained in Theorem 5.10. For now we note that

L) = (V") (3.12)

for U, v’ defined in Lemma 3.7.

3.2 Automorphisms and Hodge isometries
Recall the Hodge isometries group Gx defined in Section 2.2.

Lemma 3.9. If X is a K3 surface of Picard rank 2, then Gy is a cyclic group of one of the following
orders:

2,4,6,8,10,12,22,44, 50, 66.

Proof. The fact that Gy is a finite cyclic group of even order 2g such that ¢(29)|rk T(X) is proved in [9,
Appendix B]. We solve the equation ¢(29) | 20. Possible primes that can appear in the prime factorization
of 2g are 2, 3, 5, 11. Maximal powers of these primes such that ¢(p¥) | 20 are 23, 3, 52, 11 and the result
follows by combining these or smaller prime powers. |

Proposition 3.10. Let X be an elliptic K3 surface of Picard rank 2. Then we have a canonical
isomorphism

Aut(X) =~ Ker (Gx — O(A1x)/0* (NS(X))), (3.13)

where OT(NS(X)) is the group of isometries of NS(X) that preserve the ample cone. In particular,
Aut(X) is a finite cyclic group and | Aut(X)| < 66. Moreover, for any elliptic fibration X — P?,
the isomorphism above induces an isomorphism

Aut(X,F) ~ Ker (Gx — O(Arx)), (3.14)

where Aut(X, F) is the group of automorphisms which fix the fibre class F of the elliptic fibration.

Proof. By the Torelli Theorem 2.3, there is a bijection between automorphisms of X and Hodge
isometries of H%(X, Z) which preserve the ample cone. Using [22, Corollary 1.5.2], we can write

Aut(X) ~ {(0,7) € Gx x OT(NS(X)) | o =7 € O(A1x)}- (3.15)
This isomorphism induces a surjective map (o,7) — o
Aut(X) — Ker (Gx — O(Arp)/0t (NS(X))) . (3.16)

The kernel of this map consists of the pairs (idrx), ) € Gx x Ot (NS(X)) such that 7 = ida,,, .

We claim that the homomorphism OT(NS(X)) — O(Arx)) is injective. Since NS(X) contains four
isotropic vectors £F, +F/, and —1 € O(NS(X)) never preserves the ample cone, we note that OT(NS(X))
must be either trivial, or isomorphic to Z/27Z with non-trivial element swapping F with F’. The latter case
is only possible when F’ represents a class of an elliptic fibration on X, which by Lemma 3.2 corresponds
tothe cased # —1 (mod t). Then 1Fand $F represent distinct classes in Ar, (see (3.8)) and the element
of O (NS(X)) swapping F and F’' has a non-trivial image in O(Arx)). Thus, since OT(NS(X)) - O(Arx))
is injective, the map (3.16) is a bijection. The claim about isomorphism type of | Aut(X)| follows from
Lemma 3.9. For the last statement, note that the only element of O*(NS(X)), which fixes F is the identity.
Therefore, (3.14) also follows from (3.15). |
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Example 3.11. Let X be an elliptic K3 surface with NS(X) >~ A4: and assume that ged(2d,t) = 1.In
this case Aq is cyclic of order t? by Lemma 3.3. Anisometry o € O(Aqy) is given by multiplication
by a unit @« € Z/t?Z with o> = 1 (mod t), so that the group O(A4;) is 2-torsion. Thus by
Proposition 3.10, Aut(X) C Gy is a cyclic subgroup of index one or two.

Lemma 3.12. Let S and S’ be K3 surfaces of Picard rank 2 which admit elliptic fibrations with
a section. Then every Hodge isometry between T(S) and T(S') lifts to a unique isomorphism
between S and S'. In particular, we have Aut(S) ~ Gs. Finally, S admits a unique elliptic fibration
with a unique section, hence every automorphism of S is a group automorphism.

Proof. By Proposition 3.1 we have NS(S) >~ Ag1, which is isomorphic to the hyperbolic lattice U, in
particular NS(S) is unimodular and Anss) = 0. If there is a Hodge isometry between T(S) and T(S),
extending it to a Hodge isometry between H2(S, Z) and H?(S', Z) preserving the ample cones, we obtain
S >~ &, by the Torelli Theorem, as in the proof of Proposition 3.10. Thus, we may assume that S = S’ in
which case the result follows Proposition 3.10.

By Lemma 3.2, S admits a unique elliptic fibration. Since NS(S) = U, there is a unique (—2)-curve
which intersects the fibres of the elliptic fibration with multiplicity 1, 1.e., a unique section. |

Example 3.13. Let S — P! be the elliptic K3 surface with a section given by the Weierstrass
equation y?> = x3 4 t'2 — t. This surface is isotrivial with j-invariant 0. It was studied in [14]
and [15]. We have rkNS(S) = 2, and S is T-special. In fact, the group Gs is cyclic of order 66,
and S is unique with this property. Furthermore, Aut(S) >~ Z/66Z by Lemma 3.12. The action of
the subgroup Z/6Z c Aut(S) commutes with projection to P! and rescales x and y coordinates,
and the subgroup Z/11Z c Aut(S) preserves the fibre class F € NS(S) and induces an order 11
automorphism t > ¢35t on PL.

Corollary 3.14. Let X be a T-general elliptic K3 surface of Picard rank 2 and multisection index
t > 2, then Aut(X, F) = {id}.

Proof. By Proposition 3.10, there is an isomorphism Aut(X, F) ~ Ker(Gx — O(Ar))). We have Gx = {£1}
by assumption. Since t > 2, and At has order t?, we see that —1 acts non-trivially on Arq,. Thus
Ker(Gx — O(Arx))) is trivial.

4 Jacobians
4.1 Ogg-Shafarevich Theory
Given an elliptic K3 surface f : X — P! and k € Z we can define an elliptic K3 surface J¥(f) : J}(X) — P!,
called the k-th Jacobian of X, as the moduli space of sheaves supported at the fibres of f and having
degree k [11, Chapter 11]. In particular, we have S := J°(X) which is an elliptic K3 surface with a
distinguished section.

In what follows, we sometimes write C, C’ for bases of elliptic fibrations when they are not canonically
isomorphic.

Lemma4.1. LetX — Cand X' — C'beelliptic K3 surfaces with zeroth Jacobians S — Cand S’ — C,
respectively. Then an isomorphism of elliptic surfaces y : X >~ X’ which twists the base by
B : C — C' (see Definition 2.9), induces a group isomorphism J°(y) : S ~ S’ twisting the base by 8.

