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ARTICLE INFO ABSTRACT

Keywords: The singular value decomposition (SVD) of polynomial matrices serves as a cornerstone in the analysis
Polynomial matrix and optimization of broadband multi-input multi-output (MIMO) systems. This paper introduces novel
Polynomial singular value decomposition algorithms for performing the SVD of polynomial matrices, leveraging a sequential matrix diagonalization
Broadband MIMO

(SMD) framework. The proposed methodology begins by identifying the column or row with the highest
off-diagonal energy using a maximum search procedure. Subsequently, this energy is transferred to the zero-
lag coefficient matrix through a delay operation, which is then diagonalized using a conventional SVD. This
iterative process continues until the maximum off-diagonal element falls below a predefined threshold. The
proposed framework encompasses multiple algorithmic variants, each designed to offer distinct convergence
speeds, thereby addressing diverse computational and accuracy requirements. Rigorous proofs of convergence
are provided, alongside a thorough comparative analysis of the computational efficiency and diagonalization
accuracy of the algorithms. Extensive simulations, conducted on ensembles of randomly generated polynomial
matrices, demonstrate that the proposed algorithms consistently outperform state-of-the-art polynomial SVD
(PSVD) methods across all evaluated performance metrics. Furthermore, the application of the proposed
algorithm to decouple broadband or convolutive MIMO channels validates its accuracy and effectiveness in
practical scenarios.

Sequential matrix diagonalization
MIMO channel equalization

1. Introduction polynomial matrices in [13] offered an iterative approach for comput-
ing the PSVD, similar to the QR algorithm for standard matrices [21].

Extending matrix algebra to polynomial matrices is highly moti- However, this method requires repeated application of the polynomial
vated by applications across control systems, digital signal processing, QR decomposition (pQRD), and with the truncation steps necessary to
and broadband communications, notably in MIMO system design and limit polynomial order growth, it incurs error accumulation, reduced
broadband source separation [1-7]. Recent advancements have en- decomposition accuracy, and significant computational cost. Due to
abled extensions of fundamental decompositions such as eigenvalue the high polynomial order, hardware-implementation costs increase in

decomposition (EVD) [8-12], QR decomposition [13-15], and singular
value decomposition (SVD) [13,16-18], along with methods like the
power method [19], into the polynomial domain. These polynomial
matrix factorizations — including polynomial EVD (PEVD), polynomial
QR decomposition (PQRD), and polynomial SVD (PSVD) — have en-
hanced both the accuracy and efficiency of broadband signal processing
applications [2,8-19].

Unlike the polynomial EVD (pEVD), which has seen broad appli-
cation and algorithmic advancement, the polynomial SVD (PSVD) has
received comparatively less attention, primarily because it can be com-
puted using two pEVDs. The first dedicated PSVD algorithm utilized the
Kogbetliantz transformation [20], extending the pEVD approach known
as second-order sequential best rotation (SBR2) [8] to ordinary polyno-
mial matrices [16]. Additionally, the extension of QR decomposition to this approach has limitations. It lacks a balance between execution

broadband MIMO applications and, presumably, in other applications.
To address this issue, [18] have utilized a phase smoothing procedure
originally proposed for extracting analytic eigenvectors of a para-
Hermitian matrix [11]. This method operates in the discrete Fourier
transform (DFT) domain. While it has been shown to converge, it is
only suitable for polynomial matrices with small spatial and temporal
dimensions.

Recently, it was proven that an analytic SVD exists for polynomial
matrices, allowing singular values to be real-valued on the unit circle,
but they can also take negative values, unlike in ordinary matrices [22].
A novel singular value extraction algorithm was proposed in [23],
offering high scalability in spatial and temporal dimensions. However,
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time and diagonalization precision, and struggles with estimated poly-
nomial matrices, particularly when polynomial singular values are of
high order, leading to longer runtimes and difficulty in extracting
approximate values. Additionally, it focuses solely on singular value
extraction without providing a scalable method for singular vectors.
Since estimated polynomial matrices exhibit spectrally majorized sin-
gular values that are strictly non-negative on the unit circle [24,25],
therefore, the method in [23], which permutes singular values in each
DFT bin to establish smooth association, is of little avail in cases where
a polynomial matrix is estimated from a finite set of samples.

In this paper, we address the challenges associated with extend-
ing matrix decompositions to polynomial matrices. Specifically, we
introduce novel PSVD algorithms based on the sequential matrix di-
agonalization (SMD) approach in [9], enhancing both computational
efficiency and accuracy. Building on our previous work in [26], we
propose generalized SMD (GSMD) algorithms for computing the PSVD
of polynomial matrices. The proposed approach transfers the maximum
off-diagonal elements from the non-zero slice of a polynomial matrix to
the zero-lag coefficient matrix using paraunitary delay operations [27],
followed by performing the SVD on the zero-lag matrix to diagonalize
it. This process is repeated iteratively until the off-diagonal elements
fall below a predefined threshold. Multiple algorithmic variants are
introduced, each with its own advantages. We also provide a proof of
convergence, demonstrating that the proposed algorithms consistently
achieve the desired results.

The remainder of this paper is organized as follows: Sections II and
III provide an overview of the existence of analytic SVD and the corre-
sponding algorithmic solutions. Section 4 details the framework of the
proposed algorithm, while Section 5 enumerates the potential variants
within this framework. Section 6 presents simulations and discusses the
results, followed by Section 7, which illustrates an application scenario
of the proposed algorithm. Finally, the conclusions are summarized in
Section VIIIL

2. Notations and definitions

A polynomial matrix in the complex variable z with spatial dimen-
sion M x N can be represented as

a;1(z) ay n(z) o

= Z Alr)z™7,

ayn@)]| =

A(z) =
ap1(2)

where each element is a Laurent polynomial in the variable z, allowing
both positive and negative powers [28]. The polynomial matrix and
vector are denoted by bold italic upper and lower case letters with
the continuous variable written in parentheses, e.g., A(z) and a(z).
A polynomial element in the mth row and nth column is denoted by
a,, ,(z). The ith row of the matrix A(z) is denoted by a; .(z) and the ith
column by a. ;(z). The discrete time-domain quantity of a polynomial
matrix A(z) is denoted by A[r] e—o A(z), where © € Z, with the
transform pair denoted by e—o. Note that matrices or vectors that
depend on the discrete variable are denoted with upright bold upper
and lower case letters with the discrete variable inside square brackets.

Akin to the Hermitian operator, denoted by {-}" in ordinary ma-
trices, A¥(z) is the para Hermitian [28] of A(z), obtained by taking
the Hermitian transpose and then reversing time, that is by replacing
z with z7!, hence A®z) = AH(z7!) oo AM[—7]. Similar to a unitary
matrix, a polynomial matrix U(z) € CM*M is paraunitary if UNz)U(z) =
U(z)U%z) = 1,,, where I,, is an M x M identity matrix. In the
context of this paper, we define A[0] as the zero-lag coefficient matrix
of the polynomial matrix A(z). In addition, the coefficient matrix at
T = 1), i.e, A[r]‘fzro, is referred to as the 7,th lag coefficient matrix. A

quantity with an exponent is denoted by A’(z), while its ith update in
an algorithm is denoted by parentheses in the superscript, e.g., A?¥(z).

Signal Processing 240 (2026) 110340

3. Background
3.1. Analytic SVD existence

Matrices that are functions of a real and continuous variable 7 are
commonly encountered in control engineering. To address problems
such as stability analysis, robust control design, and H, control [29,
30], an analytic SVD for an analytic A(?), i.e.,

AW =UNOZOVH@),

has been shown to exist over a real interval ¢, <t < t,, where both the
left- and right-singular vectors admit analytic properties [31]. However,
for the singular values — the diagonal elements of X() — to admit
analyticity, they are allowed to take non-negative values. For such
applications, various algorithms have been proposed to compute the
analytic SVD for these matrices [32,33].

However, often in the signal processing domain, matrices that are
functions of discrete variables, such as A[r] with = € Z, frequently
arise in filter design [28] and other applications. Its z-transform A(z),
being analytic in the continuous complex variable z, has therefore also
received significant attention. In this work, we focus on such complex-
variable analytic polynomial matrices. For matrices A(z) € CM*V with
M > N, the existence of an analytic SVD — where the singular values
are real-valued on the unit circle — depends on the number of spectral
nulls of the singular values on the unit circle with odd multiplicity [22].
Mathematically, it can be represented as

A =U@ZEVHE) (€8]

where {-}® denotes a para-Hermitian operator, which is equivalent to
taking the Hermitian conjugate followed by time-reversal, i.e., V(z) =
VH(1/z*). Here, U(z) € CM*M and V(z) € CN*N contain left and
right singular vectors, respectively, and X(z) € CM*N contains the
analytic singular values on its diagonal. These singular values are real-
valued on the unit circle but may also take on negative values. If the
number of spectral nulls is odd, g is 2; otherwise, ¢ = 1. However, if the
singular values are not constrained to be real-valued on the unit circle,
the SVD can still be computed without upsampling by a factor of 2
(i.e., ¢ = 2) [22], even when the singular values have an odd number
of spectral nulls on the unit circle.

