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Abstract 

We present a 3-staged method for automated learning of the spatial density function of the mass of 

all gravitating matter in a real galaxy, for which, data exist on the observable phase space coordinates 

of a sample of resident galactic particles that trace the galactic gravitational potential. We learn this 

gravitational mass density function, by embedding it in the domain of the probability density function 

( pdf ) of the phase space vector variable, where we learn this pdf as well, given the data. We generate 

values of each sought function, at a design value of its input, to learn vectorised versions of each 

function; this creates the training data, using which we undertake supervised learning of each function, 

to thereafter undertake predictions and forecasting of the functional value, at test inputs. We assume 

that the phase space that a kinematic data set is sampled from, is isotropic, and we quantify the relative 

violation of this assumption, in a given data set. Illustration of the method is made to the real elliptical 

galaxy NGC4649. The purpose of this learning is to produce a data-driven protocol that allows for 

computation of dark matter content in any example real galaxy, without relying on system- specific 

astronomical details, while undertaking objective quantification of support in the data for undertaken 

model assumptions. 
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1. Introduction 

The mass distribution of all gravitating matter in an external galaxy, is a coveted system 

property in astronomy and cosmology. The density function of the mass of gravitational 

matter in the galaxy - i.e. of luminous as well as dark galactic matter - if learnt or estimated, 

will permit computation of the spatial distribution of dark matter in the galaxy. Ubiquity 

of the shape of the total gravitational mass density function continues to be questioned [1–

3] , while agreement exists on the importance of galactic mass distribution in constraining 

galaxy formation [1,4–6] , and evolution [7,8] . Computation of the spatial distribution of dark 

matter in a galaxy, will indeed need to include astronomical models of the link between 

luminous galactic matter, and photometric information obtained from such matter in the galaxy. 

This is however more easily accomplished than the learning (or estimation) of the total, or 

gravitational mass density function of elliptical galaxies - which is relatively more difficult in 

elliptical galaxies than in disky galaxies. The latter systems being rotationally supported, the 

rotational velocity measurements of their resident particles, taken at different galactocentric 

radii, offer an estimate of the gravitational mass enclosed within the given radius [9] . For 

elliptical galaxies, no reliable universal parametric model exists to link light and total (or 

gravitational) mass, thereby compromising the ambition of learning gravitational mass density 

using only photometric information. It follows, that in an elliptical galaxy, it is in general 

best to avoid reliance on such a link when attempting learning or estimation of the total (or 

gravitational) mass density function. 

In this paper, we focus on the learning of gravitational mass distribution of elliptical galax- 

ies, without resorting to astronomical details of individual galaxies, except for observations 

of the observable phase space variables of a sample of resolved galactic particles that trace 

the galactic gravitational field - and hence are referred to as tracers. Thus, our methodol- 

ogy offers a black- boxed protocol in which data comprising such observations is input for a 

given galaxy, and the protocol outputs the cumulative (with galactocentric radius) gravitational 

mass in this galaxy, (along with its phase space probability distribution), under an assumption 

on the symmetry of the galactic phase space, where the validity of this assumption for the 

considered galaxy, is also quantified. 

Almost all galactic mass modelling exercises that employ tracer kinematic data, resort to 

the Jeans Equation formalism. Within this framework, the galaxy is treated as autonomous and 

Hamiltonian. Adherence of the temporal evolution of the probability density function ( pdf ) 

of the galactic phase space vector to the Collisionless Boltzmann Equation (CBE) is used, 

to formulate a deterministic link between moments (and spatial derivatives of moments) of 

this pdf and the gravitational potential [10] . Such a link is useful, considering that one of the 

inputs in Jeans Equation, is the variance of the line-of-sight (LOS) component of the velocity 

vector - which is observed at some locations in the galaxy - and the gravitational potential 

function that is the desired output in this exercise. However, tacitly imposing an arbitrarily- 

chosen correlation structure on a sample of observations - sparsely sampled typically - is not 

a reliable way of learning the spatial distribution of a moment. Indeed, a persisting difficulty 

with conventional estimation of galactic mass distribution is the approximating of an unknown 

spatially-varying function with a discrete sample of pairs of the input variable of this function, 

and the corresponding, widely-uncertain value of the output variable. This problem is further 

compounded by seeking spatial derivatives of such an approximated ǣfunction ǥ. While the 

presence of such a sample can in principle allow for supervised learning of the sought function, 

the large error on the output variable will only learn the function (treated as random), as 
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highly uncertain, thereby offering meaningless spatial derivatives. Here by ǣmeaningless ǥ, 

we imply error bars so large, that the value of the derivative is rendered uninformative. This 

problem with the estimation of total galactic mass distribution, plagues both the usage of 

tracer kinematics (i.e. observations of phase space coordinates of individual galactic particles) 

in Jeans Equation formalisms, as well as observations of temperature of hot gas, modelled 

under assumed hydrostatic equilibrium [11,12] . Imposing a smoothness by hand, on such 

ǣapproximated ǥ functions, will naturally need to be justified; else the function is rendered 

ad hoc and the learnt/estimated mass distribution of the galaxy then stands compromised. 

