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Practical Routing and Criticality in

Large-Scale Quantum Communication Networks

Cillian Harney1, 2 and Stefano Pirandola1, ∗

1Department of Computer Science, University of York, York YO10 5GH, UK
2nodeQ, 71-75 Shelton Street, Covent Garden, London WC2H 9JQ, UK

The efficacy of a communication network hinges upon both its physical architecture and the
protocols that are employed within it. In the context of quantum communications, there exists a
fundamental rate-loss tradeoff for point-to-point quantum channels such that the rate for distributing
entanglement, secret keys, or quantum states decays exponentially with respect to transmission
distance. Quantum networks are the solution to overcome point-to-point limitations, but they
simultaneously invite a challenging open question: How should quantum networks be designed to
effectively and efficiently guarantee high rates? Now that performance and physical topology are
inexorably linked, this question is not easy, but the answer is essential for a future quantum internet
to be successful. In this work, we offer crucial insight into this open question for complex optical-fiber
quantum networks. Using realistic descriptions of quantum networks via random network models
and practical end-to-end routing protocols, we reveal critical phenomena associated with large-scale
quantum networks. Our work reveals the weaknesses of applying single-path routing protocols within
quantum networks, observing an inability to achieve reliable rates over long distances. Adapting
novel algorithms for multi-path routing, we employ an efficient and practical multi-path routing
algorithm capable of boosting performance while minimizing costly quantum resources.

I. INTRODUCTION

The deployment of a world-wide quantum network will
enable provably-secure communication and cryptography
[1–6], and facilitate distributed quantum computing [7–
9] on a global scale. A quantum internet will provide
new means of information processing, leading to enhance-
ments in a number of technological domains [10–12].
However, in many ways a quantum internet will not

be like its classical counterpart [13–17]. Unlike classi-
cal information which is robust and easily copied, quan-
tum information is fragile and the laws of quantum
mechanics prohibit cloning. As a result, the rate at
which one can perform entanglement distribution, quan-
tum key distribution (QKD) or quantum state transfer
is fundamentally limited by the medium through which
it travels. The optimal transmission rate through op-
tical fiber (the primary conduit for communications)
is known exactly as the Pirandola-Laurenza-Ottaviani-
Banchi (PLOB) bound [19] which decays exponentially
with respect to transmission distance [18]. Crucially, the
infrastructure necessary for reliable quantum communi-
cations are not immediately compatible with current clas-
sical constructions, motivating numerous contributions in
the literature [20–29].
The fundamental limits of end-to-end communication

in quantum networks are also well understood [21]. Opti-
mal performance in an end-to-end setting is achieved by a
network with capacity achieving links operating a flood-
ing protocol; a protocol in which every channel in the
network is used to facilitate communication between two
end-users. These tools have been explored and expanded

∗ Corresponding author; stefano.pirandola@york.ac.uk

in a number of works, including the development of ana-
lytical tools for large-scale networks [30–32] and experi-
mental demonstrations in QKD networks [33]. Zhuang et
al. carried out invaluable assessments of random, optical-
fiber quantum networks [34, 35]. Random network mod-
els are capable of capturing complex behaviours that
arise within real world architectures [36, 37]. Hence, un-
derstanding how quantum communications can be per-
formed effectively across such models provides insight
into desirable properties for the quantum internet.

Nonetheless, glaring gaps exist in our understanding
of realistic performance and resource demands. The
most expensive resource in a quantum internet will be
the number of quantum repeaters needed in a physi-
cal network area to guarantee effective communications,
i.e. the network nodal density. While classical repeaters
are cheap and easy to deploy, quantum repeaters are
costly and should not be wasted as non-user nodes. Re-
cent studies have been able to identify important nodal
density conditions for reliable end-to-end performance
on quantum networks [30, 34, 38]. Of these investiga-
tions, Ref. [38] principally focuses on network connectiv-
ity properties and a specific single-photon transmission
protocol through pure-loss channels, while Refs. [30, 34]
evaluate network capacities with a protocol agnostic ap-
proach, using pure-loss channels and optimal flooding
protocols.

There is room for progress in each of these works. Net-
work connectivity investigations are useful, but are not
sufficient to benchmark end-to-end performance. Be-
yond pure-loss models, optical fiber is most accurately
described using thermal-loss channels that account for
environmental and experimental thermal noise. Finally,
the employment of flooding protocols on a large-scale
is highly impractical. It is not realistic to assume the
use of every edge in a potentially global network to fa-
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cilitate communication between a single end-user pair.
Some of these assumptions are effective and completely
suitable for network capacity assessments, they are over-
optimistic in the context of revealing stricter, practical
insight for quantum networking.
In this work, we tighten the assessment of critical re-

source requirements in realistic quantum networks with
two crucial improvements. Firstly, we consider random
network architectures composed of realistic link-layers;
using point-to-point channels which account for thermal
noise, experimental imperfections and practical point-to-
point protocols. This immediately improves our charac-
terisation of realistic quantum networks, and reveals the
impact of point-to-point limitations on network connec-
tivity models.
Secondly, we explore the efficacy of practical end-to-

end routing in quantum networks to identify critical re-
source requirements of quantum networks. Moving away
from impractical flooding schemes, we study the feasi-
bility of single-path routing and resource efficient multi-
path routing, adopting recent results in the efficient gen-
eration of end-to-end multi-paths [39]. Our results sug-
gest that single-path routing is an inefficient strategy
for reliable rates on large-scale quantum networks. In-
stead, there exist efficient multi-path routing protocols
which can efficiently achieve close to optimal rates with-
out consuming the entire network. Furthermore, differ-
ent network architectures observe a suitability to quan-
tum multi-path routing which others do not. All of these
results identify important design criteria for future, large-
scale quantum networks while motivating the further de-
velopment of practical multi-path protocols.

II. QUANTUM NETWORKS

A. Preliminaries

A quantum communication network can be described
as a collection of nodes P = {xi} which are intercon-
nected by a collection of edges E = {(xi,xj)}i,j , result-
ing in a finite, undirected graph N = (P,E). A network
node x ∈ P represents a station which contains a reg-
ister of quantum systems and the capability to transmit
these systems to other nodes in the network. This sta-
tion may act as a repeater node, or a potential user of
the network. A pair of nodes x and y are connected by
an undirected edge (x,y) ∈ E if there exists a quantum
channel Exy between them; permitting the exchange of
quantum systems between them.
A quantum network can be used to facilitate many

different communication configurations which fall into
two main categories: End-to-end and multi-end com-
munications. In an end-to-end network protocol, two
remote users a, b ∈ P aim to establish quantum com-
munication between one another, and all other nodes in
the network can be used to enable this goal. Multi-end
communication configurations form a much broader class

with tasks ranging from multiple-unicast (many pairs
of end-to-end protocols simultaneously executed on the
same network) to multi-casting (senders communicating
unique messages with many receivers) and broadcasting
(senders communicating identical messages with many
receivers).
In this work, we focus on end-to-end strategies. The

ability of a quantum network to achieve strong end-to-
end rates serves as a primitive for all other communi-
cation configurations. If strong end-to-end rates cannot
be achieved, this promises difficulties for more complex
multi-end scenarios in which network competition will
only serve to reduce performance.

B. Network Link Layers

For an arbitrary quantum network N = (P,E) we can
define a rate distribution K as the collection of point-to-
point rates K := {Kxy}(x,y)∈E , where Kxy denotes the
rate at which a network edge is able to operate. The rate
distribution of any network depends on the end-to-end
task at hand (key distribution, entanglement distribu-
tion, quantum state transfer), the channel quality and
the point-to-point protocols being used. Here, we fo-
cus on realistic description of the link layer via bosonic
thermal-loss channels and consider two distinct descrip-
tions of their rates: (i) Each link operates at its two-
way assisted quantum and private capacities, delivering
point-to-point protocol-agnostic insight to the limits of
the network, and: (ii) The rate of each link is described
by an asymptotic secret key-rate according to practical
QKD protocols, providing insight into the properties of
future QKD networks.
We begin by considering quantum channel capaci-

ties. Bosonic quantum communications performed over
optical-fiber is best described using a Gaussian thermal-
loss channel Eη,n̄ of transmissivity η ∈ (0, 1) and out-
put thermal noise of n̄ photons. This channel can be
described by the action of a beam-splitter of trans-
missivity η which mixes the input mode with an en-
vironmental thermal mode with mean photon num-
ber n̄env := n̄/(1− η) [40]. This transforms the in-
put quadratures of a single-mode input Gaussian state
x̂ = (q̂, p̂)T according to x̂ → √

ηx̂ +
√
1− ηx̂env, where

x̂env is the quadrature operator of the thermal environ-
mental mode. When n̄ = 0, the environmental mode is in
the vacuum state, and this becomes a pure-loss channel.
Unfortunately, the exact capacity of bosonic thermal-

loss channels is not known but can instead be
tightly bounded. Defining the channel transmissivity
ηch := 10−γd where γ ≈ 0.02 (corresponding to 0.2
dB/km) is the fiber loss rate and d is the channel length
(km), we can write the bounds T l

η,n̄ ≤ C(Eη,n̄) ≤ T u
η,n̄,

where we define the bounding functions,

T l
η,n̄ := − log2(1− η)− h (n̄env) , (1)

T u
η,n̄ := T l

η,n̄ − n̄env log2(η), (2)
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and h(x) := (x+ 1) log2(x+ 1)− x log2(x) is an entropic
function.
Hence, the optimal rate of any end-to-end protocol on

a bosonic thermal-loss network can always be bounded
by modelling its rate distributions using the single-edge
capacity bounds. That is, given a network N = (P,E),
we may investigate the performance of an end-to-end pro-
tocol on this network subject to the rate distributions,

Kl = {T l
ηxy,n̄xy

}(x,y)∈E , (3)

Ku = {T u
ηxy,n̄xy

}(x,y)∈E . (4)

Using this knowledge, we can bound the optimal perfor-
mance of end-to-end protocols on bosonic thermal-loss
networks. A similar approach can of course be applied
to networks composed of other channels with unknown
channel capacities.
Unfortunately, practical, near-term performance lev-

els for quantum communications remain some way off of
optimal rates described by channel capacities. It is there-
fore beneficial to investigate the properties of quantum
networks subject to realistic protocols and technologies
that are achievable today. In this regard, QKD stand
as the most deployable quantum communication task to
date; yet, realistic resource assessments of QKD networks
remain largely unknown. Hence, we also initiate an as-
sessment of large-scale trusted-node QKD networks. By
treating each network node as a trusted user station, we
are able to investigate large-scale network constructions
in which the single-edge rates are captured by well known
point-to-point secret-key rates. In this way, we are able
to exploit practical key-rates associated with QKD proto-
cols and assess the capabilities/resource requirements of
QKD networks. To see the precise key-rate expressions,
we point the reader to Appendix A.

