
Signal Processing 240 (2026) 110340 

A
0
n

 

Contents lists available at ScienceDirect

Signal Processing

journal homepage: www.elsevier.com/locate/sigpro  

Polynomial matrix SVD via generalized sequential matrix diagonalization
Faizan A. Khattak a ,∗, Soydan Redif b , Mohammed Bakhit c
a Department of Computer Science, University of Leeds, Leeds LS2 9JT, England, United Kingdom
b College of Engineering and Technology, American University of the Middle East, Kuwait
c Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, Scotland, United Kingdom

A R T I C L E  I N F O

Keywords:
Polynomial matrix
Polynomial singular value decomposition
Broadband MIMO
Sequential matrix diagonalization
MIMO channel equalization

 A B S T R A C T

The singular value decomposition (SVD) of polynomial matrices serves as a cornerstone in the analysis 
and optimization of broadband multi-input multi-output (MIMO) systems. This paper introduces novel 
algorithms for performing the SVD of polynomial matrices, leveraging a sequential matrix diagonalization 
(SMD) framework. The proposed methodology begins by identifying the column or row with the highest 
off-diagonal energy using a maximum search procedure. Subsequently, this energy is transferred to the zero-
lag coefficient matrix through a delay operation, which is then diagonalized using a conventional SVD. This 
iterative process continues until the maximum off-diagonal element falls below a predefined threshold. The 
proposed framework encompasses multiple algorithmic variants, each designed to offer distinct convergence 
speeds, thereby addressing diverse computational and accuracy requirements. Rigorous proofs of convergence 
are provided, alongside a thorough comparative analysis of the computational efficiency and diagonalization 
accuracy of the algorithms. Extensive simulations, conducted on ensembles of randomly generated polynomial 
matrices, demonstrate that the proposed algorithms consistently outperform state-of-the-art polynomial SVD 
(PSVD) methods across all evaluated performance metrics. Furthermore, the application of the proposed 
algorithm to decouple broadband or convolutive MIMO channels validates its accuracy and effectiveness in 
practical scenarios.
1. Introduction

Extending matrix algebra to polynomial matrices is highly moti-
vated by applications across control systems, digital signal processing, 
and broadband communications, notably in MIMO system design and 
broadband source separation [1–7]. Recent advancements have en-
abled extensions of fundamental decompositions such as eigenvalue 
decomposition (EVD) [8–12], QR decomposition [13–15], and singular 
value decomposition (SVD) [13,16–18], along with methods like the 
power method [19], into the polynomial domain. These polynomial 
matrix factorizations – including polynomial EVD (PEVD), polynomial 
QR decomposition (PQRD), and polynomial SVD (PSVD) – have en-
hanced both the accuracy and efficiency of broadband signal processing 
applications [2,8–19].

Unlike the polynomial EVD (pEVD), which has seen broad appli-
cation and algorithmic advancement, the polynomial SVD (PSVD) has 
received comparatively less attention, primarily because it can be com-
puted using two pEVDs. The first dedicated PSVD algorithm utilized the 
Kogbetliantz transformation [20], extending the pEVD approach known 
as second-order sequential best rotation (SBR2) [8] to ordinary polyno-
mial matrices [16]. Additionally, the extension of QR decomposition to 
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polynomial matrices in [13] offered an iterative approach for comput-
ing the PSVD, similar to the QR algorithm for standard matrices [21]. 
However, this method requires repeated application of the polynomial 
QR decomposition (pQRD), and with the truncation steps necessary to 
limit polynomial order growth, it incurs error accumulation, reduced 
decomposition accuracy, and significant computational cost. Due to 
the high polynomial order, hardware-implementation costs increase in 
broadband MIMO applications and, presumably, in other applications. 
To address this issue, [18] have utilized a phase smoothing procedure 
originally proposed for extracting analytic eigenvectors of a para-
Hermitian matrix [11]. This method operates in the discrete Fourier 
transform (DFT) domain. While it has been shown to converge, it is 
only suitable for polynomial matrices with small spatial and temporal 
dimensions.

Recently, it was proven that an analytic SVD exists for polynomial 
matrices, allowing singular values to be real-valued on the unit circle, 
but they can also take negative values, unlike in ordinary matrices [22]. 
A novel singular value extraction algorithm was proposed in [23], 
offering high scalability in spatial and temporal dimensions. However, 
this approach has limitations. It lacks a balance between execution 
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time and diagonalization precision, and struggles with estimated poly-
nomial matrices, particularly when polynomial singular values are of 
high order, leading to longer runtimes and difficulty in extracting 
approximate values. Additionally, it focuses solely on singular value 
extraction without providing a scalable method for singular vectors. 
Since estimated polynomial matrices exhibit spectrally majorized sin-
gular values that are strictly non-negative on the unit circle [24,25], 
therefore, the method in [23], which permutes singular values in each 
DFT bin to establish smooth association, is of little avail in cases where 
a polynomial matrix is estimated from a finite set of samples.

In this paper, we address the challenges associated with extend-
ing matrix decompositions to polynomial matrices. Specifically, we 
introduce novel PSVD algorithms based on the sequential matrix di-
agonalization (SMD) approach in [9], enhancing both computational 
efficiency and accuracy. Building on our previous work in [26], we 
propose generalized SMD (GSMD) algorithms for computing the PSVD 
of polynomial matrices. The proposed approach transfers the maximum 
off-diagonal elements from the non-zero slice of a polynomial matrix to 
the zero-lag coefficient matrix using paraunitary delay operations [27], 
followed by performing the SVD on the zero-lag matrix to diagonalize 
it. This process is repeated iteratively until the off-diagonal elements 
fall below a predefined threshold. Multiple algorithmic variants are 
introduced, each with its own advantages. We also provide a proof of 
convergence, demonstrating that the proposed algorithms consistently 
achieve the desired results.

The remainder of this paper is organized as follows: Sections II and 
III provide an overview of the existence of analytic SVD and the corre-
sponding algorithmic solutions. Section 4 details the framework of the 
proposed algorithm, while Section 5 enumerates the potential variants 
within this framework. Section 6 presents simulations and discusses the 
results, followed by Section 7, which illustrates an application scenario 
of the proposed algorithm. Finally, the conclusions are summarized in 
Section VIII.

2. Notations and definitions

A polynomial matrix in the complex variable 𝑧 with spatial dimen-
sion 𝑀 ×𝑁 can be represented as

𝑨(𝑧) =
⎡

⎢

⎢

⎣

𝑎1,1(𝑧) … 𝑎1,𝑁 (𝑧)
⋮ ⋱ ⋮

𝑎𝑀,1(𝑧) … 𝑎𝑀,𝑁 (𝑧)

⎤

⎥

⎥

⎦

=
∞
∑

𝜏=−∞
𝐀[𝜏]𝑧−𝜏 ,

where each element is a Laurent polynomial in the variable 𝑧, allowing 
both positive and negative powers [28]. The polynomial matrix and 
vector are denoted by bold italic upper and lower case letters with 
the continuous variable written in parentheses, e.g., 𝑨(𝑧) and 𝒂(𝑧). 
A polynomial element in the 𝑚th row and 𝑛th column is denoted by 
𝑎𝑚,𝑛(𝑧). The 𝑖th row of the matrix 𝑨(𝑧) is denoted by 𝒂𝑖,∶(𝑧) and the 𝑖th 
column by 𝒂∶,𝑖(𝑧). The discrete time-domain quantity of a polynomial 
matrix 𝑨(𝑧) is denoted by 𝐀[𝜏] ⊷ 𝑨(𝑧), where 𝜏 ∈ Z, with the 
transform pair denoted by ⊷. Note that matrices or vectors that 
depend on the discrete variable are denoted with upright bold upper 
and lower case letters with the discrete variable inside square brackets.

Akin to the Hermitian operator, denoted by {⋅}H in ordinary ma-
trices, 𝑨P(𝑧) is the para Hermitian [28] of 𝑨(𝑧), obtained by taking 
the Hermitian transpose and then reversing time, that is by replacing 
𝑧 with 𝑧−1, hence 𝑨P(𝑧) = 𝑨H(𝑧−1) ⊷ 𝐀H[−𝜏]. Similar to a unitary 
matrix, a polynomial matrix 𝑼 (𝑧) ∈ C𝑀×𝑀  is paraunitary if 𝑼P(𝑧)𝑼 (𝑧) =
𝑼 (𝑧)𝑼P(𝑧) = 𝐈𝑀 , where 𝐈𝑀  is an 𝑀 × 𝑀 identity matrix. In the 
context of this paper, we define 𝐀[0] as the zero-lag coefficient matrix 
of the polynomial matrix 𝑨(𝑧). In addition, the coefficient matrix at 
𝜏 = 𝜏0, i.e., 𝐀[𝜏]||

|𝜏=𝜏0
, is referred to as the 𝜏0th lag coefficient matrix. A 

quantity with an exponent is denoted by 𝑨𝑖(𝑧), while its 𝑖th update in 
an algorithm is denoted by parentheses in the superscript, e.g., 𝑨(𝑖)(𝑧).
2 
3. Background

3.1. Analytic SVD existence

Matrices that are functions of a real and continuous variable 𝑡 are 
commonly encountered in control engineering. To address problems 
such as stability analysis, robust control design, and 𝐻∞ control [29,
30], an analytic SVD for an analytic 𝑨(𝑡), i.e.,

𝑨(𝑡) = 𝑼 (𝑡)𝜮(𝑡)𝑽 H(𝑡),

has been shown to exist over a real interval 𝑡1 < 𝑡 < 𝑡2, where both the 
left- and right-singular vectors admit analytic properties [31]. However, 
for the singular values – the diagonal elements of 𝜮(𝑡) – to admit 
analyticity, they are allowed to take non-negative values. For such 
applications, various algorithms have been proposed to compute the 
analytic SVD for these matrices [32,33].

However, often in the signal processing domain, matrices that are 
functions of discrete variables, such as 𝐀[𝜏] with 𝜏 ∈ Z, frequently 
arise in filter design [28] and other applications. Its 𝑧-transform 𝑨(𝑧), 
being analytic in the continuous complex variable 𝑧, has therefore also 
received significant attention. In this work, we focus on such complex-
variable analytic polynomial matrices. For matrices 𝑨(𝑧) ∈ C𝑀×𝑁  with 
𝑀 ≥ 𝑁 , the existence of an analytic SVD – where the singular values 
are real-valued on the unit circle – depends on the number of spectral 
nulls of the singular values on the unit circle with odd multiplicity [22]. 
Mathematically, it can be represented as 

𝑨(𝑧𝑞) = 𝑼 (𝑧)𝜮(𝑧)𝑽 P(𝑧) (1)

where {⋅}P denotes a para-Hermitian operator, which is equivalent to 
taking the Hermitian conjugate followed by time-reversal, i.e., 𝑽 P(𝑧) =
𝑽 H(1∕𝑧∗). Here, 𝑼 (𝑧) ∈ C𝑀×𝑀  and 𝑽 (𝑧) ∈ C𝑁×𝑁  contain left and 
right singular vectors, respectively, and 𝜮(𝑧) ∈ C𝑀×𝑁  contains the 
analytic singular values on its diagonal. These singular values are real-
valued on the unit circle but may also take on negative values. If the 
number of spectral nulls is odd, 𝑞 is 2; otherwise, 𝑞 = 1. However, if the 
singular values are not constrained to be real-valued on the unit circle, 
the SVD can still be computed without upsampling by a factor of 2 
(i.e., 𝑞 = 2) [22], even when the singular values have an odd number 
of spectral nulls on the unit circle.