Additionally, given the observational limitations that typify this domain, data does not 

exist on everything other than the sought output, i.e. the galactic gravitational potential. This 

includes data on the parametrisation of anisotropy of the galactic phase space. Indeed, one 

major idiosyncratic difficulty with the Jeans Equation formalism, is the absence of information 

on how deviant the galactic phase space pdf is, from invariance to rotation, i.e. from phase 

space isotropy. This then triggers the need for specification of values of such deviation from 

phase space isotropy in a galaxy. Such values are fundamentally ad hoc , since it is the 

lack of information on the anisotropy parametrisation that motivates the need for its manual 

specification. The resulting galactic gravitational mass is then rendered arbitrary. Then from 

the above, it appears that an automated route to mass modelling would be one that: avoids 

computing spatial derivatives of functions that are learnt (or worse, approximated) as highly- 

uncertain; permits quantification of anisotropy of the galactic phase space; eschews reliance 

on photometric observations. In this paper, we advance a 3-staged protocol that undertakes 

the learning of the gravitational mass density function of a galaxy, while also learning the 

phase space pdf of the galaxy, using available noisy measurements on a small sample of 

the 3 observable components of the 6-dimensional phase space vector, treating the galaxy as 

autonomous and Hamiltonian [13] , while assuming that within the spatial extent of the galaxy 

that we offer the density functions for, the galactic potential is central [14] , and the galactic 

phase space pdf is an isotropic function of location and momentum vectors [15] . At the same 

time, we quantify how this assumption of isotropy is supported in the data, by computing a 

parametrisation of the departure of the system from this assumption, given the available data. 

We do not possess training data on the 2 functions that we desire to learn, namely the 

gravitational mass density function and the phase space pdf . This would then negate the 

undertaking of supervised learning of these functions, it would seem. However, in the 1st-Stage 

of our work, we will generate such originally-absent training data, by discretising the relevant 

range of the domain variable relevant to each function, and learning the vectorised version 

of each function, given the data. This effectively offers the functional value over each design 

partition of the relevant range of values of the domain variable, i.e. offers that originally- 

absent training data on the gravitational mass density and phase space pdf . In the 2nd-Stage, 

we will implement these produced training sets, to learn each function, by modelling them 

as random realisations from an adequately chosen stochastic process, allowing for predictions 

and forecasting of values of the functions. Ultimately in the 3rd-Stage, we will check the 

assumption of isotropy in the data, and compute how anisotropic the galaxy is, given a data 

set. We will illustrate our 3-staged method on the data available on an observed sample 

of Planetary nebulae (PNe) and another sample of Globular Clusters (GCs), for the galaxy 

NGC4649. These empirical data sets on the 2 types of tracers in this galaxy, was shared with 

us by Dr. Kristin Woodley. Kinematics of GCs in this galaxy have been employed by [16–18] , 

while kinematic information of PNe in this galaxy has been employed by Teodorescu et al. 

[19] . The data on GCs that we employ here, is a subsample of the bigger sample used by 
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other authors. Indeed, while we advocate our 3-staged protocol for the objective and automated 

mass modelling of a sample of galaxies, using kinematic information on tracer samples, it is 

crucially important to note that any other information - either as data or priors - if available to 

the astronomer for an individual galaxy in this sample, can definitely be incorporated within 

this framework that is Bayesian by nature. All through, inference is carried out using different 

Markov Chain Monte Carlo (MCMC) algorithms [20] . 

2. Method 

The system is treated as autonomous, implying that the probability density function 

( pdf ) of the phase space vector W does not bear an explicit dependence on time. Here 

W = (X 1 , X 2 , X 3 , V 1 , V 2 , V 3 ) 
T , where the location of a galactic particle is X = (X 1 , X 2 , X 3 ) 

T , 

and its velocity vector is V = (V 1 , V 2 , V 3 ) 
T . In this system, we discuss dynamics per unit 

mass of a galactic particle, such that the state of any particle is specified by its veloc- 

ity, along with its location. Let the phase space vector W ∈ W ⊆ R 
6 , i.e. W is the phase 

space of the galaxy. Thus in this autonomous system, the phase space pdf is denoted 

f W (x 1 (t ) , x 2 (t ) , x 3 (t ) , v 1 (t ) , v 2 (t ) , v 3 (t )) , though we will often drop the time-dependence of 

phase space coordinates from our notation, for brevity’s sake. We express the location and 

velocity vectors in the basis { e 1 , e 2 , e 3 } such that the line-of-sight is along e 3 , implying that 

X 1 and X 2 are the location coordinates in the plane of the sky; these location coordinates 

are observable. The component V 3 of the velocity vector is the speed with which the parti- 

cle is moving along the line-of-sight; this is the third observable. Thus, X 3 , V 1 , V 2 cannot be 

observed. 

