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 A B S T R A C T

Choice Modelling is a widely used framework for understanding human choice behaviour across 
disciplines. Building a choice model is a complex, semi-structured process that involves a 
combination of prior assumptions, behavioural theories, and statistical methods. This complex 
set of decisions, coupled with diverse workflows, can lead to substantial variability in model 
outcomes. To investigate these modelling processes, we introduce the Discrete Choice Modelling 
Serious Game (DCM-SG), a novel tool that mimics the workflow of choice modellers and 
tracks the modelling decisions participants make. In our application, participants developed 
models to estimate willingness-to-pay values for reducing noise pollution. Their actions were 
tracked, enabling analysis of workflow patterns and modelling strategies. Forty participants, 
most with over five years of experience, completed the game. Our contributions are twofold. 
Methodologically, the DCM-SG captures sequential data on modellers’ workflows, which we 
analyse using telemetry and sequential pattern mining techniques to uncover dynamic patterns 
of in-game tool usage, phase transitions, and model specification approaches. Substantively, 
there was a strong preference for data visualisation and frequent specification of simpler models 
(Multinomial Logit), alongside attempts to specify more complex models. These findings suggest 
that in time-constrained or resource-limited settings, modellers may underexplore important 
factors such as covariates, non-linearities, and complex specifications. Moreover, participants 
who engaged more thoroughly in data exploration and iterative model comparison consistently 
achieved superior model fit and parsimony. These results demonstrate how sequential data 
from the DCM-SG can uncover variations in modelling practices and provide a foundation for 
understanding the art of choice modelling.

. Introduction

Discrete Choice Modelling (DCM) is a theoretical and applied framework used across various scientific disciplines to study human 
hoice behaviour. These fields include, but are not limited to, transport, health, and environmental economics (Louviere, 2000; Hess 
nd Daly, 2024; Mariel et al., 2021; Haghani et al., 2021). The aim of this work is to specify models for explaining current choices and 
redicting future choices (Ben-Akiva and Lerman, 1985). On the one hand, by calibrating models on empirical choice data, choice 
odellers can estimate and infer preferences over alternatives and their attributes, which correspond to features or qualities that 
efine them. On the other hand, by using the estimated parameters to simulate choice scenarios, they can predict future behaviour 
nd responses to changes in policy or market conditions. This enables analysts not only to study the decision-making process and the 
actors that influence individual decisions, but also to analyse choice behaviour in different contexts, forecast demand, and evaluate 
olicy changes (Ben-Akiva and Bierlaire, 2003).
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Discrete choice modelling brings together individuals with diverse backgrounds and expertise to understand and forecast choice 
behaviour through a series of research steps. Regardless of the purpose, choice modellers typically engage in workflows that involve 
formulating a research question, designing experiments, collecting data, conducting exploratory and descriptive analyses, specifying 
models, interpreting model outcomes, and reporting results (Ben-Akiva and Lerman, 1985; Hensher et al., 2015; Mariel et al., 
2021). Throughout each research phase, these professionals balance various formal behavioural theories with statistical methods, 
experimental applications, their own domain knowledge, and professional judgement to develop models that represent the choices in 
the data under study (Paz et al., 2019). Although these phases generally follow a chronological order, they are often conducted in a 
semi-structured manner. This flexibility enables modellers to determine how and when to incorporate subjective knowledge acquired 
during the process, ultimately guiding the selection of a model after evaluating multiple specifications (Rodrigues et al., 2020; Van 
Cranenburgh et al., 2022). This inherent flexibility, combined with diverse workflows and subjective decision-making, can lead 
to model specifications that do not truly capture the data generation process. Modellers may interpret data differently, emphasise 
different aspects of the model’s functional form, or even select model families that do not align with observed preferences, which 
in turn leads to considerable variability in modelling results and conclusions. For this reason, choice modelling is often considered 
an art, involving a high degree of freedom in decision-making that allows modellers to use their expertise to make decisions within 
their research.

Hitherto, studies have focused primarily on the model specification phase (Daly et al., 2012; McFadden, 1974; McFadden and 
Train, 2000; Walker and Li, 2007). This phase involves a trial-and-error process in which choice modellers determine both the 
model structure and the parameters to be considered in the model (Paz et al., 2019). For instance, analysts must decide on the 
model family, the inclusion of linear or non-linear transformations of variables, the incorporation of observed and unobserved 
heterogeneity, the distribution of the random coefficients, and their potential correlations, among other considerations (Train, 2009; 
Beeramoole et al., 2023; Mariel et al., 2021). This iterative and time-consuming process continues until modellers have estimated 
each desired specification and obtained goodness-of-fit indicators and validation metrics to assess model performance, parameter 
consistency, and alignment with existing literature (Parady et al., 2021). As modellers may use different cost functions to balance 
these goodness-of-fit metrics, this process may yield multiple specifications that are deemed acceptable to address their research 
question.

The current choice modelling landscape reveals a knowledge gap in understanding modellers’ decision-making processes. 
Although recent developments have introduced algorithms designed to assist in model specification (typically using goodness-of-fit 
indicators as objective functions) (Paz et al., 2019; Ortelli et al., 2021; Beeramoole et al., 2023), these algorithms only partially 
automate certain specification decisions. They fail to account for decisions made during the descriptive analysis phase, the trade-
offs made during model specification to constrain the model space, and the model selection at the end of this process. This inherent 
flexibility of choice modellers’ workflows can lead to diverse results, interpretations, and conclusions even when working with 
the same choice dataset. Similar concerns have been observed in psychology, where concepts such as researcher degrees of freedom
(Simmons et al., 2011) and the garden of forking paths (Gelman and Loken, 2013) emphasise how flexibility in data collection and 
multiple potential tests based on the same dataset, along with the pursuit of meaningful parameters, can increase the risk of false 
positives. Furthermore, crowd-science experiments have demonstrated significant variability in research processes, highlighting a 
lack of consensus in decision-making and divergent outcomes when different researchers analyse the same data (Botvinik-Nezer 
et al., 2020; Wicherts et al., 2016; Silberzahn et al., 2018). While these degrees of freedom promote exploration and methodological 
innovation, they also carry a risk of poor decision-making and undesirable outcomes. A better understanding of these processes not 
only fosters debate about best practices but also paves the way for improved practices within the modelling community.

This study aims to shed light on the choice modelling research process by introducing a novel methodological approach that 
combines the design of a serious game, empirical data collection, and sequential pattern mining analysis. Specifically, it presents the 
first serious game designed for investigating the workflow of choice modellers. The game covers the entire choice modelling process, 
from data exploration and model specification to outcome interpretation and results reporting. The serious game was conducted by 
participants at two international conferences and an additional sample of online recruits, with their actions tracked throughout. 
Rather than evaluating participants against a predefined ‘‘best’’ modelling strategy, this study aims to reveal empirical insights into 
how modellers navigate the modelling process, respond to feedback (such as model fit statistics), and iterate on their modelling 
assumptions. These data then offer a unique opportunity to explore modelling workflows, reveal the degrees of freedom available 
to choice modellers, and analyse how their use of in-game tools and workflows influences reported results. In doing so, this study 
not only contributes a methodological instrument for analysing decision-making in choice modelling but also demonstrates how 
sequential data derived from the game can reveal differences in modelling practices and serve as a starting point for understanding 
these workflows.