Generally, the factors in (1) are of transcendental functions, but due
to the property of analyticity, they can be approximated sufficiently
well by Laurent polynomials [22,34]. The left and right singular vectors
are ambiguous up to an all-pass factor; that is, given an all-pass function
¢(2), u,,(2)9,,(z) remains a valid mth left singular vector, and similarly
for v(z).

A polynomial matrix A(z) € CM*N | estimated from finite number
of sensor measurements, will manifest spectrally majorised singular
values, if evaluated on the unit circle [24,25], i.e.,

61(?) > 6,(?) > - > 6, () VQ 2

even if the ground truth singular values are overlapping, i.e., not
spectrally majorised, on the unit circle. This effect due to estimation
error is beneficial for time-domain algorithms which tend to converge
to spectral majorised singular values.

3.2. PSVD computing algorithms

In this section, we provide a brief overview of existing approaches
of computing a PSVD of a polynomial matrix.
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3.2.1. Computation via two PEVDs
A PSVD of a polynomial matrix can be computed by employing two
PEVD operations

R,(z) = A(2)A%(z) = H(2)A, (D) H | (2),
R, (2) = A (2)A(z) = Hy(2)Ay(2) H} (2),

where H(z) and H,(z) are paraunitary matrices [34] that contain
the eigenvectors of R (z) and R,(z), respectively. These eigenvector
matrices are related to U(z) and V(z) via diagonal matrices of allpass
filters, that is, H,(z) = U(z)®,(z) and H,(z) = V(z)@,(z), where
®,(2) = diag{¢;(2), ..., ¢4 (2)} and B,(z) = diag{(2), ... hox(2)},
and where ¢,,(z) for m = 1,...,M and ¢,,(z) for n = 1,...,N are
allpass filters [22]. With the help of these singular vectors, one can
compute the singular values via (1); however, they may not be real
valued on the unit circle due to the aforementioned allpass ambiguity
unless @,(z) = @,(z). The PEVD is often computed using SBR2 or SMD
algorithms [8,17]. This method of PSVD computation is computation-
ally expensive as it computes the PEVD for two parahermitian matrices,
i.e., R (2), R,(z), each with a polynomial order twice that of A(z).

3.2.2. Computation via repeated polynomial QR decompositions

This method for computing the PSVD of a polynomial matrix in-
volves multiple PQRDs of polynomial matrices. It begins by computing
the PQRD of A(z), where A(z) is factorized into Q,(z)R,(z), with
R,(z) being an upper triangular matrix. Next, the PQRD of Rll)(z) is
computed as Q,(z)R,(z). With these two PQRDs, one iteration of the
process is completed. The procedure continues by replacing A(z) with
A|(2), defined by QF(2)A(2)Q,(z) = R%(2). This process is repeated
until R,(z) is a diagonal matrix, which means that its off-diagonal
elements fall below a predefined small threshold [13]. The PQRDs are
computed using various algorithmic variants [15,35]. Although this
approach is computationally very expensive and also produces singular
vectors with high polynomial order, it has also been reported to offer
improved stability and superior performance compared to PEVD-based
approaches [3].

3.2.3. Computation via kogbetliantz transformation based generalized
SBR2 (GSBR2) algorithm

This PSVD algorithm [16] is a generalization of the SBR2 algorithm,
extending its application from parahermitian to general matrices, and is
thus termed the generalized SBR2 (GSBR2) in this paper. It employs ei-
ther Givens rotations or the complex Kogbetliantz transformation [20],
an extension of the Jacobi transformation to nonsymmetric matrices.
Both transformations are used to transfer the off-diagonal energy onto
the diagonal depending on the location of the maximum off-diagonal
element. When the maximum off-diagonal element lies outside the
upper N X N submatrix, a Givens rotation is applied from the left to
eliminate it. If the maximum off-diagonal element is within the upper
N x N submatrix, a Kogbetliantz transformation is then applied which
is a combination of Givens rotation, symmetrization, and the Jacobi
transformation. Although this is a direct method for diagonalization,
it has the drawbacks of slow convergence as it transfers a single
element energy onto the diagonal in each iteration, and incurs higher
computational cost compared to the SBR2 algorithm, primarily due to
the complexity of the Kogbetliantz transformation [20]. Furthermore,
the multiple shift strategy, applicable in the case of SBR2 [36], seems
incompatible with the Kogbetliantz transformation due to its com-
plex nature of combining Givens rotation, symmetrization, and Jacobi
transformation [21].

3.2.4. DFT-domain compact order PSVD

This approach computes a DFT of the polynomial matrix and then
computes the ordinary matrix SVDs at these sample points. The singular
vectors in these sample points are not phase-coherent with those of
adjacent samples. To address this, a phase smoothing procedure [11]
is applied across all samples to establish phase coherence and thereby
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obtain compact-order polynomial singular vectors [12,18]. If the phase-
smoothing procedure does not converge, the DFT size is increased,
and the process is repeated until convergence is achieved. Although
effective, this approach is computationally very expensive, because the
phase smoothing, which is proven to be an NP-hard problem [11], is
repeated at increasingly larger DFT sizes. As a result, it is only practical
for polynomial matrices with small spatial dimensions and relatively
low polynomial orders.

4. The GSMD algorithm

This section outlines the initialization and iterative steps of the
proposed algorithm, assuming without loss of generality that M > N.
If M < N, diagonalization can be performed on A¥(z).

4.1. Initial iteration

The proposed approach begins by computing the conventional SVD
of the zero-lag coefficient matrix of the given polynomial matrix A(z),
i.e., A[0], as

A[0] = UOsO v ©)

where U® € CM*M | v ¢ CNXN contains the left and right singular
vectors, respectively, and S© € CM*N is diagonal matrix containing
singular values. We multiply A(z) from the left with U®-H and from
the right with V© as

SO(z) = UOHA VO, Q)

This ensures that the zero-lag coefficient matrix S@[0] of S©(z) oo
SO[z] is a real-valued diagonal matrix. This concludes the first itera-
tion, and the intermediate left and right polynomial singular vectors
matrices are updated at the end of first iteration as U®(z) = U® and
vO(z)=vO,

4.2. Iterative procedure

In subsequent iterations i = 1,2, ..., the algorithm first performs
a maximum search over all time lags of S¢~D[z] to find a column of
S¢=D[z] carrying the maximum off-diagonal energy (or equivalently
the off-diagonal #,—norm). The index of the maximum column and the
time lag where it resides is determined as

M 2
i 2
{rf,ni}=argmax{ Y s } : ®)
T m=1,m#n
where
M ) 2
i—1
YC(ni,r,) = { Z |S£,I,’,,‘_)[Ti]| } B (6)
m=1,m#n;

shows the off-diagonal energy (or the off-diagonal #,—norm) of the n;th
column at ¢ = 7; with m # n reflecting that diagonal elements are not
considered. This n;th column present at z = 7; is to be time-shifted to
the zero-lag, i.e., = = 0, such that the diagonal elements of the zero-lag
coefficient matrix of SU~D[7] remains unchanged. This is accomplished
by multiplying S¢~(z) from the right by

BY(2) = diag{1, 1.z, 1,1 | @)
where 15 denotes a vector of N ones, resulting in
507D () = S0D(2)B0(2). ®)

It applies a delay of z; to the n;th column and time-shifts it from 7 = z;
to z = 0. Due to M > N, the n;th column shift has shifted the (n;,n;)
diagonal element of the zero-lag coefficient matrix to z = —;. To bring
it back to the = = 0, the »;th row is time-shifted in opposite direction,
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i.e., from 7 = —1; to = = 0. This is accomplished by multiplying S’ =Dz
from the left by