C. End-to-End Routing and Rates

An end-to-end protocol is characterised by its rout-
ing strategy, the protocol which dictates the path (or
paths) that logical quantum communication [43] follows
throughout the network in order to communicate between
end-users. An end-to-end route between a pair of remote
end-users a, b can be defined as a collection of network
edges which connect one end-user to the other. We can
define a single-path route as a set

ω := {(a,x1), (x1,x2), . . . , (xN , b)}, (5)

and define a route as free of cycles (without loss
of generality). Any route ω refers to an associ-
ated collection of quantum channels {Exy}(x,y)∈ω =
{Eax1

, Ex1x2
, . . . , ExNb}, through which quantum sys-

tems must be exchanged to establish end-to-end quantum
communications. In quantum networks, a routing strat-
egy must be chosen to dictate how network interactions
are followed. There exist two main classes of end-to-end
routing strategy: Single-path and multi-path routing.

Single-path routing describes a network protocol, Psp,
in which quantum systems are exchanged from node-to-
node throughout the network in a sequential manner.
This forges a unique path of interactions through the
network, and continues until quantum communication
has been established between the end-users. This is the
standard strategy used for classical networking and is
extremely effective thanks to the robustness of classical
information.

The vulnerability of quantum networks to decoherence
means that it is extremely valuable to explore more gen-
eral multi-path protocols, Pmp in order to enhance per-
formance. Network nodes may exchange multiple quan-
tum systems with many receiver nodes, repeating un-
til communication is established between the end-users.
End-users may explore a variety of end-to-end routes si-
multaneously in a way which enhances their performance.

Let us give a generalised description of an end-to-end
protocol. Consider a quantum network N = (P,E), a
routing protocol P and an end-user pair Alice a and Bob
b which we collect into a single end-user quantity for
ease of notation, i := {a, b} (a, b ∈ P ). Alice prepares a
generally multipartite quantum state in her register and
performs a point-to-multipoint transmission, exchanging
quantum systems with all the nodes in her neighbour-
hood a → na := {x ∈ P | (a,x) ∈ E}, where nx de-
notes the neighbourhood of a node x. We assume that
the use of any edge is probabilistic, such that any node
x only exchanges systems with a node y according to
a forwarding probability, qxy ∈ [0, 1]. After this point-
to-multipoint transmission, each node x ∈ na will do
the same thing with each of their neighbours and per-
form system exchanges along any available edge which
has not yet been used (according to their own forwarding
probability). This process of multipoint exchanges will
continue throughout the network until eventually a fi-
nal multipoint-point exchange will occur with Bob’s node
and his neighbourhood nb → b. At this point, communi-
cation has been established between the end-users.

Over the course of many transmissions, every edge
(x,y) ∈ E in the network will have been utilised qxy-
times on average. In this way, we have described a gen-
eralised version of the standard flooding protocol Pfl [21].
Instead of using every edge once in order to establish end-
to-end communication, i.e. qxy = 1 for all (x,y) ∈ E,
each edge is used qxy ≤ 1 times on average.

In large networks, the use of standard flooding is not
practical, since this requires the use of potentially huge
number of edges for a single-pair of uses. The distribution
of forwarding probabilities {qxy}(x,y)∈E is completely de-
fined by the chosen routing protocol. It can be readily
modified to exclusively perform end-to-end communica-
tion along a selection of M ≥ 1 paths which we collect
into the route set, ΩP := {ω1, ω2, . . . , ωM}. It is useful to
denote an analogous routing edge set EP which unpacks
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the route set into all its unique edges,

EP := ω1 ∪ . . . ∪ ωM =

M⋃

i=1

ωi. (6)

More precisely, a protocol P which deterministically uses
a finite set of routes ΩP generates a forwarding probabil-
ity distribution of the form

qxy =

{

1 iff (x,y) ∈ EP ,

0 otherwise,
(7)

for all (x,y) ∈ E. It is clear that if we reduce this set
of potential paths to only one route ΩP = {ω1} then
we reclaim a single-path protocol, Psp. Otherwise, we
engage in a multi-path protocol, Pmp.
The end-to-end rate associated with this general form

of protocol can be computed by solving the max-flow
min-cut theorem [21]. That is, an end-to-end rate is
found by determining the set of edges in the network
which simultaneously disconnect the end-user pair and
minimize the sum of all their single-edge rates. We call
this partitioning a network cut C which generates the set
of edges which creates the partition, or cut-set C̃ (see Ap-
pendix B). Given a single-edge rate Kxy and its forward-
ing probability qxy, its effective rate is given by qxyKxy.
Hence, the end-to-end rate between i on the network N
using P can be computed by

K(i,N|P) := min
C

∑

(x,y)∈C̃

qxyKxy. (8)

III. RANDOM QUANTUM NETWORKS

A. Link Quality and Edge Pruning

The study of random network models is a rich and
wide-spanning field, within which many key tools have
been developed. Of course, random network models can-
not capture all of the features of a future quantum in-
ternet; these features will emerge as the technology is
developed and deployed. Nonetheless, relevant random
networks are able to capture and predict important be-
haviours of realistic complex networks. In this work, we
consider the classes of Waxman and scale-free networks
with two important considerations: Realistic link-layer
descriptions and practical end-to-end protocols.
To address the weak rates achieved by quantum links

over long distances, we impose a modification to the stan-
dard random network models. Network edges which pos-
sess a point-to-point rate below some threshold value ε
are pruned and removed from the network edge set after
graph generation. Under this modification networks can
only be considered completely connected if they are com-
petently connected by edges with Kxy ≥ ε. Given that
desirable clock rates C for quantum communications are

N = 250 N = 500 N = 1000

(a) Waxman - R = 750 km, r0 = 100, β = 1:

Fixed node number:

(b) (c)

N = 500 1000 5000
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Figure 1. Connectivity properties of bosonic thermal-loss
Waxman networks. Panel (a) displays random networks gen-
erated under the parameters listed above and using single-
edge capacity upper-bounds. The colour intensity of each
edge is proportional to its capacity. Panel (b) plots the aver-
age main component fraction, in which the critical densities
necessary for a connectivity phase transition are identified by
the black lines. Panel (c) shows the average degree of networks
with a fixed number of nodes (given in legend) with respect
to variable network density and area respectively. The legend
identifies the fixed node number and indicates whether the
network uses upper or lower bounds on the rate distributions.

on the order of GHz, we set ε ∼ 10−12 so that valid
network edges must guarantee at least CKxy ≳ 1 mbit
per second [44]. The notion of pruning goes towards pre-
serving network resources that are otherwise wasted, and
offers a more accurate representation of network connec-
tivity. Importantly, it affects our random network mod-
els in unique ways, reflecting the potential impact of poor
link quality in a realistic quantum internet.

B. Waxman Networks

Networks from the Waxman class N ∈ W are con-
structed as follows: A number of N nodes are generated
in a region of area A, and any pair of nodes x,y are con-
nected with a probability that decays exponentially with
respect to their point-to-point separation, rxy. More pre-
cisely, a channel Exy between the nodes x,y is created
with probability

pWxy := βe−
rxy

r0 . (9)

The parameters β, r0 are characteristic of the model and
influence generation process; β ∈ (0, 1] defines a maxi-
mum probability of connection, while r0 ∈ (0,∞) dictates
the speed at which the connection probability exponen-
tially decays. Erdős-Rényi networks are a specification
of the Waxman model such that r0 → ∞, i.e. there is no
decay with respect to channel length but the probability
of connection is simply pER

xy := β ≤ 1.
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Examples of N node networks contained in circular
areas of radius R can be seen in Fig. 1(a). In order
to analyse these networks, we define Ngc as number of
nodes in the giant component of the network (largest
subset of nodes between which all nodes possess paths
to one another). Furthermore, we define the degree of a
node kx as the number of nodes to which it is connected.
When N is very small (or R is very large) the network
is sparse and poorly connected; the average distance be-
tween nodes is large so that links will connect with very
low probability under Eq. (9). As a result, the network
will be clustered and incompletely connected [45]. This
can be seen in Fig. 1(a) for N = 250 nodes. Yet, as N
is increased (or R is decreased) then the average nodal
separation will shrink, increasing the likelihood of con-
nections. Eventually, the nodal density becomes large
enough to promise that the number of nodes in the giant
component Ngc = N and there exists end-to-end paths
between all nodes.
This behaviour in Waxman networks is well known,

and gives rise to a percolation phase transition. As seen
in Fig. 1(b) There exists a critical nodal density ρ⋆G at
which the model abruptly transits from poorly connected
(Ngc < N/2) to well connected (Ngc ≥ N/2). The
phase transition is illustrated in Fig. 1(b) in the con-
text of bosonic thermal-loss networks, where we plot the
average fraction of the network contained in the giant
component, ⟨Ngc/N⟩. One can similarly see in Fig. 1(c)
how the average nodal degree ⟨k⟩ undergoes a collapse as
the network area is expanded, leading to the connectiv-
ity transition. It can be seen that the critical density is
bounded between 1.6×10−4 ≲ ρ⋆G ≲ 4.3×10−4 nodes per
km2. This is nearly two orders of magnitude larger than
that predicted by bosonic pure-loss networks, for which
ρ⋆G ∼ 7 × 10−6 nodes per km2 [34, 38]. This empha-
sises thermal decoherence as a vital consideration since
the impact of environmental noise alone can significantly
degrade connectivity.