The remainder of the paper is structured as follows. Section 2 discusses related work, focusing on the progression from data 
analysis to modelling outcomes. It also introduces a conceptual framework, which outlines the modelling phases that inform our 
serious game design. Section 3 describes the methodology, covering the serious game design, the in-game tools available throughout 
the choice modelling process, and the stated preference dataset used. Section 4 details the gameplay session, while Section 5 discusses 
the results and gives an overview of modellers’ workflows. Finally, Section 6 presents the main conclusions.

2. Theoretical framework: Beyond data analysis to modelling

DCM enables analysts to uncover preferences and forecast choices across a wide range of disciplines. Unlike conventional data 
analysis approaches, DCM involves not only the application of statistical techniques, but also requires analysts to build, evaluate, 
2 
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Fig. 1. Conceptual overview of the choice modelling research process.

and validate models that capture the underlying trade-offs individuals make when choosing among alternatives (Ben-Akiva and 
Lerman, 1985). While some modellers focus on developing and testing theoretical frameworks, others apply these models to real-
world datasets to gain insights into specific choice contexts. Their tasks include collecting and analysing choice data, developing and 
validating models, interpreting results, and calculating econometric metrics to better understand decision-making and the factors that 
influence choice behaviour. Given the complexities involved in the modelling process, this section introduces a general framework 
that outlines modellers’ degrees of freedom and the main research phases for developing choice models, grounded in well-established 
literature (e.g., Ben-Akiva and Lerman (1985), Train (2009), Louviere (2000), Mariel et al. (2021), Hess and Daly (2024), among 
others).

Fig.  1 presents a theoretical framework for discrete choice modelling, illustrating the conceptual flow from observed choice 
behaviour to formal model representation and subsequent application cases. The framework is organised into three interconnected 
processes, each demarcated by vertical sections: the real-world choice process (left), the mathematical representation process 
(centre), and the application process (right). In the diagram, processes are represented by rectangles; data, inputs and outputs are 
depicted by parallelograms; internal procedures performed by decision-makers or choice modellers appear as ovals; and modeller 
decisions are indicated by diamonds. Solid arrows denote sequential progression, while dashed arrows indicate influences between 
components.

In the real world (left), the decision-makers’ choice process is represented using the canonical representation, where individuals 
with specific characteristics (Z) face a choice situation defined by alternatives and their associated attribute levels (X) within a given 
hypothetical context (C). These inputs guide the decision-makers’ choice process, which ultimately results in an observable choice 
outcome (Y) that modellers aim to understand and forecast.

The mathematical representation process captures the entire modelling workflow, including theoretical formulation, data 
handling and exploration, model estimation, and model selection. To model real-world choices, choice modellers must begin with a 
choice dataset that addresses their initial research question, which is shaped by both theoretical interests and data availability. If a 
suitable dataset already exists, choice modellers may proceed directly to data handling and exploration. However, in the absence of 
an existing dataset, several decisions about experimental design and data collection methodologies must be made. These decisions 
are again guided by the modellers’ theoretical assumptions (Ben-Akiva and Lerman, 1985).

Experimental design and data collection require modellers to make several decisions, often influenced by their theoretical 
assumptions and subjective judgements, which ultimately shape the resulting dataset. Although discrete choice models can 
be estimated using revealed preference (RP), stated preference (SP), or both, this study exclusively focuses on SP data. RP 
involves observing actual choices through methods such as self-reported data, passive data collection, activity diaries, or even 
psychophysiological measures (Bierlaire and Frejinger, 2008; Arriagada et al., 2022; Hancock et al., 2022; Barría et al., 2023; Xu 
3 



G. Nova et al. Journal of Choice Modelling 56 (2025) 100562 
et al., 2018). For instance, in transport modelling, RP data collection involves determining the basic unit of analysis, the spatial 
range, and essential information such as origin, destination, purpose, start time, end time, payment method, transport mode, and 
socio-demographic variables (Axhausen, 2024). While RP data reflects real behaviour, its design is inherently limited to existing 
and observed alternatives, making it difficult to evaluate preferences for hypothetical or future scenarios.

In contrast, SP experiments allow modellers to design hypothetical choice tasks that capture preferences and choice behaviour 
under controlled conditions. Designing such experiments involves a series of sequential decisions that not only affect the ability 
to identify primary attribute effects but also influence the statistical power to detect significant relationships between variables, 
particularly in studies with typical sample sizes (Rose and Bliemer, 2009). These decisions include defining the number of choice 
tasks, the alternatives, the attributes, and their levels (Hensher, 2004; Caussade et al., 2005; Rose and Bliemer, 2009; Meyerhoff 
et al., 2015; Meißner et al., 2016; Mariel et al., 2021). Moreover, RP data can be used to inform SP design by suggesting attribute 
range values or common trade-offs, thereby improving the plausibility of hypothetical scenarios. The survey instrument is then 
constructed and potentially refined through pilot studies or focus groups.

The resulting dataset is used across several interconnected modelling phases: descriptive analysis (DA), model specification (MS), 
model estimation (ME), and outcome interpretation (OI). These phases are interdependent, forming a feedback loop that reflects 
the trial-and-error nature of refining model assumptions and specifications until a suitable model — or multiple models — is/are 
selected. It is well established that most modellers begin this process with exploratory and descriptive analysis, which is essential 
for understanding the structure and composition of the data, as well as for preprocessing it for subsequent modelling tasks. This 
phase includes statistical analysis, graphical representation, handling missing values, and recoding or scaling to prepare the data for 
model estimation. Beyond these analyses, exploratory analysis plays an important role in revealing relationships and correlations 
between attributes, covariates, and outcomes. These insights guide the formulation of initial modelling hypotheses, offering a sense 
of which variables to include, how they may interact, and what behavioural patterns are being modelled. Although some modellers 
might skip this phase to save time, doing so risks overlooking valuable information that could significantly inform and improve 
model specification.

Model specification is a pivotal phase where modellers translate theoretical assumptions into a formal mathematical repre-
sentation, determining both the functional form and the behavioural mechanisms to be captured. Modellers must first choose a 
model family based on assumptions about the decision process (e.g. compensatory vs non-compensatory), followed by within-
family decisions, for example the distribution of error terms and heterogeneity across decision-makers (e.g., Multinomial Logit 
(MNL), Generalised Extreme Value (GEV), Latent Class (LC), Mixed Logit (MMNL)). Then, modellers must determine the model 
specification itself, including which variables to include, how to include them (e.g., linear, logarithmic, piecewise), and whether 
to incorporate interactions with covariates (e.g., gender, age, household composition) (Ortelli et al., 2021; Rodrigues et al., 2020). 
These degrees of freedom are not only essential for capturing the complexity of real-world choices (Beeramoole et al., 2023), but 
also directly affect both model interpretability and performance (Parady et al., 2021; Van Cranenburgh et al., 2022). This is an 
iterative process involving the estimation of multiple model specifications, validation of their internal and external performance, 
and the interpretation of model outcomes through comparisons of model fit, parameter consistency, and alignment with existing 
literature (for more details, see Parady et al. (2021)).

In the final phase, the selected model(s) are applied to generate behavioural insights, forecast demand, and evaluate policy 
scenarios across different contexts. This involves using the estimated parameters to derive measures such as willingness-to-
pay (WTP), elasticities, and market shares, and predict responses to changes in policy or market conditions. The application 
process enables choice modellers to derive practical implications from their models, providing valuable insights and guidance for 
policymakers and practitioners.