B(z) = diag{ 1, 12 Ly, } , ©)
which results in

o1 5 .
52 = B (28" V(). (10

This completes the time-shift of a column carrying maximum off-
diagonal energy to the zero-lag coefficient matrix without disturbing
the diagonal elements. Now similar to the first iteration, the off-
diagonal elements of the zero-lag coefficient matrix of S<i_%)[r] are
eliminated or in otherwords, the off-diagonal energy is transferred onto
the diagonal by multiplying S(i_%)(z) on the left and right by U?H and
V@, respectively, producing

50(z) = UPHSID (V)| 11

where U® and VO are left and right-singular vector matrices of

o1
s=210, respectively, and they are obtained via a conventional SVD,
1

ie., SU72)[0] = UOSO[0]VDH, It is important to remind that U® and
V@ being both unitary, only transfer the off-diagonal energy of the
zero-lag coefficient matrix onto its diagonal without changing the total
energy of S(’;%)(z). This completes the ith iteration of the proposed
algorithm with the zero-lag coefficient matrix of S(z) fully diagonal
and with more diagonal energy than it had in the previous iteration.
The left and right polynomial matrices are updated at the end of ith
iteration as

UO(z) = UD(2) B (U, (12)
VO (z) = Vi) BO )V, 13)

As evident from the iterative updates of all three polynomial matrices,
the polynomial order of S (z) increases by 2|;| in each iteration
whereas that of the left and right paraunitary singular vectors increases
by |z;]. This process is repeated in each iteration until v, .,, defined in
(6), falls below a small preset threshold ¢, or until a maximum number
of allowed iterations is reached. After I iterations, the approximate
polynomial SVD factors of (1) are extracted as

U(z) =UD(2), £(z) = SD(z), V(z) = Vv D(z). a4

Akin to SMD [9] and SBR2 [8], the singular values extracted by the
proposed algorithm are always spectrally majorised [37]. In other
words, when singular values are evaluated on the unit circle, they are
strictly ordered at each frequency, regardless of whether the ground-
truth singular values are unmajorised (see (2)). The proof that the
proposed algorithm always converges to a spectrally majorised solution
follows identically from that of the SBR2 algorithm [38]. However,
since it has been shown in [24,25] that any polynomial matrix —
whether randomly generated or estimated from a finite set of sample
points — exhibits spectrally majorised singular values. Consequently, for
all such matrices, the proposed algorithm will converge to the ground-
truth singular values which are also spectrally majorised. A complete
iteration of the proposed algorithm is pictorially depicted in Fig. 1.

This version of the algorithm, which utilizes the maximum #,—norm
of a column, is referred to as column-based generalized sequential
matrix diagonalization (CGSMD). A complete outline of the CGSMD
is provided in Algorithm 1. Conversely, if an ¢ -norm is employed in
place of the #,-norm in (5), i.e.,

M p
{7;,n;} = argmax { > |s§;;‘)m|”} : as)
Tn m=1,m#n

where p — oo, the resulting algorithm is designated as the maximum
element CGSMD (ME-CGSMD). This variant searches for the column
containing the largest off-diagonal element instead of the column with
the largest off-diagonal energy. Consequently, the # —norm based
variant is expected to transfer less energy to the diagonal of the zero-
lag coefficient in every iteration, and therefore may converge slow. This
issue is further explored in the simulation and results section.
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Algorithm 1: CGSMD Algorithm
Input: A(z),e
output: U(z), V(2), £(2)
A[0] = UOSO[OIVOH
S(O)(z) - U(O),HA(Z)V(O);

UO@z) =00, ¥Oz) =vO ;

2 _ i q-
yc(no’ro) =l+4+ei=1;

e i 2

while i < I and Vet i)
Perform maximum search for column;

> e do

2=

M i—1
{Ti’ ni} = argmax {Zm=l,m;&n |S£r,1,n )[T]Iz} > yc(n,»,‘r,) =
T,n
1

2
{ >, |sm,n[[r,1|2} ;

m#n;

Construct right and left delay matrices;
BO(z) = diag{ 1,1, 2% 1yt . BV =

diag{lni_l,z‘fz, | DY };

Shift the maximum column onto the zero-lag;

52 = B ()5 (2B (2);

Diagonalize the zero-lag coefficient matrix;

S(F%)[O] = UOPOYOH,

Via unitary rotation, transfer the off-diagonal energy onto the
diagonal of zero-lag coefficient matrix of S(i_%)(z);
§0(z) = UDHS D 2V ;

Update paraunitary matrices;

UD(z) = UD(2) BV (2)U0;

VO (z) = Vi-D(2)B (2)VO ;

Limit the polynomial order growth through truncation as
described in Sec. 4.4;

i—i+1;

end

U(z) =UD(2), V(2) =V D(z), £(z) = 20-V(z)

4.3. Proof of convergence

To provide a proof of convergence for the proposed algorithm, the
following quantities are defined:

N
a {§V(z)} 2 2 |Sf,i_),,[0]|2,

n=1

M N )
ARREIED YW EUR U]

m=1 n=1

M N )
a (SO} 2 Y Y0 101,

miln=l

; 2
Is$) el

Mz
M=

RARGIEDY

T

3
Il
3
Il

It follows that a,{S”(2)} = a;{SV(2)} + 23 {SP(2)} and «a, {SP(2)} <
a,{S?(z)}. The quantity «,{-} remains invariant under the simultane-
ous application of left and right delay matrices, i.e., a; {S(i+%)(z)} =
o, {B"(2)57(2) B (2)}.

The right multiplication moves the n;-th column’s coefficients from
lag 7; to 0 and moves sEflf,,li)[O] to —z;; the left multiplication by z™%

on row n; restores it to the lag 0. Similarly, a,{-} is invariant under
1

unitary transformations., i.e., a, {S®(z)} = a, {UPHS=3)(z)VD} in the
SVD step. Lastly, a,{-} is invariant to the application of a paraunitary
matrix, i.e., 0, {S?(2)} = a, {UPP(2)8?V(z)V V(2)}. This holds because
Bfi)(z) and Bgi)(z) are paraunitary and only reindex lag coefficients, and
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Max. Col Search
{Ti = 2, n; = 4}

Shift the maximum
column via right de-
lay matrix

left delay matrix

Shift the n;th row in
reverse direction via
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Diagonalize zero-lag Apply unitary rotations
coeff. matrix via an to transfer off-diagonal
SVD energy onto the diago-
nal of the zero-lag coeff.
matrix
4 D
&
4
B
&
e/\@
&

Repeat until maximum column energy (excluding diagonal elements) falls below e

Fig. 1. The zero-lag coefficient matrix S“~"[0] at the start of ith iteration is diagonal with off-diagonal elements shown as X, denoting they are eliminated or
made zero in previous iteration. Diagonal entries are shown as black. The column with the largest off-diagonal energy is determined, here shown in darkgray
with n; = 4,7, = 2, and then shifted to the zero-lag position via delay matrix, in this case B® = diag{l, 1, l,zz}, multiplied from the right. This causes the last
diagonal element to be shifted out of the zero-lag coefficient matrix, which is brought back to the zero-lag position by shifting the »;th row in reverse direction
by the same amount of delay, i.e. Bii) = diag{1,1,1,z72}. This causes the maximum column elements to get shifted onto the zero-lag coefficient matrix without
disturbing its diagonal elements. Unitary rotation are applied to the entire matrix such that the zero-lag coefficient matrix is a diagonal matrix. These unitary

rotation matrices are actually the left- and right-singular vector matrices of the zero-lag coefficient of S“’%)(z) which is obtained by its SVD. The process is

repeated until the column energy is below e or maximum I are expended.

multiplication on the left and on the right by U9-# and V® leaves the
Frobenius norm of each lag slice unchanged: |[UD-H S(i_%)[r] VO =
IS iellly V.

At the end of (i — )th iteration, a; = a, with a; = 0 due to zero
off-diagonal energy in the zero-lag S¢~D[0]. In the ith iteration, post
application of left and right delay matrices Bfi)(z) and Bf.i)(z), respec-
tively, a, and «, remains unchanged, i.e., al{S(i’%)(z)} = a, {SD(2)}
and a4{S("_%)(z)} = a4{S%V(2)}. Since the delay operations shifted
the n;th column at lag 7;, and the n;th row at lag —7; to the zero-lag
coefficient matrix of S<i_%)[r], we have

(5@} = @ (SP@V 422, 47
* z) = z yc(n[,r,v) yr(n,-,—rf)’
and

|

(i—3) _ .2 2
a3 (S 2 = Voo T Vi ey

2 _ yM | G-Dp_? 2 _ yN | G-D 2

where Vemay = Y et S, (517, and Vi ey = DO Kl S

m#n; nn;
Unlike the GSBR2 algorithm, where the diagonal energy gets increased

by the squared magnitude of the largest off-diagonal element, GSMD
increases the diagonal energy in each iteration at least by the squared
off-diagonal norm of the largest off-diagonal column. Therefore, the
proposed algorithm achieves faster convergence. Once U?) and V©, the
left and right singular vectors of S([_%)[O], are applied to each lag, the
off-diagonal energy in the zero-lag gets transferred onto the diagonal
resulting in

a (SO} = (ST} +72 _ +v

2
c(n;,7;) r(n;,—7;)

. L1
5 {SD(2)} = o, {72 (2))
a3 {$V(z)} = 0.