Proof. When B is the identity, this is a standard result which follows immediately from Remark 2.10.
For the general case, see [5, §3, (3.3)]. |

The Ogg-Shafarevich theory relates elements in the Brauer group Br(S) of an elliptic K3 surface S
with a section, to S-torsors. For our purposes, the following definition of a torsor is convenient. See [6],
[11, Proposition 5.6] for the equivalence with the standard definition.

Definition 4.2. Letf : S — P! be an elliptic K3 surface with a section. An f-torsor is a pair (g : X —
P!,0) where g : X — P! is an elliptic K3 surface and ¢ : J°(X) — S is an isomorphism over P!
preserving the zero-sections, i.e., a group isomorphism over P?.

G20z 49q0)Q L} uo 3sanb Aq 6.£6€9.2/6€L0L/EL/720Z/o101B/UIWI/WOD dNO"DlWSPEdE//:Sd)Y WO} PapEOjUMO(



Elliptic K3 Surfaces and Jacobians | 10151

An isomorphism of f-torsors (g : X — P*,0) and (h: Y — P!, p) is an isomorphism y : X — Y over P!
such that

J0 (X 2 70

3°(~)
) (Y)
N
S
commutes.

Example 4.3. If X is an elliptic X3 surface, then X has a natural structure (X, idjx,) of a torsor over
J°(X). Since J°J* (X)) = J°(X) (this can be checked e.g. using Remark 2.10), all Jacobians J*(X) also
have a natural J°(X)-torsor structure.

The set of isomorphism classes of f-torsors is in bijection with the Tate-Shafarevich group of f : S —
P! [11, 11.5.5(ii)], and we denote it ITI(f : S — P') or just I1I(S) if it can not lead to confusion. If S — P is
an elliptic K3 surface with a section, then there is an isomorphism

Br(S) ~ I11(S), (4.1)

see [4], [11, Corollary 11.5.5]. We recall the construction of the Tate-Shafarevich group and of (4.1) in the
proof of Lemma 4.5. For an S-torsor (X, 6) we write ax € Br(S) for the class corresponding to [X] € ITI(S)
under (4.1). It would be more precise to include 6 in the notation, but we do not do that, assuming that
the torsor structure on X is fixed. We also write ax : T(X) — Q/Z for the corresponding element with
the respect to (2.6).

Lemma 4.4. Let (X, 0) be an S-torsor. Let t be the order of ay € Br(S).

(i) X has a section if and only if ax = 0, in which case X is isomorphic to S as an S-torsor.
(ii) For all k € Z we have apy, =k - ax.

(iii) The multisection index of X equals t.

(iv) We have a Hodge isometry T(X) ~ Ker(ax : T(S) — Z/tZ).

Proof. (i) It follows by construction that all S-torsor structures on S are isomorphic, and correspond
to 0 € Br(S) under (4.1). Thus, if ax = 0, then X is isomorphic as S-torsor to S, in particular X and S
are isomorphic as elliptic surfaces, hence X has a section. Conversely, if X has a section, then we have
S ~ J°X) ~ X hence X is isomorphic as a torsor to some torsor structure on S, so that ax = 0 by the
argument above.

Part (ii) is [4, Theorem 4.5.2] and part (iv) is [4, Theorem 5.4.3].

(iii) For a K3 surface X with a chosen elliptic fibration let us write ind(X) for the multisection index
of the fibration. Since J"4® (X) admits a section, we have J"4® (X) ~ S as torsors by (i). It follows using
(i) that 0 = Qgindon 3y = ind(X)ax hence ord(ax) divides ind(X). To prove their equality, we use [10, Ch. 4,
(4.5), (4.6)] to deduce thatforallk € Z

indg gy — 400
ind(*(x)) = ged(ind(X), k)’

In particular,

ind(X) _ ind(X)
gcd(ind(X), ord(ax)) ~ ord(ay)

1 = ind(°rd@) (X)) =

so that ind(X) = ord(ax), which proves part (ii). [ |

Let S — P! be an elliptic K3 surface with a section. Recall that we denote by Ap (S) (resp. A(P!, F)) the
group of group automorphisms of S over P! (resp. group automorphisms of S preserving the fibre class
F € NS(S)). We have Ap:(S) C A(S,F), and we are interested in the orbits of these two groups acting on
the Brauer group Br(S). We do this more generally, by explaining functoriality of III(S) and Br(S) with
respect to S.
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Letf:S— Candf : S — C be elliptic K3 surfaces with fixed sections. Assume that there exists a
group isomorphism g : S ~ S twisting the base by g : C ~ C'. We define a map B, : III(f : S - C) —
I(f’ : 8 — C') as follows:

Bi(g:X—C,0)=(Bog:X—C,Bob).
Note that the element on the right-hand side belongs to III(f") by Lemma 4.1.
Furthermore, in the same setting, we define 8, : Hom(T(S), Q/Z) — Hom(T(S'), Q/Z) by B.(a) = a o p*,

where g* : T(S) — T(S) is the Hodge isometry induced by g. It is important for applications that these
two pushforwards are compatible with (4.1):

Lemma 4.5. Letf : S - Cand f' : § — C be elliptic K3 surfaces with fixed sections, and let
B :S~S be a group isomorphism twisting the base by g. Then there is a commutative square
of isomorphisms

(f:S5=0) — (.50

Hom(T'(S),Q/Z) LI Hom(T'(5),Q/Z), 4.2)

where the vertical arrows are induced by (2.6) and (4.1).

Proof. The vertical arrows in (4.2) are the compositions of the vertical maps in the following diagram,
with cohomology groups in étale and analytic topology, respectively:

(f:85=0) — L (.8 =0

HY(C, %) — 2 1y, &)

HQ(S, Gm) L} HZ(S,7G7n)

(3)

H2 (57 Og)tors E— Hgn(s/,- Og/)tors

an

(4) (4)
Hom(T(S), Q/Z) — Hom(T(5"), Q/Z), 43)

c.f. [11, Corollary 11.5.6]. Here X, and A} are the sheaves of étale local sections of f and f’, respectively.
The horizontal arrows (1), (2), (3) are induced by B, X ~ X} and B.Gm =~ Gp. Arrows (4) are induced
by the exponential sequence. One can check commutativity for each square in (4.3), and this gives the
desired result. |

Proposition 4.6. Let f : S — C, f' : S — C’ be elliptic K3 surfaces with sections. Let (g : X — C,0),
(g : X' — C,0") be torsors for f and f', respectively. Then there is a group isomorphism g : S~ &/,
twisting the base by g : C =~ C’ and such that B.(g,0) =~ (¢',0) if and only if there is an elliptic
surface isomorphism X ~ X’ twisting the base by 8.