To summarise, the choice modelling framework provides a structured approach to understanding and forecasting individual 
choice behaviour, by capturing the choice process through several model specifications. Beyond data collection and analysis, the 
multiple workflows and decisions involved in model specification, estimation, outcome interpretation, and model comparison can 
create an opaque environment for both understanding the actual data generation process and the factors that influence decision-
makers in the choice situation studied by choice modellers. This has significant implications not only for the field itself, but also for 
the reliability of the modelling outcomes on which policymakers rely for policy formulation and analysis. Enhancing transparency 
and addressing these degrees of freedom can strengthen the faith that policymakers place in the results provided by choice modellers.

3. Method

3.1. Serious games for choice modelling

Serious Games (SGs) are game-based tools designed with a primary purpose other than entertainment, particularly for addressing 
real-world problems by providing training, learning, or encouraging behavioural change for participants (Michael and Chen, 2005). 
Characterised by explicit rules and defined goals, SGs are intentionally designed to be applied to relevant, often complex, issues 
where players can experiment in a safe environment with different in-game tools and see the consequences of their decisions (Corti, 
2006; Dörner et al., 2016; Squire, 2006). Although initial applications aimed to improve decision-making skills in diverse simulated 
environments — such as educational (Rawitsch, 1978) and military combat contexts (Krulak, 1997) — later efforts have concentrated 
on tracing and analysing players’ actions and behaviours within game environments (Medler and Magerko, 2011).

SGs have gained popularity in behaviour evaluation due to their potential to capture real-time data and support decision-making 
analysis in different contexts, such as policy formulation, resource allocation, or scenario analysis (Donaldson and Grant-Vallone, 
4 
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2002; Olejniczak et al., 2020; Van Dijk and De Dreu, 2021). In transport research, SGs have been used to explore diverse applications, 
including road safety education (Plass et al., 2015), the assessment of perceived transport justice (Vecchio, 2024), and the promotion 
of public participation in urban planning processes (Poplin, 2012). Moreover, they have been employed for training transport 
planners through role-playing and resource allocation exercises in urban mobility contexts (Ortúzar and Willumsen, 1978, 1982; 
Willumsen and Ortúzar, 1985). These games often simulate realistic mobility scenarios and allow for observing responses in 
controlled settings.

Although data collection can be conducted during different phases — such as before, during, and after gameplay — which 
offers diverse methods and data types (Mayer et al., 2014), most early SGs did not focus on capturing in-situ information on 
player behaviour (Smith et al., 2015). Surveys, questionnaires, and self-reports were the most commonly used methods due to 
their ease of implementation and data collection. However, these fail to provide detailed insights into decision-making processes, as 
participants may adjust their behaviour during the game to align with the researchers’ objectives (Podsakoff et al., 2003), and 
do not capture participants’ actual thinking processes (Lazar et al., 2017). Therefore, with technological progress, efforts have 
been made to collect behavioural data during gameplay in simulated environments with controlled variables, which can be used 
to demonstrate relationships between players’ knowledge, degrees of game experience, or backgrounds and their performance in 
different tasks (Chung, 2014; Snow et al., 2014).

Integrating SG into choice modelling offers a novel method for understanding the decision-making process, conceptualised as 
a sequence of interconnected and complex research phases. The Discrete Choice Modelling Serious Game (DCM-SG) was therefore 
developed based on the conceptual framework outlined in Section 2, assuming the availability of a previously collected SP choice 
dataset. Based on this, the game allows users to move through the phases of descriptive analysis, model specification, estimation, and 
outcome interpretation, with the objective of deriving measures such as willingness-to-pay estimates. Capturing modellers’ decisions 
as real-time data facilitates an analysis of actual behaviour throughout the performed workflows. Furthermore, the collected data 
enables an analysis of the relationships between participants’ experience, field of expertise, and knowledge, and how these factors 
influence their decision-making processes.

3.2. Discrete choice modelling serious game design

To reveal how choice modellers make decisions throughout the modelling process, we designed and developed the DCM-SG based 
on the framework proposed by Meijer (2009). The game is intended for students, researchers, practitioners, and analysts with at 
least a basic understanding of choice modelling. No programming skills are required. All modelling actions are performed through 
a user-friendly interface, where predefined triggers guide participants through the research phases, such as data exploration, model 
specification, and outcome interpretation.1

During the game session, participants are assigned the role of choice modellers, and the game is played within a reference 
system. This reference system is confined to a real-world problem that involves developing choice models using a stated preference 
choice dataset, where participants with different backgrounds may apply different approaches to solve the problem. Participants are 
presented with a well-defined context: ‘‘Imagine a colleague has asked for your help in analysing a stated choice dataset on residential 
location preferences. This dataset has been designed to determine the willingness-to-pay for reducing noise pollution. Respondents were 
faced with three unlabelled neighbourhoods (A, B, C) and asked to select the one they preferred to live in. The data were collected 
across four different cities and are representative of the target population’’. Thus, they are required to apply their knowledge, technical 
skills, modelling expertise2 to generate modelling outcomes to inform policymakers, while their actions and responses are tracked. 
Specifically, the game objective is stated as: ‘‘Develop a choice model to estimate the Willingness-to-Pay (WTP) for noise pollution 
reduction. Your WTP estimate will be used by policymakers to make informed urban planning decisions’’, as shown on the instruction 
page (Fig.  8). Therefore, this problem-solving context situates our method within the testing-and-retention quadrant, as described 
by Olejniczak et al. (2020).

To ensure that the game’s design was appealing and as realistic as possible, we specified clear rules and constraints throughout 
the game experience. These were explained at the beginning of the game sessions and also appeared within the game instructions. On 
the one hand, the rules stated that participants could perform any allowable actions within the game, while avoiding the sharing 
of information or results with other participants during the 45 min game session. On the other hand, certain constraints were 
introduced to limit the degrees of freedom available in the model specification phase. These restrictions, detailed in Section 3.3, 
include limits on the number of random parameters in MMNL models, a maximum of three latent classes in LC models, and the 
inclusion of all attributes in certain model types, along with restrictions on interaction terms, to constrain the modelling space.

3.3. DCM-SG tools

To facilitate participants’ workflows in solving this problem, the game simulates four main phases of choice modelling research, 
derived from the conceptual framework: descriptive analysis (DA), model specification (MS), outcome interpretation (OI), and 
reporting (R). Participants can iterate through each phase as many times as they deem necessary before moving on to the next phase, 

1 For source code and installation instructions, please refer to the project’s GitHub repository: https://github.com/TUD-CityAI-Lab/DCM-SG.
2 Practical judgement, modelling heuristics, and preferences that modellers develop through experience but are rarely formalised in guidelines or training 

courses.
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or even returning to previously completed phases, thus mimicking the intrinsic trial-and-error nature of the modelling process. This 
iterative approach, which aligns with the conceptual framework depicted in Fig.  1, enables participants to continually refine their 
specifications and analyses until they report their findings.

Descriptive analysis: During this phase, we incorporated in-game tools based on general practices in choice modelling and 
recommendations from the literature (Tukey, 1977; Páez and Boisjoly, 2022). This allows modellers to perform a range of exploratory 
data analysis tasks on the raw choice dataset, enabling them to better understand the data distribution prior to the model 
specification phase. Specifically, participants can view a data dictionary to understand the context and meaning of each variable; 
inspect the first five rows of the dataset; and consult descriptive statistics (e.g., mean, median, max, min, standard deviation) for 
each variable. Participants can also examine the frequency of choices (i.e., the distribution of choices made by decision-makers) 
and see an example of a choice task. Additionally, they can sort the dataset by any variable. For handling missing data, participants 
can display missing values, delete missing values, or replace them using the mean, mode, or median. Finally, the visualisation tools 
available include box plots, histograms, correlation matrices, scatter plots, pie charts, and bar charts, which allow users to plot any 
variable and explore the structure of the dataset. While we acknowledge that the list of actions is not exhaustive, these tools were 
selected to reflect techniques commonly used in the field and to maintain consistency among participants. Thus, our serious game 
ensures comparability across workflows and highlights how participants engage with the data under similar conditions. An overview 
of this phase is shown in Fig.  9.