This shows that diagonal energy of the zero-lag, i.e., a; {(SD(2)} in-
creases monotonically with each iteration while the total energy,
ie., a4{S(i)(z)} remains the same. It therefore forms the upper bound
for a; {SP(2)}, i.e., a;{SP(2)} < a,{SP(2)} Vi. Therefore, a;{S(z)}
must have a supremum f. Hence for £ > 0, there must be an iteration
number I for which we have

f-a{SP@)} <e.

After some subsequent non-zero iterations ¢ > 0, it is easy to prove that

2 _ ()
y’("l+/’771+t’) < ﬂ aj {S (Z)} <e.

J/02("l+/’f1+t’) +
This proves that after sufficiently large number of iterations, the max-
imum off-diagonal energy is bounded by & > 0.

It must be noted that although «,{S®(z)} increase monotonically
increases in each iteration, the maximum off-diagonal column energy
may not necessarily decrease monotonically. This means that the over-
all off-diagonal energy at subsequent iterations can be larger than that
of the previous iterations. Due to the iterative nature of the proposed
algorithm, the difference between a, {S®)(z)}, which is invariant to iter-
ations, and g will generally be non-zero unless A(z) is a diagonal matrix.
Increasing the number of iterations improves the diagonalization and
the gap between the total energy § and the diagonal energy a; {S)(z)}
decreases further. Consequently, achieving a smaller target ¢ requires
more iterations compared to a larger one. In algorithmic sense, the
parameter ¢ implicitly governs the number of iterations needed by the
algorithm.

Note that the proposed method does not rely on any additional
assumptions for convergence, except that a,{ A(z)} remains finite. This
quantity is invariant to delays, unitary transformations, and, therefore,
to the iteration index. As long as this condition holds, the proposed
algorithm will iteratively converge toward a diagonal matrix.

4.4. Polynomial order growth and truncation

The growth in polynomial order of all three matrices must be
controlled to reduce the computational complexity of the algorithm
akin to the case with SMD and SBR2 [39,40]. This will subsequently
minimize implementation costs when V(z) and U(z) are realized via
DSPs or FPGAs in applications. Since S®[r] is a Laurent polynomial
but not para-Hermitian symmetric, it is truncated by discarding lags
from 7 = 7,;,, where 7,;, represents the least maximum lag for which
SOlt],e, . =0, 10 7 = 7y, and from 7 = 7,5, 10 T = Ty, Ty IS
the minimum lag for which $”[z]|,,, =0, via a parameter upy that
determines ., and 7, as

T SOy Zem ISOLEE
_— >, —— > —. (16)
a,{A(2)} 2 a,{A(z)} 2

Unlike SBR2/SMD, the truncation here is not symmetric due to the
absence of para-Hermitian symmetry.
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Fig. 2. An example case shown for RGSMD with S®[7] € C** of polynomial
order 2 or 3 time lags. The dominant row (in dark black) has the row index
m; = 4, which exceed the numbers of columns, and reside at lag r = —I.
Shifting it to the rau = 0 does not affect the diagonal elements (in dark gray),
making the right delay matrix an identity. This causes the order of the shifted
matrix to increase by |r;| = 1 instead of by 2|z;].

In the proposed approach, columns are either delayed or advanced,
making the right paraunitary matrix a Laurent polynomial matrix; the
same applies to rows, and therefore, to the left paraunitary matrix. As
iterations progress, the coefficients of all three intermediate matrices
decay at both ends. Unlike the SMD and SBR2 where column is strictly
advanced, and row is delayed in every iteration, the proposed method
and its variants, discussed below, have the flexibility to advance and
delay both the columns and rows. Therefore, along with S(z), the
coefficients of matrices U”(z), V’(z) can decay on either ends necessi-
tating truncation of exterior lags on either end. This is carried out via
a upy parameter

Ttrun— (i) 2 Tmax (i) 2
i | Cal 2 P L Gl
T=Tmax i 2 T=Tmax i 2
T UOLel Yoz U0 IR

at each iteration of the proposed algorithm.

> Upy, > Upys a7)

5. Variant of the proposed algorithm

Depending on the spatial dimensions and the energy distribution
across the rows and columns of a polynomial matrix, various variants
of the GSMD algorithm can be developed. We highlight several variants
that transfer different amounts of energy in each iteration, which we
will analyze through simulations to compare their convergence speed
and computational cost.

5.1. Dominant row variant

In this variant, instead of focusing on columns, the algorithm iden-
tifies the dominant row with the maximum off-diagonal #,—norm, (5)
at each iteration, defined by:

N
{7;,m;} = argmax { > |s5,';;,“[r1|2} : (18)
T.m n=1,n#m
By concentrating on the dominant row, this approach creates a row-
based GSMD variant (RGSMD). If Z,—norm is replaced with an
¢ —norm in (18) as adopted in (15) for columns, we obtain the maxi-
mum element RGSMD (ME-RGSMD) variant. These row-based variants
differ from the column-based variant in terms of the polynomial order
growth of the intermediate matrices S®(z),U®(z) and V(z). For
instance, if in a certain iteration, the dominant row index exceeds the
number of columns, i.e., m; > N, the diagonal element will not be
shifted due to the application of Bf")(z) from the left, therefore, making
Bﬁi)(z) an identity. See an illustrative example in Fig. 2. As a result,
in such an iteration, the polynomial order of S (z) and U®(z) would
grow by |z,|, while that of ¥)(z) remains the same. While if there is a
case with m; < N in any iteration, the RGSMD variant works similarly
to the CGSMD, and the ME-RGSMD works similarly to the ME-CGSMD.
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5.2. Dominant row based extra shift variant

This variant introduces an additional shift in the dominant row ap-
proach, allowing for more flexibility in transferring energy, particularly
when dealing with the lower submatix of A(z). This is achieved at a cost
of minimum additional computation and not increase in polynomial
order. That is, after determining {z;, m;} via (18), this variant transfers
the entire lower (M — N) x N submatrix, which does not contain any
diagonal element, from 7z = 7; to the zero-lag along with the m;th row.
The submatrix transfer may enable greater energy transfer to the zero-
lag diagonal, potentially accelerating the diagonalization process. This
accomplished via the left delay matrix, which varies depending upon
m; as follows:

m <N : B}”(z) = diag{lm’_l,z”, | FYRNS SV VS 4L } ,
B () = diag{1,, 1.2 1y, |
m; > N : B (z) = diag{1y. 1),_yz}. BO(2) =1y 19)

In case m; < N, the corresponding m;th column is shifted in the reverse
direction to bring back the diagonal elements to their original position.
This variant is termed as extra-shift RGSMD (ES-RGSMD) variant. The
entire procedure of this variant is same as outlined in Algorithm 1
with left and right delay matrices replaced with (19) and column
norm is replaced with row norm. If extra shifts are performed within
the framework of ME-RGSMD, it is denoted with abbreviation ES-ME-
RGSMD. The polynomial order growth of intermediate matrices in these
variants is same as that in the RGSMD/ME-RGSMD.

5.3. Hybrid column-row GSMD variant

This hybrid variant combines both column and row-based ap-
proaches, allowing the algorithm to choose between transferring energy
via the dominant row or column based on which provides a higher
energy transfer in each iteration. In the hybrid column-row GSMD
variant, the algorithm can switch between the row-based (RGSMD) and
column-based (CGSMD) or between ES-RGSMD and CGSMD approaches
depending on the relative off-diagonal energy norms.

To accomplish this feat, this variant performs two searches in each
iteration: one to identify the dominant column index »; and its lag 7, ,
while the second identifies the dominant row parameters, i.e., m; and
7; . The additional subscripts in the lag parameters distinguish between
row and column lags, with the scope of this notation limited to this
subsection. After identifying both, if the off-diagonal norm of the m;th
row situated at 7 = 7;, exceeds that of the n;th column at 7 = 7; ., the
row is transferred, making this iteration similar to an RGSMD iteration.
Otherwise, the n;th column at = = 7;, is transferred to the zero-lag,
resulting in a CGSMD-like iteration. This variant is known as hybrid
column-row GSMD (HCR-GSMD). If instead of RGSMD, the algorithm
switches between ES-RGSMD and CGSMD, slightly more energy is
expected to be transferred onto the zero-lag in each iteration. This type
of variant is known as extra-shift HCR-GSMD (ES-HCR-GSMD).