C. Scale-free Networks

Another important random architecture is that of
scale-free networks S. A network is scale-free if their
degree distribution (probability distribution of nodes in
S having degree k) follows a power law, i.e. pk ∝ k−γ

where γ is some real number characterizing the distri-
bution. Many real world networks (such as the classi-
cal internet) are thought to exhibit scale-free properties,
however it is rare that a network is precisely scale-free
[46]. In this work, we study scale-free networks gener-
ated dynamically using Yook’s model [47, 48] in which
new nodes y are iteratively added to an initially small,
n0 node connected network. Each new node y is attached
to a collection of m existing nodes {xi}mi=1 with proba-
bility

pSxy ∝ k
σdeg
x /rσr

xy, (10)

N = 250 N = 500 N = 1000

(a) Scale-Free - R = 100 km, n0,m, σdeg, σr = 10, 5, 1, 0:

Fixed node number, n0,m, σdeg = 10, 5, 1:

(b)
(c)
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Figure 2. Connectivity properties of bosonic thermal-loss
scale-free networks. Panel (a) displays random networks gen-
erated under the parameters listed above and using single-
edge capacity upper-bounds. The opacity of each edge is pro-
portional to its capacity. Panel (b) plots the average giant
component fraction and (c) the average degree of networks
with a fixed number of nodes with respect to variable net-
work density and area respectively. The legend identifies the
fixed node number and σ exponent.

where σdeg, σr ∈ R
+
0 are model parameters which controls

the influence degree and link length have on connection
probability.

Some example networks are illustrated in Fig. 2(a). In
general, the connectivity properties of scale-free networks
are very different to those of Waxman networks. Fig. 2(b)
shows the behaviour of the giant component with respect
to fixed node number and nodal density. When there is
no connection dependence on link length (σr = 0) there is
no critical density. The giant component eventually tran-
sits to ⟨Ngc/N⟩ = 1, but less abruptly, and at a higher
density than that of Waxman networks. Increasing σr,
one can see that the network becomes fully connected
more quickly and a critical density begins to emerge as
we recover the transition shape from Fig. 1(b).

There are also notable differences in the context of av-
erage nodal degree, ⟨k⟩. The average degree of Wax-
man networks scales exponentially with respect to nodal
density. In the scale-free setting, the relationship be-
tween connection probability and nodal degree gives rise
to nodal hubs (i.e. nodes to which most others are con-
nected) but also a significant level of sparsity, so that
most nodes have a very low degree. This is due to the
mechanism of preferential attachment, as nodes which
have high degrees are more likely to gain more connec-
tions. As seen in Fig. 2(c), at high densities, scale-free
networks saturates to a maximum value ⟨k⟩ → 2m.

However, at lower network densities this is not the case
and the average degree undergoes a collapse. This can
be understood as follows: When new nodes are added,
they attempt to connect with m other existing network
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nodes. At low densities, nodes are typically too far away
to forge competent links. When a new node is added,
the σr = 0 model has no preference in choosing m nodes
within a quality connection range and thus new nodes fail
to connect reliably and the average degree collapses. For
σr = 1, there exists some preference for choosing nearby
nodes which is capable of slowing the ⟨k⟩ decay. Forcing
a stronger link length dependence at σr = 2 slows this
rate even further and raises the degeneracy with respect
to node number.
Clearly, setting the parameter σr = 2 breaks the

“scale-freedom” of this model, since the degree behaviour
is no longer independent from N . However, this depen-
dence is an inevitable consequence of utilizing quantum
communications. As with the classical internet, it is
likely that scale-free properties will emerge in quantum
networks. However, network engineers will not turn a
blind eye to link length and channel quality, making the
σr = 0 model unrealistic, rendering larger values of σr

meaningful and interesting. Throughout this work we
focus on σdeg = 1, σr > 0 models as better reflections of
future quantum networks which we refer to as the net-
work class Sσr

.

IV. PRACTICAL ROUTING AND
PERFORMANCE-DEFINED CRITICALITY

A. Benchmarking Performance

Consider a class of quantum networks N = {Ni}i and
a specific routing protocol P. For any network N =
(P,E) ∈ N drawn from this class, one can define the
average end-to-end rate as that which is averaged over
all possible end-user pairs in the network. We denote
this set of end-users by

I := {ij}j = {{aj , bk}}j ̸=k. (11)

Then the average end-to-end rate takes the form,

⟨K⟩N|P :=
1

|I|
∑

i∈I

K(i,N|P) (12)

where K(i,N|P) is the rate achieved between the end-
user pair i = {a, b} given that they engage in the rout-
ing protocol P (given in Eq. (8)). In an N node net-
work there exist C2

N potential end-user pairs (where Ck
n

denotes the binomial coefficient), which may be far too
large to consider explicitly. In practice, we will sample L
end-user pairs from N to approximate the average end-

to-end rate, ⟨K⟩N|P ≈ 1
L

∑L
j=1 K(ij ,N|P) which can be

computed along with statistical error considerations.
This quantity benchmarks the ability of quantum com-

munication on a specific network. To assess the efficacy
of a routing strategy more generally, we study the en-
semble average end-to-end rate sampled across the entire
network class. Given that any network N ∈ N is drawn

with equal probability, then the ensemble average rate is
equal to

⟨K⟩N|P :=
1

|N|
∑

N∈N

⟨K⟩N|P . (13)

For the network classes with which we are interested, N
can be incredibly large (or infinite). Hence, we are not
be able to exactly compute Eq. (13) but instead compute
an accurate approximation over a sample space of M ′

networks {Ni}L
′

i=1 such that ⟨K⟩N|P ≈ 1
L′

∑L′

i=1⟨K⟩Ni|P .
This approximation can be made sufficiently accurate by
taking enough end-user samples L and network class sam-
ples L′.
These concepts can be immediately translated in the

context of end-to-end capacities rather than rates. In-
deed, one can readily define a specific end-to-end ca-
pacity C(i,N|P), an average ⟨C⟩N|P and ensemble av-
erage ⟨C⟩N|P . The only difference is the description of
the point-to-point rates throughout the network; when
network links are considered to operate at their capacity,
then we are studying the end-to-end capacities. Other-
wise, they are sub-optimal end-to-end rates.

B. Benchmarking Efficiency

Routing protocols should not only be benchmarked
with respect to performance, but also with respect to
efficiency, i.e. what proportion of network resources is
required to guarantee a particular level of performance?
Therefore, it is useful to define a measure which we call
the routing consumption, which quantifies the proportion
of network edges used via a given routing protocol. Given
a network N = (P,E), an end-user pair i = {a, b} and

a routing protocol P, the routing consumption Ẽ is the
fraction of network edges required to perform communi-
cation,

Ẽ(i,N|P) :=
|EP(i,N )|

|E| , (14)

where |EP(i,N )| is the number of edges in the routing
edge set connecting the end-user pair. We can then define
an average end-to-end routing consumption by averag-
ing over end-user pairs ⟨Ẽ⟩N|P := 1

|I|

∑

i∈I Ẽ(i,N|P),

which of course extends to an ensemble average over a
class of networks ⟨Ẽ⟩N|P := 1

|N|

∑

N∈N
⟨Ẽ⟩N|P , following

the notation convention used for end-to-end rates. As
before, these quantities are estimated by sampling from
the set of end-user pairs and the network class.
The routing consumption is a useful measure of how

resource efficient a network protocol is at achieving its
rates. A protocol which can attain high-rates with a
low routing consumption is clearly a desirable strat-
egy. Hence, a tradeoff exists between end-to-end rates
and routing consumption. While we know flooding to
be rate optimal, it will always satisfy ⟨Ẽ⟩N|Pfl

= 1 be-
cause it utilises all network edges; hence it is most likely
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sub-optimal from the perspective of routing consump-
tion. For single-path protocols we can typically expect
⟨Ẽ⟩N|Psp

≪ 1, but its rates may be poor. It is most

interesting to inspect the behaviour of ⟨Ẽ⟩N|Pmp
as un-

derstanding the relationship between end-to-end rate, re-
source consumption and practical multi-path routing is
least understood.

C. Practical Routing

In practice, one must be able to deploy a routing algo-
rithm which informs network nodes how to interact and
establish communication between the end-users. This
algorithm characterises the network protocol, for which
there are some intuitive, practical objectives. The algo-
rithm should:

1. Identify an end-to-end path (or paths) which max-
imize the rate between users. Alternatively, the
protocol should surpass a target rate requirement.

2. Minimize the network resources needed to achieve
said end-to-end rate, i.e. minimize the necessary
network nodal density as well as the number of
links/nodes which participate in communication.