Generally, the factors in (1) are of transcendental functions, but due 
to the property of analyticity, they can be approximated sufficiently 
well by Laurent polynomials [22,34]. The left and right singular vectors 
are ambiguous up to an all-pass factor; that is, given an all-pass function 
𝜙𝑚(𝑧), 𝒖𝑚(𝑧)𝜙𝑚(𝑧) remains a valid 𝑚th left singular vector, and similarly 
for 𝒗(𝑧).

A polynomial matrix 𝑨(𝑧) ∈ C𝑀×𝑁 , estimated from finite number 
of sensor measurements, will manifest spectrally majorised singular 
values, if evaluated on the unit circle [24,25], i.e., 

𝜎1(ej𝛺 ) > 𝜎2(ej𝛺 ) > ⋯ > 𝜎𝑀 (ej𝛺 ) ∀𝛺 (2)

even if the ground truth singular values are overlapping, i.e., not 
spectrally majorised, on the unit circle. This effect due to estimation 
error is beneficial for time-domain algorithms which tend to converge 
to spectral majorised singular values.

3.2. PSVD computing algorithms

In this section, we provide a brief overview of existing approaches 
of computing a PSVD of a polynomial matrix.
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3.2.1. Computation via two PEVDs
A PSVD of a polynomial matrix can be computed by employing two 

PEVD operations
𝑹1(𝑧) = 𝑨(𝑧)𝑨P(𝑧) = 𝑯1(𝑧)𝜦1(𝑧)𝑯P

1 (𝑧),

𝑹2(𝑧) = 𝑨P(𝑧)𝑨(𝑧) = 𝑯2(𝑧)𝜦2(𝑧)𝑯P
2 (𝑧),

where 𝑯1(𝑧) and 𝑯2(𝑧) are paraunitary matrices [34] that contain 
the eigenvectors of 𝑹1(𝑧) and 𝑹2(𝑧), respectively. These eigenvector 
matrices are related to 𝑼 (𝑧) and 𝑽 (𝑧) via diagonal matrices of allpass 
filters, that is, 𝑯1(𝑧) = 𝑼 (𝑧)𝜱1(𝑧) and 𝑯2(𝑧) = 𝑽 (𝑧)𝜱2(𝑧), where 
𝜱1(𝑧) = diag

{

𝜙11(𝑧),… , 𝜙1𝑀 (𝑧)
} and 𝜱2(𝑧) = diag

{

𝜙21(𝑧),… , 𝜙2𝑁 (𝑧)
}

, 
and where 𝜙1𝑚(𝑧) for 𝑚 = 1,… ,𝑀 and 𝜙2𝑛(𝑧) for 𝑛 = 1,… , 𝑁 are 
allpass filters [22]. With the help of these singular vectors, one can 
compute the singular values via (1); however, they may not be real 
valued on the unit circle due to the aforementioned allpass ambiguity 
unless 𝜱1(𝑧) = 𝜱2(𝑧). The PEVD is often computed using SBR2 or SMD 
algorithms [8,17]. This method of PSVD computation is computation-
ally expensive as it computes the PEVD for two parahermitian matrices, 
i.e., 𝑹1(𝑧),𝑹2(𝑧), each with a polynomial order twice that of 𝑨(𝑧).

3.2.2. Computation via repeated polynomial QR decompositions
This method for computing the PSVD of a polynomial matrix in-

volves multiple PQRDs of polynomial matrices. It begins by computing 
the PQRD of 𝑨(𝑧), where 𝑨(𝑧) is factorized into 𝑸1(𝑧)𝑹1(𝑧), with 
𝑹1(𝑧) being an upper triangular matrix. Next, the PQRD of 𝑹P

1 (𝑧) is 
computed as 𝑸2(𝑧)𝑹2(𝑧). With these two PQRDs, one iteration of the 
process is completed. The procedure continues by replacing 𝑨(𝑧) with 
𝑨1(𝑧), defined by 𝑸P

1 (𝑧)𝑨(𝑧)𝑸2(𝑧) = 𝑹P
2 (𝑧). This process is repeated 

until 𝑹2(𝑧) is a diagonal matrix, which means that its off-diagonal 
elements fall below a predefined small threshold [13]. The PQRDs are 
computed using various algorithmic variants [15,35]. Although this 
approach is computationally very expensive and also produces singular 
vectors with high polynomial order, it has also been reported to offer 
improved stability and superior performance compared to PEVD-based 
approaches [3]. 

3.2.3. Computation via kogbetliantz transformation based generalized
SBR2 (GSBR2) algorithm

This PSVD algorithm [16] is a generalization of the SBR2 algorithm, 
extending its application from parahermitian to general matrices, and is 
thus termed the generalized SBR2 (GSBR2) in this paper. It employs ei-
ther Givens rotations or the complex Kogbetliantz transformation [20], 
an extension of the Jacobi transformation to nonsymmetric matrices. 
Both transformations are used to transfer the off-diagonal energy onto 
the diagonal depending on the location of the maximum off-diagonal 
element. When the maximum off-diagonal element lies outside the 
upper 𝑁 × 𝑁 submatrix, a Givens rotation is applied from the left to 
eliminate it. If the maximum off-diagonal element is within the upper 
𝑁 ×𝑁 submatrix, a Kogbetliantz transformation is then applied which 
is a combination of Givens rotation, symmetrization, and the Jacobi 
transformation. Although this is a direct method for diagonalization, 
it has the drawbacks of slow convergence as it transfers a single 
element energy onto the diagonal in each iteration, and incurs higher 
computational cost compared to the SBR2 algorithm, primarily due to 
the complexity of the Kogbetliantz transformation [20]. Furthermore, 
the multiple shift strategy, applicable in the case of SBR2 [36], seems 
incompatible with the Kogbetliantz transformation due to its com-
plex nature of combining Givens rotation, symmetrization, and Jacobi 
transformation [21].

3.2.4. DFT-domain compact order PSVD
This approach computes a DFT of the polynomial matrix and then 

computes the ordinary matrix SVDs at these sample points. The singular 
vectors in these sample points are not phase-coherent with those of 
adjacent samples. To address this, a phase smoothing procedure [11] 
is applied across all samples to establish phase coherence and thereby 
3 
obtain compact-order polynomial singular vectors [12,18]. If the phase-
smoothing procedure does not converge, the DFT size is increased, 
and the process is repeated until convergence is achieved. Although 
effective, this approach is computationally very expensive, because the 
phase smoothing, which is proven to be an NP-hard problem [11], is 
repeated at increasingly larger DFT sizes. As a result, it is only practical 
for polynomial matrices with small spatial dimensions and relatively 
low polynomial orders.

4. The GSMD algorithm

This section outlines the initialization and iterative steps of the 
proposed algorithm, assuming without loss of generality that 𝑀 ≥ 𝑁 . 
If 𝑀 < 𝑁 , diagonalization can be performed on 𝑨P(𝑧).

4.1. Initial iteration

The proposed approach begins by computing the conventional SVD 
of the zero-lag coefficient matrix of the given polynomial matrix 𝑨(𝑧), 
i.e., 𝐀[0], as 
𝐀[0] = 𝐔(0)𝐒(0)[0]𝐕(0),H , (3)

where 𝐔(0) ∈ C𝑀×𝑀 , 𝐕(0) ∈ C𝑁×𝑁  contains the left and right singular 
vectors, respectively, and 𝐒(0) ∈ C𝑀×𝑁  is diagonal matrix containing 
singular values. We multiply 𝑨(𝑧) from the left with 𝐔(0),H and from 
the right with 𝐕(0) as 
𝑺(0)(𝑧) = 𝐔(0),H𝑨(𝑧)𝐕(0). (4)

This ensures that the zero-lag coefficient matrix 𝐒(0)[0] of 𝑺(0)(𝑧) ⊷
𝐒(0)[𝜏] is a real-valued diagonal matrix. This concludes the first itera-
tion, and the intermediate left and right polynomial singular vectors 
matrices are updated at the end of first iteration as 𝑼 (0)(𝑧) = 𝐔(0) and 
𝑽 (0)(𝑧) = 𝐕(0).

4.2. Iterative procedure

In subsequent iterations 𝑖 = 1, 2,… , the algorithm first  performs 
a maximum search over all time lags of 𝐒(𝑖−1)[𝜏] to find a column of 
𝐒(𝑖−1)[𝜏] carrying the maximum off-diagonal energy (or equivalently 
the off-diagonal 𝓁2−norm). The index of the maximum column and the 
time lag where it resides is determined as 

{𝜏𝑖, 𝑛𝑖} = argmax
𝜏,𝑛

{ 𝑀
∑

𝑚=1,𝑚≠𝑛
|𝑠(𝑖−1)𝑚,𝑛 [𝜏]|2

}

1
2

, (5)

where 

𝛾𝑐(𝑛𝑖 ,𝜏𝑖) =

{ 𝑀
∑

𝑚=1,𝑚≠𝑛𝑖

|𝑠(𝑖−1)𝑚,𝑛𝑖
[𝜏𝑖]|

2
}

1
2

, (6)

shows the off-diagonal energy (or the off-diagonal 𝓁2−norm) of the 𝑛𝑖th 
column at 𝜏 = 𝜏𝑖 with 𝑚 ≠ 𝑛 reflecting that diagonal elements are not 
considered. This 𝑛𝑖th column present at 𝜏 = 𝜏𝑖 is to be time-shifted to 
the zero-lag, i.e., 𝜏 = 0, such that the diagonal elements of the zero-lag 
coefficient matrix of 𝐒(𝑖−1)[𝜏] remains unchanged. This is accomplished 
by multiplying 𝑺(𝑖−1)(𝑧) from the right by 

𝑩(𝑖)
r (𝑧) = diag

{

𝟏𝑛𝑖−1, 𝑧
𝜏𝑖 , 𝟏𝑁−𝑛𝑖−1

}

, (7)

where 𝟏𝑁  denotes a vector of 𝑁 ones, resulting in 

𝑺′(𝑖−1)(𝑧) = 𝑺(𝑖−1)(𝑧)𝑩(𝑖)
r (𝑧). (8)

It applies a delay of 𝜏𝑖 to the 𝑛𝑖th column and time-shifts it from 𝜏 = 𝜏𝑖
to 𝜏 = 0. Due to 𝑀 ≥ 𝑁 , the 𝑛𝑖th column shift has shifted the (𝑛𝑖, 𝑛𝑖)
diagonal element of the zero-lag coefficient matrix to 𝜏 = −𝜏𝑖. To bring 
it back to the 𝜏 = 0, the 𝑛 th row is time-shifted in opposite direction, 
𝑖
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i.e., from 𝜏 = −𝜏𝑖 to 𝜏 = 0. This is accomplished by multiplying 𝑺′(𝑖−1)(𝑧)
from the left by 
𝑩(𝑖)

l (𝑧) = diag
{

𝟏𝑛𝑖−1, 𝑧
−𝜏𝑖 , 𝟏𝑀−𝑛𝑖−1

}

, (9)

which results in 
𝑺(𝑖− 1

2 )(𝑧) = 𝑩(𝑖)
l (𝑧)𝑺′(𝑖−1)(𝑧). (10)

This completes the time-shift of a column carrying maximum off-
diagonal energy to the zero-lag coefficient matrix without disturbing 
the diagonal elements. Now similar to the first iteration, the off-
diagonal elements of the zero-lag coefficient matrix of 𝐒(𝑖− 1

2 )[𝜏] are 
eliminated or in otherwords, the off-diagonal energy is transferred onto 
the diagonal by multiplying 𝑺(𝑖− 1

2 )(𝑧) on the left and right by 𝐔(𝑖),H and 
𝐕(𝑖), respectively, producing 
𝑺(𝑖)(𝑧) = 𝐔(𝑖),H𝐒(𝑖−