5.4. Multiple maximum element shift (MSME-gsmd)

This variant extends the GSMD algorithm by allowing multiple off-
diagonal elements to be shifted in a single iteration. Since this variant
involves multiple maximum-element shifts within a single iteration, we
introduce an additional subscript to keep track of both column and row
indices of each element being shifted. Here, as in the previous sections,
i denotes the iteration number, and j denotes the sequence of maximum
element shifts within the same iteration.

First a maximum search is performed within the upper N x N sub-
matrix of S¢~V(z) in the ith iteration. Let us assume the first maximum
off-diagonal element is located at coordinates {m ;),n 1y, 7 1)}. This
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Fig. 3. Example of MSME-GSMD with a zero-lag coefficient matrix (diagonal elements in light gray). (a) The first maximum off-diagonal element (green, labeled
1) is shifted to the zero-lag position and permuted into the upper 2 x 2 submatrix using row/column shifts. The corresponding row- and column-shift spaces
are highlighted in light blue in (b). Elements outside col/row-shift spaces (marked x) are resistant to permutation into the upper 3 x 3 submatrix. If the second
maximum off-diagonal element (red, labeled 2 in (c)) lies outside the shift spaces, it cannot be moved into the upper submatrix without disturbing element 1,
and therefore, no further shifts beyond 2 are possible in this iteration. (d) If the second maximum lies within the col or row-shift spaces, as highlighted in green
with label 2, it can be shifted to the zero-lag position and easily permuted to the upper 3 x 3 submatrix if not already lies in it without affecting the upper 2 x 2
submatrix. This allows a 3rd maximum element shift in reduced col/row-shift space, as shown in (e), in the same iteration making total possible shifts N —1 = 3.

element is time-shifted from 7;; to = = 0 via the left- and right-shift
matrices in (7) and (9), respectively, resulting in

. 1 : . .
5412 (z) = BV ()87 V(2)BI () .

Next, a permutation is applied to move this maximum off-diagonal
element to the upper 2 x 2 matrix, specifically to the second row and
first column, i.e., at index (2, 1). However, permutations are not applied
if it is already an off-diagonal element of the upper 2 x 2 submatrix.
In general if (m 1y, 1 1)) & {(1,2),(2,1)}, the left and right permutation
matrices for the first shift can be expressed as the product of the two
modified identity matrices:

(ng, 11
,

i.1) _ ymane2) (g el (m;<2)
Pl =1 Ty ’ N Iy

@i,1)
PéD =1
o2 . . o
where 1531("”  denotes an NxN identity matrix with its m; ;-th column
swapped with the second column. This permutation is applied to all lags
which produces

. . L1 .
S0-10(z) = P;I,I)S(:—l,i)(z)l)ﬁt,l)’

to ensure that subsequent shifts within the same iteration do not
affect the first maximum off-diagonal element, provided the upper left
2 x 2 submatrix remains unchanged. An example Fig. 3(a) illustrates
an off-diagonal element (green 1) permuted to (2,1) by swapping the
first column with the fourth, and second column with the third, and
similarly for rows.

After the first maximum off-diagonal shift and permutation, the
subsequent search is performed within two reduced search areas: the
column-shift and row-shift spaces. These two reduced search spaces af-
ter the first maximum off-diagonal shift and permutation are S(lifz{élz)N (z)
and S(si;_j\lf,lf;z(z)’ respectively, as shown in Fig. 3(b). Any off-diagonal
element in the column-shift space can be translated to r = 0 through
a column shift, and via a row shift if it is within the row-shift space.
Selecting an off-diagonal element outside these regions reduces the
possible number of maximum element shifts within a single iteration, as
elements outside these spaces cannot be transferred to the upper 3 x 3
section without disturbing the upper 2 x 2 matrix. An example in Fig.
3(b) shows light yellow elements, marked as x, outside the column and
row-shift spaces if being selected as the maximum element, limiting the
number of shifts to two as shown in Fig. 3(c) with maximum element
showed in red as the second shift, while otherwise three shifts are
possible as evident in Fig. 3(d) and (e).

In general, for subsequent maximum off-diagonal element shifts,
i.e., j > 1, within the ith iteration, the maximum off-diagonal element
coordinates {my; ;,n; ;, 7 ;} is determined within

(i-1,j-1)
('O{XI' h Sl:j,j+1:N
i—1.j— :
Siivay Oav-pxav-i)

If m; ;) < ng ;), the element being in column-shift space is time-shifted
via left and right shift matrices

B! (z) = diag{ Ly =152 Ay } ’ (202)
B;i,j)(z) _ diag{ | PSS P } , (20Db)
with permutation matrices

Pfi’j) _ Iiwm,;,wjﬂ); pe) = I;’;(u)*’f“)‘

However, if m; ;, > n; ;), shift matrices are

B(z) = diag{ Ly 102 Ay } , (21a)
B:i’j)(z) — diag{ lm(,-‘j)—l’ 256D, lM—rM(,,/)—l } , (21b)

. i i e+l " el
with P}”’ ) = I(;( gl ); Pg”’ ) = I(I;n( DD The update goes as

SU1D(z) = P B (2)§0-157D(2) BUD ()P

With a total of j = 1,...,(N — 1) maximum element shifts with
embedded permutations, the lower (M — N) x N submatrix which
remains unchanged excepts that elements within are swapped column
wise due to permutations. Two different approaches can be applied to
transfer additional rows:

5.4.1. Same lag transfer
The same lag transfer approach determines the lag with the maxi-
mum energy in the entire lower submatrix, that is

(i-1,N=1)

N+1:M.1;N[T]”12:’ (22)

7,y = argmax [|S
T

which is then transferred to z = 0 via Bl(i’N) = diag{1y,1y_nz" M}

and BN (z) =1, as

S(i—l,N)(z) — Bif*1~N*1)(Z)S(i—l,N—1)(z)'

Thereafter, the SVD of the zero-lag is performed and its left and right
singular matrices are applied to all lags

S(i)(z) — U(i),HS(i—l,N)(Z)V(i),

where S(-1-M[0] = UODODVOH which completes the ith iteration of this
variant. We denote this approach as same lag MSME-GSMD (SL-MSME-
GSMD). The polynomial growth of U®(z), V¥ (z) and £¥(z) in the ith
iteration is 27:1 T j) Z;V:_ll 7, and 2 ZINJII 7)) + Ti,n)» Tespectively.
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5.4.2. Individual rows transfer

Instead of the same lag transfer as in (22), we determine the time
lag for maximum energy within each individual row of the lower
(M — N) x N matrix as

i—1,N—1 .

7y = argmax [NV, G = N (M= ), 23)
T

Thereafter, each of these rows are transferred to ¢ = 0 from its

respective maximum lag TGj»J = N,....,M via a left shift matrix

Bfi’N)(z) = diag{ly,z™, .., z%M } with right shift matrix equal
an identity. The rest of the procedure is the same as that discussed
above for SL-MSME-GSMD. This separate row transfers may experience
high polynomial order growth as compared to SL-MSME-GSMD but
will often transfer more energy onto the diagonal in each iteration.
It should be noted that these extra rows within the lower submatrix
are shifted from different lags once all the necessary rows and columns
in the upper N x N matrix are shifted. Hence they will increase
the polynomial order growth of $®(z) and U”(z) unlike HCR-GSMD
and ES-RGSMD where the low sub-matrix is shifted in parallel with
the dominant row shift. For performance comparison, we denote this
approach as different lag MSME-GSMD (DL-MSME-GSMD). The polyno-
mial order of U"(z), V?(z) and ¥ (z) at the end of ith iteration grows
by Zjﬂil_l T j) Zj\’:_ll 7 j, and 22;\’;11 T+ Zﬁl_vl 7 j)» Tespectively.

5.5. Convergence

Since each variant transfers a different amount of energy to the
diagonal of the zero-lag coefficient matrix in each iteration, a; { S (z)}
monotonously increases for all variants. Thus, the convergence proof
presented above is valid for each variant.