The system gravitational potential at location X is denoted �(X 1 , X 2 , X 3 ) ; again, the lack 

of explicit time-dependence in the potential, owes to the autonomous nature of the system. 

Our treatment of this dynamical system having reached a stationary state maybe circumspect, 

but with observations available only at a snapshot - rather than online - we need to assume 

so much, in order to undertake any tractable analysis. 

The system is also treated as Hamiltonian [14] ; this is motivated by the collisionless nature 

of galaxies. Then as the system moves along a trajectory in phase space, the flow of phase 

is conserved, i.e. 

df W (x 1 (t ) , x 2 (t ) , x 3 (t ) , v 1 (t ) , v 2 (t ) , v 3 (t )) 

dt 
= 0, 

i.e., the Collisionless Boltzmann Equation (CBE) holds [9] . 

A corollary of the phase space pdf abiding by CBE is that f W (·) can be recast as a 

function of integrals of motion [9,21] , such as I 1 , . . . , I n , where I k : W −→ R in general, with 

d (I k ) /d t = 0, for k = 1 , . . . , n. Then it follows that phase space trajectories that are allowed 

in W , have to lie at the intersection of n such sub-volumes of W within which the phase space 

coordinates abide by the constraints that d(I 1 (x 1 , . . . , v 3 ) /dt = 0, . . . , d(I n (x 1 , . . . , v 3 ) /dt = 

0. In other words, phase space trajectories in W have n constraints imposed on them, confining 

them to 6 − n degrees of freedom; recall that W ⊆ R 
6 . Then to be allowed even 1 degree of 

freedom, n ≤ 5 . 

We recall that one such integral of motion is the energy of any galactic particle. Energy 

is given partly by the kinetic energy of the particle, and partly by its potential energy. As 

we perform the analysis per unit mass, the total energy per unit mass is the sum of half the 
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squared (Euclidean) norm of the velocity vector, and the gravitational potential at the location 

of the particle, in this galaxy. 

We assume the galaxy to be spherically symmetric. Thus, the gravitational potential is 

central, i.e. a function of the components of the location vector, via its explicit dependence 

on galactocentric radius R := 

√ 

X 
2 
1 + X 

2 
2 + X 

2 
3 , i.e. its notation is updated from above as �(R) . 

Then under spherical symmetry, Poisson Equation links the gravitational mass density ρ(R) 

to the potential as: 

1 

R 2 

d 

dR 

(

R 
2 d�(R) 

dR 

)

= −4πGρ(R) , 

where G is the known Newton’s Gravitational constant. Assuming the potential to be central 

is perhaps not a bad assumption, as long as we attempt our learning only at locations that are 

at most “moderately” distant from the centre of the galaxy. This is indeed not verifiable given 

the observations that offer values of X 1 and X 2 , (along with V 3 ). One possible suggestion for 

a limit on the spatial extent under consideration, could be the smaller between the maximal 

galactocentric radius r max that observations are available to, and a benchmark photometrically- 

relevant radius, such a 5 times the effective radius ( r e f f ). We use this convention and consider 

only results obtained within such a galactocentric radius 

r gal = min [ r max , 5 r e f f ] . 

Let us suggest that f W (·) is recast as the one and only integral of motion of energy 

ε (X 1 , X 2 , X 3 , V 1 , V 2 , V 3 ) := �(R) + 
V 

2 

2 
, 

where 

V := 

√ 

V 
2 

1 + V 
2 

2 + V 
2 

3 ; R := 

√ 

X 
2 
1 + X 

2 
2 + X 

2 
3 . 

Then it implies that f W (X 1 , X 2 , X 3 , V 1 , V 2 , V 3 ) = f W ( ε(X 1 , X 2 , X 3 , V 1 , V 2 , V 3 )) ≡ f W (�(R) + 

V 
2 / 2) . 

Definition 2.1. A function of the 2 vectors X ∈ X ⊆ R 
3 and V ∈ V ⊆ R 

3 is isotropic, if the 

function is invariant to rotation Q X and rotation Q V , for any 3 × 3 -dimensional orthogonal 

matrix Q . 