1
2 )(𝑧)𝐕(𝑖) , (11)

where 𝐔(𝑖) and 𝐕(𝑖) are left and right-singular vector matrices of 
𝐒(𝑖−

1
2 )[0], respectively, and they are obtained via a conventional SVD, 

i.e., 𝐒(𝑖− 1
2 )[0] = 𝐔(𝑖)𝐒(𝑖)[0]𝐕(𝑖),H. It is important to remind that 𝐔(𝑖) and 

𝐕(𝑖) being both unitary, only transfer the off-diagonal energy of the 
zero-lag coefficient matrix onto its diagonal without changing the total 
energy of 𝑺(𝑖− 1

2 )(𝑧). This completes the 𝑖th iteration of the proposed 
algorithm with the zero-lag coefficient matrix of 𝑺(𝑖)(𝑧) fully diagonal 
and with more diagonal energy than it had in the previous iteration. 
The left and right polynomial matrices are updated at the end of 𝑖th 
iteration as
𝑼 (𝑖)(𝑧) = 𝑼 (𝑖−1)(𝑧)𝑩(𝑖),P

l (𝑧)𝐔(𝑖), (12)

𝑽 (𝑖)(𝑧) = 𝑽 (𝑖−1)(𝑧)𝑩(𝑖)
r (𝑧)𝐕(𝑖). (13)

As evident from the iterative updates of all three polynomial matrices, 
the polynomial order of 𝑺(𝑖)(𝑧) increases by 2|𝜏𝑖| in each iteration 
whereas that of the left and right paraunitary singular vectors increases 
by |𝜏𝑖|. This process is repeated in each iteration until 𝛾𝑐(𝑛𝑖 ,𝜏𝑖), defined in 
(6), falls below a small preset threshold 𝜖, or until a maximum number 
of allowed iterations is reached. After 𝐼 iterations, the approximate 
polynomial SVD factors of (1) are extracted as 
𝑼̂ (𝑧) = 𝑼 (𝐼)(𝑧), 𝜮̂(𝑧) = 𝑺(𝐼)(𝑧), 𝑽̂ (𝑧) = 𝑽 (𝐼)(𝑧). (14)

Akin to SMD [9] and SBR2 [8], the singular values extracted by the 
proposed algorithm are always spectrally majorised [37]. In other 
words, when singular values are evaluated on the unit circle, they are 
strictly ordered at each frequency, regardless of whether the ground-
truth singular values are unmajorised (see (2)). The proof that the 
proposed algorithm always converges to a spectrally majorised solution 
follows identically from that of the SBR2 algorithm [38]. However, 
since it has been shown in [24,25] that any polynomial matrix – 
whether randomly generated or estimated from a finite set of sample 
points – exhibits spectrally majorised singular values. Consequently, for 
all such matrices, the proposed algorithm will converge to the ground-
truth singular values which are also spectrally majorised. A complete 
iteration of the proposed algorithm is pictorially depicted in Fig.  1.

This version of the algorithm, which utilizes the maximum 𝓁2−norm 
of a column, is referred to as column-based generalized sequential 
matrix diagonalization (CGSMD). A complete outline of the CGSMD 
is provided in Algorithm 1. Conversely, if an 𝓁∞-norm is employed in 
place of the 𝓁2-norm in (5), i.e., 

{𝜏𝑖, 𝑛𝑖} = argmax
𝜏,𝑛

{ 𝑀
∑

𝑚=1,𝑚≠𝑛
|𝑠(𝑖−1)𝑚,𝑛 [𝜏]|𝑝

}

1
𝑝

, (15)

where 𝑝 → ∞, the resulting algorithm is designated as the maximum 
element CGSMD (ME-CGSMD). This variant searches for the column 
containing the largest off-diagonal element instead of the column with 
the largest off-diagonal energy. Consequently, the 𝓁∞−norm based 
variant is expected to transfer less energy to the diagonal of the zero-
lag coefficient in every iteration, and therefore may converge slow. This 
issue is further explored in the simulation and results section.
4 
Algorithm 1: CGSMD Algorithm
Input: 𝑨(𝑧), 𝜖
Output: 𝑼̂ (𝑧), 𝑽̂ (𝑧), 𝜮̂(𝑧)
𝐀[0] = 𝐔(0)𝐒(0)[0]𝐕(0),H ;
𝑺(0)(𝑧) = 𝐔(0),H𝑨(𝑧)𝐕(0);
𝑼 (0)(𝑧) = 𝐔(0), 𝑽 (0)(𝑧) = 𝐕(0) ;
𝛾2𝑐(𝑛0 ,𝜏0) = 1 + 𝜖; 𝑖 = 1;
while 𝑖 ≤ 𝐼 and 𝛾2𝑐(𝑛𝑖−1 ,𝜏𝑖−1) > 𝜖 do

Perform maximum search for column;

{𝜏𝑖, 𝑛𝑖} = argmax
𝜏,𝑛

{

∑𝑀
𝑚=1,𝑚≠𝑛 |𝑠

(𝑖−1)
𝑚,𝑛 [𝜏]|2

}
1
2 , 𝛾𝑐(𝑛𝑖 ,𝜏𝑖) =

{

∑𝑀
𝑚=1
𝑚≠𝑛𝑖

|𝑠𝑚,𝑛𝑖 [𝜏𝑖]|
2

}
1
2

;

Construct right and left delay matrices;
𝑩(𝑖)

r (𝑧) = diag
{

𝟏𝑛𝑖−1, 𝑧
𝜏𝑖 , 𝟏𝑁−𝑛𝑖−1

}

, 𝑩(𝑖)
l (𝑧) =

diag
{

𝟏𝑛𝑖−1, 𝑧
−𝜏𝑖 , 𝟏𝑀−𝑛𝑖−1

}

;
Shift the maximum column onto the zero-lag;
𝑺(𝑖− 1

2 )(𝑧) = 𝑩(𝑖)
l (𝑧)𝑺(𝑖−1)(𝑧)𝑩(𝑖)

r (𝑧);
Diagonalize the zero-lag coefficient matrix;
𝐒(𝑖−

1
2 )[0] = 𝐔(𝑖)𝐃(𝑖)𝐕(𝑖),H;

Via unitary rotation, transfer the off-diagonal energy onto the 
diagonal of zero-lag coefficient matrix of 𝑺(𝑖− 1

2 )(𝑧);

𝑺(𝑖)(𝑧) = 𝐔(𝑖),H𝐒(𝑖−
1
2 )(𝑧)𝐕(𝑖) ;

Update paraunitary matrices;
𝑼 (𝑖)(𝑧) = 𝑼 (𝑖−1)(𝑧)𝑩(𝑖),P

l (𝑧)𝐔(𝑖);
𝑽 (𝑖)(𝑧) = 𝑽 (𝑖−1)(𝑧)𝑩(𝑖)

r (𝑧)𝐕(𝑖) ;
Limit the polynomial order growth through truncation as 
described in Sec. 4.4;

𝑖 ← 𝑖 + 1;
end 
𝑼̂ (𝑧) = 𝑼 (𝑖−1)(𝑧), 𝑽̂ (𝑧) = 𝑽 (𝑖−1)(𝑧), 𝜮̂(𝑧) = 𝜮(𝑖−1)(𝑧)

4.3. Proof of convergence

To provide a proof of convergence for the proposed algorithm, the 
following quantities are defined:

𝛼1{𝑺(𝑖)(𝑧)} ≜
𝑁
∑

𝑛=1
|𝑠(𝑖)𝑛,𝑛[0]|

2,

𝛼2{𝑺(𝑖)(𝑧)} ≜
𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
|𝑠(𝑖)𝑚,𝑛[0]|

2,

𝛼3{𝑺(𝑖)(𝑧)} ≜
𝑀
∑

𝑚=1
𝑚≠𝑛

𝑁
∑

𝑛=1
|𝑠(𝑖)𝑚,𝑛[0]|

2,

𝛼4{𝑺(𝑖)(𝑧)} ≜
∑

𝜏

𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
|𝑠(𝑖)𝑚,𝑛[𝜏]|

2.

It follows that 𝛼2{𝑺(𝑖)(𝑧)} = 𝛼1{𝑺(𝑖)(𝑧)} + 𝛼3{𝑺(𝑖)(𝑧)} and 𝛼1{𝑺(𝑖)(𝑧)} ≤
𝛼4{𝑺(𝑖)(𝑧)}. The quantity 𝛼1{⋅} remains invariant under the simultane-
ous application of left and right delay matrices, i.e., 𝛼1{𝑺(𝑖+ 1

2 )(𝑧)} =
𝛼1{𝑩

(𝑖)
l (𝑧)𝑺(𝑖)(𝑧)𝑩(𝑖)

r (𝑧)}.
The right multiplication moves the 𝑛𝑖-th column’s coefficients from 

lag 𝜏𝑖 to 0 and moves 𝑠(𝑖−1)𝑛𝑖 ,𝑛𝑖 [0] to −𝜏𝑖; the left multiplication by 𝑧−𝜏𝑖
on row 𝑛𝑖 restores it to the lag 0. Similarly, 𝛼2{⋅} is invariant under 
unitary transformations., i.e., 𝛼2{𝑺(𝑖)(𝑧)} = 𝛼2{𝐔(𝑖),H𝑺(𝑖− 1

2 )(𝑧)𝐕(𝑖)} in the 
SVD step. Lastly, 𝛼4{⋅} is invariant to the application of a paraunitary 
matrix, i.e., 𝛼4{𝑺(𝑖)(𝑧)} = 𝛼4{𝑼 (𝑖),P(𝑧)𝑺(𝑖)(𝑧)𝑽 (𝑖)(𝑧)}. This holds because 
𝑩(𝑖)(𝑧) and 𝑩(𝑖)(𝑧) are paraunitary and only reindex lag coefficients, and 
l r
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Fig. 1. The zero-lag coefficient matrix 𝑺 (𝑖−1)[0] at the start of 𝑖th iteration is diagonal with off-diagonal elements shown as ×, denoting they are eliminated or 
made zero in previous iteration. Diagonal entries are shown as black. The column with the largest off-diagonal energy is determined, here shown in darkgray 
with 𝑛𝑖 = 4, 𝜏𝑖 = 2, and then shifted to the zero-lag position via delay matrix, in this case 𝑩(𝑖)

r = diag
{

1, 1, 1, 𝑧2
}

, multiplied from the right. This causes the last 
diagonal element to be shifted out of the zero-lag coefficient matrix, which is brought back to the zero-lag position by shifting the 𝑛𝑖th row in reverse direction 
by the same amount of delay, i.e. 𝑩(𝑖)

l = diag
{

1, 1, 1, 𝑧−2
}

. This causes the maximum column elements to get shifted onto the zero-lag coefficient matrix without 
disturbing its diagonal elements. Unitary rotation are applied to the entire matrix such that the zero-lag coefficient matrix is a diagonal matrix. These unitary 
rotation matrices are actually the left- and right-singular vector matrices of the zero-lag coefficient of 𝑺 (𝑖− 1

2
)(𝑧) which is obtained by its SVD. The process is 

repeated until the column energy is below 𝜖 or maximum 𝐼 are expended.
multiplication on the left and on the right by 𝐔(𝑖),𝐻  and 𝐕(𝑖) leaves the 
Frobenius norm of each lag slice unchanged: ‖𝐔(𝑖),𝐻 𝑺(𝑖− 1

2 )[𝜏]𝐕(𝑖)
‖F =

‖𝑺(𝑖− 1
2 )[𝜏]‖F ∀ 𝜏.