6. Simulations and results
6.1. Performance metrics

6.1.1. Off-diagonal energy ratio
To assess the performance of various PSVD algorithms, we use the
off-diagonal energy ratio

pO = Slogy, {&3{S(i)(z)}/a4{§(i)(z)} } , @9

) ; 2
where a;{S?(z)} = ¥, Z:f:l Z:;l |sf,',?,,[r]| . A lower value of g’

indicates better diagonaliza?i?n performance, as it signifies less off-
diagonal energy. This metric is particularly important in applications
such as broadband MIMO systems, where efficient diagonalization
improves system performance and reduces interference. Ideally, g
should approach —oo. In practice this is not achievable; an off-diagonal
energy ratio below —10dB is desirable [2,7]. .

6.1.2. Normalized error of estimated singular values

The accuracy of the diagonalization and the estimated singular
values is assessed by comparing the singular values of the sample points
of A(z) on the unit circle, i.e., A(e’?), computed via a standard SVD,
i.e., A(e%) = U,D, V. H where D, = diag{c,(el%), ..., o (%)}, with
61(ei%) > ... > o (el%), and Z(el%) for k = 0, ..., (K —1). The accuracy
metric ¢ is expressed as:

oo D —abs{Z(e%)}|12
KX D2

where Z(ei%) is equivalent to $(e/%) but its off-diagonal elements set
to zero. The metric is computed at DFT size K that exceeds both the
polynomial order of A(z) and 3(2).
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6.1.3. Normalized reconstruction error

If A(z) = U(2)Z(z)VHz) is the reconstructed polynomial matrix
from the PSVD factors where 3(z) is same as 2(z) but its off-diagonal
element forcefully made zero, we consider the reconstruction error
E(z) = A(z) — A(z) and define a normalized error metric

_ X BRI
>, A2
where E[z] oo E(z).

(25)

6.1.4. Computational and implementation

Complexity The computational complexity of an algorithm is eval-
uated by its execution time, which is measured using the tic and toc
functions in MATLAB'. In contrast, the implementation complexity can
be quantified by the polynomial order of the PSVD factors [7] produced
by each algorithm.

6.2. Worked example

In this worked example, we investigate the PSVD computation of a
simple polynomial matrix

14227143272 z7' =222 44271405272
Aiz) = | 2—-z14272 345271 1+z7 14272 (26)
S+3z7 4272 2471272 543z71—z2

via the CGSMD algorithm, as a demonstration, to analyze the zero-
lag coefficient diagonal energy increase in each iteration and compare
it against the GSBR2. We iterative both algorithm for 25 iteration,
the resulting a{S®(z)}, defined in Section 4.3, is shown in Fig. 4.
The profile clearly shows that the GSMD algorithm is able to trans-
fer more energy onto the diagonal of the zero-lag coefficient matrix
than the GSBR2 algorithm because it diagonalize the entire zero-lag
coefficient matrix through an SVD instead of zeroing a single element
like GSBR2. Using the same example matrix as before, we now analyze
the effect of ¢ on the GSMD algorithm. Therefore, we permit as many
iterations as needed until the off-diagonal column norm falls below
e, with ¢ € {107',1072,1073,1074,107%}, to study its impact on the
total number of iterations. The truncation parameter upy and upy in
(16) and (17) are both set to 10~°. For the CGSMD variant, as an
illustrative case, the algorithm requires 73, 224, 268, 309, and 352
iterations, respectively, to satisfy these thresholds. Smaller values of
¢ lead to more iterations and improved diagonalization. This is also
reflected in the normalized singular value errors, which in this case
are {18.2, 2.81, 2.76, 2.75, 2.74} x 1077, progressively decreasing and
indicating increasingly accurate singular value estimates.

6.3. Ensemble test setting

To evaluate the performance of the proposed GSMD algorithm
variants, simulations were conducted on 2000 randomly generated
polynomial matrices A(z) € C®* of polynomial order 10 with Gaussian-
distributed coefficients. These matrices resemble polynomial matrices
estimated from real-world data in the sense that the singular values
of both remain majorised and the PSVD factors are often of infinite
polynomial order [22,24,25,34], and therefore makes the ensemble test
valid for evaluating PSVD methods. It is important to mention here
that the DFT-based PSVD approach is excluded in this comparison due
to its high computational cost [18]. Moreover, it is suitable only for
cases involving short polynomial-order ground-truth singular vectors,
which is typically not the case with randomly generated or estimated
polynomial matrices [24]. For similar reasons, the iterative PQRD ap-
proach, which is not a PSVD approach but can be used to compute the
PSVD, and the 2-PEVDs approach are also not considered. The GSBR2
approach represents the sole dedicated PSVD approach available in the
literature.

All the proposed algorithms and the GSBR2 are simulated with
€ = ppy = 1075, ppy = 107 for a maximum of I = 250 iterations
unless the off-diagonal energy threshold is satisfied. All simulations are
performed in MATLAB' 2022b on a Dell (G15) i7 machine.
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Fig. 4. Zero-lag coefficient matrix diagonal energy, i.e. a, (S%(z)}, versus iteration number for example A(z) in (26).
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Fig. 5. p© versus iteration number i for the GSBR2 and proposed algorithms over the entire ensemble. HCR-GSMD shows almost identical profile to CGSMD,
and so is omitted for clarity. Solid lines show the median; error bars denote the 10th and 90th percentiles.

6.4. Ensemble results

6.4.1. Off-diagonal energy versus iteration index

A key merit of an effective iterative PSVD algorithm is its ability to
progressively transfer more energy onto the diagonal with each itera-
tion. This behavior can be quantified by monitoring the reduction of the
off-diagonal energy. To this end, we plot ) as defined in (24), where
more negative values indicate stronger diagonalization, against the it-
eration index for the entire ensemble (see Fig. 5). The ensemble median
is shown in bold, while the 10th and 90th percentiles are depicted as
error bars. The results clearly demonstrate that all GSMD-based variants
outperform GSBR2 in terms of reducing off-diagonal energy across
iterations. For GSBR2, the final f¥) after 250 iterations remains above
—5dB, whereas all proposed variants reach below —5dB before the
175th iteration. Among them, DL-MSME-GSMD and SL-MSME-GSMD
exhibit the fastest convergence, achieving (1) < —12.5dB, as they trans-
fer the largest fraction of energy per iteration. By contrast, ME-RGSMD
and ME-CGSMD converge more slowly, though they still consistently
outperform GSBR2. Overall, these findings suggest that GSBR2 would
require at least 50-100 additional iterations to reduce the off-diagonal
energy to the level achieved even by the slowest of the proposed GSMD
variants.

6.4.2. Computational complexity

To evaluate the computational complexity of the proposed algo-
rithms, we present two sets of results. In the first set, we examine the
relationship between diagonalization performance and execution time
by plotting the ensemble median of ) against the ensemble median of
the elapsed system time T, as shown in Fig. 6. This curve is obtained
by measuring both ) and T, at each iteration, which allows us to
view diagonalization progress as a function of the total time required
to complete i iterations. The profile in Fig. 6 shows that all proposed
variants achieve significantly better diagonalization than GSBR2 within
the same time budget. For example, at r = 0.1 s, the proposed algorithms
outperform GSBR2 by at least 1.65 dB in metric ). While some
variants incur higher computational cost per iteration, they still achieve
substantially greater diagonalization within the same execution time,
making them computationally more efficient overall. Among them,
RGSMD and ES-RGSMD provide the fastest diagonalization with respect
to execution time, while ME-CGSMD and ME-RGSMD are the slowest,
though they still perform better than GSBR2.