Proof. Suppose there is a group isomorphism g : S =~ S twisting the base by g and such that
B«(9,0) = (g',0"). Then it follows from the definition of g, that there is an elliptic surface isomorphism
X ~ X’ twisting the base by g. Conversely, suppose there is an elliptic surface isomorphism y : X >~ X’
twisting the base by 8. Consider the isomorphism 8 :=6'0J%(y) 0671 : S — S'. We can compute 8,(g,6),
decomposing g, as a composition of isomorphisms

1m1(s) % o) L% mgeeey % i)

to see that .(g,6) = (¢, 6"). |
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Remark 4.7. The proof of Proposition 4.6 in fact shows that given (g,0), (¢, 0’) as in the statement,
the set of isomorphisms between elliptic fibrations g and ¢’ twisting the base by g (and ignoring
the choice of 6, ¢') is in natural bijection with the set of group isomorphisms g between S and
S’ twisting the base by g together with a chosen isomorphism y between g.(g,6) and (¢, 8").

It will be more convenient for us to work with the Brauer group instead of the Tate-Shafarevich group:

Proposition 4.8. Using the same notation as in Proposition 4.6, there is a group isomorphism
B : S~ &, twisting the base by g : C ~ C’ and such that B.ax = ay if and only if there is an
elliptic surface isomorphism X ~ X’ twisting the base by B.

Proof. This follows immediately from Proposition 4.6 and Lemma 4.5. |

Corollary 4.9. Letg : X — C, g : X’ — C be elliptic K3 surfaces which are isomorphic via an
isomorphism which twists the base by g : C — C'. Then for all k € Z, there exists an elliptic
surface isomorphism J¥(X) ~ J*(X’) twisting the base by 8.

Proof. Let S — C and §' — C’ be the zeroth Jacobians of X — C and X’ — C/, respectively. By Proposition
4.8, there is a group isomorphism g : S — S’ such that B.ax = ax. This means that g.(k - ax) = k- B.ax =
k - ax for all k e Z. Since the Brauer classes of J¥(X) — C and J*(X') — C’" are k- ax and k - e, the result
follows from Proposition 4.8. |

Corollary 4.10. Let S — C be an elliptic K3 surface with a section. The set of A(S, F)-orbits (resp.
Ac(S)-orbits) of Br(S) parametrizes S-torsors up to isomorphism as elliptic surfaces (resp. up to
isomorphism over C).

Proof. We put S = S in Proposition 4.8, consider S-torsors (X, ) and (X', 0’) and write ax, ax € Br(S) for
the corresponding Brauer classes. By Proposition 4.8 there is an isomorphism between elliptic surfaces
X, X’ twisting the base (resp. over the base) if and only if there exists 8 € A(S,F) (resp. B € Ac(S)) such
that B.(ax) = ax . Thus, the resulting sets of orbits are as stated in the Corollary. [ ]

Example 4.11. The automorphism g = —1 € Ac(S) acts on Br(S) as multiplication by —1. This
way we always have (at least) two torsor structures on every elliptic K3 surface X. If X has no
sections, these two torsor structures are isomorphic if and only if ex € Br(X) has order two,
which by Lemma 4.4 is equivalent to X having multisection index two.

We write EIIK3 for the set of isomorphism classes of elliptic K3 surfaces (isomorphisms are allowed
to twist the base). We can express Ogg—Shafarevich theory as a natural bijection between EIIK3 and the
set of isomorphism classes of twisted Jacobian K3 surfaces.

Definition 4.12. A twisted Jacobian K3 surface is a triple (S, f, «) where S is a K3 surface with elliptic
fibration f together with a fixed section, and « is a Brauer class on S.
An isomorphism of two twisted Jacobian K3 surfaces (S,f : S — C,a) and (S, f' : S — C',&') is a group
isomorphism 8 : S ~ S’ such that B.a = o’. We write BrK3for the set of isomorphism classes of twisted
Jacobian K3 surfaces. The above results show the following.

Theorem 4.13. The map EIIK33 given by (X, 9) — (J°(X),J°(g), ax) is a bijection.

Proof. From Proposition 4.8, it follows that the map EIIK3BrK3 is well-defined and injective. For
surjectivity, let (S, f, @) € BrK3 Using the isomorphism (4.1), we obtain an S-torsor (g : X — P!, 6 : J°(X) ~
S) e III(f) corresponding to «. In particular, the map EIIK3BrK3 assigns (X,g) — (°(X),J°(9),6; ') ~
S.f, ). |
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4.2 Isomorphisms of Jacobians

We work with an elliptic K3 surface X; recall from Example 4.3 that X and all its Jacobians J¥(X) have a
natural structure of a torsor over J°(X).

Lemma 4.14. [4, Theorem 4.5.2] Let X be an elliptic K3 surface, and let k,¢ € Z. Then we have
JRJ4 (X)) ~ J*(X) as torsors over J°(X).

Proof. By Lemma 4.4, in the Tate-Shafarevich group of J°(X), we have [J*¢*(X)] = k- [J¢(X)] = ke - [X] =
[J¥(X)]. In particular, we have J*(J¢(X)) ~ J¥(X) as torsors over J°(X). [ ]

Let t be the multisection index of X. We are especially interested in those Jacobians for which
gcd(k,t) = 1. We call these coprime Jacobians of X. By Theorem 5.1 below, every coprime Jacobian is a
Fourier-Mukai partner of X. For all k € Z, we have well-known isomorphisms over P*:

T 2 TR0, TR0 2 TR 0. (4.4)

Here the first isomorphism follows by adding the multisection on the generic fibre, and then spreading
out as in Remark 2.10, and the second isomorphism can be obtained, by the same token, from the
dualization of line bundles, or alternatively deduced from Proposition 4.8 with g acting by —1 on the
fibres (see Example 4.11).

We see that there are at most ¢(t)/2 isomorphism classes of coprime Jacobians of X. The goal of the
next result is to be able to compute this number precisely, see (4.7) for what this count will look like.

Proposition 4.15. Let X — P! be an elliptic K3 surface of multisection index t > 2. Then J*(X) ~
JE(X) as J°(X)-torsors if and only if k = ¢ (mod t). Furthermore there exist subgroups Bx C By C
(Z/tZ)*, such that for k, ¢ € (Z/tZ)* we have

J*X) ~ J¢(X)over P! < ke~ e By,

and

JR(X) ~ J(X) as elliptic surfaces <= k¢! € By.

Furthermore, By is a cyclic group of order 2, 4 or 6, containing {1} and the case Bx >~ Z/4Z (resp.
the case Bx ~ Z/6Z) can occur only if X is an isotrivial elliptic fibration with j-invariantj = 1728
(resp.j = 0).