It follows that function f W (R, V ) is an isotropic function of X and V , for R = 
√ 

X 
2 
1 + X 

2 
2 + X 

2 
3 ;V = 

√ 

V 
2 

1 + V 
2 

2 + V 
2 

3 , since 

R = ‖ X ‖ := 

√ 

X 
T X = 

√ 

(Q X ) T (Q X ) , 

given that for orthogonal matrix Q ∈ R 
3 ×3 , Q 

T Q = I ; similarly for V = ‖ V ‖ . Here ‖ · ‖ 
denotes Euclidean norm. 

So the phase space pdf , if recast as a function of the sole integral of motion, energy, is 

an isotropic function of location and velocity, i.e. f W ( ε) ≡ f W (�(R) + V 
2 / 2) is an isotropic 

function of X and V . 

Remark 2.1. We model the phase space pdf as a function of energy of the considered galactic 

particle. So in our model, the phase space distribution of the system is isotropic. 
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2.1. 1st-stage: generating originally-absent training sets 

Our aim here is to learn the phase space pdf f W ( ε) and the gravitational mass density 

function ρ(R) . 

To undertake the supervised learning of ρ(R) , one needs a training data set comprising 

pairs of design values of radius R, and the gravitational mass density computed at this design 

radius. We do not possess such a training set apriori. Any such training set built from a 

simulated model of the galaxy is irrelevant since it is the essential lack of information about 

the galaxy under consideration, that motivated our pursuit of the galactic gravitational mass 

density function and the phase space pdf . In other words, we do not have information about 

these pursued functions ρ(R) and f W ( ε). In lieu of such information, any constructed model 

of the gravitational mass density of the galaxy - constructed with the aim of simulating values 

of this function at design radii - is rendered arbitrary, i.e. irrelevant to the galaxy at hand. 

Similarly, we state that there exists no information-driven model of the phase space pdf of the 

considered galaxy; if information exists to constrain such a model pdf , we would not need to 

embark upon our learning exercise. 

2.1.1. Information available; priors 

It may however be that we possess information on some properties of these system func- 

tions, that we would like to input towards the learning of these functions, at design inputs. 

Such information comprises 

• Non-negativity of both the phase space pdf and the gravitational mass density function, 

at all energy and radius. 

• Monotone non-increasing nature of ρ(R) with increasing values of R. This is motivated 

by the gravitationally bound nature of the system, assumed spherically symmetric. Then 

under the central (gravitational) potential �(R) we expect matter at radius R = r to be 

more tightly packed than matter at R = r / , for r < r / . 

• The phase space pdf integrates to 1, over all energy values. 

We will incorporate each of these known pieces of information on properties of the 2 

sought functions via the inference that we will undertake. 

Additionally, it may be possible that for a galaxy under consideration, priors exist on 

the shape of either, or both, of the sought functions. However, in our approach we advocate 

caution over priors motivated by astronomical theory, parameters of which are then fed generic 

values. We state this, backed by apprehension about a high level of diversity in a sample of 

galaxies observed within any observational programme; galactic properties are expected to be 

sensitive to the effect of the highly multivariate internal and external evolutionary influences 

- inclusive of non-linear dynamical effects - on the evolution of individual galaxies. This is 

particularly true for the phase space pdf , which does not need to follow any global parametric 

shape, and indeed, may violate the assumed isotropy that we model the pdf to abide by. 

Given that a galaxy is composed of multiple, dynamically interacting - in fact, differentially 

correlated - components, implies that the phase space pdf may not be a single or monolithic 

function of the integrals of motion, but may manifest different functional forms within distinct 

sub-volumes of the galactic phase space. There is no pressing motivation for the phase space 

pdf to be globally Normal or skewed-Normal in energy. In light of this discussion, we will 
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impose only weak priors on the sought gravitational mass density function ρ(R) , and the 

phase space pdf f W ( ε). 

2.1.2. Embedding ρ(R) in domain of pdf f W ( ε) 

As seen above, expressing the phase space pdf as a function of energy, allows for the grav- 

itational potential to be embedded in the support of the pdf , such that, the gravitational mass 

density ρ(R) - which is deterministically computable, given �(R) - is effectively embedded 

in the support of the pdf . To summarise, 

f W ( X 1 , X 2 , X 3 , V 1 , V 2 , V 3 ) = f W ( ε ) ≡ f W (�(R) + V 
2 / 2) 

implies that the phase space pdf is 

f W ( ε ) ≡ f W (�(R) , V ) ≡ f W (ρ(R) , V ) . 