The second set of results, summarized in Table 1, reports the overall
execution time, including both the mean and the standard deviation
across the entire ensemble. With the exception of SL-MSME-GSMD and
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Table 1

Comparison of PSVD algorithms over an ensemble of 2000 randomized 6 x 4-dimension polynomial matrices.
Algorithms/Metrics Computation Time [s] Norm. Recons. Error [{] Norm. Error of 6(z) [¢] 0{0(2)} O(V(z)}
GSBR2 0.3857 + 0.0878 0.139 £ 0.019 (7.00 £ 2.22) x 107> 92+ 16 87+ 17
CGSMD 0.2410 £ 0.0476 0.066 +0.013 (0.33+£0.15) x 1073 84+ 10 82+ 12
ME-CGSMD 0.2620 + 0.0535 0.093 +0.022 (0.78 £ 0.35) x 1073 93+19 89 +21
RGSMD 0.1892 + 0.0398 0.057 £0.011 (0.42 £0.18) x 107> 81 +11 70 £ 10
ME-RGSMD 0.2381 + 0.0524 0.096 + 0.023 (1.13+£0.51) x 1073 97 +23 85+21
ES-RGSMD 0.2282 +0.0470 0.055 +0.011 0.19+£0.11) x 1073 96 +29 75+ 10
ES-ME-RGSMD 0.2772 + 0.0573 0.082 +0.021 (0.49 £ 0.28) x 107> 116 + 46 88 +24
HCR-GSMD 0.2412 + 0.0496 0.065 £ 0.013 (0.32+£0.15) x 107 86+ 10 80+ 12
ES-HCR-GSMD 0.2439 +0.0508 0.064 +0.013 (029 £0.14) x 1073 86+ 10 81+13
SL-MSME-GSMD 0.8997 +0.1997 0.079 £0.019 (0.49 £ 0.28) x 107° 121 £33 113 +34
DL-MSME-GSMD 0.9726 +0.2143 0.079 £0.019 (0.48 £0.27) x 107° 122 + 35 114 + 35

DL-MSME-GSMD, all proposed variants complete I = 250 iterations in
roughly two-thirds of the time required by GSBR2. RGSMD is the fastest
overall, followed by ES-RGSMD.

6.4.3. Normalized error metrics

Since none of the algorithms reached the target off-diagonal energy
threshold (¢ = 107%) within the allowed number of iterations, the
normalized error metric & at I = 250 is expected to be smaller for
algorithms that achieve stronger diagonalization. As shown in Table
1, the multiple-shift variants are clearly the most effective, achieving
the lowest normalization errors for the singular values. In contrast,
GSBR2’s performance is the worst: its singular value error is about six
times larger than that of ME-RGSMD, the least effective of the proposed
methods. The same pattern holds for the normalized reconstruction
error metric, which indirectly shows the accuracy of both the estimated
eigenvectors and the singular values, where GSBR2 again ranks last,
while RGSMD and ES-RGSMD emerge as the most accurate.

6.4.4. Paraunitary matrices polynomial orders

The polynomial orders of U(z) and V' (z), which indicate the imple-
mentation complexity of filter banks in hardware for signal processing
applications, are also reported in Table 1. RGSMD produces eigenvec-
tors with the lowest polynomial orders, followed by CGSMD, both of
which outperform GSBR2 in this regard. In contrast, the multiple-shift
variants result in the largest polynomial orders among all algorithms.
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6.5. Scalability and limitation

6.5.1. Small to moderately large spatial dimension simulation

For an M x M polynomial matrix, the overall complexity is cubic
in M, primarily due to the ordinary matrix SVD computation and the
subsequent application of unitary transformations to S(i_%)[r] for every
lag 7 in the ith iteration. The temporal order L of the polynomial matrix
has little impact, apart from the fact that complexity scales linearly
with it. Therefore, we focus on comparing the execution time of the
proposed algorithm against that of the GSBR2 algorithm for moderately
high spatial dimensions, in order to assess scalability with respect to
M in the Matlab. For this, we generate an ensemble of 200 polynomial
matrices of size M x M, with M € {4,8,12,16,20}. The algorithmic
parameters are kept the same as in the earlier ensemble test. The extra-
shift (ES) variants are not applicable in this case due to the square
spatial dimension. Since SL-MSME-GSMD and DL-MSME-GSMD behave
identically under these conditions, the set of considered algorithms
reduces to CGSMD, RGSMD, HCR-GSMD, and their maximum-element
variants (ME-CGSMD and ME-RGSMD). However, as ME-CGSMD and
ME-RGSMD are less effective, we restrict our simulations to four algo-
rithms: CGSMD, RGSMD, HCR-GSMD, and MSME-GSMD (with SL and
DL being identical here).

The ensemble results are shown in Fig. 7, with computation time in
(a) and the normalized error of the estimated singular values, i.e., &,
in (b) plotted against the spatial dimension. Apart from MSME-GSMD,
the average execution time of the CGSMD, RGSMD, and HCR-GSMD is
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Fig. 7. (a) Execution time, and (b) normalized error for estimated singular values for higher spatial dimension polynomial matrices (MSME-GSMD is simulated

only for M =4,8,12 as the execution exceeded a minute).

consistently lower than that of the GSBR2 algorithm for all values of
M. Among CGSMD, RGSMD, and HCR-GSMD, there is no appreciable
difference in execution time; they perform identically in terms of
computational complexity. The complexity of MSME-GSMD, however,
grows rapidly with M, such that for M > 12, a diagonalization on
average requires approximately one minute or more. Note that the
reported computation times correspond to a total of 250 iterations. The
superior performance in computational sense is further supported by
the fact that normalized singular value error metric ¢ for the proposed
algorithms is consistently lower than that of GSBR2.

6.5.2. Higher or extreme spatial dimension polynomial matrices

For higher-dimensional spatial matrices, the divide-and-conquer ap-
proach [41,42], initially adopted for the SMD algorithm in [43], can
also be applied to the GSMD algorithms. Since the core principles of
SMD and GSMD are closely related, similar improvements in execution
time can be expected for GSMD, as reported for SMD in [43], where
a reduction of up to 66% was achieved for parahermitian matrices of
spatial dimensions M = 20, 40.

6.5.3. Polynomial order growth limitation

The paraunitary and parahermitian polynomial matrix truncation
methods used for SBR2 and SMD are not particularly suitable for
GSMD or GSBR2 [8,9,39,40]. The reason is that, unlike SMD and
SBR2—where columns are delayed and rows are advanced, and the
partially diagonalized matrix remains parahermitian, simplifying the
truncation procedure—in the proposed method, as well as in GSBR2,
columns can be either advanced or delayed, and the partially diagonal-
ized matrix does not exhibit any symmetry. Therefore, a new truncation
strategy is required, which can significantly improve the accuracy of
singular vectors and reduce the reconstruction error.

6.6. Radar plot for conclusive comparison

For a direct performance comparison, a radar chart, illustrated in
Fig. 8, is constructed considering five different metrics: convergence
speed with respect to iterations (CSI), computational efficiency (CE),
convergence speed w.r.t time (CST), accuracy speed w.r.t time (AST),
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and accuracy speed w.r.t iterations (ASI). These metrics are computed
as follows:

_ —4—average{p"} I _ —4 —average{f'"}

csI . CST =

I ’ average{T,} average{T, }
AST — average{&} — 10‘4’ AST = average{£} — 10‘4’ @7
average{T, } I

and thereafter normalized w.r.t. maximum. A higher values of these
metrics indicate better performance. These metrics allow users to se-
lect the most appropriate algorithm based on the specific application
requirements. For time-sensitive applications, where fast convergence
and high accuracy in minimal time are essential, algorithms with better
AST and CST metrics are preferable. In contrast, in less time-critical
environments, iteration-based metrics like CSI and ASI might be more
relevant.

The MSME variants transfer the most energy onto the diagonal of
the zero-lag coefficient matrix in every iteration, making them optimal
according to the CSI metric but the worst in terms of CE. Conversely,
RGSMD has the lowest execution time per iteration, yielding the best
CE among all variants, although it is outperformed by ES-RGSMD in
CST. This observation aligns with the results shown in Fig. 6. The
AST metric, which evaluates the accuracy of the estimated singular
values relative to the elapsed system time, shows RGSMD as the best
performer than the ES-RGSMD over the constructed ensemble, while
the MSME variants show poor performance, requiring more time to esti-
mate accurate singular values. However, when the number of iterations
is considered instead of the execution time, MSME variants achieve
the most accurate singular value estimates with fewer iterations, as
reflected in a high ASI metric. Finally, GSBR2 exhibits the poorest
performance in all aspects excepts that its average execution time per
iteration is lower than the MSME variants. Nevertheless, due to its
poor performance in the other metrics, GSBR2 demonstrates the worst
overall performance, as evidenced by the smallest enclosed area in its
radar chart.

In summary, the CGSMD, RGSMD, ES-RGSMD, ES-HCR-GSMD, and
HCR-GSMD, which is not shown due similar performance to ES-HCR-
GSMD, variants demonstrate comparable performance to one another,
with the ES-RGSMD emerging as the leading method. In scenarios
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where computation time is of lesser concern, such as in an offline
diagonalization of a polynomial matrix, the MSME-GSMD variants are
preferable, as they achieve superior diagonalization with the fewest
iterations.