Model specification: During this phase, researchers are given the flexibility to specify models from diverse families that are 
foundational and widely used in discrete choice modelling, as shown on the respective page (Fig.  10). The base model is the 
Multinomial Logit (MNL) model (McFadden, 1974), which is the workhorse and benchmark of discrete choice models. To specify 
an MNL model, the modeller must make various decisions, such as incorporating alternative-specific constants, including attributes, 
selecting between generic or alternative-specific coefficients, and considering interactions with socio-demographic variables. They 
can also apply non-linear transformations, such as logarithmic and Box–Cox functions, to account for nonlinearities.

To capture unobserved heterogeneity, the DCM-SG also allows the specification of the Mixed Multinomial Logit model (McFadden 
and Train, 2000), which is commonly used to address random taste variation across individuals and correlation in unobserved factors, 
making it a powerful tool for modelling a range of behavioural specifications (Train, 2009). Within this model family, modellers can 
decide which parameters follow a random distribution (normal or lognormal), while maintaining the remaining ones as population-
level parameters. Additionally, they can still account for observed heterogeneity by interacting attributes with socio-demographic 
variables. Due to the exponential number of specifications a modeller might consider, some limitations are introduced for MMNL 
models:

1. Alternative-specific constants are included for all models.
2. All attributes are included in the utility function and treated as generic across alternatives.
3. The number of draws is fixed and constant across all models; this aspect is not analysed.
4. A maximum of two random parameters can be included in the utility specification.
5. Interactions between a random parameter and a socio-demographic variable are not permitted.

The serious game also considers Latent Class models (Walker and Li, 2007), which enable the probabilistic allocation of decision-
makers into discrete classes by assuming that each class has distinct preferences. This model is included as it is among the most 
extensively used in the choice modelling literature (Hensher et al., 2015). In these model specifications, modellers need to not only 
define the number of latent classes, but also have to determine which covariates to include in the class membership function to 
calculate the probability of belonging to each class. Similar to the MMNL case, some limitations are introduced:

1. Alternative-specific constants are included.
2. All attributes are included in the utility function and treated as generic across alternatives.
3. Models may include up to three latent classes.
4. Covariates are dummy coded and may be included in the class allocation model.

We decided not to include machine learning (ML) models. While we acknowledge the growing interest in models such as Random 
Forests, Support Vector Machines, Gradient Boosting Decision Trees, and Artificial Neural Networks for analysing choice preferences, 
their adoption is still relatively limited (Hagenauer and Helbich, 2017; Wang et al., 2017, 2020; Martín-Baos et al., 2023). We believe 
that including ML models would have introduced unnecessary complexity rather than enhance the realism of the serious game.

Finally, regarding the estimation of the models, MNL models are estimated on the fly upon user request. To enable this, the DCM-
SG integrates Biogeme methods and classes, allowing users to dynamically request and estimate any specification within this model 
family according to their specific needs. Due to the longer estimation times required for MMNL and LC models, we pre-estimated 
them using Delft Blue (Delft High Performance Computing Centre (DHPC), 2024) and local machines, employing both Apollo (Hess 
and Palma, 2019) and Biogeme (Bierlaire, 2003). The results generated by these software packages were stored in a database to 
serve as a repository for the outcome interpretation phase. In total, we pre-estimated 78,604 MMNL models and 8832 LC models. 
Lastly, we calculated the standard errors of the willingness-to-pay estimates using the Delta method (Daly et al., 2012). Both the 
WTP values and their standard errors are made available to participants in the outcome interpretation phase.

Outcome interpretation: During this phase, we display the common modelling results table for the estimated model, which 
contains parameter names along with their estimated values, standard errors, t-tests, and p-values, as shown on the respective page 
(Fig.  11). These results represent the most elementary outputs following model estimation and provide the information needed to 
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Data dictionary.
 Variable Description Type/Levels  
 ID ID number of the respondent Integer  
 Task ID Number of the choice task Integer  
 Stores Walking time to grocery 

store
2, 5, 10, 15 min.  

 Transport Walking time to public 
transport stop

2, 5, 10, 15 min.  

 City Distance to city centre in
kms

<1, 1 to 2, 3 to 4, > 4 km  

 Noise Street traffic noise None, Little, Medium, High 
 Green Green areas in residential 

neighbourhood
None, Few, Some, Many  

 Cost Monthly change in housing 
cost vs current

-e150, -e50, e50, e150  

 Choice Indicates the choice 1 = A, 2 = B, 3 = C  
 Age Decision-maker age in years < 30, 30 to 50, ≥ 50  
 Woman Indicates if respondent is a 

woman (1) or not (0)
Binary  

 Homeowner Indicates if respondent is a 
homeowner (1) or not (0)

Binary  

 Carowner Indicates if respondent is a car 
owner (1) or not (0)

Binary  

 Respcity Indicates corresponding city Categorical  
 Job Indicates if respondent is 

working (1) or not (0)
Binary  

assess the significance of parameters and their alignment with theoretical expectations. Modellers typically consider these results 
before examining additional goodness-of-fit metrics. Participants can then select from a range of metrics for the estimated model 
and choose to analyse them. These include: the number of parameters estimated in the model; the sample size used in the estimation 
process; the null log-likelihood; the initial log-likelihood; the final log-likelihood; the likelihood ratio test against the null model; 
the 𝜌2 and adjusted 𝜌2 against the null model; the Akaike Information Criterion (AIC); the Bayesian Information Criterion (BIC); the 
final gradient norm; the time taken for model estimation; and the willingness-to-pay estimates for attributes. Finally, participants can 
compare models in two ways: by making direct comparisons between models in terms of parameters and goodness-of-fit indicators, 
or by displaying elbow graphs to visualise latent class model metrics.

Reporting phase: At the end of the simulated research process, choice modellers are asked to report their findings to 
policymakers, as shown on the respective page (Fig.  12). To facilitate this, they can review the estimated models along with 
summaries of their results in order to select the most appropriate ones. In addition, participants are required to submit a short 
written report (several sentences), in which they detail the main findings and interpret the modelling results to address the objective 
set at the beginning of the game.

3.4. Stated preference choice dataset

The above discussion presents a general overview of the DCM-SG, independently of the dataset used. For our specific application, 
and in order to represent a research scenario that reflects what practitioners encounter in their real-world work, we use a modified 
raw stated preference dataset collected by Liebe et al. (2023), which aimed to analyse residential location choice. The dataset consists 
of three unlabelled alternatives (A, B, and C), each defined by six attributes: distance to the grocery store, distance to transportation, 
distance to the city centre, street traffic noise, green areas in the residential area, and monthly housing cost variation. This dataset 
contains 2430 individuals, each facing four choice tasks, resulting in 9720 observations. It also includes socio-demographic variables 
such as age, gender, home ownership, car ownership, place of residence, and employment status. A summary of the data is shown 
in Table  1.