Finally, if X is T-general, then By = By = {+1}, that is in this case J*(X) and J*(X) are isomorphic
over P! if and only if they are isomorphic as elliptic surfaces if and only if k = +¢ (mod t).

In the statement, we excluded the trivial cases t = 1, 2 because such elliptic K3 surfaces do not admit
non-trivial coprime Jacobians.

Before we give the proof of the proposition, we need to set up some notation. Let S be an elliptic
K3 with a section. For any subgroup H C A(S,F) and any class o € Br(S) let H* be the subgroup of H
consisting of elements B € H with the property B.({¢)) C («). Considering the action of H* on (&) = Z/tZ
we get a natural homomorphism H* — (Z/tZ)* and we define

H .= ImH"* - (Z/tZ)").

Proof of Proposition 4.15. Write S = J°(X). We consider the following subgroups of (Z/tZ)*:

By = Ap:(9) (4.5)

Ex:

Il

>
—
n

!
-

" (4.6)

We have By C By, and —1 € Ap(S) induces —1 € (Z/tZ)*, in particular {+1} C Bx. Note that we are
assuming t > 2, hence —1 # 1 (mod t).
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By Corollary 4.9, J*(X) and J(X) are isomorphic over P! if and only if J* ¢*X)) and J* (*(X)) are
isomorphic over P'. Here ¢! is any integer such that ¢¢=! = 1 (mod t). By Lemma 4.14, we have
JEOREO) ~ KT and JCT LX) ~ T4 (X) ~ JY(X) over P!, where the last isomorphism follows from
(4.4). By Corollary 4.10, this occurs if and only if k¢~! € By. By the same argument, J¥(X) and J¢(X) are
isomorphic as elliptic surfaces if and only if J“f1 (X) and X are isomorphic as elliptic surfaces if and
only if k¢~1 € By. The group By is a quotient of a subgroup of A(S, F). The latter group, by Remark 2.10,
is isomorphic to the group of elliptic curve automorphisms of the generic fibre of S. Thus, A(S,F) (and
hence B) is isomorphic to Z/2Z, unless the j-invariant equals 1728 or 0 in which case A(S, F) (and hence
Bx) can be Z/47Z or Z/6Z respectively.

[t remains to prove that By = By = (£1}if Xis T-general. By Proposition 4.8, an isomorphism X ~ T8 (X)
as elliptic surfaces would induce a group automorphism 8 of S = J°(X) satisfying B.ax = k - ax. This
means that T(S) admits a Hodge isometry o, which maps T(X) = Ker(ax) to itself. By T-generality, we get
o = +id so that g, = +1 and hence k = +1 (mod t). |

Corollary 4.16. If AJ°(X),F) = Ap (J°(X)) then isomorphism classes of coprime Jacobians over P!
are the same as isomorphism classes of coprime Jacobians as elliptic surfaces.

Proof. This follows from Proposition 4.15 as in this case By = Bx by construction. |

Corollary 4.16 applies when singular fibres of X — P! lie over a non-symmetric set of points Z c P*,
that is when g € Aut(P') satisfies 8(Z) = Z only for g = id. On the other hand, if Z is symmetric, and this
symmetry can be lifted to an automorphism of J°(X), we typically have By C Bx. For an explicit such
surface, see Example 4.19.

4.3 j-special isotrivial elliptic K3 surfaces

By a j-special isotrivial elliptic K3 surface we mean an elliptic K3 surface with smooth fibres all having
j-invariant 0 or 1728.

Remark 4.17. There exist Picard rank 2 isotrivial K3 surfaces with j = 0 (see Example 3.13),
however for j = 1728 the minimal rank is 10 for the following reason. Let X be an isotrivial
elliptic K3 surface X with j = 1728. The zeroth Jacobian S of X will have a Weierstrass equation
y? = x* + F(t)x with F(t) a degree 8 polynomial in t. We have p(S) = p(X). By semicontinuity of
the Picard rank, we may assume that F(t) has distinct roots. In this case S has eight singular
fibres, and the Weierstrass equation has ordinary double points at the singularities of the fibre,
so S is the result of blowing up the Weilerstrass model at these 8 points. Thus, in addition to
the fibre class and the section class, S has 8 reducible fibres, so p(S) > 10. Isotrivial K3 surfaces
with j # 0, 1728 are all Kummer and hence have Picard rank at least 17 [27, Corollary 2].

We do not claim a direct relationship between the concepts of j-special and T-special, however both
of these concepts require extra automorphisms.

Let X — P! be an elliptic K3 surface of multisection index t > 2, and let S — P! be its zeroth Jacobian.
Let H = Ap:(S); this group is Z/2Z unless S is j-special, in which case it can be equal to Z/4Z (resp. Z/6Z)
when j = 1728 (resp.j = 0). By Proposition 4.15 the number of coprime Jacobians of X up to isomorphism
over P! equals ¢(t)/|Bx|, which is

#(t)/2 if X — P! is not isotrivial with j=0orj = 1728;
¢(t)/4 for some isotrivial X with j = 1728, and H = Z/4Z; 4.7)
¢(t)/6 for some isotrivial X with j=0and H = Z/6Z.

We now show that the last two cases are indeed possible. For simplicity we assume thatt = p, an odd
prime.

Proposition 4.18. Let S — P! be an elliptic K3 surface with a section. Assume S is isotrivial with
j = 1728 (resp.j = 0) and H = Z/4Z (resp. H = Z/6Z). Let p > 2 be a prime. Then S admits
a torsor X — P! of multisection index p with exactly 22 (resp. £2) coprime Jacobians up to

isomorphism over P! if and only if p = 1 (mod 4) (resp. p =1 (mod 3)).
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Proof. Existence of such a torsor X implies the required numerical condition on p since 4 (resp. 6) divides
p@)=p-1

Conversely, assume that p satisfies the numerical condition. For every non-trivial element g € H, the
fixed subspace (T(S) ® C)# is zero; this is because S/(8) admits a birational P!-fibration over P!, hence
must be a rational surface. Thus T(S) ® C, considered as a representation of a cyclic group H is a direct
sum of one-dimensional representations corresponding to primitive roots of unity of order |HJ.

This allows to describe T(S)®Q as an H-representation, because irreducible Q-representations of H are

direct sums of Galois conjugate one-dimensional representations. Thus in both cases T(S)®Q = V&B(#),
where V is the 2-dimensional representation Q[i] = Q[x]/(x* 4+ 1) and Q[w] = Q[X]/(X* +x + 1) respectively.
At this point it follows that under our assumptions the Picard number p = p(X) is even.