7. Application of the GSMD algorithm to broadband MIMO chan-
nel equalization

To demonstrate the practical utility of the proposed PSVD algo-
rithm, we apply it to decouple a broadband MIMO channel. Broad-
band MIMO systems, characterized by multi-path propagation and
frequency-selective fading, and therefore can be modeled via tap-delay-
line, i.e., a polynomial matrix with sufficient time-lags. With broadband
MIMO channel C[n],n =0, ...,(L — 1) with L number of taps, s,,[n],i =
1,..., M denoting the source signals, x,[n],# = 1,..., N the received
signals and v,[n],Z = 1,..., N the additive Gaussian noise, in z-domain
we have

v1(2)
+| (28)
Upy (2)

x1(2) c11(2) @ |] s1(2)

xn(2) cn1(2) e @ |[sp(2)

An SVD can only diagonalize C(z) for one particular value of z but
not V z, whereas a PSVD can diagonalize C(z) for all values of z into
U(z)X(z)V¥(z), where U(z) and V (z) are para-unitary filter banks, and
3(z) is a diagonal polynomial matrix containing decoupled frequency
selective channel gains. The transmitter precodes the source signals s(z)
using V(z) and receiver applies U(z) to the received signal

Ui (2)x(2) = UR2)U(2) Z(2)VH2)V (2)5(2) + UN2)v(2) (29)
eliminating channel interference such that
¥(2) = Z(2)s(2) + V' (2) (30)

where y(z) = U%z)x(z) and v/(z) = U%z)v(z). Due to paraunitary
filter banks both in transmitter and receiver, neither the transmit
power is increased, nor the channel noise. The resulting ISI in X(z)
can be removed zero-forcing equalizer. By concentrating energy along
the diagonal of X(z), the PSVD effectively isolates the independent
subchannels, enabling simpler receiver design.

A representative example of a 3 x 3 broadband MIMO channel C(z)
of polynomial order 20 is considered to illustrate the performance of
the proposed algorithm. The absolute weights at different time lags
are depicted in Fig. 9. For the decoupling application, channel state
information (CSI) is assumed to be known at both the transmitter and
receiver. The precoder and decoder paraunitary matrices are derived
using the MSME-RGSMD-DL algorithm, employing a maximum of 400
iterations with € = 107% and ppy = ppy = 107°. The elements of
the resulting diagonalized matrix %[n) are shown in Fig. 10, demon-
strating that the considered convolutive MIMO channel is effectively
decoupled. Upon evaluating 3(2) on the unit circle, i.e., z = &2, we
can compare the estimated singular values against the ground truth
as shown in Fig. 11. This shows that estimated singular values closely
matches the ground-truth and therefore, suggests accurate decoupling
of the MIMO channel. Moreover, it also highlights the proposed GSMD
algorithm’s capability to reliably estimate singular values across the
frequency spectrum. This accuracy ensures that the channel matrix is
well-conditioned for equalization, likely leading to enhanced interfer-
ence suppression and improved signal recovery. Such characteristics are
essential in broadband MIMO systems, where spectral nulls and poorly
estimated singular values can degrade overall performance.

The sources, drawn from three independent BPSK constellations,
each of length 10°, are filtered through V(z) and subsequently con-
volutively mixed with C(z). Additive white Gaussian noise (AWGN) is
then introduced to achieve various levels of signal-to-noise ratio (SNR),
ranging from 0 to 10dB in increments of 2dB. The received signal is
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Fig. 8. Radar chart comparing selected top-performing GSMD variants against
the baseline GSBR2 algorithm across five performance metrics defined in
(27). ME-CGSMD, ME-RGSMD, and ES-ME-RGSMD are omitted due to poor
performance, while performances of HCR-GSMD and SL-MSME-GSMD closely
match those of ES-HCR-GSMD and DL-MSME-GSMD, respectively, and so are
omitted for clarity.

further processed by a paraunitary matrix U%(z). After the channel is
fully decoupled into three single-input single-output (SISO) channels,
equalization is performed using a maximum likelihood sequence esti-
mation (MLSE) equalizer, which employs the Viterbi algorithm [44].
The bit error rate (BER) is computed for multiple trials for each source,
and the average BER is plotted as a function of the SNR, as illustrated
in Fig. 12. The results indicate that the BER for the largest mode or
singular value is the lowest, whereas the BER for the smallest singular
value remains the highest across all selected SNR values. This simula-
tion demonstrates the efficacy of the proposed algorithm in accurately
decoupling convolutive broadband MIMO channels and achieving reli-
able communication. Unlike the PQRD-based approach [13,15], which
requires back-substitution to reconstruct SISO channels, the GSMD
algorithm directly decouples the MIMO channel into a series of SISO
channels, effectively mitigating error propagation.

The computational efficiency of the GSMD algorithm renders it
particularly well-suited for real-time broadband MIMO systems. While
GSMD significantly improves accurate singular value estimation and,
consequently, BER performance, its efficiency ensures practical feasibil-
ity for time-sensitive applications. Unlike approaches such as GSBR2,
which often entail significantly higher computational overhead and
require more iterations, GSMD achieves effective diagonalization with
fewer iterations and controlled growth of the polynomial order. This
balance between performance and complexity positions GSMD as a
compelling choice for advanced communication systems, including
5G and mmWave MIMO. Furthermore, its computational efficiency
translates directly into reduced latency, a critical requirement for time-
sensitive applications where rapid channel state adaptation is essential.
The algorithm’s suitability for implementation on reconfigurable FPGAs
further enhances its applicability in real-time operations, making it an
excellent candidate for low-latency, high-throughput communication
scenarios (see Figs. 7 and 8).
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Fig. 9. A 3 x 3 broadband MIMO channel C[n] with 21 taps, i.e., n=0,...,20.
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Fig. 10. PSVD results for the example 3 x 3 broadband MIMO channel, illustrating Snl, produced via MSME-GSMD-DL version of the GSMD algorithm, versus
n.
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Fig. 12. Average BERs for BPSK sources estimated through an MLSE equalizer for SISO channel decoupled from a convolutive MIMO channel using a PSVD

algorithm at multiple SNR values.
8. Conclusion

In this article, we have proposed sequential matrix diagonalization
(SMD) based algorithms for computing the singular value decompo-
sition (SVD) of polynomial matrices. The proposed generalized SMD
(GSMD) framework encompasses multiple algorithmic variants, each
offering distinct trade-offs between convergence speed and computa-
tional complexity. The algorithms shift off-diagonal elements onto the
zero-lag coefficient matrix of the polynomial matrix using time-shift
operations, which are subsequently transferred onto the diagonal via
ordinary SVD. A formal proof of convergence has been provided and
holds for all proposed variants.

Comprehensive ensemble tests on 2000 randomly generated polyno-
mial matrices demonstrated that the proposed algorithms significantly
outperform the generalized SBR2 (GSBR2) algorithm, which represents
the sole existing dedicated polynomial SVD (PSVD) algorithm in the
literature. Key performance advantages include: (i) achieving 50 to 100
iterations faster convergence for equivalent diagonalization levels, (ii)
reducing computation time by approximately one-third while maintain-
ing superior accuracy, and (iii) producing lower polynomial orders in
the decomposition factors for several non-MSME variants. Notably, the
proposed algorithms can eliminate an entire column and row in each
iteration, in contrast to GSBR2, which eliminates a maximum of one
element per iteration. This fundamental difference in energy transfer
efficiency explains why the proposed GSMD algorithms demonstrate
greater relative performance gains over GSBR2 than those previously
reported for SMD over SBR2.

Among the proposed variants, ES-RGSMD emerged as the best over-
all performer, balancing computational efficiency with diagonalization
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accuracy, while the MSME-GSMD variants achieved the highest di-
agonalization quality when computational time is not critical. The
algorithms are scalable to spatial dimensions up to 20 x 20, with a
divide-and-conquer approach enabling extension to higher dimensions
for the non-MSME variants. Our findings validate the effectiveness of
the proposed GSMD algorithm not only for broadband MIMO chan-
nel equalization but also for wider applications including polynomial
generalized SVD beamforming for frequency selective MIMO [45],
broadband blind source separation [46], and polynomial root MU-
SIC [47]. The direct decoupling of MIMO channels into SISO channels
without back-substitution represents a significant practical advantage
over PQRD-based approaches.

Future work will explore integrating GSMD into adaptive com-
munication systems, including 5G, vehicular-to-everything (V2X), and
mmWave networks, which require real-time adjustments to channel
conditions under dynamic environments. Additionally, GSMD can be
directly applied to the polynomial Procrustes problem for approximat-
ing the best paraunitary matrix to a given polynomial matrix [48,49],
with applications in determining lossless transfer function matrices for
acoustic systems and artificial reverberation of multichannel audio [50,
51].
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