4. Serious game data

4.1. Gameplay data

During gameplay in the DCM-SG, two types of data are recorded to enable behavioural analysis of decision-making in choice 
modellers’ workflows. Firstly, the game stores each participant’s identifier, timestamp of actions, and any task performed over the 
course of the research phases, collected in situ and in real time (telemetry). For example, there are 15 descriptive analysis in-game 
tools, including statistical analysis, missing value handling, graph creation, and database sorting. In the model specification phase, 
there are 34 interactive game devices (such as buttons, drop-down menus, and checklists) for specifying MNL, MMNL, and LC models. 
Any use of these is stored in the database. During the outcome interpretation phase, there are 18 options for comparing modelling 
results. Finally, the model(s) selected and their main findings are stored. Table  2 displays the variables and their descriptions, which 
allow us to track participants’ interactions with the game.
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Table 2
Variable descriptions and types.
 Variable Description  
 timestamp Time at which participants performed any task  
 user_id Participant ID  
 task_id Task ID performed in DA or OI  
 model_id Model ID (to identify task performed in model specification)  
 model 1 for MNL, 2 for MMNL, 3 for LC  
 ASC 1 to include alternative specific constants (0 

otherwise)
 

 att𝑖 1 to include attribute i (0 otherwise)  
 s𝑖 1 to indicate that attribute i is alternative-specific (0 otherwise)  
 t𝑖 1 for applying linear transformation to attribute i, 2 for box-

log, 3 for logarithmic
 

 int𝑖 indicates whether attribute i interacts with a single socio-
demographic variable (only once per attribute is allowed at
a time): none (= 0), woman (= 1), age (= 2), location of 
residence (= 3), home owner (= 4), car owner (= 5)

 

 dist𝑖 0 to indicate that attribute i is fixed at the population level, 1 
follows a normal distribution, 2 follows a lognormal distribution

 

 n_class indicates the number of classes  
 covariates𝑗 1 to indicate that covariate j is included in the membership 

class function for latent class (0 otherwise)
 

 r_models identify reported models by the participants  
 reporting discussion and findings of selected models  

Secondly, both qualitative and quantitative data are collected at the end of the game to characterise participants in terms of their 
background and expertise. Thus, we characterised each participant using a unique user_id, and collected personal information 
such as gender (participant’s gender), age_dcm (years involved in choice modelling), main_field (primary field the participant 
is working in), and expertise (self-assessment of their knowledge in choice modelling). We also asked whether the participant had 
been a teacher or a student in a choice modelling course; their most commonly used programming language or software; their 
predominant modelling approach used in applications; and their h_index (as a proxy for scholarly impact). Finally, we recorded 
the initial and final timestamps of when participants began playing the game (init_time) and submitted their report (end_time).

4.2. Participants

The DCM-SG was administered in person to attendees at two conferences — the International Choice Modelling Conference 
and the International Conference on Travel Behaviour Research — and was also distributed online to researchers and practitioners 
known to work with or on choice modelling. Participation was voluntary. Before taking part, all individuals were informed that 
the game was part of a study on decision-making in discrete choice modelling. Additionally, all participants read and accepted the 
informed consent form as part of the initial step in the game. Data were collected and analysed anonymously.

A total of 40 participants were involved; 38 of them reported their models and completed their analyses. For the remaining 
participants, we inferred their reported models as those that were specified towards the end of their modelling processes and 
demonstrated high performance. Although the distribution of experience in choice modelling was varied, most participants had 
more than five years of experience (10% had less than one year, 32% had one to five years, 45% had five to ten years, and 13% had 
more than ten years). Moreover, 85% of participants had taken a choice modelling course, while 58% had experience as a teacher, 
teaching assistant, or lecturer. These values indicate that most participants were familiar with more than just the basics of choice 
modelling. Many could be considered experts, combining formal training, teaching experience, and several years of involvement in 
the modelling process. Most participants focused on transportation (70%), while others worked in economics (10%), urban planning 
(8%), environmental valuation (5%), and other fields (7%). In terms of self-assessed expertise, 40% rated themselves at a medium 
level, and 25% at medium–high, with smaller percentages at lower levels. Scholarly impact scores ranged from 0.0 to 20.0, with 
8.0 being the most common score (20%). The gender distribution was predominantly male (68%), with 32% female or undisclosed. 
In addition, participants reported their primary modelling approaches: the MNL and MMNL models were the most commonly used, 
followed by LC models. Other approaches — such as Integrated Choice and Latent Variable, Multiple Discrete–Continuous Extreme 
Value, and Ordered Logit models — were reported less frequently. Finally, although we did not directly measure task engagement, 
we found that participants specified multiple models, interacted extensively with in-game tools, and occasionally requested extended 
time. Their responses to post-game questions about realism and completeness also indicated a high level of engagement, though some 
noted that certain modelling options limited their ability to explore more complex models.

5. Data analysis

In this section, we focus on analysing choice modellers’ decision-making behaviour as captured through the DCM-SG, utilising 
a behavioural observation framework (Bakeman and Gottman, 1997). This approach allows us not only to discuss the common 
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Fig. 2. Workflow transitions and time allocation in choice modelling phases.

methods and analyses employed by participants but also to identify sequential patterns in their model specification and refinement 
processes. We then clustered participants to explore how different factors, such as in-game usage, transitions between research 
phases, and modelling patterns, affect their reported modelling results.

5.1. Workflows and time spent

We begin our analysis by examining choice modellers’ workflows, focusing on the transitions between research phases and 
the time allocated to each, as shown in Fig.  2. The high intra-phase retention rates, such as 93% in DA and 82% in OI, indicate 
that modellers typically use all available in-game tools within a phase before gradually moving on to model specification. Also, 
intra-phase transitions within the MS phase (6%) suggest that modellers often choose to specify a new model without considering 
other modelling results beyond the estimated parameters. This behaviour may reflect a perceived misspecification or unexpected 
estimation results, leading to a revision of the specification. Notably, few modellers (only 2.5% of transitions) return to reanalyse 
the data after proceeding to model specification and outcome interpretation, which suggests that iteration is concentrated mainly 
within these two phases.

On the right-hand side, we display the timeline of each choice modeller, representing their progress through the research phases. 
The graph shows that DA generally dominates the early workflows, with modellers typically exploring, visualising, and cleaning data 
before moving on to more complex phases. A significant amount of time is then spent on MS, reflecting efforts to refine models and 
incorporate assumptions based on analyses conducted during DA and OI. Interestingly, there are instances where modellers briefly 
return to earlier phases, as discussed previously. This highlights the iterative nature of the process, where modellers may revisit the 
DA phase to revise model hypotheses or conduct further descriptive analysis based on new insights gained from later phases.

5.2. In-game tools analysis

Table  3 provides a summary of the in-game tools used by participants across all research phases. The mean usage shown in the 
table is calculated only for those participants who used the respective tool at least once. The interaction percentage represents the 
relative frequency of use within each specific research phase, rather than across the entire modelling process. This approach allows 
for a comparison of tool engagement in the context of each individual phase.

In the descriptive analysis phase, participants demonstrated a strong preference for data visualisation tools and statistical 
descriptions, which can facilitate a deeper understanding of the data prior to model specification. In particular, histograms accounted 
for 19.17% of interactions in this phase, followed by data dictionary visualisation (13.27%), box plots and pie charts (both 7.11%), 
and correlation matrix plot (6.76%). Although most participants viewed the main data statistics and the percentage of choice between 
alternatives to evaluate the data distribution among choice-makers, only approximately 73% of the modellers (29 out of 40) deleted 
missing values, while 33% (13 out of 40) replaced them before moving to model specification. Since both actions could be performed, 
the 13 participants who replaced missing values may overlap with those who deleted them. Thus, while the use of visualisation tools 
appears to support the formulation of initial modelling hypotheses, the exact methodology adopted for handling missing values and 
preprocessing the dataset, even in cases where there is a small amount of missing values, remains unclear.