Let the data available for the galaxy under consideration, comprise N data values of the 

observables X 1 , X 2 , V 3 of one type of galactic particles, where the noise on V 3 is also observed, 

with noise on X 1 and X 2 observations negligible, compared to the noise on V 3 . In fact, the 

noise s i on the i-th observation v 
(i) 
3 of V 3 , is modelled as the standard deviation of the error 

density for V 3 observations, where we model this error density to be a Normal with a zero 

mean. Thus, the error on the observed value v 
(i) 
3 is ǫi ∼ N (0, s 2 i ) . We denote this available 

kinematic data of the N data particles of a given type, as D = { (x (i) 1 , x 
(i) 
2 , v 

(i) 
3 , s i ) } 

N data 
i=1 . 

Now, assuming the N data data points in D to be independent, likelihood of the model - of 

the sought gravitational mass density and phase space pdf - given the data D , is expressed 

as the product of values of the probability density function g U (·) of the observable U := 

(X 1 , X 2 , V 3 ) 
T , (given the model mass density and phase space pdf ), computed at each of the 

data points in D . In other words, in the absence of measurement noise, likelihood is 

ℓ (ρ(·) , f W (·) | D ) = 

N data 
∏ 

i=1 

g U (x 
(i) 
1 , x 

(i) 
2 , v 

(i) 
3 | ρ(·) , f W (·)) 

C( f W (·) , �(·) ) 
, (2.1) 

where the pdf of the observable U can be computed from the phase space pdf by integrating 

out from the latter, all those phase space coordinates that are not observed and C(·, ·) is the 

normalisation of this pdf of the observables. Thus, 

g U 

(

x 
(i) 
1 , x 

(i) 
2 , v 

(i) 
3 | ρ(·) , f W (·) 

)

= 

∫ x 
(max,i) 
3 

x 
(min,i) 
3 

∫ v 
(max,i) 
2 

v 
(min,i) 
2 

∫ v 
(max,i) 
1 

v 
(min,i) 
1 

f W 

(

�

(

ρ

(

√ 

(x 
(i) 
1 ) 2 + (x 

(i) 
2 ) 2 + x 2 3 

))

+ 

(

v 2 1 + v 2 2 + (v 
(i) 
3 ) 2 

)

/ 2 

)

d v 1 d v 2 d x 3 , 

where this density of the observables will need to be subsequently normalised by 

C( f W ( ·) , �( ·) ) , which is defined as the integral over all values of the observables, i.e. this 

normalisation is: 

C( f W ( ·) , �( ·) ) = 

∫ 

g U (x 1 , x 2 , v 3 | ρ(·) , f W (·)) d x 1 d x 2 d v 3 . 

Recognising that values of X 1 and X 2 appear in the integrals relevant to RHS of the equa- 

tion that defines g U (·|·) , via the term X 
2 
1 + X 

2 
2 , we replace (x 

(i) 
1 ) 2 + (x 

(i) 
2 ) 2 in the integrand 

with (x (i) p ) 2 , where we define 

X 
2 
p := X 

2 
1 + X 

2 
2 . 
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Similarly, we replace (v 
(i) 
1 ) 2 + (v 

(i) 
2 ) 2 in the integrand with (v (i) p ) 

2 , where we define 

V 
2 
p := V 

2 
1 + V 

2 
2 , 

and d v 1 d v 2 by 2πv p d v p , i.e. the double integral with respect to (w.r.t.) V 1 and V 2 is replaced 

by a single integral w.r.t. v p , by invoking isotropy in velocity-space. Thus, the definition of 

g U (·) reduces to: 

g U 

(

x 
(i) 
1 , x 

(i) 
2 , v 

(i) 
3 | ρ(·) , f W (·) 

)

= 2π

∫ x 
(max,i) 
3 

x 
(min,i) 
3 

∫ v (max,i) 
p 

v 
(min,i) 
p 

f W 

(

�

(

ρ

(

√ 

(x 
(i) 
p ) 2 + x 2 3 

))

+ 

(

v 2 p + (v 
(i) 
3 ) 2 

)

/ 2 

)

v p dv p dx 3 . (2.2) 

In light of the introduction of X p , as motivated just above, we clarify the normalisation of 

the pdf of the observables as 

C( f W ( ·) , �( ·) ) = 2π

r max 
∫ 

x p =0 

√ 
−2�(x p ) 
∫ 

v 3 = −
√ 

−2�(x p ) 

g U (x p , v 3 | ρ(·) , f W (·)) x p dx p dv 3 . (2.3) 

Here, the maximal value that V 3 can attain at a given value of X p is obtained by recalling 

the definition of energy as sum of potential and kinetic energies. When energy attains the 

highest value (of 0), kinetic energy is maximal, at x 3 = 0, i.e. at potential �(x p ) . This follows 

from �(x p ) < �( 
√ 

x 2 p + x 2 3 ) , ∀ x 3 � = 0. Then the maximal value of V 3 is computed using this 

maximal kinetic energy at V 1 = V 2 = 0. Thus, the maximal value of V 3 is 
√ 

0 − 2�(x p ) . The 

minimal value of V 3 is the negative of this computed maximal value. The maximal value of 

X p is the maximal radius r max , observations of U till which, we consider in our learning. 