3. Be efficient enough to run and facilitate routing
without impeding the end-to-end rate.

It is extremely important that each of these points are
considered for a routing strategy to be deemed practical.
A easily executed protocol is useless if it identifies poor
routes, while a protocol which establishes high rate routes
very slowly is equally undesirable.
Single-path routing is the principal mechanism for clas-

sical communications, fundamentally achieved by Dijk-
stra’s algorithm (DA) [49]. Generally, this is a greedy al-
gorithm for single-path route optimisation according to a
path defined cost function, which measures a property of
end-to-end routes that one wishes to optimise, e.g. min-
imisation of path length or maximisation of bottleneck
rate. The challenges which extends from the point-to-
point rate limitations of quantum communications means
that rate optimisation is the salient task. This is also
known solving the widest path problem. For a network
N = (P,E), DA locates the widest path efficiently in
run-time O(|E| + |P | log2 |P |). Given a single-path pro-
tocol Psp and an end-user pair, the optimal end-to-end
rate is given by

K(i,N|Psp) := max
ω

min
(x,y)∈ω

Kxy, (15)

where the maximisation is performed over all possible
end-to-end routes [50].

To mitigate single-path performance limitations,
multi-path routing emerges as good solution. Flooding
represents a useful paradigm for benchmarking optimal
network performance, but it is not practical in many

real world settings. Utilizing an entire network to fa-
cilitate one end-user pair renders the network useless for
any other set of users to communicate simultaneously. In
reality, we want to enable the concurrent use of a network
for many users.
A basic approach to building high-rate multi-paths is

to perform an iterative form of DA. This is a modi-
fied algorithm which locates multiple end-to-end routes
which are either edge-disjoint (no two paths share the
same edge) or node-disjoint (no two paths visit the same
node). Both of these versions involve executing a Di-
jkstra search, followed by a network modification where
edges included in previous paths (or in the neighbour-
hoods of nodes in previous paths) are not included in the
next search. Locating M end-to-end paths requires M
executions of DA, leading to an increased time complex-
ity O(M(|E|+ |P | log2 |P |)). This a costly scaling factor
which does not lend well to deployability in large-scale
networks.

D. Efficient Multi-Path Routing

Fortunately, there are ongoing developments in the
study of fast algorithms for multi-path routing [51–55].
In particular, Lopez-Parajes et al. recent devised an effi-
cient, centralised, one-shot approach to multi-path rout-
ing through their Multiple Disjoint Path Algorithm (MD-
PAlg) [39]. They recognised that a single execution of DA
observes much more information than it actually utilises.
Given a source node a, the standard DA focuses on build-
ing a minimum cost tree from which only the optimal
end-to-end paths can be located from any other node
x ∈ P \ {a} in the network. It does this by storing a
minimum cost set (stores the minimum cost associated
with traversing from a to any node x) and a parent node
set (stores the parent node from which the minimum cost
was obtained to x). With these quantities, DA can then
reconstruct a minimum cost path by backtracking from
a target node b along the parent-node tree until a is
reached.
Alternatively, the MDPAlg uses a cost matrix to collect

additional information on the aggregated cost from a to
any other node; not just the minimum cost. Whereas DA
would discard information concerning sub-optimal paths,
the MDPAlg stores such information in the cost matrix
so that they may be used to construct additional end-
to-end paths later. Furthermore, it does this through
only a single search of the network rather than the many
searches that may be required by an iterative Dijkstra
approach. The cost matrix can then be used to recon-
struct the optimal path, and many other paths between
the source a and b ∈ P \ {a}.
The original algorithm identifies multiple shortest

paths but can be modified to optimise alternative cost
functions. In this work, we modify the MDPAlg in such
a way that approximates rate optimisation by minimizing
the inverse accumulated rate over the course of an end-
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to-end route. We may call this variant IAR-MDPAlg.
We do not minimize the total route length, but rather
the sum of its inverted rates. More precisely, we utilise
the following optimisation ansatz to locate high-quality,
low-resource intensive routes,

ω⋆ := argmin
ω∈Ω

∑

(x,y)∈ω

(K−η
xy + ϵ). (16)

Here, ω⋆ is an optimised route, Ω is the set of all pos-
sible paths between a given end-user pair. Meanwhile
η, ϵ ∈ R

+
0 are real hyperparameters. This aligns with

minimizing the sum of the inverse point-to-point rates
along a path ω, adding a penalty for channel usage ϵ as-
sociated with each link. It follows that η controls the
strength of penalizing the use of links with weak rates,
while ϵ controls the penalty strength of resource con-
sumption. Minimizing this cost function simultaneously
locates a path which maximizes the sum of the point-to-
point rates along the path while minimizing its length;
indirectly identifying a high-rate and edge-efficient route.

In this way, the algorithm will (typically) identify
routes with large bottleneck rates. While this approach is
approximate, we show in this work that it is effective (for
more details we refer the reader to Appendices C and D).
Furthermore, we focus on the edge-disjoint format under
the assumption that repeaters may have multiple quan-
tum registers that operate concurrently to route quan-
tum systems along different channels. The edge-disjoint
version can locate more end-to-end paths than its node-
disjoint counterpart, thus offering greater utility.

There are two potential versions of multi-path proto-
col that we may consider. To enhance rates, one may
insist upon the use of M > 1 end-to-end paths, where
M is fixed. This is an intuitive approach which we call
fixed route number protocols, denoted by PM

mdp. How-
ever, a pair of end-users may be more interested in pre-
serving resources granted that they possess a particular
rate guarantee. It is easy to devise a protocol in which
there is a rate requirement; via the IAR-MDPAlg, we use
the least number of end-to-end routes required to achieve
R⋆ bits per protocol use. Denoted by PR⋆

mdp, this is easily
implemented strategy and reflects the quality of service
principle in classical networks.

It is important to note that the IAR-MDPAlg is not
optimal and may not always match the performance of
iterative Dijkstra (or, of course, flooding). However, we
will see that any minor cost in performance is vastly out-
weighed by gains in efficiency, as the IAR-MDPAlg can
construct end-to-end multi-paths orders of magnitude
faster than iterative Dijkstra approaches (see Ref. [39]
for cost analyses). This makes it a much more practical
method and allows us to perform numerical assessments
that would not be possible otherwise. For a more de-
tailed explanation of the algorithms used in this study,
we refer the reader to Appendix D.

E. Criticality of Quantum Networks

It is essential to pursue a rigorous and quantitative
assessment of practicality with respect to quantum net-
work routing, and allow us to understand the core net-
work features which guarantee both performance and ef-
ficiency. To this end, the concept of network criticality
is vital. A critical transition is an abrupt regime shift in
the behaviour of some complex system, such that the sys-
tem transits from sub-to-super-critical with respect to a
particular property. In the context of complex quantum
networks, we have already discussed how critical transi-
tions may occur with regards to robustness (connectivity)
but it can be extended to notions of performance [34] or
routing efficiency. A major contribution of our work is
to introduce routing consumption-criticality, identifying
network regimes within which end-to-end routing is effi-
cient via practical routing.
We begin with performance-defined criticality; criti-

cal properties within a quantum network model which
a guarantee a transition from unreliable rates to con-
sistent super-critical rates. A useful manifestation of
performance-based criticality that can arise is end-to-
end distance independent rates, i.e. the spatial separa-
tion of users is independent of communication quality.
This is especially important to quantum networks in or-
der to overcome point-to-point limitations. Furthermore,
these measures are more appropriate than purely con-
nectivity defined quantities, since they make meaning-
ful assessments of the efficacy of a network to perform
quantum communications. This quantity was first intro-
duced in [34] in the context of network flooding protocols
Pfl and was used to illuminate critical insight for quan-
tum network composed of bosonic pure-loss channels. In
this work, we explore such critical densities relative to a
broader range of routing protocols and link-layer descrip-
tions.

Definition 1 (Performance-defined Critical Density):
For a class of quantum networks N, and a network rout-
ing protocol P, we define ρ⋆

N|P as the minimum nodal

density required to guarantee an ensemble average rate of
⟨R⟩N|P ≥ 1 bit/protocol use.

The critical nodal density ρ⋆
N|P is an extremely impor-

tant measure since quantum repeaters are costly and they
should be minimized as a resource in a future quantum
internet. Investigations of this quantity with respect to
flooding ρ⋆

N|Pfl
and capacity achieving bosonic lossy net-

works have been carried out, which can be considered a
lower-bound for all other critical densities. Indeed, min-
imizing this quantity over all protocols is equivalent to
the flooding defined critical density,

ρ⋆N := min
P

ρ⋆
N|P = ρ⋆

N|Pfl
≤ ρ⋆

N|P . (17)

Nonetheless, analogous studies have not been carried out
for other routing protocols or networks.
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The performance-based critical density is a valuable
characteristic of a quantum network model, however it
lacks insight to the resources required to achieve critical
rates. Networks may be super-critical with respect to
performance but may demand impractical resources to
do so. To address this we can analyse efficiency regimes
with respect to routing, defining a consumption-based
critical density.

Definition 2 (Consumption-defined Critical Density):
Consider a class of quantum networks N, and let N(ρ) ⊂
N be a subset of this class with nodal density ρ. For a
network routing protocol P, we define ρ̃⋆

N|P as the den-

sity at which the routing consumption is maximized and
after which it undergoes consistent decay. More pre-
cisely, ρ̃⋆

N|P := argmaxρ ⟨Ẽ⟩N(ρ)|P , such that ⟨Ẽ⟩N(ρ)|P ≤
⟨Ẽ⟩N(ρ̃⋆

N
)|P , ∀ρ ≥ ρ̃⋆

N
.

Hence, ρ̃⋆
N|P represents a secondary critical measure

which separates network classes into different efficiency
regimes. Executing the same protocol, networks which
possess a nodal density ρ > ρ̃⋆

N|P will consume a smaller

fraction of network resources during routing. Further-
more, this efficiency increase as the density continues to
grow. We may connect the concepts of performance and
routing consumption within the following definition.