In the model specification phase, participants attempt to specify the three model families available in the SG: MNL, MMNL, and 
LC models. While many of these models were successfully estimated, some specifications failed to converge due to issues such as 
misspecification (e.g., incorrect functional forms or the inclusion of socio-demographic variables that do not vary across alternatives) 
or because the raw choice dataset lacked sufficient variability to identify certain parameters. As shown in Table  3, we subsequently 
analysed each model family to identify the most common specifications.
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Table 3
Summary of in-game tools used across research phases.
 Tools Users Mean (SD) Interaction [%] 
 View summary statistics 38 1.84 (0.97) 6.07  
 View data dictionary 40 3.92 (3.12) 13.27  
 Check missing data 39 1.56 (0.75) 5.29  
 View first 5 rows of data 37 2.00 (2.39) 6.42  
 View percentage of choices 36 1.33 (0.89) 4.16  
 View choice task example 36 1.47 (1.00) 4.60  
 View histogram 34 6.50 (4.98) 19.17  
 Delete missing values 29 1.21 (0.41) 3.04  
 View boxplot 26 3.15 (2.17) 7.11  
 Sort dataset by variable 22 2.14 (1.46) 4.08  
 View correlation 25 3.12 (1.64) 6.76  
 View two-variables scatter plot 17 3.24 (1.92) 4.77  
 Replace missing values 13 1.23 (0.44) 1.39  
 View pie chart 13 6.31 (7.90) 7.11  
 View bar chart 19 3.68 (3.00) 6.07  
 Multinomial logit model 40 5.92 (3.04) 51.68  
 Latent class model (2 classes) 31 2.45 (1.48) 17.00  
 Latent class model (3 classes) 26 1.73 (1.08) 10.07  
 Mixed logit model 27 2.26 (1.51) 13.64  
 Model misspecification 16 2.12 (1.85) 7.61  
 View final log-likelihood 33 6.58 (4.24) 15.16  
 View initial log-likelihood 27 2.44 (1.72) 4.61  
 Calculate Willingness-to-Pay 33 6.58 (4.24) 15.16  
 Model comparison 33 6.21 (4.54) 14.33  
 View number of parameters 24 3.12 (3.05) 5.24  
 View number of individuals 17 2.00 (1.41) 2.38  
 View log-likelihood at equal shares 21 2.43 (1.83) 3.56  
 View 𝜌2 23 5.22 (4.48) 8.39  
 View adj. 𝜌2 25 5.67 (4.86) 10.06  
 View number of CPU cores 17 2.18 (1.55) 2.59  
 View number of data rows 17 2.00 (1.41) 2.38  
 View number of outputs 15 2.27 (1.53) 2.38  
 View Akaike Information Criterion 20 6.25 (5.09) 8.74  
 View Bayesian Information Criterion 20 6.20 (5.07) 8.67  
 View time taken for estimation 10 1.20 (0.42) 0.84  

Fig. 3. Multinomial logit model specifications among participants.

Fig.  3 highlights trends within the specification of MNL models. Despite working with a stated preference database with 
unlabelled alternatives, approximately 80% of the models included alternative-specific constants (ASCs) and most did not incorporate 
all attributes. This suggests that choice modellers were attentive to possible differences in baseline utilities. As their estimated model 
results show, ASCs were often statistically significant and improved model performance, which possibly reflects efforts to account 
for design effects or lexicographic behaviours in the decision-makers’ choice process. In general, attribute effects were included 
as linear-additive, the Store attribute in 82% of the models, Transport in 82%, City in 82%, Noise in 88%, Green in 79%, and 
Cost in 89%. Transformations of attributes were limited, with only 18% of the specifications including logarithmic or Box–Cox 
transformations. Furthermore, while the majority of attributes were treated as generic, which is consistent with the context of 
unlabelled alternatives, approximately 16% of the cases were tested with alternative-specific taste parameters. Regarding model 
interactions, 34% of the specified models include at least one attribute-covariate interaction. The most frequently observed were 
between Transport, City, Noise, and Green with the respondent’s Age, as well as interactions between Store and gender (Woman), 
10 
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Fig. 4. Mixed multinomial logit model specifications among participants.

Fig. 5. Latent class model specifications among participants.

and between Cost and home ownership status (Homeowner). However, there was a limited exploration of interactions related to the 
residence location (respcity), even though the data were collected in four different cities. This evidence reveals a clear preference 
for linear parameter specifications, with a tendency to test for attribute exclusion and, less frequently, the integration of socio-
demographic characteristics. This pattern may reflect limitations in the model specification phase of the game, which did not allow 
for modelling categorical attributes as dummy variables. This limitation may have prevented modellers from exploring other ways 
they could have considered. Furthermore, the limited exploration of interactions may be due to time constraints, which prevented 
modellers from fully investigating hypotheses related to preference variations of decision-makers across cities.

Fig.  4 shows the MMNL model specifications, in which all attributes were considered linear and generic by default. This restriction 
imposed by the DCM-SG does not appear to have affected participants’ modelling decisions, as it is consistent with the specifications 
observed in the MNL models. In terms of parameter distribution, 44.3% of specifications considered a single distributed parameter, 
with 55.5% of them following a normal distribution and the remainder being log-normally distributed. When two random parameters 
were included, 44.9% were modelled as normally distributed, 35.6% as log-normally distributed, and 19.5% as a combination of 
both distributions. Notably, Noise and Cost were the most frequently specified attributes with normal and log-normal distributions, 
respectively. Moreover, 63.9% of the models did not include interactions with socio-demographic variables, with city being the 
least frequently considered in such interactions. When interactions were included, the most common were with age, followed by 
residence location and gender, though their frequency remained low. These findings evidence an approach focused on capturing taste 
variations for noise and cost, along with an exploration of the observed heterogeneity. However, considering a normal distribution 
for the cost attribute has important implications, since it always results in undefined moments for the willingness-to-pay values for 
noise, a problem that can be addressed by using log-normal distributions, which restrict the values to a non-negative space and 
provide greater consistency in the economic interpretation of the results.

Fig.  5 shows the latent class model specifications. As in the MMNL case, all attributes were specified as linear by default, with 
the same functional form applied across all classes. In the modellers’ decisions, 55.3% of the LC specifications involved latent class 
models with two classes, while the remaining models utilised three classes. This suggests that many modellers preferred to work with 
less complex models that may be easier to interpret and estimate. Moreover, only six modellers successfully specified three-class 
latent models despite several trials. This suggests that due to the early issues of parameter non-identification, modellers tended to 
focus on models with fewer classes or other model families. In terms of the membership function, the inclusion of covariates such as
Homeowner, Woman, Job, and Respcity ranged from 8% to 44%, which demonstrates an attempt to capture socio-demographic 
heterogeneity in the membership class function. However, the relatively low usage rates of Respcity in three-class models indicate 
that modellers may not have fully explored the potential influence of location-based heterogeneity. This aligns with observations in 
the MNL and MMNL models, where interactions with residential locations were also limited.