On the other hand, decomposition of the H-representation T(S) ® Q is induced from decomposition

: . . " " o(%2) .
of T(S) ® Z[1/|H]|], hence since |H| is coprime to p, it induces a decomposition T(X) ® F, ~ V, with
Vp defined by Fp[x]/(x? 4+ 1) and Fp[x]/(x? + x + 1) respectively. Under the numerical condition on p, the
corresponding polynomial has roots and the representation V) is a direct sum of two one-dimensional
representations V, = x @ x'.

It follows that the dual representation Br(S),_trs (2.7) splits into 1-dimensional representations x, x’
as well. Take a generator a € Br(S),_trs for one of these representations, and let X be the corresponding
torsor. The explicit description (4.5) shows that By = H. |

For explicit examples of surfaces satisfying conditions of Proposition 4.18, see Example 3.13 and
Remark 4.17. Finally, we illustrate the difference between isomorphism over P! and isomorphism as
elliptic surfaces.

Example 4.19. Consider the j = 0 isotrivial elliptic K3 surface S — P! of Example 3.13, and let
B € A(S,F) be an automorphism of order 11. Note that 8 ¢ Ap:(S) so we may have By C By
in Proposition 4.15. By Lemma 3.12, g acts nontrivially on T(S). As in the proof of Proposition
4.18, we deduce that for every prime p = 1 (mod 11), the number of coprime Jacobians up to
isomorphism as elliptic surfaces for an eigenvector torsor will be 11 times less than when they

are considered up to isomorphism over P*.

5 Derived Equivalent K3 Surfaces and Jacobians

The following well-known result goes back to Mukai, see also [4, Remark 5.4.6]. We provide the proof for
completeness as it follows easily from what we have explained so far.

Theorem 5.1. Let S — P! be an elliptic K3 surface with a section, and let X — P! be a torsor over
S — P!. Let t € Z be the multisection index of X — P!. Then, J¥(X) is a Fourier-Mukai partner of
X if and only if ged(k, t) = 1.

Proof. Let ay € Br(S) be the Brauer class of X — P'. From Lemma 4.4 it is easy to deduce that
det(T(X)) = t* - det(T(S)) (5.1)

(cf [12, Remark 3.1]).
Recall that t = ord(ex) by Lemma 4.4. We know TJ*(X)) is Hodge isometric to the kernel of k - ax :
T(S) — Z/tZ, again by Lemma 4.4. If ged(k, t) = 1, then ax and kax have the same kernel so that

TO* (X)) ~ ker(k - ax) = ker(ax) ~ T(X),

50 JR(X) is a Fourier-Mukai partner of X by the Derived Torelli Theorem.
Let us prove the converse implication. From (5.1), we get that for any k € Z, we have

det(T(X)) ( ord(e) )2 2

= = gcd(k, ord .

det(TJ*(X))) ord(ka) ged(k, ord(@)

Thus if X and J¥(X) are derived equivalent, then the left-hand side equals one by the Derived Torelli
Theorem, hence k is coprime to t = ord(e). |
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5.1 Derived elliptic structures
In this subsection, we set up the theory of derived elliptic structures and Hodge elliptic structures.

Definition 5.2. Let X be a K3 surface. A derived elliptic structure on X is a pair (Y, ¢), where Yis a K3
surface such that Y is derived equivalent to X and ¢ : Y — P! is an elliptic fibration.

We say that two derived elliptic structures are isomorphic if they are isomorphic as elliptic surfaces.
We denote by DE(X) (resp. DE((X)) the set of isomorphism classes of derived elliptic structures on X
(resp. derived elliptic structures on X of multisection index t).

Lemma 5.3. Let X be a K3 surface. Then, we have:

(i) DE(X) is a finite set;

(ii) DE(X) is nonempty if and only if X is elliptic;

(ili) DE¢(X) can be nonempty only for t such that t? divides the order of the discriminant group Arx;
(iv) If X is elliptic with p(X) = 2 and multisection index t, then every elliptic structure on every Fourier-
Mukai partner of X also has multisection index t, that is DE(X) = DE(X).

Proof. (i) The set of isomorphism classes of Fourier-Mukai partners of X is finite [3, Proposition 5.3], [9],
and each of them has only finitely many elliptic structures up to isomorphism [31]. It follows that DE(X)
is a finite set.

(ii) If X elliptic, then X with its elliptic structure is an element of DE(X), hence it is nonempty.
Conversely, if DE(X) is nonempty, then X admits a Fourier-Mukai partner which is an elliptic K3 surface.
Then by the Derived Torelli Theorem NS(X) and NS(Y) are in the same genus, and since Y is elliptic, the
intersection form NS(Y) represents zero, hence a standard lattice theoretic argument shows that NS(X)
also represents zero, and X is elliptic.

(iii) If (Y, ¢) is a derived elliptic structure on X of multisection index t, then we have

2
[Ateo | = |Are| = t°- |ATUO(Y))‘

where the first equality follows from the Derived Torelli Theorem and the second one can be deduced
from (5.1) (cf [12, Remark 3.1]). In particular, DE¢(X) is empty whenever t? does not divide the order of

AT(X)»
(iv) Every Fourier-Mukai partner Y of X also has Picard number p(Y) = 2. By Proposition 3.1, the
multisection index of every elliptic fibration on Y equals the square root of |Ary,| = [Arg)| = t2. |

We can take coprime Jacobians of a derived elliptic structure (Y, ¢), which we denote by J*(Y, ¢). By
Lemma 4.14 and Theorem 5.1 this defines a group action of (Z/tZ)* on DE«(X). The set of (Z/tZ)*-orbits
on DE((X) parametrizes derived elliptic structures up to taking coprime Jacobians, and it is sometimes
a more natural set to work with.

We now explain Hodge-theoretic analogues of derived elliptic structures. The following definition is
motivated by the Derived Torelli Theorem.

Definition 5.4. Let X be a K3 surface. A Hodge elliptic structure on X is a twisted Jacobian K3 surface
(S,f,a) (see Definition 4.12) such that there exists a Hodge isometry Ker(a) >~ T(X).

The index of a Hodge elliptic structure is defined to be the order of its Brauer class «. An isomorphism
of Hodge elliptic structures (S, f, ), (S, f’,&’) is an isomorphism y : S — S of elliptic surfaces such that
v:(a) = o'. We denote by HE(X) the set of isomorphism classes of Hodge elliptic structures on X. We
write HE((X) for the set of isomorphism classes of Hodge elliptic structures of index t. The operation
kx (S, f,a) = (S,f, ka) defines a group action of (Z/tZ)* on HE(X).