Definition 3 (δ-Critical routing consumption): Con-
sider a class of quantum networks N. The critical rout-
ing consumption ⟨Ẽ⟩⋆

N
is the minimum ensemble average

fraction of network edges that must engage in end-to-end
routing granted the ensemble average rate is ⟨R⟩N|P ≥ δ
bits per network use, given that δ ≤ ⟨R⟩N|Pfl

. More pre-
cisely, the critical routing consumption is

⟨Ẽ⟩⋆N,δ := min
P:⟨R⟩N|P≥δ

⟨Ẽ⟩N|P . (18)

The definition in Eq. (18) can be made intuitive in
the following way: There exists a critical routing con-
sumption achieved by an end-to-end protocol which can
promise δ bits per network use on average, such that δ is
an attainable network rate. Further to this performance
guarantee, the protocol minimizes the ensemble average
fraction of network edges used, i.e. on average, it is the
most efficient routing mechanism which promises the tar-
get rate. It is by no means clear how to determine the
optimal protocol. However, the tools developed in this
paper can effectively bound the critical routing consump-
tion via practical routing schemes. In fact, we may write

⟨Ẽ⟩N|Psp
≤ ⟨Ẽ⟩⋆N,δ ≤ ⟨Ẽ⟩N|Pmp

. (19)

The optimal single-path protocol can always be a lower-
bound, which is saturated iff an ensemble average δ bits
per network use is achievable via single-path routing.
An appropriate multi-path strategy generates the upper-
bound. Indeed, there will always exist a multi-path strat-
egy capable of this since one can employ a flooding pro-
tocol in the worst case (least efficient) scenario.

V. NUMERICAL RESULTS

A. Benchmarking Waxman Fiber Networks

In Fig. 3 we present relationships between nodal den-
sity, routing consumption and end-to-end capacities on
bosonic thermal-loss Waxman networks, with an upper-
bounding capacity distribution Ku (lower-bounding ca-
pacity distribution Kl). Each network edge represents
an optical-fiber link of loss rate 0.2 dB/km and environ-
mental thermal noise n̄ = 1/500 connecting ideal trans-
mitter/detectors. The Waxman parameters are set as
r0, β = 100, 1 (r0, β = 63, 1), where the decay parame-
ter corresponds to the approximate distance at which the
single-edge capacity upper-bound collapses to zero ∼ 100
km (∼ 63 km). Since we are considering end-to-end ca-
pacities, results concerning these networks offer universal
benchmarks for any fiber-based Waxman network.
Figs. 3(a)-(b) depict the ensemble average end-to-end

capacities with respect to nodal density for a num-
ber of routing strategies. In Ref. [34], the authors
identified a performance-based critical nodal density of
ρ⋆
N
≈ 4.25× 10−4 nodes/km2 associated with flooding

and bosonic pure-loss networks. The consideration of
environmental thermal-noise naturally increases the crit-
ical density such that ρ⋆

N
≈ 7.35× 10−4 (1.04 × 10−3)

nodes/km2 (the density in parentheses refers to the lower-
bounding capacity distribution). While significant, this
shift remains relatively optimistic since the considered
thermal-loss link layer does not consider additional ex-
perimental sources of thermal noise in an effort to remain
protocol agnostic.
Critical densities with respect to flooding protocols are

inherently optimistic, due to the unrealistic resource de-
mand. This optimism is emphasised when one consid-
ers the utility of single-path routing. Fig. 3(a) clearly
illustrates the intense demands on the network den-
sity required for single-path routing to reach critical-
ity, and promise effective end-to-end rates. We find the
single-path critical nodal density to be approximately
8.52× 10−3 (8.86 × 10−3) nodes/km2, which is an or-
der of magnitude larger than that predicted by flooding.
On large-scales, a stark increase of this magnitude has
significant ramifications for the cost and deployability of
quantum networks. Therein lies the necessity for effi-
cient multi-path routing protocols. Fig. 3(b) illustrates
the efficacy of IAR-MDPAlg based routing, showing that
flooding is not necessary to preserve lower critical densi-
ties. Each variant of the multi-path protocol is able to
recover a critical density close to that offered by flooding,
reinforcing the notion that high-rates can be guaranteed
with realistic resources.
Further evidence of this is gathered in Figs. 3(c)-(d)

which plot the routing consumption of the protocols
Psp and PR⋆=1

mdp respectively. While single-path proto-
cols are expected to achieve very low routing consump-
tions, the same expectation is not necessarily held for
multi-path routing. However, the protocol PR⋆=1

mdp can
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Figure 3. Relationships between performance, routing consumption and nodal density in bosonic thermal-loss Waxman net-
works. The network link layer in all cases is described by the upper-bound capacity distribution Ku from Eq. (4) and model
parameters (r0, β) = (100, 1). Panels (a)-(b) plot the ensemble average end-to-end capacities achieved by different routing
protocols and a number of network radii, R (each protocol and network radius is colour coded with the routing protocol and R

legends). Panels (c)-(d) show the ensemble average routing consumption of (c) single path routing and (d) PR⋆=1
mdp routing via

the IAR-MDPAlg. Panel (e) depicts achievable end-to-end routes on an example network (according to the parameters listed)

using Psp and PR⋆=1
mdp for users separated by ri ≈ 800 km. Black edges in the networks identify unused edges, while red edges

are those which engage in the routing protocol.

obtain a critical density of approximately 8.15× 10−4

(1.21 × 10−3) nodes/km2, while maintaining a average
maximum routing consumption of approximately 0.44
(0.36). That is, no more than half of the network edges
are ever required to participate in end-to-end routing.
Even before single-path routing is a plausible option, the
routing consumption of PR⋆=1

mdp undergoes a rapid decay

as the nodal density passes approximately 6.59 × 10−4

(1.15× 10−3) nodes/km2. For networks with nodal den-
sity ρ ≥ 3 × 10−3, this protocol can guarantee super-
critical rates while consuming less than 5% of the network
edges during routing.

In this way, we can use the multi-path protocol PR⋆=1
mdp

to upper-bound the δ = 1 critical routing consumption as
defined in Eq. (19), i.e. for bosonic thermal-loss networks
we can write an upper-bound on the minimum network
fraction required to guarantee an ensemble average of
1 bit/protocol-use, ⟨Ẽ⟩⋆

W,1 ≲ 0.44. This places an effi-
ciency bound on the optimal end-to-end network proto-
col, which is significantly more informative than flooding.

Minimizing edge usage while guaranteeing high rates is
vital to scalability in large quantum networks with many
users. Crucially, in the absence of effective single-path
routing, efficient multi-path strategies exist that preserve
network resources while obtaining reliable, super-critical
end-to-end rates. The importance of this result is empha-
sized when more realistic links are considered, as those
described by practical QKD protocols (and beyond).

B. Practical Link Layers and Network Phases

Performing the previous analyses of end-to-end rates,
routing consumption, and nodal density for different link
layers, we can build a comprehensive picture of the ef-
ficacy of quantum communication networks in different
scenarios. As such, we can establish relationships be-
tween different critical network properties which give rise
to key network phases; sub-classes of Waxman networks
for which the behaviour of end-to-end quantum com-
munication have similar characteristics. Here, phases
are defined through statistical analyses of the properties
deemed most important to end-to-end communication;
connectivity, performance, and routing efficiency. Iden-
tifying what these phases are and where they fall within
meaningful density ranges can help us to understand the
realistic needs of quantum networking.

Fig. 4 summarises the Waxman quantum network
phases defined in this study for a number of link layer
models: bosonic thermal-loss capacity distributions, and
asymptotic CV-QKD rate distributions. Here, we have
identified six key network phases, explicitly defined in
Fig. 4(b), ranging from Phase I networks with no connec-
tivity guarantees, to Phase VII networks which promise
super-critical performance via single-path routing. In be-
tween, there exists a spectrum of phases corresponding to
critical changes in the connectivity, routing consumption
and performance guarantees.
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(a) Waxman Phase Transitions, (b) Phase Descriptions.

10−4 10−3 10−2 10−1

ρ (nodes/km2)

I II

III IV

VI VII

Thermal UB

Thermal LB

CVQKD (Asymptotic Rates)

I
Networks below critical connectivity threshold
(networks are disconnected).

II Connected networks, no performance guarantees.

III

Routing consumption has surpassed its maximum
(multi-paths will start to become resource-efficient
but reliable flooding rates are not guaranteed)

IV Reliable rates are guaranteed via flooding.

V

Routing consumption has surpassed its maximum
(multi-paths will start to become resource-efficient
and reliable flooding rates are guaranteed)

VI Reliable rates guaranteed via PR
⋆=1

mdp .

VII Reliable rates guaranteed via single-paths.

Figure 4. Waxman quantum network phase characterisations with respect to link layer descriptions and nodal density. Panel
(a) outlines connectivity, consumption and performance based critical densities with respect to networks composed of different
link layers. These transitions give rise to network phases in which we can expect particular properties. These phases are labelled
on the density diagram, while Panel (b) summarises and describes their implications for quantum networking. Phases III and
V describe similar network properties, but differ as to whether the maximum routing consumption is surpassed before or after
the flooding-based performance transition. Note that Phase III appears in networks described by the thermal upper-bound
capacity distribution, while Phase V appears in the lower-bound capacity distribution.

These phases have been identified by computing and
comparing various critical densities relative for each link
layer model. Let us define these phases more precisely:

• I: Densities fall below the giant-component transi-
tion density, ρ < ρ⋆G.

• II: Densities are greater than the giant-component
transition density, but smaller than the flooding-
based critical density, ρ⋆G ≤ ρ ≤ ρ⋆

W|Pfl
.

• III: Densities are greater than the consumption-
defined critical density, but smaller than the
flooding-based critical density, ρ̃⋆

W|Pfl
≤ ρ ≤ ρ⋆

W|Pfl
.

Not all link-layer models will inhabit this phase.