However, it appears impossible to compute the likelihood introduced in Eq. (2.1) , since 

calculation of g U (·) appears impossible, given that learning of f W (ε) and ρ(r) appears impos- 

sible. The last claim is due to the fact that training data set { (ε j , f W (ε j )) } N e j=1 is unavailable, 

and training data { (r k , �(r k )) } N r k=1 is also unavailable, ∀ N e , N r ∈ N . However, such training 

sets are pre-requisites for the supervised learning of the phase space pdf and gravitational 

mass density function. In lieu of these training sets - and with the aim of generating such 

training data sets - we learn “vectorised versions” of each of the sought functions, where we 

explain below, what we imply by vectorised version of a sought function. 

We discretise the relevant interval ( [ r 0 , r max ] ) in the domain of the sought function ρ(·) , 
into N r partitions. Each such partition is referred to as an “R-bin”. Then the j-th R-bin 

comprises r ∈ [ r 0 + ( j − 1) δr , r 0 + jδr ) , ( j = 1 , . . . , N r ), where we choose to use a constant 

width δr for all R-bins. So we use δr = (r max − r 0 ) /N r . Then we approximate the function 

ρ(r) as 

ρ j ≡ ρ(r) , ∀ r ∈ [ r 0 + ( j − 1) δr , r 0 + jδr ) ; j = 1 , . . . , N r . 

We define the N r -dimensional vector ρ = (ρ1 , . . . , ρN r ) 
T , and replace our ambition of learning 

ρ(r) - for now - by learning ρ, i.e. each of the N r “ρ-parameters” ρ1 , . . . , ρN r . 

Similarly, we discretise the relevant range of normalised energy values ([-1, 0)), into N e 

“ε-bins”, such that we approximate the function f W (ε) as 

f k ≡ f W (ε) , ∀ ε ∈ [ −1 + (k − 1) δe , −1 + kδe ) ; k = 1 , . . . , N e , 
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where δe = 1 /N e . Here by “normalised energy”, we imply the variable ˜ ε that takes value 

˜ ε ∈ [ −1 , 0) , where we normalise ε to ˜ ε as: 

˜ ε := 
ε 

−�(0)) 
. 

We define the N e -dimensional vector f = ( f 1 , . . . , f N e ) 
T . In fact, for every trial f - i.e. at every 

iteration of the inference, we normalise f k with a global scale s.t. f k ≤ 1 , ∀ k = 2, . . . , N e . 

and learn f 2 , . . . , f N e , so that we can deterministically assign to f 1 the value such that ( f 1 + 

2( f 2 + f 3 + . . . + f N e −1 ) + f N e ) δe / 2 = 1 , i.e. the (trapezoidal implementation) of the Riemann 

sum approximation of the area under the phase space pdf equals 1. Thus, we learn f 2 , . . . , f N e 
and treat f 1 as deterministically known, given the learnt “ f -parameters” in every iteration of 

the adopted inferential scheme. 

Thus, the Bayesian inference using MCMC that we will undertake, will make infer- 

ence on the state space parameter vector (ρ1 , . . . , ρN r , f 2 , . . . , f N e ) 
T , given the data D . 

We summarise, that by vectorised-version of the sought ρ(·) and f W (·) functions, we 

imply the vectors ρ and f , respectively. Learning the N r ρ-parameters enables realisa- 

tion of the pairs: (r 1 , ρ1 ) , . . . , (r N r , ρN r ) , and learning the f -parameters leads to the pairs: 

( ̃  ε 2 , f 2 ) , . . . , ( ̃  ε N e , f N e ) . While the first set is the originally-absent training set that will allow 

for the supervised learning of the ρ(R) function, the latter set is such a training data set for 

learning f W (ε) . Eq. (B.1) , provides the means to compute the gravitational potential �(R) , 

given a vectorised version of ρ(R) . 