At the end of (𝑖 − 1)th iteration, 𝛼1 = 𝛼2 with 𝛼3 = 0 due to zero 
off-diagonal energy in the zero-lag 𝐒(𝑖−1)[0]. In the 𝑖th iteration, post 
application of left and right delay matrices 𝑩(𝑖)

l (𝑧) and 𝑩(𝑖)
r (𝑧), respec-

tively, 𝛼1 and 𝛼4 remains unchanged, i.e., 𝛼1{𝑺(𝑖− 1
2 )(𝑧)} = 𝛼1{𝑺(𝑖−1)(𝑧)}

and 𝛼4{𝑺(𝑖− 1
2 )(𝑧)} = 𝛼4{𝑺(𝑖−1)(𝑧)}. Since the delay operations shifted 

the 𝑛𝑖th column at lag 𝜏𝑖, and the 𝑛𝑖th row at lag −𝜏𝑖 to the zero-lag 
coefficient matrix of 𝐒(𝑖− 1

2 )[𝜏], we have

𝛼2{𝑺
(𝑖− 1

2 )(𝑧)} = 𝛼1{𝑺
(𝑖− 1

2 )(𝑧)} + 𝛾2𝑐(𝑛𝑖 ,𝜏𝑖) + 𝛾2𝑟(𝑛𝑖 ,−𝜏𝑖),

and

𝛼3{𝑺
(𝑖− 1

2 )(𝑧)} = 𝛾2𝑐(𝑛𝑖 ,𝜏𝑖) + 𝛾2𝑟(𝑛𝑖 ,−𝜏𝑖),

where 𝛾2𝑐(𝑛𝑖 ,𝜏𝑖) =
∑𝑀

𝑚=1
𝑚≠𝑛𝑖

|𝑠(𝑖−1)𝑚,𝑛𝑖 [𝜏𝑖]|
2
, and 𝛾2𝑟(𝑛𝑖 ,−𝜏𝑖) =

∑𝑁
𝑛=1
𝑛≠𝑛𝑖

|𝑠(𝑖−1)𝑛𝑖 ,𝑛 [−𝜏𝑖]|
2
. 

Unlike the GSBR2 algorithm, where the diagonal energy gets increased 
by the squared magnitude of the largest off-diagonal element, GSMD 
increases the diagonal energy in each iteration at least by the squared 
off-diagonal norm of the largest off-diagonal column. Therefore, the 
proposed algorithm achieves faster convergence. Once 𝐔(𝑖) and 𝐕(𝑖), the 
left and right singular vectors of 𝐒(𝑖− 1

2 )[0], are applied to each lag, the 
off-diagonal energy in the zero-lag gets transferred onto the diagonal 
resulting in

𝛼1{𝑺(𝑖)(𝑧)} = 𝛼1{𝑺(𝑖−1)(𝑧)} + 𝛾2𝑐(𝑛𝑖 ,𝜏𝑖) + 𝛾2𝑟(𝑛𝑖 ,−𝜏𝑖)

𝛼2{𝑺(𝑖)(𝑧)} = 𝛼2{𝑺
(𝑖− 1

2 )(𝑧)}

𝛼3{𝑺(𝑖)(𝑧)} = 0.

This shows that diagonal energy of the zero-lag, i.e., 𝛼1{𝑺(𝑖)(𝑧)} in-
creases monotonically with each iteration while the total energy, 
i.e., 𝛼4{𝑺(𝑖)(𝑧)} remains the same. It therefore forms the upper bound 
for 𝛼1{𝑺(𝑖)(𝑧)}, i.e., 𝛼1{𝑺(𝑖)(𝑧)} ≤ 𝛼4{𝑺(𝑖)(𝑧)} ∀𝑖. Therefore, 𝛼1{𝑺(𝑖)(𝑧)}
must have a supremum 𝛽. Hence for 𝜀 > 0, there must be an iteration 
number 𝐼 for which we have

𝛽 − 𝛼 {𝑺(𝐼)(𝑧)} < 𝜀.
1

5 
After some subsequent non-zero iterations 𝓁 > 0, it is easy to prove that
𝛾2𝑐(𝑛𝐼+𝓁 ,𝜏𝐼+𝓁 ) + 𝛾2𝑟(𝑛𝐼+𝓁 ,−𝜏𝐼+𝓁 ) < 𝛽 − 𝛼1{𝑺(𝐼)(𝑧)} < 𝜀.

This proves that after sufficiently large number of iterations, the max-
imum off-diagonal energy is bounded by 𝜀 > 0.

It must be noted that although 𝛼1{𝑺(𝑖)(𝑧)} increase monotonically 
increases in each iteration, the maximum off-diagonal column energy 
may not necessarily decrease monotonically. This means that the over-
all off-diagonal energy at subsequent iterations can be larger than that 
of the previous iterations. Due to the iterative nature of the proposed 
algorithm, the difference between 𝛼4{𝑺(𝑖)(𝑧)}, which is invariant to iter-
ations, and 𝛽 will generally be non-zero unless 𝑨(𝑧) is a diagonal matrix. 
Increasing the number of iterations improves the diagonalization and 
the gap between the total energy 𝛽 and the diagonal energy 𝛼1{𝑺(𝐼)(𝑧)}
decreases further. Consequently, achieving a smaller target 𝜖 requires 
more iterations compared to a larger one. In algorithmic sense, the 
parameter 𝜖 implicitly governs the number of iterations needed by the 
algorithm.

Note that the proposed method does not rely on any additional 
assumptions for convergence, except that 𝛼4{𝑨(𝑧)} remains finite. This 
quantity is invariant to delays, unitary transformations, and, therefore, 
to the iteration index. As long as this condition holds, the proposed 
algorithm will iteratively converge toward a diagonal matrix.

4.4. Polynomial order growth and truncation

The growth in polynomial order of all three matrices must be 
controlled to reduce the computational complexity of the algorithm 
akin to the case with SMD and SBR2 [39,40]. This will subsequently 
minimize implementation costs when 𝑽̂ (𝑧) and 𝑼̂ (𝑧) are realized via 
DSPs or FPGAs in applications. Since 𝐒(𝑖)[𝜏] is a Laurent polynomial 
but not para-Hermitian symmetric, it is truncated by discarding lags 
from 𝜏 = 𝜏min, where 𝜏min represents the least maximum lag for which 
𝐒(𝑖)[𝜏]𝜏<𝜏min

= 0, to 𝜏 = 𝜏trun−, and from 𝜏 = 𝜏trun+ to 𝜏 = 𝜏max, 𝜏max is 
the minimum lag for which 𝑺(𝑖)[𝜏]|𝜏>𝜏max

= 0, via a parameter 𝜇PH that 
determines 𝜏trun− and 𝜏trun+ as 
∑𝜏trun−

𝜏=𝜏min
‖𝐒(𝑖)[𝜏]‖2F

𝛼4{𝑨(𝑧)}
>

𝜇PH
2

,

∑𝜏max
𝜏=𝜏trun+

‖𝐒(𝑖)[𝜏]‖2F
𝛼4{𝑨(𝑧)}

>
𝜇PH
2

. (16)

Unlike SBR2/SMD, the truncation here is not symmetric due to the 
absence of para-Hermitian symmetry.
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Fig. 2. An example case shown for RGSMD with 𝐒(𝑖)[𝜏] ∈ C4×3 of polynomial 
order 2 or 3 time lags. The dominant row (in dark black) has the row index 
𝑚𝑖 = 4, which exceed the numbers of columns, and reside at lag 𝜏 = −1. 
Shifting it to the 𝑡𝑎𝑢 = 0 does not affect the diagonal elements (in dark gray), 
making the right delay matrix an identity. This causes the order of the shifted 
matrix to increase by |𝜏𝑖| = 1 instead of by 2|𝜏𝑖|.

In the proposed approach, columns are either delayed or advanced, 
making the right paraunitary matrix a Laurent polynomial matrix; the 
same applies to rows, and therefore, to the left paraunitary matrix. As 
iterations progress, the coefficients of all three intermediate matrices 
decay at both ends. Unlike the SMD and SBR2 where column is strictly 
advanced, and row is delayed in every iteration, the proposed method 
and its variants, discussed below, have the flexibility to advance and 
delay both the columns and rows. Therefore, along with 𝑺(𝑖)(𝑧), the 
coefficients of matrices 𝑼 (𝑖)(𝑧),𝑽 (𝑖)(𝑧) can decay on either ends necessi-
tating truncation of exterior lags on either end. This is carried out via 
a 𝜇PU parameter 
∑𝜏trun−

𝜏=𝜏min
‖𝐔(𝑖)[𝜏]‖2F

∑𝜏=𝜏max
𝜏=𝜏min

‖𝐔(𝑖)[𝜏]‖2F
> 𝜇PU,

∑𝜏max
𝜏=𝜏trun+

‖𝐔(𝑖)[𝜏]‖2F
∑𝜏=𝜏max

𝜏=𝜏min
‖𝐔(𝑖)[𝜏]‖2F

> 𝜇PU, (17)

at each iteration of the proposed algorithm.

5. Variant of the proposed algorithm

Depending on the spatial dimensions and the energy distribution 
across the rows and columns of a polynomial matrix, various variants 
of the GSMD algorithm can be developed. We highlight several variants 
that transfer different amounts of energy in each iteration, which we 
will analyze through simulations to compare their convergence speed 
and computational cost.

5.1. Dominant row variant

In this variant, instead of focusing on columns, the algorithm iden-
tifies the dominant row with the maximum off-diagonal 𝓁2−norm, (5) 
at each iteration, defined by: 

{𝜏𝑖, 𝑚𝑖} = argmax
𝜏,𝑚

{ 𝑁
∑

𝑛=1,𝑛≠𝑚
|𝑠(𝑖−1)𝑚,𝑛 [𝜏]|2

}

1
2

. (18)

By concentrating on the dominant row, this approach creates a row-
based GSMD variant (RGSMD). If 𝓁2−norm is replaced with an
𝓁∞−norm in (18) as adopted in (15) for columns, we obtain the maxi-
mum element RGSMD (ME-RGSMD) variant. These row-based variants 
differ from the column-based variant in terms of the polynomial order 
growth of the intermediate matrices 𝑺(𝑖)(𝑧),𝑼 (𝑖)(𝑧) and 𝑽 (𝑖)(𝑧). For 
instance, if in a certain iteration, the dominant row index exceeds the 
number of columns, i.e., 𝑚𝑖 > 𝑁 , the diagonal element will not be 
shifted due to the application of 𝑩(𝑖)

l (𝑧) from the left, therefore, making 
𝑩(𝑖)

r (𝑧) an identity. See an illustrative example in Fig.  2. As a result, 
in such an iteration, the polynomial order of 𝑺(𝑖)(𝑧) and 𝑼 (𝑖)(𝑧) would 
grow by |𝜏𝑖|, while that of 𝑽 (𝑖)(𝑧) remains the same. While if there is a 
case with 𝑚𝑖 ≤ 𝑁 in any iteration, the RGSMD variant works similarly 
to the CGSMD, and the ME-RGSMD works similarly to the ME-CGSMD.
6 
5.2. Dominant row based extra shift variant

This variant introduces an additional shift in the dominant row ap-
proach, allowing for more flexibility in transferring energy, particularly 
when dealing with the lower submatix of 𝑨(𝑧). This is achieved at a cost 
of minimum additional computation and not increase in polynomial 
order. That is, after determining {𝜏𝑖, 𝑚𝑖} via (18), this variant transfers 
the entire lower (𝑀 − 𝑁) × 𝑁 submatrix, which does not contain any 
diagonal element, from 𝜏 = 𝜏𝑖 to the zero-lag along with the 𝑚𝑖th row. 
The submatrix transfer may enable greater energy transfer to the zero-
lag diagonal, potentially accelerating the diagonalization process. This 
accomplished via the left delay matrix, which varies depending upon 
𝑚𝑖 as follows:

𝑚𝑖 ≤ 𝑁 ∶ 𝑩(𝑖)
l (𝑧) = diag

{

𝟏𝑚𝑖−1, 𝑧
𝜏𝑖 , 𝟏𝑁−𝑚𝑖

, 𝟏𝑀−𝑁𝑧𝜏𝑖
}

,

𝑩(𝑖)
r (𝑧) = diag

{

𝟏𝑚𝑖−1, 𝑧
−𝜏𝑖 , 𝟏𝑁−𝑚𝑖−1

}

𝑚𝑖 > 𝑁 ∶ 𝑩(𝑖)
l (𝑧) = diag

{

𝟏𝑁 , 𝟏𝑀−𝑁𝑧𝜏𝑖
}

, 𝑩(𝑖)
r (𝑧) = 𝐈𝑁 (19)

In case 𝑚𝑖 ≤ 𝑁 , the corresponding 𝑚𝑖th column is shifted in the reverse 
direction to bring back the diagonal elements to their original position. 
This variant is termed as extra-shift RGSMD (ES-RGSMD) variant. The 
entire procedure of this variant is same as outlined in Algorithm 1 
with left and right delay matrices replaced with (19) and column 
norm is replaced with row norm. If extra shifts are performed within 
the framework of ME-RGSMD, it is denoted with abbreviation ES-ME-
RGSMD. The polynomial order growth of intermediate matrices in these 
variants is same as that in the RGSMD/ME-RGSMD.