Example 5.5. Let X be an elliptic K3 surface of Picard rank 2 and multisection index t. Let (S, f, @)
be a Hodge elliptic structure on X. Since the discriminant of X equals t?, from the sequence

0—TX)—> T(S) - Z/tZ — O,
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we deduce that T(S) is unimodular. Thus S is an elliptic K3 surface of Picard rank two, and it has
a unique elliptic fibration, which has a unique section (see Lemma 3.2). We see that in the
Picard rank two case f can be excluded from the data of a Hodge elliptic structure and we have
a bijection

HE:(X) = {6, 0)}/ =, (5.2)

with isomorphisms understood as isomorphisms between K3 surfaces respecting the Brauer
classes.

Proposition 5.6. Let X be a K3 surface and let t be a positive integer. Then the bijection EIIK3BrK3
of Theorem 4.13 induces a (Z/tZ)*-equivariant bijection DE{(X) ~ HE(X).

Proof. First of all note that by definition DE;(X) is a subset of EIIK3 consisting of isomorphism classes
(Y, ¢) with Y derived equivalent to X and ¢ having a multisection index t. Similarly, HE;(X) is a subset of
BrK3 consisting of (S, f, «) such that ord(e) = t and Ker(e) ~ T(X). If (Y, ¢) € ElIK3 then by Lemma 4.4,
(Y, ¢) belongs to DE((X) if and only if the corresponding triple J°(Y),1°(¢), ay) € BrK3 belongs to HE((X).

The (Z/tZ)*-equivariance of the map is a direct consequence of the fact that key = ajy,, which holds
again by Lemma 4.4. |

Definition 5.7. Let T be a lattice. For t € Z, we write I;(Ar) for the set of cyclic, isotropic subgroups
of order t in Ar, and we write T(Ar) for the set of isotropic vectors of order tin Ar.

For a K3 surface X, there is a natural action of Gy, on It (Arx)) andT; (At)). Let (S, f,a) be a Hodge elliptic
structure on X of index t. There is a unique isomorphism r, : Z/tZ ~ T(S)/ Ker(a) such that the diagram

7(5)

@

LIl ———— T(S)/ Ker(a) (5.3)

commutes. In particular, the Brauer class « singles out a generator r,(1) of T(S)/ Ker(x). Fix any Hodge
isometry T(X) >~ Ker(e). The natural inclusion T(S)/T(X) C At allows us to view r,(1) as an element
of Ar), which we denote by w,. We denote the subgroup of Arx, generated by w, by H,. Note that w,,
and hence H,, is only well-defined up to the Gx action on Ary), since its construction depends on the
original choice of Hodge isometry T(X) >~ Ker(«). On the other hand isomorphic Hodge elliptic structures
on X give rise to isotropic vectors in the same Gx-orbit by Lemma 2.1. We define the map

W HE(X) — Ti(A1x)/Gx, WS, f, @) = W (5.4)

The operation k * w = k~*w, where k=1 is an inverse to k modulo t, defines a group action of (Z/tZ)*
on It(AT)/GT

Lemma 5.8. The map (5.4) is (Z/tZ)*-equivariant.

Proof. Recall from Lemma 4.4(ii) that Ay = k- ay in Br(°(Y)) for all k € Z. It follows from (5.3) that we
have r, = k~'1,. Thus from the definitions, we get

Wiy = r}ea(i) = k_lra(T) = k_lwa = k* W,

which means that the map w is equivariant. |

Proposition 5.6 and Lemma 5.8 give rise to the following commutative diagram with the vertical
arrows being quotients by the corresponding (Z/tZ)*-actions:

DE/(X) —— 3 HE(X) —“—— T,(Ar(x)) /Gx

| | |

DE(X)/(Z/tZ)* —— HE(X)/(Z/tZ)" —— Li(Ar(x))/Gx (5.5)
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For (Y, ¢) a derived elliptic structure of X, we consider w, := w,,, the image of (Y, ¢) under the
composition of maps in the top row of (5.5). In particular, if f : X — P? is an elliptic fibration with fibre
class F € NS(X), then by construction, wy is the Cédldéraru class of the moduli space J°(X) of sheaves
with Mukai vector (0,F,0) on X, thus by Lemma 2.8 wy corresponds to

1
7Fe Ii(Anse)/Gx (5.6)

(we can get rid of the minus sign in the formula at this point, as —1 € Gx).

5.2 Fourier-Mukai partners in rank 2

In this subsection, we work with an elliptic K3 surface of Picard rank 2, so that by Proposition 3.1 we have
NS(X) >~ Ag4; given by (3.1). The following result is one of the reasons why it is natural to concentrate on
Picard rank two elliptic surfaces.

Lemma 5.9. For an elliptic K3 surface X with NS(X) >~ Ag;, all derived elliptic structures and all
Hodge elliptic structures on X have the same index t.

Proof. This follows from Lemma 5.3 and Proposition 5.6. |

For X asin Lemma 5.9, we have DE(X) = DE(X). In particular, there is an action of (Z/tZ)* on DE(X) by
taking coprime Jacobians. Recall that for a K3 surface X with NS(X) ~ Ag4¢, we have Aty =~ Ansx(—1) >~
Ag4t(—=1), and it has order t? by Lemma 3.3. Thus isotropic elements (resp. cyclic isotropic subgroups) of
order t are precisely Lagrangian elements (resp. Lagrangian subgroups), see Definition 3.5:

Ii(A10) = L(A1),  Ti(Areo) = L(Areo),
The following result is related to [19, Proposition 3.3].

Theorem 5.10. Let X be an elliptic K3 surface of Picard rank 2 and multisection index t. Then the
map w (5.4) is a bijection. Furthermore, we have a bijection

DEX)/(Z/tZ)* ~ L(A1ex))/Gx. (5.7)

Action (3.11) induces a Z/2Z-action on L(Ar))/Gx which under bijection (5.7) corresponds to the
action on DE(X) swapping the two elliptic fibrations on Fourier-Mukai partners of X.

Proof. We first show that w is bijective. We start with bijection (5.2). For the injectivity of w, take (S, @)
and (8, ') with T(X) ~ Ker(a) >~ Ker(a'). Assume that there exists a Hodge isometry o € Gx with the
property o(wy) = W, . Then Lemma 2.1 implies that o can be extended to a Hodge isometry T(S) — T(S).
Since S and S’ have Picard rank 2, Lemma 3.12 implies that this Hodge isometry is induced by a group
isomorphism B : S~ S'. From 5 (w,) = Wy, it follows that (S, «) and (S, «’) are isomorphic.