In the outcome interpretation phase, when modellers estimated a model, they were immediately provided with a standard results 
table generated by the DCM-SG, which included the parameter names, estimated values, robust standard errors, t-tests against zero, 
11 



G. Nova et al. Journal of Choice Modelling 56 (2025) 100562 
Fig. 6. Reported Willingness-to-Pay values for noise reduction across final model families.

and corresponding 𝑝-values. Analysis of the tools used for interpreting outcomes revealed that modellers focused mainly on the 
calculation of willingness-to-pay (15.16% of the interactions) and on comparison between models (14.33% of the total interactions). 
Similarly, the observation of log-likelihood (13.07%) was also highly reviewed, which indicates the importance modellers attach to 
the internal consistency of the model and its predictive capability. However, modellers paid limited attention to other metrics such 
as the (adjusted) 𝜌2, the Akaike Information Criterion, and the Bayesian Information Criterion, each used in approximately 9% of 
interactions. These preferences suggest that model refinement was guided primarily by goodness-of-fit and economic interpretation 
of the parameters, using the previous model as a benchmark for comparison, but also involved neglecting metrics that assess the 
trade-off between model fit and complexity—an essential consideration for selecting well-performing and parsimonious models.

Finally, in the reporting phase, Fig.  6 shows the willingness-to-pay reported by modellers towards the conclusion of the simulated 
research, which reveals important implications for informing policymakers. On the one hand, MNL and MMNL models consistently 
produced positive WTP estimates for noise reduction, indicating a generalised preference among case study decision-makers. 
Although LC models (LC2 and LC3) uncover significant preference heterogeneity, with some classes showing negative WTP values, 
MNL was the most commonly reported model type (55% of final reports), followed by LC models (32.5%) and finally MMNL (12.5%). 
This heterogeneity in results not only highlights the range of acceptable outcomes found by modellers but also reflects the complexity 
of their decision-making processes in finalising model reports. Furthermore, this clear distinction in reported WTP values between 
models serves as a reminder to choice modellers of the importance of considering multiple modelling approaches to fully capture 
both observed and unobserved heterogeneity in preferences.

5.3. Analysis of model specification workflows

To gain deeper insights into the modelling workflows employed by participants during the model specification phase, we display 
the temporal progression of models in Fig.  7. This graph provides an aggregated view of how modellers transitioned across different 
model families, such as MNL, LC, and MMNL, as well as cases of Misspecification (Miss), and the point at which they reported their 
final model (R). The diagram shows the evolution of the estimated models and their log-likelihood values, starting from their initial 
specification to the reported one.

As can be seen, during the initial stage of the modelling process, most participants (38 out of 40) began by specifying MNL 
models, which varied in terms of the attributes included, the transformations applied, and the interactions specified with socio-
demographic variables. Notably, only four participants started with a fully linear specification that included all attributes. This may 
seem counter-intuitive, as one might expect modellers to begin by including all available variables from the stated choice tasks 
to capture primary and linear effects on choices. This behaviour could reflect the influence of prior beliefs about data complexity 
or previous modelling experience, which may have shaped their initial hypotheses. As participants progressed, they tested more 
complex functional forms within the MNL family. Some of these specifications resulted in misspecification errors, potentially due 
to the inclusion of overly intricate interactions with socio-demographic variables or non-linear transformations of attributes. These 
attempts to account for observed heterogeneity may have led to parameter non-identification, demonstrating the trade-offs between 
model complexity and statistical feasibility.

In later iterations, there was a shift towards more complex models, with participants gradually specifying LC and MMNL models. 
This evolution suggests a learning trajectory, where initial explorations with simpler MNL models laid the groundwork for the 
adoption of more flexible models capable of accounting for deterministic and random taste heterogeneity. This pattern aligns with 
standard modelling practice, in which simpler models are frequently estimated as a benchmark before progressing to more advanced 
approaches.
12 



G. Nova et al. Journal of Choice Modelling 56 (2025) 100562 
Fig. 7. Workflow transitions and time allocation in choice modelling phases.

5.4. Analysis of workflow differences

To evaluate the impact of participants’ workflows on the improvement of choice modelling outcomes, we conducted an analysis 
of modelling patterns. Using the cSPADE algorithm, a data mining method designed to identify frequent patterns within temporal 
sequences (Zaki, 2001; Maimon and Rokach, 2005), we examined the most common patterns related to in-game tool usage, 
transitions between research phases, shifts between different model families, and specification strategies. This approach allows us 
to move beyond static summaries and explore the temporal dynamics of how participants interacted with the DCM-SG environment.

Firstly, participants were classified into two groups based on changes in goodness-of-fit metrics, such as log-likelihood, AIC, BIC, 
𝜌2, and adjusted 𝜌2, from the initial model to the final reported model. The first group comprised 30 participants who demonstrated 
improvements across these metrics, suggesting a goal-oriented learning process aimed at progressively capturing variability in the 
choices through more complex model specifications. The second group consisted of 10 participants whose final models did not 
outperform their initial specifications, which may indicate challenges in refining their modelling approaches or limitations in their 
ability to adapt their modelling approach to better fit the data. Secondly, the most frequent patterns of in-game tool usage, transitions 
between research phases, and shifts between model types were found considering the cSPADE algorithm with minimum support 
thresholds of 70%. Thus, only sequential patterns that appeared in at least 70% of the observed workflows were included in the 
analysis. This threshold was chosen to reduce noisy patterns and extract the most common behavioural workflows within our small-
to-medium sample, as suggested by Zhang and Paquette (2023), Kang et al. (2017). Finally, we calculated the frequency of each 
pattern for every choice modeller and compared the two groups using an independent samples t-test.

Table  4 shows statistical differences between the two groups of participants in terms of their use of in-game tools, transitions 
between research phases, and model specification workflow patterns. Participants who used tools such as ‘View summary statistics’, 
‘View bar plot’, and ‘View correlations’, or who spent more time visualising histograms or specifying MNL models, were more 
likely to report improved modelling metrics compared to their initial estimations. Moreover, specific workflow sequences, such as 
moving from ‘Handling missing values’ to ‘Viewing summary statistics’ and then to ‘Viewing first five rows’, as well as revisiting 
the descriptive analysis phase after interpreting their modelling outcomes (OI → DA), were more common among modellers who 
refined their specifications over time. These patterns of behaviour suggest a higher involvement in data analysis and development 
of initial hypotheses, which contributed to improved models.

Another important distinction emerged in how participants analysed modelling outcomes. Those who adopted a comprehensive 
approach, considering not only parameter estimate values and their standard errors, but also model fit metrics such as 𝜌2, 𝜌̄2, AIC, 
and BIC, were more likely to improve their modelling outcomes. In addition, the workflow ‘Calculate WTP → Model comparison 
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Table 4
Difference across frequent patterns (𝑝-value < 0.05).
 In-game tools and workflows 𝑡-statistic p-value 
 Total uses: view summary statistics −2.82 0.055  
 Total uses: view bar plot −2.20 0.042  
 Total uses: view correlations −2.69 0.013  
 Total uses: model comparison with previous one −2.20 0.046  
 Total uses: view Akaike Information Criterion −5.38 0.001  
 Total uses: handling missing data −3.21 0.002  
 Total uses: replacing missing values 2.94 0.011  
 Time spent on visualising histograms −2.82 0.027  
 Time spent on specifying MNL −2.64 0.013  
 Calculate WTP → MNL −2.75 0.009  
 𝜌̄2 → Calculate WTP −2.73 0.011  
 MNL → Log-Likelihood −3.14 0.003  
 Calculate WTP → Model comparison with previous one −3.03 0.005  
 BIC → calculate WTP −2.81 0.009  
 Miss → Miss −3.10 0.004  
 MMNL → LC −2.69 0.013  
 DA →DA → MS → OI → OI → MS −3.53 0.001  
 MS → OI → OI → OI → OI −2.96 0.006  
 OI → OI → OI → OI → MS −3.18 0.003  
 OI → OI → DA → DA → MS −2.26 0.031  

with previous model’ reflects a deliberate focus on both economic interpretation and comparative model evaluation, often leading to 
better model refinement. Similarly, participants who engaged in sequences such as ‘AIC → Calculate WTP’ or ‘BIC → Calculate WTP’ 
demonstrated significantly better model improvements than those who did not. These patterns suggest that integrating statistical 
diagnostics with economic reasoning supports more informed and effective model development.