5.3. Hybrid column-row GSMD variant

This hybrid variant combines both column and row-based ap-
proaches, allowing the algorithm to choose between transferring energy 
via the dominant row or column based on which provides a higher 
energy transfer in each iteration. In the hybrid column-row GSMD 
variant, the algorithm can switch between the row-based (RGSMD) and 
column-based (CGSMD) or between ES-RGSMD and CGSMD approaches 
depending on the relative off-diagonal energy norms.

To accomplish this feat, this variant performs two searches in each 
iteration: one to identify the dominant column index 𝑛𝑖 and its lag 𝜏𝑖,𝑐 , 
while the second identifies the dominant row parameters, i.e., 𝑚𝑖 and 
𝜏𝑖,𝑟. The additional subscripts in the lag parameters distinguish between 
row and column lags, with the scope of this notation limited to this 
subsection. After identifying both, if the off-diagonal norm of the 𝑚𝑖th 
row situated at 𝜏 = 𝜏𝑖,𝑟 exceeds that of the 𝑛𝑖th column at 𝜏 = 𝜏𝑖,𝑐 , the 
row is transferred, making this iteration similar to an RGSMD iteration. 
Otherwise, the 𝑛𝑖th column at 𝜏 = 𝜏𝑖,𝑐 is transferred to the zero-lag, 
resulting in a CGSMD-like iteration. This variant is known as hybrid 
column-row GSMD (HCR-GSMD). If instead of RGSMD, the algorithm 
switches between ES-RGSMD and CGSMD, slightly more energy is 
expected to be transferred onto the zero-lag in each iteration. This type 
of variant is known as extra-shift HCR-GSMD (ES-HCR-GSMD).

5.4. Multiple maximum element shift (MSME-gsmd)

This variant extends the GSMD algorithm by allowing multiple off-
diagonal elements to be shifted in a single iteration. Since this variant 
involves multiple maximum-element shifts within a single iteration, we 
introduce an additional subscript to keep track of both column and row 
indices of each element being shifted. Here, as in the previous sections, 
𝑖 denotes the iteration number, and 𝑗 denotes the sequence of maximum 
element shifts within the same iteration.

First a maximum search is performed within the upper 𝑁 ×𝑁 sub-
matrix of 𝑺(𝑖−1)(𝑧) in the 𝑖th iteration. Let us assume the first maximum 
off-diagonal element is located at coordinates {𝑚 , 𝑛 , 𝜏 }. This 
(𝑖,1) (𝑖,1) (𝑖,1)
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Fig. 3. Example of MSME-GSMD with a zero-lag coefficient matrix (diagonal elements in light gray). (a) The first maximum off-diagonal element (green, labeled 
1) is shifted to the zero-lag position and permuted into the upper 2 × 2 submatrix using row/column shifts. The corresponding row- and column-shift spaces 
are highlighted in light blue in (b). Elements outside col/row-shift spaces (marked x) are resistant to permutation into the upper 3 × 3 submatrix. If the second 
maximum off-diagonal element (red, labeled 2 in (c)) lies outside the shift spaces, it cannot be moved into the upper submatrix without disturbing element 1, 
and therefore, no further shifts beyond 2 are possible in this iteration. (d) If the second maximum lies within the col or row-shift spaces, as highlighted in green 
with label 2, it can be shifted to the zero-lag position and easily permuted to the upper 3 × 3 submatrix if not already lies in it without affecting the upper 2 × 2 
submatrix. This allows a 3rd maximum element shift in reduced col/row-shift space, as shown in (e), in the same iteration making total possible shifts 𝑁 −1 = 3.
element is time-shifted from 𝜏𝑖,1 to 𝜏 = 0 via the left- and right-shift 
matrices in (7) and (9), respectively, resulting in

𝑺(𝑖−1, 12 )(𝑧) = 𝑩(𝑖,1)
l (𝑧)𝑺(𝑖−1)(𝑧)𝑩(𝑖,1)

r (𝑧) .

Next, a permutation is applied to move this maximum off-diagonal 
element to the upper 2 × 2 matrix, specifically to the second row and 
first column, i.e., at index (2, 1). However, permutations are not applied 
if it is already an off-diagonal element of the upper 2 × 2 submatrix. 
In general if (𝑚(𝑖,1), 𝑛(𝑖,1)) ∉ {(1, 2), (2, 1)}, the left and right permutation 
matrices for the first shift can be expressed as the product of the two 
modified identity matrices:
𝐏(𝑖,1)
l = 𝐈(𝑚(𝑖,1)↔2)

𝑀 ⋅ 𝐈(𝑛(𝑖,1)↔1)
𝑀 , 𝐏(𝑖,1)

r = 𝐈(𝑚𝑖,1↔2)
𝑁 ⋅ 𝐈(𝑛(𝑖,1)↔1)

𝑁 ,

where 𝐈(𝑚(𝑖,1)↔2)
𝑁  denotes an 𝑁×𝑁 identity matrix with its 𝑚𝑖,1-th column 

swapped with the second column. This permutation is applied to all lags 
which produces

𝑺(𝑖−1,1)(𝑧) = 𝐏(𝑖,1)
l 𝑺(𝑖−1, 12 )(𝑧)𝐏(𝑖,1)

r ,

to ensure that subsequent shifts within the same iteration do not 
affect the first maximum off-diagonal element, provided the upper left 
2 × 2 submatrix remains unchanged. An example Fig.  3(a) illustrates 
an off-diagonal element (green 1) permuted to (2, 1) by swapping the 
first column with the fourth, and second column with the third, and 
similarly for rows.

After the first maximum off-diagonal shift and permutation, the 
subsequent search is performed within two reduced search areas: the 
column-shift and row-shift spaces. These two reduced search spaces af-
ter the first maximum off-diagonal shift and permutation are 𝑺(𝑖−1,1)

1∶2,3∶𝑁 (𝑧)
and 𝑺(𝑖−1,1)

3∶𝑀,1∶2(𝑧), respectively, as shown in Fig.  3(b). Any off-diagonal 
element in the column-shift space can be translated to 𝜏 = 0 through 
a column shift, and via a row shift if it is within the row-shift space. 
Selecting an off-diagonal element outside these regions reduces the 
possible number of maximum element shifts within a single iteration, as 
elements outside these spaces cannot be transferred to the upper 3 × 3 
section without disturbing the upper 2 × 2 matrix. An example in Fig. 
3(b) shows light yellow elements, marked as x, outside the column and 
row-shift spaces if being selected as the maximum element, limiting the 
number of shifts to two as shown in Fig.  3(c) with maximum element 
showed in red as the second shift, while otherwise three shifts are 
possible as evident in Fig.  3(d) and (e).

In general, for subsequent maximum off-diagonal element shifts, 
i.e., 𝑗 > 1, within the 𝑖th iteration, the maximum off-diagonal element 
coordinates {𝑚(𝑖,𝑗), 𝑛(𝑖,𝑗), 𝜏(𝑖,𝑗)} is determined within
[

𝟎𝑗×𝑗 𝑺(𝑖−1,𝑗−1)
1∶𝑗,𝑗+1∶𝑁

(𝑖−1,𝑗−1)

]

.

𝑺𝑗+1∶𝑁,1∶𝑗 𝟎(𝑁−𝑗)×(𝑁−𝑗)

7 
If 𝑚(𝑖,𝑗) < 𝑛(𝑖,𝑗), the element being in column-shift space is time-shifted 
via left and right shift matrices 

𝑩(𝑖,𝑗)
r (𝑧) = diag

{

𝟏𝑛(𝑖,𝑗)−1, 𝑧
𝜏(𝑖,𝑗) , 𝟏𝑁−𝑛(𝑖,𝑗)−1

}

, (20a)

𝑩(𝑖,𝑗)
l (𝑧) = diag

{

𝟏𝑛(𝑖,𝑗)−1, 𝑧
−𝜏(𝑖,𝑗) , 𝟏𝑀−𝑛(𝑖,𝑗)−1

}

, (20b)

with permutation matrices

𝐏(𝑖,𝑗)
l = 𝐈(𝑛(𝑖,𝑗)↔𝑗+1)

𝑀 ; 𝐏(𝑖,𝑗)
r = 𝐈(𝑛(𝑖,𝑗)↔𝑗+1)

𝑁 .

However, if 𝑚(𝑖,𝑗) > 𝑛(𝑖,𝑗), shift matrices are 

𝑩(𝑖,𝑗)
r (𝑧) = diag

{

𝟏𝑚(𝑖,𝑗)−1, 𝑧
−𝜏(𝑖,𝑗) , 𝟏𝑁−𝑚(𝑖,𝑗)−1

}

, (21a)

𝑩(𝑖,𝑗)
l (𝑧) = diag

{

𝟏𝑚(𝑖,𝑗)−1, 𝑧
𝜏(𝑖,𝑗) , 𝟏𝑀−𝑚(𝑖,𝑗)−1

}

, (21b)

with 𝐏(𝑖,𝑗)
l = 𝐈(𝑚(𝑖,𝑗)↔𝑗+1)

𝑀 ; 𝐏(𝑖,𝑗)
r = 𝐈(𝑚(𝑖,𝑗)↔𝑗+1)

𝑁 . The update goes as

𝑺(𝑖−1,𝑗)(𝑧) = 𝐏(𝑖,𝑗)
l 𝑩(𝑖,𝑗)

𝑙 (𝑧)𝑺(𝑖−1,𝑗−1)(𝑧)𝑩(𝑖,𝑗)
𝑟 (𝑧)𝐏(𝑖,𝑗)

r .