For the surjectivity of w, let u € Arx) be an isotropic vector of order t and H = (u). Via Lemma 2.1, H
corresponds to an overlattice i : T(X) < T which inherits a Hodge structure from T(X),i.e.,i: T(X) = T
is a Hodge overlattice. Note that T is unimodular, since the index of T(X) C T is t and Ay, has order
t?. Hence T @ U is an even, unimodular lattice of rank 22 and signature (3,19). This means that it is
isomorphic to the K3-lattice Ags. By the surjectivity of the period map (Theorem 2.2), we obtain a K3
surface S with T(S) ~ T and NS(S) >~ U. Therefore the overlattice i : T(X) — T(S) is a Hodge overlattice
with T(S)/T(X) = H. We define the Brauer class « : T(S) — H ~ Z/tZ where the second map is given by
u > 1. Thus, we have constructed a pair (S, @) with Caldararu class u and Ker(a) ~ T(X).

Since w is bijective, the diagram (5.5) immediately implies (5.7). The action (3.11) induces the action
on L(Arx))/Gx because « commutes with Gx. Indeed this can be checked on each primary part (2.2),
where there are at most two Lagrangian subgroups (see Lemma 3.8), hence the action of Gy factors
through the action generated by 1,. To show that « corresponds to swapping the elliptic fibrations on
Fourier-Mukai partners Y, we can use the identification L(Arx))/Gx = L(A1v))/Gy, and assume Y = X.
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The result follows from (3.12) because Lagrangian subgroups generated by U and v’ correspond to the
two elliptic fibrations on X via (5.7) by (5.6). |

Recall from Lemma 3.2 that a K3 surface X with NS(X) >~ A4 admits two elliptic fibrations, except
when d = —1 (mod t), in which case X admits only one elliptic fibration. Using Theorem 5.10 we can
easily compare the coprime Jacobians of these two fibrations.

Example 5.11. Let X be an elliptic K3 surface of Picard rank two with NS(X) ~ Ag4; such that
ged(d,t) =1andd # —1 (mod t). Let (X, f) and (X, g) be two elliptic fibrations on X (see Lemma
3.2), and let wy and wy be their Caldararu classes, which are Lagrangian elements in Ag;. By
Lemma 3.8, Ag; admits a unique Lagrangian subgroup, thus we have (wy) = (w,). By Theorem
5.10 this implies that f and g are coprime Jacobians of each other. We can make this more
precise as follows. Recall that by (5.6), wy and wy correspond to classes U, v’ (3.7) respectively.
Using (3.8), we compute

Wy =V = —dv = —dwy = —d "' = wy.

Here d~' is the inverse to d modulo t. Thus, we have an isomorphism of elliptic surfaces

X, 9) =T X =] (X f)

and (X, f) ~ J4(X, 9).

Corollary 5.12. Let X be an elliptic K3 surface of Picard rank two. The set of Fourier-Mukai partners
of X considered up to isomorphism as surfaces, and up to coprime Jacobians (on every derived
elliptic structure of X) is in natural bijection with the double quotient

(W\L(ATeo)/Gx.

Proof. This is the consequence of the action of « on L(Arx))/Gx by swapping the two elliptic fibrations
as explained in Theorem 5.10. |

Corollary 5.13. Let X be an elliptic K3 surface of Picard rank 2. Let d, t € Z such that NS(X) >~ Agy,
and write m = ged(d, t).

(i) If m = 1, then DE(X) is a single (Z/tZ)*-orbit. Explicitly, every Fourier-Mukai partner of X will be
found among the coprime Jacobians of a fixed elliptic fibration (X, f).

(ii) If m = p*, for a prime p and k > 1, then DE(X) consists of at most two (Z/tZ)*-orbits, permuted
by the involution «. Explicitly every Fourier-Mukai partner of X will be found among the coprime
Jacobians of one of the two elliptic fibrations on X.

(iif) If m has at least seven distinct prime factors then DE(X) has at least three (Z/tZ)*-orbits. In
particular, there exist Fourier-Mukai partners of X, which are not isomorphic, as surfaces, to any
of the Jacobians of elliptic structures on X.

Proof. In each case we use Theorem 5.10 combined with the count of Lagrangians given in Proposition
3.6.

(i) Fix an elliptic fibration f : X — P! and let Hf € Ary be the corresponding Lagrangian
subgroup. Since m = 1, Proposition 3.6 implies that Hr C Arx, is the only Lagrangian subgroup.
Therefore all derived elliptic structures are of the form X)) — Pl fork e Z coprime to t by
Theorem 5.10.

(ii) By Proposition 3.6, Aty contains precisely two Lagrangian subgroups. The condition m = p*
implies in particular that d # —1 (mod t), hence the surface X admits two elliptic fibrations f : X — P?
and g : X — P! By Lemma 3.7, arguing like in Example 5.11, we see that the subgroups of At induced
by the two elliptic fibrations are not equal. Hence Hy and H, are the only two Lagrangians of Ar,, 0
every derived elliptic structure on X is either a coprime Jacobian of f or of g by Theorem 5.10.
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(iif) Assume w(m) > 7. Since —1 € Gy acts trivially on L(Arx)) and |Gx| < 66, by Proposition 3.6, the
set L(Arx))/Gx has cardinality at least 29" /33 > 128/33, that is there are at least three elements. The
final statement follows from Corollary 5.12. |

Corollary 5.14. Assume that X is a T-general elliptic K3 surface with NS(X) = A4 with t > 2, and
let m = ged(d, t). Then

IDE(X)| = 2°U"~1 . ¢(1), |DEX)/(Z/tZ)*| = 2°™. (5.8)

In particular, if m is not a power of a prime, then X has Fourier-Mukai partners not isomorphic, as
surfaces, to any Jacobian of an elliptic structure on X.

Proof. The second formula in (5.8) is an immediate consequence of Theorem 5.10, the fact that Gx =
{#1} acts trivially on L(Ar)) and the Lagrangian count (3.6).

By Proposition 4.15, coprime Jacobians of a T-general elliptic K3 surface form ¢(t)/2 isomorphism
classes. In other words, the orbits of the (Z/tZ)*-action on DE(X) are all of size ¢ (t)/2 and the first formula
in (5.8) follows from the second one.

The final statement follows from Corollary 5.12 because if m is not a power of a prime, DE(X)/(Z/tZ)*
has at least four elements by (5.8) which thus cannot form a single :-orbit. |

5.3 The zeroth Jacobian

In this subsection, we apply the results of Section 5.2 to investigate whether derived equivalent elliptic
K3 surfaces have isomorphic zeroth Jacobians. A priori, this is a weaker question than Question 1.1.
However, we now show that the two questions are equivalent in the very general case. In particular, the
answer is negative.
Proposition 5.15. Let f : X — P! be an elliptic K3 surface of Picard rank 2, and write S := J°(X).
Assume that T(X) has no non-trivial rational Hodge isometries, that is

Otodge(T(X)g) = Z/2Z. (5.9)

Let (Y, ¢) be a derived elliptic structure on X such that S’ :=J°(Y) ~ S. Then (Y, ¢) is isomorphic to
a coprime Jacobian of (X, f).