In terms of transitions between modelling phases, significant differences in workflows appeared when several DA and OI phase 
tools were used before specifying a model. For instance, sequences such as ‘DA → DA → MS → OI → OI → MS’ and ‘DA → MS 
→ OI → OI → MS’ suggest that revisiting data analysis both before and after initial model specification further improved model 
refinement. Similarly, extended use of OI tools prior to re-specification, such as ‘MS → OI → OI → OI → OI’ and ‘OI → OI → OI 
→ OI → MS’, was associated with improved model fit, whereas those who relied solely on estimation tables showed minimal or 
no improvement. Moreover, the pattern ‘OI → OI → DA → DA → MS’ further supports the idea that returning to data exploration 
after interpreting results can inform initial modelling hypotheses and ultimately lead to improved model performance. These results 
suggest that multiple specifications without adequate reflection and analysis of previous modelling results may lead to inefficient 
search processes, producing models that ultimately fail to outperform the initial one.

Finally, we found that participants who achieved improvements in model fit also tended to exhibit a higher frequency of model 
misspecification transitions (Miss → Miss) as well as transitions from MMNL to LC models. This behaviour suggests a continued 
effort to capture more complex functional forms and reflects an iterative learning process throughout the modelling. As shown in 
Fig.  7, the workflows of participants 4, 17, and 36, among others, demonstrate that repeated misspecifications were often followed 
by model specifications achieving better performance within the same model family.

Overall, the results indicate that participants who engaged in thorough data analysis, revisited earlier research phases to refine 
their modelling assumptions, and evaluated goodness-of-fit metrics were more successful in reporting models with an improved 
balance between fit and parsimony. These findings tangibly reflect the nature of discrete choice modelling as an intrinsically iterative, 
hypothesis-driven, and feedback-guided process, which relies not only on model fit metrics but also on alignment with expected 
behavioural realism.

6. Conclusions

Our study provides a twofold contribution to the choice modelling field. First, it introduces serious games as a methodological 
innovation to capture workflows of choice modellers and demonstrates how serious game data can effectively be analysed to better 
understand the choice modelling process. The Discrete Choice Modelling Serious Game (DCM-SG) provides an online environment 
that mimics the real-world research phases, enabling modellers to apply their knowledge while we track their actions. The code 
used to implement the DCM-SG will be publicly accessible via a GitHub repository, thereby facilitating further research using this 
tool within the community.3

Second, our study provides new substantive insights into the practices of choice modellers. Firstly, we find strong evidence 
of the iterative nature of the choice modelling process, with choice modellers moving back and forth between modelling phases, 
such as descriptive analysis (DA), model specification (MS), outcome interpretation (OI), and reporting. For instance, we have 
observed that — after the first descriptive analysis — most participants start with specifying Multinomial Logit (MNL) models, after 
which they either return to the descriptive analysis phase or move forward to more advanced models, such as Mixed Multinomial 

3 GitHub repository: https://github.com/TUD-CityAI-Lab/DCM-SG.
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Logit (MMNL) and Latent Class (LC) models. Secondly, we find extensive support for the notion that modelling practices are 
heterogeneous. Specifically, we see that while data visualisation and statistical descriptions are commonly used, there is no clear 
approach to handling missing values. Thirdly, we observe that participants favoured simpler models despite having complex families 
available in the game. Finally, our results reveal that workflows, in-game tools usage, and model specification strategies significantly 
impact choice modelling outcomes. Participants who engaged in comprehensive data exploration, iterative comparisons, and made 
systematic use of econometric tools tended to improve goodness-of-fit and parsimony. Conversely, those who relied more heavily 
on limited metrics without exploring broader aspects of the model struggled to improve upon their initial specifications.

Our findings also invite a broader reflection on hypothesis formulation in choice modelling. As illustrated in our theoretical 
framework (Section Section 2), the process of specifying initial model assumptions is typically guided by exploratory analyses 
and theoretical reasoning, yet rarely documented as formal hypotheses. While this flexible, iterative approach allows choice 
modellers to adapt specifications based on insights from the data, it contrasts with emerging practices in the social sciences, such 
as pre-registration, aimed at improving transparency and reproducibility. Although pre-registration could be a problem given the 
exploratory nature of the model specification, the DCM-SG provides a structured environment in which initial hypotheses, modelling 
workflows, and decision points could, in future applications, be documented and studied systematically. This opens up opportunities 
for further methodological innovation around transparency, accountability, and reproducibility in choice modelling.

Our study has several limitations that provide avenues for future research. The current implementation of the DCM-SG, 
specifically in the model specification phase, imposes constraints that do not totally replicate real-world modelling scenarios. While 
the game is designed to support iterative exploration, the set of tools and model options remains limited compared to what modellers 
may use in practice. More importantly, the available in-game tools, interface structure, and modelling pathways were informed by 
the proposed framework grounded in the literature, as well as by the designers’ own understanding and experience of the choice 
modelling process. This may influence participants’ behaviour, strategies, and decision-making processes they might otherwise 
pursue. Additionally, the time constraints assigned to the game sessions might have pushed participants to use simpler models that 
they would have used in real life (63% of participants selected the MNL model as their reported model). After all, in the real world, 
modellers typically have more time and flexibility to explore complex model families and refine specifications. Moreover, contextual 
factor during data collection, such as the limited time available to participants, or the stated goal of the game, may have encouraged 
participants to prioritise completing the task over engaging in extended model exploration. While we did not include an explicit 
self-report measure of engagement, participants’ behaviour (e.g., prolonged interaction with the platform, iterative specification of 
meaningful model, and unsolicited comments on the game’s realism) indicates sustained and active engagement. Finally, participants’ 
awareness that they were being monitored may also have introduced a bias, leading them to display desirable behaviours rather 
than their own modelling practices. For instance, while we observed some modellers revisiting earlier phases (e.g., returning to DA), 
it remains unclear whether such behaviour mirrors real-world practice or was influenced by the experimental setup. To mitigate 
this, all responses were collected anonymously, and participants were encouraged to engage freely with the platform.

To overcome these limitations, future research should involve larger samples with more diverse backgrounds, extend the duration 
of game sessions to allow deeper engagement with advanced models, and improve in-game tools to enable more complex approaches 
in the model specification phase.
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Fig. 8. Screenshot of the DCM-SG instruction page.

Fig. 9. Screenshot of the DCM-SG descriptive analysis page.
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Fig. 10. Screenshot of the DCM-SG model specification page.
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Fig. 11. Screenshot of the DCM-SG report page.
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Fig. 12. Screenshot of the DCM-SG report page.
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Data availability

The code used to implement the DCM-SG will be publicly accessible via a GitHub repository.
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