With a total of 𝑗 = 1,… , (𝑁 − 1) maximum element shifts with 
embedded permutations, the lower (𝑀 − 𝑁) × 𝑁 submatrix which 
remains unchanged excepts that elements within are swapped column 
wise due to permutations. Two different approaches can be applied to 
transfer additional rows:

5.4.1. Same lag transfer
The same lag transfer approach determines the lag with the maxi-

mum energy in the entire lower submatrix, that is 

𝜏(𝑖,𝑁) = argmax
𝜏

‖𝐒(𝑖−1,𝑁−1)
𝑁+1∶𝑀,1∶𝑁 [𝜏]‖2F, (22)

which is then transferred to 𝜏 = 0 via 𝑩(𝑖,𝑁)
l = diag

{

𝟏𝑁 , 𝟏𝑀−𝑁𝑧𝜏(𝑖,𝑁)
}

and 𝑩(𝑖,𝑁)
r (𝑧) = 𝐈𝑁  as

𝑺(𝑖−1,𝑁)(𝑧) = 𝑩(𝑖−1,𝑁−1)
l (𝑧)𝑺(𝑖−1,𝑁−1)(𝑧).

Thereafter, the SVD of the zero-lag is performed and its left and right 
singular matrices are applied to all lags

𝑺(𝑖)(𝑧) = 𝐔(𝑖),H𝑺(𝑖−1,𝑁)(𝑧)𝐕(𝑖),

where 𝐒(𝑖−1,𝑁)[0] = 𝐔(𝑖)𝐃(𝑖)𝐕(𝑖),H which completes the 𝑖th iteration of this 
variant. We denote this approach as same lag MSME-GSMD (SL-MSME-
GSMD). The polynomial growth of 𝑼 (𝑖)(𝑧),𝑽 (𝑖)(𝑧) and 𝜮(𝑖)(𝑧) in the 𝑖th 
iteration is ∑𝑁 𝜏 ,

∑𝑁−1 𝜏  and 2∑𝑁−1 𝜏 + 𝜏 , respectively.
𝑗=1 (𝑖,𝑗) 𝑗=1 (𝑖,𝑗) 𝑗=1 (𝑖,𝑗) (𝑖,𝑁)
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5.4.2. Individual rows transfer
Instead of the same lag transfer as in (22), we determine the time 

lag for maximum energy within each individual row of the lower 
(𝑀 −𝑁) ×𝑁 matrix as 

𝜏(𝑖,𝑗) = argmax
𝜏

‖𝐬(𝑖−1,𝑁−1)
𝑗+1,∶ [𝜏]‖22, 𝑗 = 𝑁,… , (𝑀 − 1). (23)

Thereafter, each of these rows are transferred to 𝜏 = 0 from its 
respective maximum lag 𝜏(𝑖,𝑗), 𝑗 = 𝑁,… ,𝑀 via a left shift matrix 
𝑩(𝑖,𝑁)

l (𝑧) = diag
{

𝟏𝑁 , 𝑧𝜏(𝑖,𝑁) ,… , 𝑧𝜏(𝑖,𝑀)
} with right shift matrix equal 

an identity. The rest of the procedure is the same as that discussed 
above for SL-MSME-GSMD. This separate row transfers may experience 
high polynomial order growth as compared to SL-MSME-GSMD but 
will often transfer more energy onto the diagonal in each iteration. 
It should be noted that these extra rows within the lower submatrix 
are shifted from different lags once all the necessary rows and columns 
in the upper 𝑁 × 𝑁 matrix are shifted. Hence they will increase 
the polynomial order growth of 𝑺(𝑖)(𝑧) and 𝑼 (𝑖)(𝑧) unlike HCR-GSMD 
and ES-RGSMD where the low sub-matrix is shifted in parallel with 
the dominant row shift. For performance comparison, we denote this 
approach as different lag MSME-GSMD (DL-MSME-GSMD). The polyno-
mial order of 𝑼 (𝑖)(𝑧),𝑽 (𝑖)(𝑧) and 𝜮(𝑖)(𝑧) at the end of 𝑖th iteration grows 
by ∑𝑀−1

𝑗=1 𝜏(𝑖,𝑗),
∑𝑁−1

𝑗=1 𝜏(𝑖,𝑗) and 2
∑𝑁−1

𝑗=1 𝜏(𝑖,𝑗) +
∑𝑀−1

𝑗=𝑁 𝜏(𝑖,𝑗), respectively.

5.5. Convergence

Since each variant transfers a different amount of energy to the 
diagonal of the zero-lag coefficient matrix in each iteration, 𝛼1{𝑺(𝑖)(𝑧)}
monotonously increases for all variants. Thus, the convergence proof 
presented above is valid for each variant.

6. Simulations and results 

6.1. Performance metrics

6.1.1. Off-diagonal energy ratio
To assess the performance of various PSVD algorithms, we use the 

off-diagonal energy ratio 

𝛽(𝑖) = 5 log10
{

𝛼̄3{𝑺(𝑖)(𝑧)}∕𝛼4{𝑺̂
(𝑖)(𝑧)}

}

, (24)

where 𝛼̄3{𝑺(𝑖)(𝑧)} =
∑

𝜏
∑𝑀

𝑚=1
𝑚≠𝑛

∑𝑁
𝑛=1 |𝑠

(𝑖)
𝑚,𝑛[𝜏]|

2
. A lower value of 𝛽(𝐼)

indicates better diagonalization performance, as it signifies less off-
diagonal energy. This metric is particularly important in applications 
such as broadband MIMO systems, where efficient diagonalization 
improves system performance and reduces interference. Ideally, 𝛽(𝐼)
should approach −∞. In practice this is not achievable; an off-diagonal 
energy ratio below −10 dB is desirable [2,7]. .

6.1.2. Normalized error of estimated singular values
The accuracy of the diagonalization and the estimated singular 

values is assessed by comparing the singular values of the sample points 
of 𝑨(𝑧) on the unit circle, i.e., 𝑨(ej𝛺𝑘 ), computed via a standard SVD, 
i.e., 𝑨(ej𝛺𝑘 ) = 𝐔𝑘𝐃𝑘𝐕𝑘

H where 𝐃𝑘 = diag{𝜎1(ej𝛺𝑘 ),… , 𝜎𝑁 (ej𝛺𝑘 )}, with 
𝜎1(ej𝛺𝑘 ) ≥ ⋯ ≥ 𝜎𝑁 (ej𝛺𝑘 ), and 𝜮̄(ej𝛺𝑘 ) for 𝑘 = 0,… , (𝐾−1). The accuracy 
metric 𝜉 is expressed as:

𝜉 =
∑𝐾−1

𝑘=0 ‖𝐃𝑘 − abs{𝜮̄(ej𝛺𝑘 )}‖2𝐹
𝐾

∑𝐾−1
𝑘=0 ‖𝐃𝑘‖

2
F

,

where 𝜮̄(ej𝛺𝑘 ) is equivalent to 𝜮̂(ej𝛺𝑘 ) but its off-diagonal elements set 
to zero. The metric is computed at DFT size 𝐾 that exceeds both the 
polynomial order of 𝑨(𝑧) and 𝜮̂(𝑧).
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6.1.3. Normalized reconstruction error
If 𝑨̂(𝑧) = 𝑼̂ (𝑧)𝜮̄(𝑧)𝑽̂ P(𝑧) is the reconstructed polynomial matrix 

from the PSVD factors where 𝜮̄(𝑧) is same as 𝜮̂(𝑧) but its off-diagonal 
element forcefully made zero, we consider the reconstruction error 
𝑬(𝑧) = 𝑨(𝑧) − 𝑨̂(𝑧) and define a normalized error metric 

𝜁 =
∑

𝜏 ‖𝐄[𝜏]‖2F
∑

𝜏 ‖𝐀[𝜏]‖2F
, (25)

where 𝐄[𝜏]⊷ 𝑬(𝑧).

6.1.4. Computational and implementation
Complexity The computational complexity of an algorithm is eval-

uated by its execution time, which is measured using the tic and toc
functions in MATLAB′ . In contrast, the implementation complexity can 
be quantified by the polynomial order of the PSVD factors [7] produced 
by each algorithm.

6.2. Worked example

In this worked example, we investigate the PSVD computation of a 
simple polynomial matrix 

𝑨(𝑧) =
⎡

⎢

⎢

⎣

1 + 2𝑧−1 + 3𝑧−2 𝑧−1 − 2𝑧−2 4 + 𝑧−1 + 0.5𝑧−2

2 − 𝑧−1 + 𝑧−2 3 + 5𝑧−1 1 + 𝑧−1 + 𝑧−2

5 + 3𝑧−1 + 𝑧−2 2 + 𝑧−1 − 𝑧−2 5 + 3𝑧−1 − 𝑧−2

⎤

⎥

⎥

⎦

(26)

via the CGSMD algorithm, as a demonstration, to analyze the zero-
lag coefficient diagonal energy increase in each iteration and compare 
it against the GSBR2. We iterative both algorithm for 25 iteration, 
the resulting 𝛼{𝑺(𝑖)(𝑧)}, defined in Section 4.3, is shown in Fig.  4. 
The profile clearly shows that the GSMD algorithm is able to trans-
fer more energy onto the diagonal of the zero-lag coefficient matrix 
than the GSBR2 algorithm because it diagonalize the entire zero-lag 
coefficient matrix through an SVD instead of zeroing a single element 
like GSBR2. Using the same example matrix as before, we now analyze 
the effect of 𝜖 on the GSMD algorithm. Therefore, we permit as many 
iterations as needed until the off-diagonal column norm falls below 
𝜖, with 𝜖 ∈ {10−1, 10−2, 10−3, 10−4, 10−5}, to study its impact on the 
total number of iterations. The truncation parameter 𝜇PH and 𝜇PU in 
(16) and (17) are both set to 10−6. For the CGSMD variant, as an 
illustrative case, the algorithm requires 73, 224, 268, 309, and 352
iterations, respectively, to satisfy these thresholds. Smaller values of 
𝜖 lead to more iterations and improved diagonalization. This is also 
reflected in the normalized singular value errors, which in this case 
are {18.2, 2.81, 2.76, 2.75, 2.74} × 10−7, progressively decreasing and 
indicating increasingly accurate singular value estimates.

6.3. Ensemble test setting

To evaluate the performance of the proposed GSMD algorithm 
variants, simulations were conducted on 2000 randomly generated 
polynomial matrices 𝑨(𝑧) ∈ C6×4 of polynomial order 10 with Gaussian-
distributed coefficients. These matrices resemble polynomial matrices 
estimated from real-world data in the sense that the singular values 
of both remain majorised and the PSVD factors are often of infinite 
polynomial order [22,24,25,34], and therefore makes the ensemble test 
valid for evaluating PSVD methods. It is important to mention here 
that the DFT-based PSVD approach is excluded in this comparison due 
to its high computational cost [18]. Moreover, it is suitable only for 
cases involving short polynomial-order ground-truth singular vectors, 
which is typically not the case with randomly generated or estimated 
polynomial matrices [24]. For similar reasons, the iterative PQRD ap-
proach, which is not a PSVD approach but can be used to compute the 
PSVD, and the 2-PEVDs approach are also not considered. The GSBR2 
approach represents the sole dedicated PSVD approach available in the 
literature.