To learn the ρ-parameters and f -parameters, we recall the definition of the probability 

density of the observables, expressed in terms of the phase space pdf and in that, replace the 

sought functions with their respective vectorised forms. Thus, considering the projection of the 

phase space pdf into the space of observables - which is what the RHS of Eq. (2.2) manifests 

- over each ε-bin individually, and summing over all such energy partitions, this equation 

reduces to 

g U (x 
(i) 
1 , x 

(i) 
2 , v 

(i) 
3 | ρ, f ) = 2π

∑ N e 

j=1 

[ 

f j 

∫ v (max,i) 
p 

v 
(min,i) 
p 

∫ x 
(max,i) 
3 

x 
(min,i) 
3 

v p dv p dx 3 

] 

, (2.4) 

where the integrals on the RHS represent the volume that the j-th ε-bin, i.e. energy-partition, 

occupies in the space of the unobservables. From the definition of energy, at a given r (i) = 
√ 

(x 
(i) 
p ) 2 + x 2 3 , and given v 

(i) 
3 , the maximal value of V p is given as 

(

v (max,i) 
p 

)2 = 0 − 2�
(

r (i) 
)

−
(

v 
(i) 
3 

)2 

, 

i.e. (v (max,i) 
p ) = 

√ 

−2�(r (i) ) − (v 
(i) 
3 ) 2 , while (v (min,i) 

p ) = −
√ 

−2�(r (i) ) − (v 
(i) 
3 ) 2 . Again, from 

the definition of energy, at given x (i) p and v 
(i) 
3 , the maximal value of X 3 is x 

(max,i) 
3 - root of the 

equation: 0 = �

(

√ 

(x 
(i) 
p ) 2 + x 2 3 

)

+ (v 
(i) 
3 ) 2 / 2. The minimal X 3 value is 0. The g U (·) computed 

this way from Eq. (2.4) is then normalised by the RHS of Eq. (2.3) , which we refer to now 

as C( f , �) , in light of the vectorisation of the functions. 

While Eq. (2.4) allows for computation of the pdf of the observables, conditional on the 

model parameters ρ1 , . . . , ρN r , f 2 , . . . , f N e in the noise-free instance, noise in the measurement 

of V 3 exists, and we need to perform learning of our model parameters, while acknowledging 

such noise. As we state above, we model the noise on the i-th observation of V 3 to be the 
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ǫi ∼ N (0, s 2 i ) . We ignore the noise in the X p measurement, in comparison to the noise in the 

measurement of V 3 . Then in the presence of this noise, the pdf of the i-th datum given the 

model parameters, is updated to the convolution of g U (x 
(i) 
1 , x 

(i) 
2 , v 

(i) 
3 | ρ, f ) with the Gaussian 

in v 
(i) 
3 , with parameters 0 and s 2 i , as mean and variance, respectively. This updated pdf of the 

i-th datum given the model parameters, is then to be normalised by the normalisation C( f , ρ) 

of the pdf of the observable given (vectorised) forms of the phase space pdf and gravitational 

mass density function. Thus, likelihood of the model parameters given data D that includes 

the observational noise in V 3 , under the assumption of independent data points, is 

ℓ 
(

ρ1 , . . . , ρN r , f 2 , . . . , f N e | D 

)

= 

N data 
∏ 

i=1 

g U 

(

x 
(i) 
1 , x 

(i) 
2 , v 

(i) 
3 | ρ, f 

)

∗ N 

(

v 
(i) 
3 ; 0, s 2 i 

)

C( f , ρ) 
. (2.5) 

Having defined the likelihood of the model parameters - that are the ρ-parameters and the 

f -parameters - given the data D , we can write the posterior pdf of these model parameters 

given this data, subsequent to the selection of priors on the model parameters. As stated 

above, we will motivate the case here, for weak priors, since we want to avoid biasing 

our inference, especially on the f -parameters, in this learning exercise in which the data 

has weaker informative influence on the f -parameters, over the ρ-parameters. In case the 

astronomer is blessed with information on the gravitational mass density and phase space 

pdf of a given galaxy, such information can be translated to more informative priors in such 

situations. Our weak priors π0 (θ ) include Normal and truncated Normal priors on a model 

parameter θ ∈ { ρ1 , . . . , ρN r , f 2 , . . . , f N e } , with a mean that is the chosen seed value of θ , and 

a variance that is large - namely, 3 to 10 times the variance used in the proposal density that 

trial values of this model parameter θ are proposed from, in any iteration of the undertaken 

MCMC-based inference. Our experimentation indicates robustness of the inferred results on 

ρ1 , . . . , ρN r , f 2 , . . . , f N e , to the choice of priors. 

We choose a seed value for f j by considering the “seed phase space pdf ” to be uniform, 

such that the seed value of f j is f 0 , ∀ j = 2, . . . , N e . Again, we choose a “seed gravitational 

mass density function”, to bear pre-chosen forms, eg. an NFW form [2] , such that ρk is 

computed using this chosen form, at radius R = r k , k = 1 , . . . , N r . We have experimented 

with different forms of the seed gravitational mass density function, and find our inferred 

results to be insensitive to the chosen seeds, i.e. each learnt parameter is inferred to be 

consistent within the learnt uncertainties on itself, (which given our MCMC-based inference, 

is the 95 % Highest Probability Density credible region learnt for this parameter, given the 

data). 