• IV: Densities are greater than the flooding-based
critical density, ρ ≥ ρ⋆

W|Pfl
.

• V: Densities are greater than the flooding-based
critical density and greater than the consumption-
defined critical density ρ ≥ ρ̃⋆

W|Pfl
≥ ρ⋆

W|Pfl
. Not all

link-layer models will inhabit this phase.

• VI: Densities are greater than the PR⋆=1
mdp -based

critical density, ρ ≥ ρ⋆
W|PR⋆=1

mdp

.

• VII: Densities are greater than the single-path-
based critical density, ρ ≥ ρ⋆

W|Psp
.

Fig. 4(b) summarises these phases and interprets them
from a practical perspective.

The most desirable network phase is naturally Phase
VII, in which single-path routing is sufficient to per-
form reliable quantum communication. Unfortunately,
our primary takeaway is that the nodal densities neces-
sary to inhabit Phase VII are very large, and become
impractical as point-to-point link layer descriptions be-
come more realistic. Even when considering fully trusted
QKD networks described using asymptotic secret key-
rates, the nodal densities required to reach Phase VII are
more than 10−1 nodes/km2. For example, the number of
nodes needed to deploy a fully trusted QKD network that
spans the surface area of Europe (∼ 107 km2) would be
on the order of millions.
Fortunately, efficient multi-path routing strategies can

resurrect the utility of lower density networks, which
achieve reliable rates. Networks which occupy Phase VI
are super-critical provided that they employ the proto-
col PR⋆=1

mdp , or better. As shown in Fig. 4 for each con-
sidered link layer, Phase VI occupies a more practical
nodal density region (around an order of magnitude im-
provement) for which practical multi-path strategies can
promise strong rates using efficient protocols; not just
flooding.
An important observation that we wish to reiterate is

the existence of Phases II and VI. Phase II portrays the
resource gap between connectivity guarantees and the
most optimistic performance guarantee (via flooding).
The existence of this gap makes it clear that the design
and assessment of quantum networks cannot solely focus
on connectivity analyses, as such promises are not enough
to guarantee useful quantum communication. Analo-
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gously, Phase VI identifies a gap between the resources
required by flooding and practical multi-path protocols
for critical rates. Closing the gap posed between Phase
VI and VII while minimizing routing consumption is the
goal of any multi-path strategy.
These insights emphasise the need for explicit analyses

of end-to-end performance and reiterate the point that
routing in quantum networks cannot näıvely follow its
classical counterpart. Multi-path routing techniques do
not just represent a means of boosting rates but establish
a pertinent method of reducing the resource demands of
practical quantum network development. We reiterate
that these phases are specifically derived for the Wax-
man network model, which is defined by its relationship
between link-length and network connectivity. Nonethe-
less, the rate-distance tradeoff is a quintessential element
of quantum communications; hence, these results pro-
vide an informative window into future quantum network
properties.

C. Scale-Free Properties and Quantum Networks

Scale-free architectures capture important features of
real world networks beyond that of the Waxman model.
As discussed in Section III C, scale-free networks obey a
power-law cumulative degree distribution. This realises
a connectivity structure in which there exist a number of
highly connected hubs to which many nodes of low degree
are connected, giving rise to a lower average degree than
Waxman models. Considering the network class Sσr

, we
can investigate the ramifications these connectivity fea-
tures have on end-to-end routing and performance
Fig. 5 displays analyses of bosonic thermal-loss scale-

free networks with respect to nodal density and a number
of routing protocols: Flooding, single-path, and PR⋆=1

mdp
routing using the edge-disjoint IAR-MDPAlg. We con-
sider architectures generated with the parameter σr ∈
{1, 2} so to vary the awareness of link-length during net-
work creation and consequently its “strictness” with re-
spect to scale-free behaviour. In Figs. 5 (a)-(c) we study
the ensemble average end-to-end capacities for each net-
work model and routing strategy. It is clear for σr = 1 (in
which scale-free behaviour is followed closely) that per-
formance is restricted by the low average degree. At small
network scales (e.g. R < 150 km) and increasing den-
sity, the flooding capacity is able to reach reliable rates,
but only at very high densities. Furthermore, Ref. [34]
showed that the optimal flooding capacity of such net-
works exponentially decays with respect to R (regardless
of the number of nodes).
Practical routing strategies cannot do better, as dis-

played for both single-path routing and PR⋆=1
mdp routing.

Ultimately, the connectivity structure of scale-free net-
works N ∈ S1 display a poor aptitude for multi-path
routing. The utilisation of multiple routes is only helpful
if many additional routes can be found, and the exis-
tence of high-degree hubs limits this possibility. User

nodes will typically only connect to a single hub, limit-
ing the ability to reinforce the end-to-end path set. This
limitation can be seen in the ensemble average routing
consumption of the PR⋆=1

mdp protocol, which remains rela-
tively constant with respect to nodal density. This means
that there is little correlation between increasing density
and the number of effective end-to-end routes between
user nodes.
Breaking from strict scale-freedom, we see that effec-

tive performance can re-emerge within the network class
S2. With an increased connection probability dependence
on link-length, the ensemble average capacity and rout-
ing consumption follow similar trends to the Waxman
model: The exponential decay of the flooding capacity
with respect to network scale is subdued, and end-to-
end capacities of ⟨C⟩S2|P ≥ 1 bit/protocol-use can be
guaranteed for each routing protocol (within reasonable
nodal density ranges). Furthermore, the multi-path rout-
ing consumption reliably decays with increasing density,
implying that an applicability for multi-path routing can
be reestablished.

VI. DISCUSSION

In this work, we have investigated the capabilities of
quantum communication networks under practical rout-
ing strategies, in an effort to gain insight to realistic re-
quirements of future quantum networks. With the goal
of providing a comprehensive study of the performance
and feasibility of quantum optical fiber-networks, we have
combined theory of quantum communication with that
from random network models and network routing algo-
rithms. Our work departs from previous developments
in this domain by considering realistic link layer de-
scriptions (capacities and secret-key rates over bosonic
thermal-loss channels) alongside practical routing proto-
cols (efficient multi-path and single-path routing meth-
ods). These assessments focus on the crucial Waxman
and scale-free classes of random quantum networks.
Through our statistical analyses, we reveal vital in-

sights into the practical requirements of critical be-
haviour in quantum networks, where criticality may be
defined with respect to connectivity, performance and
routing efficiency. For quantum Waxman networks,
a network phase structure is introduced with respect
to nodal density; identifying ranges of nodal densities
within which networks can be classified as sub- or super-
critical with respect to these properties. We show that
for increasingly realistic link-layer descriptions, the ex-
istence of a performance super-critical phase with re-
spect to single-path routing becomes more and more diffi-
cult within practical density ranges. Nonetheless, multi-
path routing strategies can re-establish practical density
ranges and super-critical rates, reiterating the need for
the development of multi-path routing methods in quan-
tum networks.
It is important to note that the network phases iden-
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Figure 5. Relationships between performance, routing consumption and nodal density in bosonic thermal-loss scale-free net-
works. Throughout all plots, the network link layer is described by the upper-bound capacity distribution Ku from Eq. (4)
and we use the model parameters (n0,m, σdeg) = (10, 5, 1). We also consider unique values for the scale-free model parameter
σr ∈ {1, 2} which are distinguished in the legend. Panels (a)-(c) depict the ensemble average capacity with respect to nodal

density for Pfl, Psp and PR⋆=1
mdp routing respectively. Panels (d)-(e) plot the ensemble average routing consumption with respect

to nodal density for Psp and PR⋆=1
mdp routing respectively. Each analysis is performed for a number of network radii R listed in

the legend. Panel (f) illustrates achievable end-to-end routes on an example network (under the parameters shown) using Psp

and PR⋆=1
mdp for users separated by ri ≈ 200 km. Black edges in the networks identify unused edges, while red edges are those

which engage in the routing protocol.

tified are classifications which emerge naturally from the
heuristics considered in this work but are by no means
definitive. With future, increasingly sophisticated inves-
tigations we expect richer and more detailed phases to be
unveiled which provide insight and guidance for quantum
network design.
Our findings reiterate the challenging relationship be-

tween scale-free networks and quantum communication.
While scale-free architectures such as Yook’s model [47]
offer useful insight into the structure of the classical in-
ternet, they do not find an analogy with reliable quan-
tum fiber networks. Adherence to scale-freedom in large-
scale quantum networks results in a poor communication
quality regardless of routing strategy. By altering Yook’s
model to generate networks with an increased sensitivity
to link length, scale-freedom begins to break while the
ability to perform quantum communication strengthens.
These results stress the resounding differences between
the classical and quantum internet: Quantum networks
need to be consistently well connected to overcome point-
to-point limitations, and must be strictly engineered with
nodal density and link length in mind. This is a crucial
take-home message that our work has established.
While our results focus on the efficacy of fiber net-

works, it is well motivated that the quantum internet
will exploit satellite links and inter-satellite networks to
reinforce long-range communication. This is an area of
serious interest and a future investigative path for ex-

tending this research, investigating the interplay of re-
alistic, ground-based networks interacting with satellite-
based infrastructure. Furthermore, the study of ground-
based free-space networks in both long-range (inter-
metropolitan) and mobile (metropolitan) settings is of
immediate interest.
Understanding how many end-user pairs may simulta-

neously perform quantum communication across realistic
networks is of paramount importance. Indeed, the trade-
off between network architecture, end-to-end rates, and
the number of end-users is still poorly understood. While
the study of end-to-end routing consumption is a useful
step in this direction, greater progress must be made in
order to develop practical routing strategies for the quan-
tum internet. In particular, future work should extend
these results to the case of entanglement distribution via
imperfect quantum repeaters, where decoherence, oper-
ational errors, and finite memory lifetimes will further
impact network performance and routing efficiency.
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Appendix A: Asymptotic CV-QKD Secret
Key-Rates