All the proposed algorithms and the GSBR2 are simulated with 
𝜖 = 𝜇PH = 10−6, 𝜇PU = 10−5 for a maximum of 𝐼 = 250 iterations 
unless the off-diagonal energy threshold is satisfied. All simulations are 
performed in MATLAB′  2022b on a Dell (G15) i7 machine.
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Fig. 4. Zero-lag coefficient matrix diagonal energy, i.e. 𝛼1{𝑺 (𝑖)(𝑧)}, versus iteration number for example 𝑨(𝑧) in (26).
Fig. 5. 𝛽(𝑖) versus iteration number 𝑖 for the GSBR2 and proposed algorithms over the entire ensemble. HCR-GSMD shows almost identical profile to CGSMD, 
and so is omitted for clarity. Solid lines show the median; error bars denote the 10th and 90th percentiles.
6.4. Ensemble results

6.4.1. Off-diagonal energy versus iteration index
A key merit of an effective iterative PSVD algorithm is its ability to 

progressively transfer more energy onto the diagonal with each itera-
tion. This behavior can be quantified by monitoring the reduction of the 
off-diagonal energy. To this end, we plot 𝛽(𝑖) as defined in (24), where 
more negative values indicate stronger diagonalization, against the it-
eration index for the entire ensemble (see Fig.  5). The ensemble median 
is shown in bold, while the 10th and 90th percentiles are depicted as 
error bars. The results clearly demonstrate that all GSMD-based variants 
outperform GSBR2 in terms of reducing off-diagonal energy across 
iterations. For GSBR2, the final 𝛽(𝑖) after 250 iterations remains above 
−5 dB, whereas all proposed variants reach below −5 dB before the 
175th iteration. Among them, DL-MSME-GSMD and SL-MSME-GSMD 
exhibit the fastest convergence, achieving 𝛽(𝐼) < −12.5 dB, as they trans-
fer the largest fraction of energy per iteration. By contrast, ME-RGSMD 
and ME-CGSMD converge more slowly, though they still consistently 
outperform GSBR2. Overall, these findings suggest that GSBR2 would 
require at least 50–100 additional iterations to reduce the off-diagonal 
energy to the level achieved even by the slowest of the proposed GSMD 
variants.
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6.4.2. Computational complexity
To evaluate the computational complexity of the proposed algo-

rithms, we present two sets of results. In the first set, we examine the 
relationship between diagonalization performance and execution time 
by plotting the ensemble median of 𝛽(𝑖) against the ensemble median of 
the elapsed system time 𝑇𝑖, as shown in Fig.  6. This curve is obtained 
by measuring both 𝛽(𝑖) and 𝑇𝑖 at each iteration, which allows us to 
view diagonalization progress as a function of the total time required 
to complete 𝑖 iterations. The profile in Fig.  6 shows that all proposed 
variants achieve significantly better diagonalization than GSBR2 within 
the same time budget. For example, at 𝑡 = 0.1 s, the proposed algorithms 
outperform GSBR2 by at least 1.65 dB in metric 𝛽(𝑖). While some 
variants incur higher computational cost per iteration, they still achieve 
substantially greater diagonalization within the same execution time, 
making them computationally more efficient overall. Among them, 
RGSMD and ES-RGSMD provide the fastest diagonalization with respect 
to execution time, while ME-CGSMD and ME-RGSMD are the slowest, 
though they still perform better than GSBR2.

The second set of results, summarized in Table  1, reports the overall 
execution time, including both the mean and the standard deviation 
across the entire ensemble. With the exception of SL-MSME-GSMD and 
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Fig. 6. Normalized off-diagonal energy versus the ensemble median of the elapsed system time. HCR–GSMD and ES-HCR-GSMD show behavior identical to 
CGSMD. DL-MSME-GSMD is indistinguishable from SL-MSME-GSMD, and the ME-CGSMD profile is close to ME-RGSMD, so these traces are omitted for clarity.
Table 1
Comparison of PSVD algorithms over an ensemble of 2000 randomized 6 × 4-dimension polynomial matrices.
Algorithms/Metrics Computation Time [s] Norm. Recons. Error [𝜁 ] Norm. Error of 𝜎̂(𝑧) [𝜉] {𝑼̂ (𝑧)} {𝑽̂ (𝑧)} 
GSBR2 0.3857 ± 0.0878 0.139 ± 0.019 (7.00 ± 2.22) × 10−5 92 ± 16 87 ± 17  
CGSMD 0.2410 ± 0.0476 0.066 ± 0.013 (0.33 ± 0.15) × 10−5 84 ± 10 82 ± 12  
ME-CGSMD 0.2620 ± 0.0535 0.093 ± 0.022 (0.78 ± 0.35) × 10−5 93 ± 19 89 ± 21  
RGSMD 0.1892 ± 0.0398 0.057 ± 0.011 (0.42 ± 0.18) × 10−5 81 ± 11 70 ± 10  
ME-RGSMD 0.2381 ± 0.0524 0.096 ± 0.023 (1.13 ± 0.51) × 10−5 97 ± 23 85 ± 21  
ES-RGSMD 0.2282 ± 0.0470 0.055 ± 0.011 (0.19 ± 0.11) × 10−5 96 ± 29 75 ± 10  
ES-ME-RGSMD 0.2772 ± 0.0573 0.082 ± 0.021 (0.49 ± 0.28) × 10−5 116 ± 46 88 ± 24  
HCR-GSMD 0.2412 ± 0.0496 0.065 ± 0.013 (0.32 ± 0.15) × 10−5 86 ± 10 80 ± 12  
ES-HCR-GSMD 0.2439 ± 0.0508 0.064 ± 0.013 (0.29 ± 0.14) × 10−5 86 ± 10 81 ± 13  
SL-MSME-GSMD 0.8997 ± 0.1997 0.079 ± 0.019 (0.49 ± 0.28) × 10−6 121 ± 33 113 ± 34 
DL-MSME-GSMD 0.9726 ± 0.2143 0.079 ± 0.019 (0.48 ± 0.27) × 10−6 122 ± 35 114 ± 35 
DL-MSME-GSMD, all proposed variants complete 𝐼 = 250 iterations in 
roughly two-thirds of the time required by GSBR2. RGSMD is the fastest 
overall, followed by ES-RGSMD.

6.4.3. Normalized error metrics
Since none of the algorithms reached the target off-diagonal energy 

threshold (𝜖 = 10−6) within the allowed number of iterations, the 
normalized error metric 𝜉 at 𝐼 = 250 is expected to be smaller for 
algorithms that achieve stronger diagonalization. As shown in Table 
1, the multiple-shift variants are clearly the most effective, achieving 
the lowest normalization errors for the singular values. In contrast, 
GSBR2’s performance is the worst: its singular value error is about six 
times larger than that of ME-RGSMD, the least effective of the proposed 
methods. The same pattern holds for the normalized reconstruction 
error metric, which indirectly shows the accuracy of both the estimated 
eigenvectors and the singular values, where GSBR2 again ranks last, 
while RGSMD and ES-RGSMD emerge as the most accurate.

6.4.4. Paraunitary matrices polynomial orders
The polynomial orders of 𝑼̂ (𝑧) and 𝑽̂ (𝑧), which indicate the imple-

mentation complexity of filter banks in hardware for signal processing 
applications, are also reported in Table  1. RGSMD produces eigenvec-
tors with the lowest polynomial orders, followed by CGSMD, both of 
which outperform GSBR2 in this regard. In contrast, the multiple-shift 
variants result in the largest polynomial orders among all algorithms.
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6.5. Scalability and limitation

6.5.1. Small to moderately large spatial dimension simulation
For an 𝑀 × 𝑀 polynomial matrix, the overall complexity is cubic 

in 𝑀 , primarily due to the ordinary matrix SVD computation and the 
subsequent application of unitary transformations to 𝑺(𝑖− 1

2 )[𝜏] for every 
lag 𝜏 in the 𝑖th iteration. The temporal order 𝐿 of the polynomial matrix 
has little impact, apart from the fact that complexity scales linearly 
with it. Therefore, we focus on comparing the execution time of the 
proposed algorithm against that of the GSBR2 algorithm for moderately 
high spatial dimensions, in order to assess scalability with respect to 
𝑀 in the Matlab. For this, we generate an ensemble of 200 polynomial 
matrices of size 𝑀 × 𝑀 , with 𝑀 ∈ {4, 8, 12, 16, 20}. The algorithmic 
parameters are kept the same as in the earlier ensemble test. The extra-
shift (ES) variants are not applicable in this case due to the square 
spatial dimension. Since SL-MSME-GSMD and DL-MSME-GSMD behave 
identically under these conditions, the set of considered algorithms 
reduces to CGSMD, RGSMD, HCR-GSMD, and their maximum-element 
variants (ME-CGSMD and ME-RGSMD). However, as ME-CGSMD and 
ME-RGSMD are less effective, we restrict our simulations to four algo-
rithms: CGSMD, RGSMD, HCR-GSMD, and MSME-GSMD (with SL and 
DL being identical here).

The ensemble results are shown in Fig.  7, with computation time in 
(a) and the normalized error of the estimated singular values, i.e., 𝜉, 
in (b) plotted against the spatial dimension. Apart from MSME-GSMD, 
the average execution time of the CGSMD, RGSMD, and HCR-GSMD is 
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Fig. 7. (a) Execution time, and (b) normalized error for estimated singular values for higher spatial dimension polynomial matrices (MSME-GSMD is simulated 
only for 𝑀 = 4, 8, 12 as the execution exceeded a minute).
consistently lower than that of the GSBR2 algorithm for all values of 
𝑀 . Among CGSMD, RGSMD, and HCR-GSMD, there is no appreciable 
difference in execution time; they perform identically in terms of 
computational complexity. The complexity of MSME-GSMD, however, 
grows rapidly with 𝑀 , such that for 𝑀 > 12, a diagonalization on 
average requires approximately one minute or more. Note that the 
reported computation times correspond to a total of 250 iterations. The 
superior performance in computational sense is further supported by 
the fact that normalized singular value error metric 𝜉 for the proposed 
algorithms is consistently lower than that of GSBR2.

6.5.2. Higher or extreme spatial dimension polynomial matrices
For higher-dimensional spatial matrices, the divide-and-conquer ap-

proach [41,42], initially adopted for the SMD algorithm in [43], can 
also be applied to the GSMD algorithms. Since the core principles of 
SMD and GSMD are closely related, similar improvements in execution 
time can be expected for GSMD, as reported for SMD in [43], where 
a reduction of up to 66% was achieved for parahermitian matrices of 
spatial dimensions 𝑀 = 20, 40.

6.5.3. Polynomial order growth limitation
The paraunitary and parahermitian polynomial matrix truncation 

methods used for SBR2 and SMD are not particularly suitable for 
GSMD or GSBR2 [8,9,39,40]. The reason is that, unlike SMD and 
SBR2—where columns are delayed and rows are advanced, and the 
partially diagonalized matrix remains parahermitian, simplifying the 
truncation procedure—in the proposed method, as well as in GSBR2, 
columns can be either advanced or delayed, and the partially diagonal-
ized matrix does not exhibit any symmetry. Therefore, a new truncation 
strategy is required, which can significantly improve the accuracy of 
singular vectors and reduce the reconstruction error.

6.6. Radar plot for conclusive comparison

For a direct performance comparison, a radar chart, illustrated in 
Fig.  8, is constructed considering five different metrics: convergence 
speed with respect to iterations (CSI), computational efficiency (CE), 
convergence speed w.r.t time (CST), accuracy speed w.r.t time (AST), 
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and accuracy speed w.r.t iterations (ASI). These metrics are computed 
as follows:

𝐶𝑆𝐼 =
−4 − average{𝛽(𝐼)}

𝐼
, 𝐶𝐸 = 𝐼

average{𝑇𝐼}
, 𝐶𝑆𝑇 =

−4 − average{𝛽(𝐼)}
average{𝑇𝐼}

𝐴𝑆𝑇 =
average{𝜉} − 10−4

average{𝑇𝐼}
, 𝐴𝑆𝐼 =

average{𝜉} − 10−4

𝐼
, (27)

and thereafter normalized w.r.t. maximum. A higher values of these 
metrics indicate better performance. These metrics allow users to se-
lect the most appropriate algorithm based on the specific application 
requirements. For time-sensitive applications, where fast convergence 
and high accuracy in minimal time are essential, algorithms with better 
AST and CST metrics are preferable. In contrast, in less time-critical 
environments, iteration-based metrics like CSI and ASI might be more 
relevant.