Proof. Fixing any Hodge isometry T(X) ~ T(Y) we view T(X) ~ T(Y) — T(S') as an overlattice of T(X). By
assumption there exists a Hodge isometry g* : T(S') ~ T(S) induced by an isomorphism g : S >~ S'. Now
B* induces the rational Hodge isometry

2%
T(X)Q ~ T(S/)@ ~ T(S)Q ~ T(X)Q

which by assumption equals +id, hence g* preserves T(X) as a sublattice of T(S) and T(S'). In particular,
B.ax = kay for some k € Z, hence Y is a coprime Jacobian of X. [ ]

It is well-known that if X is a very general A4:-polarised elliptic K3 surface then (5.9) is satisfied, see
e.g. the argument of [28, Lemma 3.9]. Thus, if X is a very general elliptic K3 surface of Picard rank two
with two elliptic fibrations, Proposition 5.15 allows us to compare the corresponding zeroth Jacobians,
which generalises [7, Proposition 4.8].

Corollary 5.16. Let X be an elliptic K3 surface of Picard rank two with NS(X) ~ A4; and suppose
d # +1 mod t, so that X admits two non-isomorphic elliptic fibrations by Lemma 3.2. Assume
(5.9) holds for X. Then the zeroth Jacobians of the two elliptic fibrations on X are isomorphic if
and only if ged(d,t) = 1.

Proof. If ged(d,t) = 1, the two fibrations on X are coprime Jacobians of each other by Corollary 5.13,
hence the zeroth Jacobians are isomorphic. If ged(d,t) # 1, then by T-generality of X, the Calddraru
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classes of the two fibrations on X are not proportional in Ar,, hence the two fibrations are not coprime
Jacobians of each other and the result follows from Proposition 5.15. |

Remark 5.17. In the setting of Corollary 5.16, if zeroth Jacobians are not isomorphic, then they are
also not derived equivalent. Indeed, elliptic K3 surfaces with a section do not admit nontrivial
Fourier-Mukai partners [9, Proposition 2.7(3)].

5.4 Question by Hassett and Tschinkel over non-closed fields
In this subsection, we will use the theory of twisted forms to extend our results to a subfield k c C.
Let f : X — P! be a complex elliptic K3 surface with NS(X) ~ Ag4;. Recall that we denote by Aut(X, F)
the group of automorphisms of X which fix the class of the fibre in NS(X). By Corollary 3.14, the group
Aut(X, F) is trivial whenever t > 2 and X is T-general.

Let k C L be a field extension. An L-twisted form of an elliptic K3 surface (Y,¢ : Y — C) over k is any
elliptic K3 surface (Y, ¢’ : Y’ — C') over k such that (Y, ¢1) is isomorphic to (Y], ¢) as elliptic surfaces.

Lemma 5.18. Let (Y, ¢) be an elliptic K3 surface over k such that Aut(Yc,F) = {id}. Then every
C-twisted form of (Y, ¢) is isomorphic to Y as a surface.

Proof. Any C-twisted form (Y’,¢’) of (Y,¢) is also a k-twisted form of (Y, ¢) [20, Lemma 16.27]. Thus
it suffices to show that for any Galois extension L/k all L-twisted forms of (Y, ¢) are isomorphic to Y.
Let (Y, ¢) be an L-twisted form of (Y,¢), and let g : Y; >~ Y] be an isomorphism of elliptic surfaces,
possibly twisting the base by an automorphism. Then for any o € Gal(L/k), the map h := go (0g)~'is an
automorphism of Y1 as an elliptic surface.

Using injectivity of the map Aut(Yy) — Aut(Ye), c.f. [29, Lemma 02VX], and the assumption about
automorphisms of Y¢, we see that his the identity, that is g commutes with the Galois action. Therefore
g descends to an isomorphism Y =~ Y’ [20, Proposition 16.9]. |

Lemma 5.19. If (X, f) is an elliptic K3 surface over k such that p(X¢) = 2, then all elliptic fibrations
of X¢ are induced by elliptic fibrations of X.

Proof. By Lemma 3.2 X¢ has one or two elliptic fibrations. If there is only fibration, it must come from
the given elliptic fibration f. If there are two elliptic fibrations on X¢, they are defined over some Galois
extension L/k. Let F and F' be the corresponding divisor classes on X;. These classes cannot be permuted
by the Galois group, because one of them corresponds to f, hence is fixed by the Galois group. Thus, the
other class is also fixed by the Galois group and the corresponding morphism X — C is defined over k,
see, e.g. [18, Proposition 2.7, Theorem 3.4(2)]. |

Proposition 5.20. Let X be an elliptic K3 surface over k with NS(X¢) =~ Aq;. Assume Aut(Xc,F) =
{id} . If d and t are coprime or have only one prime factor in common, then every Fourier-Mukai
partner of X is isomorphic, as a surface, to a coprime Jacobian of one of the elliptic fibrations
on X.

Proof. Let Y be a Fourier-Mukai partner of X, and let ¢ : Y — C be an elliptic fibration of Y, which exists
by [8, Proposition 16]. By Corollary 5.13(i,1i), ¢¢ : Ye — Ce isisomorphic to a coprime Jacobian J* (X¢, fe) as
elliptic surfaces, for some elliptic fibration f¢ on X¢. By Lemma 5.19, fc comes from an elliptic fibration
f on X, hence (Y, ¢) is a C-twisted form oka(X,f).

From the description of the automorphism groups given in Proposition 3.10 we deduce that

Aut(¥(Xe), F) ~ Aut(Xe, F)
and by assumption this group is trivial. It follows from Lemma 5.18 that Y is isomorphic to J¥(X) as a
surface. |
Proposition 5.20 implies the following:

Corollary 5.21. Let X be as in Proposition 5.20. Let Y be any Fourier-Mukai partner of X. Then X
has a k-rational point if and only if Y has a k-rational point.
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Proof. From Proposition 5.20, it follows that there is an elliptic fibration f : X — C’ and an integer £ € Z
such that Y ~ J(X,f) as surfaces. There is a rational map X --» J%(X) ~ Y given by P > ¢ - P. By the
Lang-Nishimura Theorem [17], [23], it follows that X (k) # @ implies Y (k) # @. Conversely, since X is also
a coprime Jacobian of Y, the same argument shows that Y(k) # ¢ implies X(k) # #. |
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