In the main-text we consider a realistic link-layer for
fully trusted QKD networks, in which all point-to-point
links utilise a Gaussian-modulated, coherent-state-based
CV-QKD protocol and heterodyne detection [56]. By as-
suming that the nodes are trusted, we can assume that
each link utilises a point-to-point QKD protocol. Fur-
thermore, we consider (i) asymptotic secret key-rates
in the asymptotic limit of many system exchanges (dis-
counting the additional detrimental effects of parameter
estimation or finite key-lengths) and (ii) all imperfec-
tions in the trusted communicators’ experimental setup
are untrusted, i.e. all photons lost along the channel and
at the receiver are leaked into Eve’s environment.
Let us be more precise: Consider a point-to-point fiber

channel connecting Alice and Bob who employ the Gaus-
sian modulated coherent-state CV-QKD protocol out-
lined in Ref. [56]. Let us denote the total channel loss
as τ = ηeffηch where ηch is the usual fiber-channel loss
and ηeff is the detector efficiency (which we take to be
ηeff = 0.7). Alice and Bob exchange n̄T photons from
the transmitter, but at the receiver there are n̄R photons
at the receiver, where

n̄R := τ n̄T + n̄, (A1)

such that n̄ := ηeffn̄bg + n̄ex accounts for additional pho-
tons due to inefficiencies, background noise and experi-
mental setup noise. In this protocol, the primary contri-
bution of setup noise is due to the local oscillator, which
in the local-local oscillator (LLO) protocol contributes
both phase and electronic errors (see Ref. [56] for more
details).

Using the protocol’s entanglement-based representa-
tion, and assuming a coherent state modulation of µ,
Alice and Bob share the Gaussian state ρAB after the
thermal-loss channel with covariance matrix,

VAB :=

(
µI

√

τ(µ2 − 1)
√

τ(µ2 − 1) bI

)

(A2)

where b := τ(µ − 1) + 2n̄ + 1. Given that ν± denotes
the symplectic eigenvalues of VAB , Eve’s Holevo bound
is given by

χE := h(ν+) + h(ν−)− h

(

µ− τ(µ2 − 1)

b+ 1

)

. (A3)
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Figure 6. Behaviour of point-to-point bosonic pure-loss ca-
pacity L, thermal-loss capacity bounds T u/l and asymptotic
CV-QKD rate with respect to channel length.

where h(x) := x+1
2 log2(

x+1
2 ) − x−1

2 log2(
x−1
2 ). Conse-

quently, the secret key-rate is

Kτ,n̄ := βIτ,n̄AB − χτ,n̄
E (A4)

where IAB := log2

(

1 + τ(µ−1)
2(n̄+1)

)

is the mutual informa-

tion between Alice and Bob and β ∈ [0, 1] is the rec-
onciliation efficiency which accounts for imperfect data-
processing (which we approximate as β = 0.95).
This point-to-point rate can then be used to describe

the communication rate along a single network edge,
Kxy = Kτxy,n̄xy

and provide an accurate link-layer de-
scribed for trusted node QKD networks. Fig. 6 displays a
comparison of the single-edge rates asymptotic CV-QKD
rate, bosonic thermal-loss capacity bounds and the exact
bosonic pure-loss capacity with respect to channel length.

Appendix B: Network Cuts

An important graph-theoretic concept in the context
of network performance is that of cuts and cut-sets. Con-
sider a network N = (P,E) with two remote end-users
a, b ∈ P . We define a cut C as a bipartition of all network
nodes P into two disjoint subsets (Pa, Pb) such that the
end-user nodes become completely disconnected, a ∈ Pa

and b ∈ Pb, where Pa ∩ Pb = ∅. A cut C generates an
associated cut-set; a collection of network edges C̃ which
when removed cause the partitioning,

C̃ = {(x,y) ∈ E | a ∈ Pa, b ∈ Pb}. (B1)

Under the action of a cut, a network is successfully par-
titioned

N = (P,E)
Cut: C−−−−→ (P,E \ C̃) = (Pa ∪Pb, E \ C̃), (B2)

so that there no longer exists a path between a and b.
Network cuts play a key role in the derivation of end-to-
end network rates.

Appendix C: Generalisations of Dijkstra’s Algorithm

It is possible to construct general versions of DA in
which one optimises path-wise properties associated with

end-to-end routes. It is well known that DA can be used
to minimize path length (shortest path problem) or mod-
ified to maximize the bottleneck rate (widest path prob-
lem). But one can be more general and can define a
global cost function Fω such that goal of DA is to find

ω⋆ = argX
ω

Fω, (C1)

such that X ∈ {min,max}. In this way, Fω may admit a
more complex characterisation of routing value.
Consider an N -node network N = (P,E). Let us de-

fine an N element tentative path cost set T = {Tx}x∈P ,
which will be used to track the cost of routing through-
out the search. This set will be initialised with a unique
value for the source node Ts = εinit, while all other nodes
are initialised with a different value Tx = ε′init for all
x ∈ P \ {s}. Thus, T takes the initial form

T = {ε′init, . . . , ε′init, εinit︸︷︷︸
source

, ε′init, . . . , ε
′
init}. (C2)

Along with this information, we also have access to point-
to-point properties of each edge in the network. There
may exist m different types of properties for every edge
(x,y) ∈ E, which we denote via the set {c1xy, . . . , cmxy}.
The algorithm then operates greedily; starting at an

initial source node s, it traverses throughout the net-
work hopping from node to node while keeping track of
a tentative path cost from s to any other network node
x ∈ P . Suppose that we have traversed from s to a node
x and must decide whether to move to its neighbour y

or not. Here, we must evaluate the tentative cost to the
path if we make this move, since we should only hop to a
subsequent node if it optimises the routing cost. The ten-
tative path cost is evaluated via a tentative cost function
Fω which admits the form

F s,x→y
ω = Fω(Tx, Ty, {c1xy, . . . , cmxy}). (C3)

That is, Fω is a function of Tx the tentative path cost
from s → x, Ty the tentative path cost from s → y

and the known point-to-point properties associated with
moving along the edge (x,y) ∈ E. Note that Fω is not
equal to the global cost function Fω, but they are in-
exorably tied. The tentative cost function is simply a
translation of the global cost function into a form that
can be employed within Dijkstra’s algorithm.
With the ability to evaluate the impact this hop has on

the total path, the value F s,x→y
ω can be compared with

the tentative path cost Ty. If the goal is to minimize the
path cost, then the search will hop to y iff F s,x→y

ω < Ty

i.e. moving to this edge better minimizes the cost func-
tion. Contrarily, if the goal is to maximize the path cost
function then the search will hop to y iff F s,x→y

ω > Ty.
The algorithm follows these steps, evaluating, hopping
and reevaluating the path cost until eventually the tar-
get node t is reached. Since the algorithm is greedy, it
follows an optimal path throughout the network at all
times. Once it arrives at a node, one can then be sure
that the path followed has been the best one.
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Algorithm 1 General Dijkstra Algorithm

Inputs: Network - N = (P,E), Source - s, Target - t,
Min/Max Functions - (X, fX) ∈ {(min, <), (max, >)}.

Tentative Cost Function - Fω,

1: procedure MinCostPath(s, t,N )
2: Priority queue Q = {x}x∈P

3: Parent node set: P = {undef}x∈P

4: Tentative cost set: T = {ε′init}x∈P

5: Ts ← εinit

6: while |Q| > 0 do
7: u← argXx∈Q Tx (and remove u from Q)

8: if u ̸= t then
9: for all neighbours v ∈ Q of u do

10: a← Fω(Tv, Tu, {c
i
uv}

m
i=1)

11: if fX(a, Tv) is true then
12: Tv ← a, Pv ← u

13: Reprioritise Q wrt T

return ConstructPath(P , T )

Figure 7. Generalised Dijkstra’s algorithm for end-to-end
route optimisation with respect to a cost function Fω. Any
cost function has a tentative counterpart F s,x→y

ω which is
used to evaluate movement throughout the network. The
above pseudocode describes the network exploration phase
which is followed by a ConstructPath subroutine which
simply back tracks from the target node t to s using the
constructed tentative cost and parent node sets.

Let us specify to a couple of examples. When minimiz-
ing the path length the global and tentative cost func-
tions take the form

Fω =
∑

(x,y)∈ω

lxy,

F s,x→y
ω = Tx + lxy,

(C4)

where lxy is a measure of point-to-point length of the
edge (x,y) ∈ E. To minimize this quantity we use the
initialisation values are (εinit, ε

′
init) = (0,∞).

For maximizing the bottleneck rate we define the
global and tentative cost functions,

Fω = min
(x,y)∈ω

Kxy,

F s,x→y
ω = max(Ty,min(Tx,Kxy)),

(C5)

where Kxy is the point-to-point rate of the edge
(x,y) ∈ E. Here, we use (εinit, ε

′
init) = (∞,−∞).