The MSME variants transfer the most energy onto the diagonal of 
the zero-lag coefficient matrix in every iteration, making them optimal 
according to the CSI metric but the worst in terms of CE. Conversely, 
RGSMD has the lowest execution time per iteration, yielding the best 
CE among all variants, although it is outperformed by ES-RGSMD in 
CST. This observation aligns with the results shown in Fig.  6. The 
AST metric, which evaluates the accuracy of the estimated singular 
values relative to the elapsed system time, shows RGSMD as the best 
performer than the ES-RGSMD over the constructed ensemble, while 
the MSME variants show poor performance, requiring more time to esti-
mate accurate singular values. However, when the number of iterations 
is considered instead of the execution time, MSME variants achieve 
the most accurate singular value estimates with fewer iterations, as 
reflected in a high ASI metric. Finally, GSBR2 exhibits the poorest 
performance in all aspects excepts that its average execution time per 
iteration is lower than the MSME variants. Nevertheless, due to its 
poor performance in the other metrics, GSBR2 demonstrates the worst 
overall performance, as evidenced by the smallest enclosed area in its 
radar chart.

In summary, the CGSMD, RGSMD, ES-RGSMD, ES-HCR-GSMD, and 
HCR-GSMD, which is not shown due similar performance to ES-HCR-
GSMD, variants demonstrate comparable performance to one another, 
with the ES-RGSMD emerging as the leading method. In scenarios 
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where computation time is of lesser concern, such as in an offline 
diagonalization of a polynomial matrix, the MSME-GSMD variants are 
preferable, as they achieve superior diagonalization with the fewest 
iterations.

7. Application of the GSMD algorithm to broadband MIMO chan-
nel equalization

To demonstrate the practical utility of the proposed PSVD algo-
rithm, we apply it to decouple a broadband MIMO channel. Broad-
band MIMO systems, characterized by multi-path propagation and 
frequency-selective fading, and therefore can be modeled via tap-delay-
line, i.e., a polynomial matrix with sufficient time-lags. With broadband 
MIMO channel 𝑪[𝑛], 𝑛 = 0,… , (𝐿 − 1) with 𝐿 number of taps, 𝑠𝑚[𝑛], 𝑖 =
1,… ,𝑀 denoting the source signals, 𝑥𝓁[𝑛],𝓁 = 1,… , 𝑁 the received 
signals and 𝑣𝓁[𝑛],𝓁 = 1,… , 𝑁 the additive Gaussian noise, in z-domain 
we have 
⎡

⎢

⎢
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An SVD can only diagonalize 𝑪(𝑧) for one particular value of 𝑧 but 
not ∀ 𝑧, whereas a PSVD can diagonalize 𝑪(𝑧) for all values of 𝑧 into 
𝑼 (𝑧)𝜮(𝑧)𝑽 P(𝑧), where 𝑼 (𝑧) and 𝑽 (𝑧) are para-unitary filter banks, and 
𝜮(𝑧) is a diagonal polynomial matrix containing decoupled frequency 
selective channel gains. The transmitter precodes the source signals 𝒔(𝑧)
using 𝑽 (𝑧) and receiver applies 𝑼P(𝑧) to the received signal 

𝑼P(𝑧)𝒙(𝑧) = 𝑼P(𝑧)𝑼 (𝑧)𝜮(𝑧)𝑽 P(𝑧)𝑽 (𝑧)𝒔(𝑧) + 𝑼P(𝑧)𝒗(𝑧) (29)

eliminating channel interference such that 

𝒚(𝑧) = 𝜮(𝑧)𝒔(𝑧) + 𝒗′(𝑧) (30)

where 𝒚(𝑧) = 𝑼P(𝑧)𝒙(𝑧) and 𝒗′(𝑧) = 𝑼P(𝑧)𝒗(𝑧). Due to paraunitary 
filter banks both in transmitter and receiver, neither the transmit 
power is increased, nor the channel noise. The resulting ISI in 𝜮(𝑧)
can be removed zero-forcing equalizer. By concentrating energy along 
the diagonal of 𝜮(𝑧), the PSVD effectively isolates the independent 
subchannels, enabling simpler receiver design.

A representative example of a 3 × 3 broadband MIMO channel 𝐶(𝑧)
of polynomial order 20 is considered to illustrate the performance of 
the proposed algorithm. The absolute weights at different time lags 
are depicted in Fig.  9. For the decoupling application, channel state 
information (CSI) is assumed to be known at both the transmitter and 
receiver. The precoder and decoder paraunitary matrices are derived 
using the MSME-RGSMD-DL algorithm, employing a maximum of 400 
iterations with 𝜖 = 10−6 and 𝜇PU = 𝜇PH = 10−6. The elements of 
the resulting diagonalized matrix 𝜮̂[𝑛] are shown in Fig.  10, demon-
strating that the considered convolutive MIMO channel is effectively 
decoupled. Upon evaluating 𝜮̂(𝑧) on the unit circle, i.e., 𝑧 = ej𝛺 , we 
can compare the estimated singular values against the ground truth 
as shown in Fig.  11. This shows that estimated singular values closely 
matches the ground-truth and therefore, suggests accurate decoupling 
of the MIMO channel. Moreover, it also highlights the proposed GSMD 
algorithm’s capability to reliably estimate singular values across the 
frequency spectrum. This accuracy ensures that the channel matrix is 
well-conditioned for equalization, likely leading to enhanced interfer-
ence suppression and improved signal recovery. Such characteristics are 
essential in broadband MIMO systems, where spectral nulls and poorly 
estimated singular values can degrade overall performance.

The sources, drawn from three independent BPSK constellations, 
each of length 105, are filtered through 𝑽 (𝑧) and subsequently con-
volutively mixed with 𝑪(𝑧). Additive white Gaussian noise (AWGN) is 
then introduced to achieve various levels of signal-to-noise ratio (SNR), 
ranging from 0 to 10 dB in increments of 2 dB. The received signal is 
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Fig. 8. Radar chart comparing selected top-performing GSMD variants against 
the baseline GSBR2 algorithm across five performance metrics defined in 
(27). ME-CGSMD, ME-RGSMD, and ES-ME-RGSMD are omitted due to poor 
performance, while performances of HCR-GSMD and SL-MSME-GSMD closely 
match those of ES-HCR-GSMD and DL-MSME-GSMD, respectively, and so are 
omitted for clarity.

further processed by a paraunitary matrix 𝑼P(𝑧). After the channel is 
fully decoupled into three single-input single-output (SISO) channels, 
equalization is performed using a maximum likelihood sequence esti-
mation (MLSE) equalizer, which employs the Viterbi algorithm [44]. 
The bit error rate (BER) is computed for multiple trials for each source, 
and the average BER is plotted as a function of the SNR, as illustrated 
in Fig.  12. The results indicate that the BER for the largest mode or 
singular value is the lowest, whereas the BER for the smallest singular 
value remains the highest across all selected SNR values. This simula-
tion demonstrates the efficacy of the proposed algorithm in accurately 
decoupling convolutive broadband MIMO channels and achieving reli-
able communication. Unlike the PQRD-based approach [13,15], which 
requires back-substitution to reconstruct SISO channels, the GSMD 
algorithm directly decouples the MIMO channel into a series of SISO 
channels, effectively mitigating error propagation.

The computational efficiency of the GSMD algorithm renders it 
particularly well-suited for real-time broadband MIMO systems. While 
GSMD significantly improves accurate singular value estimation and, 
consequently, BER performance, its efficiency ensures practical feasibil-
ity for time-sensitive applications. Unlike approaches such as GSBR2, 
which often entail significantly higher computational overhead and 
require more iterations, GSMD achieves effective diagonalization with 
fewer iterations and controlled growth of the polynomial order. This 
balance between performance and complexity positions GSMD as a 
compelling choice for advanced communication systems, including 
5G and mmWave MIMO. Furthermore, its computational efficiency 
translates directly into reduced latency, a critical requirement for time-
sensitive applications where rapid channel state adaptation is essential. 
The algorithm’s suitability for implementation on reconfigurable FPGAs 
further enhances its applicability in real-time operations, making it an 
excellent candidate for low-latency, high-throughput communication 
scenarios (see Figs.  7 and 8).
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Fig. 9. A 3 × 3 broadband MIMO channel 𝐂[𝑛] with 21 taps, i.e., 𝑛 = 0,… , 20.

Fig. 10. PSVD results for the example 3 × 3 broadband MIMO channel, illustrating 𝜮̂[𝑛], produced via MSME-GSMD-DL version of the GSMD algorithm, versus 
𝑛.
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Fig. 11. GSMD estimated singular values, evaluated on the unit circle, for the MIMO channel matrix example with ground-truth underlaid in gray.
Fig. 12. Average BERs for BPSK sources estimated through an MLSE equalizer for SISO channel decoupled from a convolutive MIMO channel using a PSVD 
algorithm at multiple SNR values.
8. Conclusion

In this article, we have proposed sequential matrix diagonalization 
(SMD) based algorithms for computing the singular value decompo-
sition (SVD) of polynomial matrices. The proposed generalized SMD 
(GSMD) framework encompasses multiple algorithmic variants, each 
offering distinct trade-offs between convergence speed and computa-
tional complexity. The algorithms shift off-diagonal elements onto the 
zero-lag coefficient matrix of the polynomial matrix using time-shift 
operations, which are subsequently transferred onto the diagonal via 
ordinary SVD. A formal proof of convergence has been provided and 
holds for all proposed variants.

Comprehensive ensemble tests on 2000 randomly generated polyno-
mial matrices demonstrated that the proposed algorithms significantly 
outperform the generalized SBR2 (GSBR2) algorithm, which represents 
the sole existing dedicated polynomial SVD (PSVD) algorithm in the 
literature. Key performance advantages include: (i) achieving 50 to 100
iterations faster convergence for equivalent diagonalization levels, (ii) 
reducing computation time by approximately one-third while maintain-
ing superior accuracy, and (iii) producing lower polynomial orders in 
the decomposition factors for several non-MSME variants. Notably, the 
proposed algorithms can eliminate an entire column and row in each 
iteration, in contrast to GSBR2, which eliminates a maximum of one 
element per iteration. This fundamental difference in energy transfer 
efficiency explains why the proposed GSMD algorithms demonstrate 
greater relative performance gains over GSBR2 than those previously 
reported for SMD over SBR2.

Among the proposed variants, ES-RGSMD emerged as the best over-
all performer, balancing computational efficiency with diagonalization 
14 
accuracy, while the MSME-GSMD variants achieved the highest di-
agonalization quality when computational time is not critical. The 
algorithms are scalable to spatial dimensions up to 20 × 20, with a 
divide-and-conquer approach enabling extension to higher dimensions 
for the non-MSME variants. Our findings validate the effectiveness of 
the proposed GSMD algorithm not only for broadband MIMO chan-
nel equalization but also for wider applications including polynomial 
generalized SVD beamforming for frequency selective MIMO [45], 
broadband blind source separation [46], and polynomial root MU-
SIC [47]. The direct decoupling of MIMO channels into SISO channels 
without back-substitution represents a significant practical advantage 
over PQRD-based approaches.

Future work will explore integrating GSMD into adaptive com-
munication systems, including 5G, vehicular-to-everything (V2X), and 
mmWave networks, which require real-time adjustments to channel 
conditions under dynamic environments. Additionally, GSMD can be 
directly applied to the polynomial Procrustes problem for approximat-
ing the best paraunitary matrix to a given polynomial matrix [48,49], 
with applications in determining lossless transfer function matrices for 
acoustic systems and artificial reverberation of multichannel audio [50,
51].
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