Appendix D: The Multiple Disjoint Paths Algorithm
(MDPAlg) and its variant

1. MDPAlg

As discussed in the main text, the MDPAlg offers an
efficient means of determining multiple disjoint paths
from a source s to a target t (or targets {ti}i) within
a network. While DA evaluates and stores the minimum
cost to travel between the source and target nodes, the
MDPAlg acquires additional information about the accu-
mulated cost of traversing from a source to target node
through any of its neighbours [39]. This is enormously
useful, and provides a mechanism for identifying many
cost efficient routes between the source and target.
Much like DA, the algorithm is split into two phases,

(i) network exploration and (ii) path reconstruction.
Throughout network exploration the algorithm proceeds
similarly to DA in which the tentative cost matrix T is
constructed. The primary difference between DA and
the MDPAlg is found on line 11 of Fig. 7: Even when
the computed tentative cost a is not considered optimal,
in the MDPAlg it is stored as an off diagonal element of
Tuv, describing the accumulated cost of travelling from
node s to v via u.
This additional information is then used in the path

reconstruction phase to identify many end-to-end routes.
The reconstruction is sequential and straightforward:
Starting at a target node t a path is built by moving
to the neighbour which incurs the lowest cost in the ten-
tative cost matrix, T , until the source node is reached.
On the first path reconstruction, this is simple and the
minimum cost path ω1 is produced, which adds edges
to the routing edge set (Eω = ω1). In order to con-
struct subsequent disjoint paths, one must then enforce
disjointedness by restricting the use of any edges which
were used previously (for link disjointedness). In other
words, future reconstructions will ignore the cost matrix
elements Txy for (x,y) ∈ Eω. Repeated this process,
path reconstruction may occur by moving from the tar-
get t to its next minimum cost neighbour, and so on until
s is met again.
Through this sequential process of path building cou-

pled with edge restriction, a number of edge-disjoint
paths can be built which have favourable properties.
The node-disjoint variant of the MDPAlg can be easily
achieved through a small modification; instead of only
restricting previously used edges from subsequent path
reconstructions, one must restrict the use of any edges
connected to nodes used in the previous routes.

2. Rate Maximisation and IAR-MDPAlg

The MDPAlg was introduced with the intention of
identifying multiple disjoint shortest paths which min-
imize the cumulative cost of edge-weights along an end-
to-end route. Consequently, it is not immediately clear
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how the MDPAlg can be translated for the purposes of
rate maximisation. One might assume that since there
exists a variant of DA for this purpose (the widest path
algorithm outlined in Appendix C) then it should be able
to modify the MDPAlg in an identical way.

Unfortunately, this is not the case and we must be care-
ful in building this variant (IAR-MDPAlg). The widest
path version of DA locates an end-to-end route which
maximizes a bottleneck rate between source and target
nodes. It does so using via the generalised DA and the
cost functions in Eq. (C5).

Now let us consider the scenario in which we possess
a source node s, target node t and wish to find multiple
end-to-end routes which maximize their bottleneck rates,
e.g. in the vein of iterative Dijkstra. We want to employ
the more efficient MDPAlg to do this, in which only a sin-
gle Dijkstra search is necessary, followed by path recon-
struction. In this context, what information would a ten-
tative cost matrix, T , collect? The diagonal element Txx

would contain the minimum cost associated with routing
between s and x, i.e. the bottleneck rate along the op-
timal route. Meanwhile, the off-diagonal quantities Txy

indicate the potentially sub-optimal cost incurred when
routing between x and s through the intermediate node
y.

On the first iteration of path reconstruction, it is easy
to identify the minimum cost path ω1 by backtracking a
route to its most favourable neighbour node n1 and re-
peating this process according to subsequent nodes and
the diagonal elements of T . Since we wish to construct
edge-disjoint paths, any edge contained within ω1 is then
rendered inaccessible by future routes. Following ω1, we
wish to construct a second end-to-end path using infor-
mation from the cost matrix. This is initiated by hopping
from the target t to its next more favourable neighbour,
which we label n2. The cost matrix has collected seem-
ingly valuable information about how to best traverse
between s and t through n2.

This is where our issue begins to emerge: What if the
best path between n2 and s shares edges with ω1 (the
first minimum cost path)? Widest paths are often highly
degenerate (especially in large networks) due to the fact
that their value is characterised completely by single-edge
rates. The IAR-MDPAlg will “push” the second path to-
wards the optimal path (where the edges are shared) but
must then move along alternative edges due to the edge-
disjointedness restriction, i.e. it is then “pulled” away
from the optimal path. These alternative edges may pos-
sess poor rates, but the algorithm will nonetheless use
them because of its now unstructured method of path
building, and the cost matrix does not contain enough
information to discourage their use. The push-and-pull
continues until s is reached, by which point the route has
been compromised and possesses a poor bottleneck rate.
This push-and-pull effect is only avoided when the opti-
mal end-to-end route from t to s through a neighbouring
node is edge-disjoint with the optimal route, which is rare
in large-scale, highly connected networks.
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〈Ẽ

〉 W
|P

(d
B
)

Figure 8. Behaviour of IAR ansatz with respect to inverse
rate penalty η and fixed edge-usage penalty ϵ = 1 over the
classes of bosonic thermal-loss (a)-(b) Waxman networks and
(c)-(d) scale-free networks (σr = 1) using the thermal single-
edge capacity upper-bounds. For a number of nodal densities
ρ and network radii, Panels (a),(c) plots the ensemble aver-
age rate amplification ∆⟨K⟩N|P defined in Eq. (D3) gathered
by the M = 2 MDPAlg protocol using the inverse rate-sum
ansatz, with respect to variable η. Panels (b),(d) plots the en-

semble average consumption amplification ∆⟨Ẽ⟩N|P defined in
Eq. (D4) with respect to η.

As a result, the bottleneck rate cost functions used
within DA are not so effective in the present context.
One should avoid the employment of routing cost func-
tions that possess high degeneracies, such as the direct
translation of the widest path cost functions. Instead,
one should explore cumulative costs, similar to that used
in the shortest path formulation. Cumulative cost func-
tions which capture properties of entire paths are more
suited to this algorithm and can more effectively moti-
vate end-to-end routing.

3. Inverse-Accumulated-Rate Ansatz

To achieve rate maximisation, a potential ansatz for
the tentative cost function may take the form,

F s,x→y
ω = Txx +K−η

xy + ϵ. (D1)

which corresponds to minimizing the following global cost
function,

Fω =
∑

(x,y)∈ω

(K−η
xy + ϵ). (D2)

This aligns with minimizing the sum of the inverse point-
to-point rates along a path ω, adding a penalty for chan-
nel usage ϵ associated with each link. Minimizing this
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cost function simultaneously locates a path which maxi-
mizes the sum of the point-to-point rates along the path
while minimizing its length; indirectly identifying a high-
rate and edge-efficient route.
In this tentative cost function, η, ϵ ∈ R

+
0 are hyper-

parameters used to impose a tradeoff between rate and
path length. The parameter η can be thought of as a
rate motivator; if η is large, then the inverse term K−η

xy

forces a large penalty to the cost function when low rate
edges are included in the route. If the single edge rate
is large, this incurs a low cost, motivating the use of an
edge. Meanwhile, ϵ enforces a constant penalty term for
edge usage, thus encouraging efficient routing. The edge-
usage penalty can be generalised as an edge-wise property
ϵxy such as spatial length etc., to more accurately man-
age routing efficiency. The ability to control this tradeoff
is extremely useful and is typically ignored in standard
rate-maximisation algorithms.

With some simple numerical inspection, we see that
the inverse rate-sum ansatz can achieve strong rate and
resource management. In Fig. 8 we perform an analysis of
the ansatz given in Eq. (D1) for both Waxman networks
and scale-free models. Here, we explore the minimum
improvement offered via an MDPAlg protocol with two
fixed routes, PM=2

mdp , by measuring the amplification of its
ensemble average rate and routing consumption over the
optimal single-path protocol (measured in decibels),

∆⟨K⟩N|P := 10 log10

[

⟨K⟩N|PM=2
mdp

/⟨K⟩N|Psp

]

, (D3)

∆⟨Ẽ⟩N|P := 10 log10

[

⟨Ẽ⟩N|PM=2
mdp

/⟨Ẽ⟩N|Psp

]

. (D4)

When ∆⟨K⟩N|P > 0 then the MDPAlg protocol offers
a rate advantage over the optimal single-path protocol.
However, the magnitude of ∆⟨Ẽ⟩N|P > 0 quantifies the
increase in routing consumption required to achieve this
rate advantage. Optimally tuning the inverse rate-sum
ansatz corresponds to maximizing ∆⟨K⟩N|P while mini-

mizing ∆⟨Ẽ⟩N|P .
Fig. 8 illustrates the behaviour of these quantities with

respect to a variable inverse-rate penalty η, while keeping
ϵ = 1 fixed and constant. For both classes of network,
it is clear that for the scenarios considered in this work
that the inverse rate-sum ansatz can be used to effectively
enhance performance over that of single-path algorithms
without incurring considerable routing cost. The algo-
rithm can locate another end-to-end rate that effective
enhances the rate while keeping the routing consumption
increase at a manageable level. The more η is increased,
the greater emphasis it places on maximizing the end-
to-end rate; however, this does not always correlate with
obtaining a greater end-to-end rate. Indeed, for both
network models the rate enhancement tends to plateau
while the routing consumption may continue to increase
leading to wasted network usage. Hence, one should be
careful not to increase η too significantly with respect to
the edge-usage penalty, ϵ.

Clearly, the optimal hyperparameters depend on the
network model, connectivity and nodal density. An ideal
implementation of the inverse rate-sum ansatz would
fine-tune η and ϵ corresponding to these properties. For
simplicity, throughout this work we have employed the
quantities η = 5 and ϵ = 1, motivated by the anal-
yses above as a reasonable, multi-purpose choice with
respect to different network characteristics. Future stud-
ies should focus on optimizing/controlling these hyper-
parameters with respect to specific network models or
routing strategies.

This is by no means an optimal approach. Nonethe-
less, the enormous benefit associated with quickly locat-
ing additional routes proves to outweigh any weakness in
the approximation. In future investigations, it may be
interesting to explore more sophisticated cost analyses,
e.g. a neural network variational ansatz. Such ansatzes
may be of significant benefit when one wishes to opti-
mise more than just rate and path length, e.g. balancing
the routing priorities of multiple user pairs, or consider-
ing waiting-times in quantum memories for entanglement
distribution.
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