Thus, the posterior pdf is given as 

π
(

ρ1 , . . . , ρN r , f 2 , . . . , f N e | D 

)

∝ 

ℓ 
(

ρ1 , . . . , ρN r , f 2 , . . . , f N e | D 

)

π0 (ρ1 ) . . . π0 (ρN r ) π0 ( f 2 ) . . . π0 ( f N e ) , 

where any global scale in the definition of the posterior of the model parameters given the 

data, is irrelevant to the MCMC-based posterior sampling that we undertake towards making 

inference on the model parameters. 
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2.2. Inference on model parameters in the 1st-stage 

We choose to employ the Metropolis-within-Gibbs algorithm [22] , towards such inference, 

to appreciate the expectedly higher correlation amongst the ρ-parameters and amongst the 

f -parameters, compared to the correlation amongst ρ-parameter- f -parameter pairs. Thus, we 

update the ρ-parameters in the 1st block of an iteration, given the data D , and then in the 

2nd block of the iteration, at the updated ρ vector, we update the f -parameters, given the 

data. 

In the 0-th iteration, the ρ-parameters and the f -parameters are assigned respective seed 

values, using the seed gravitational mass density form and the seed phase space pdf stated 

above. In the t-th iteration, ( t = 1 , . . . , N iter ), let the current value of ρk be ρ
(t−1) 
k and the 

current value of f j is f 
(t−1) 
j ; k = 1 , . . . , N r , j = 1 , . . . , N e . In the 1st block of this t-th 

iteration, the proposed ρ j , is sampled from a truncated Normal proposal density as 

ρ
(⋆,t ) 
j ∼ T N 

(

ρ
(t−1) 
j , 0, ∞ , σ 2 

j 

)

, for j = N r , and 

ρ
(⋆,t ) 
j ∼ T N 

(

ρ
(t−1) 
j , ρ

(⋆,t ) 
j+1 , ∞ , σ 2 

j 

)

, for 1 ≤ j < N r , 

where the truncated Normal density with mean a, left truncation b, right truncation c, and 

variance d is depicted as T N (a, b, c, d ) . As can be appreciated from this proposal scheme 

suggested above, the ρ-parameters are proposed at the outermost radial bin first, and then the 

other ρ-parameters are sequentially proposed, as we move inwards, from the outermost radial 

bin. Thus, the constant jump-scale σ j is used to propose ρ j in any iteration. 

The demand that a proposed ρ j not fall below the recently-updated ρ j+1 , is implemented via 

proposing from the truncated Normal density that is left truncated at this minimally allowed 

value for ρ j in any iteration. This allows for adherence of each ρ-parameter to the physically- 

motivated constraint of monotonic non-increasing with increasing radius, and at the same time, 

also satisfies positivity. The correlation amongst the ρ-parameters that is suggested via this 

monotonicity, once allowed to percolate to the learning of the ρ-parameters via the MCMC- 

based inference, renders the learning robust to small to moderately large changes in seeds 

and priors. Unlike ρ j , ∀ j = 1 , . . . , N r − 1 , there is no value that ρN r can be deterministically 

known to be in excess of - other than 0, (since all ρ-parameters are non-negative). Thus, the 

uncertainty in our learnt value of ρN r is typically the highest, amongst uncertainties on all 

other learnt ρ-parameters. 

Then the ρ-parameters proposed in (the first block of) this t th iteration are accepted or 

not depending on whether the following acceptance criterion is obeyed: 

α1 

(

ρ(⋆,t ) , ρ(t−1) 
)

≥ u, 

where U = u, with U ∼ Uniform [0, 1] , and 

α1 

(

ρ(⋆,t ) , ρ(t−1) 
)

= 

π

(

ρ
(⋆,t ) 
1 , . . . , ρ

(⋆,t ) 
N r 

, f 
(t−1) 
2 , . . . , f 

(t−1) 
N e 

| D 

)

π

(

ρ
(t−1) 
1 , . . . , ρ

(t−1) 
N r 

, f 
(t−1) 
2 , . . . , f 

(t−1) 
N e 

| D 

) ×

�

(

ρ
(t−1) 
1 , ρ

(⋆,t ) 
2 , ∞ , σ 2 

1 

)

. . . �

(

ρ
(t−1) 
N r 

, 0, ∞ , σ 2 
N r 

)

�

(

ρ
(⋆,t ) 
1 , ρ

(t−1) 
2 , ∞ , σ 2 

1 

)

. . . �

(

ρ
(⋆,t ) 
N r 

, 0, ∞ , σ 2 
N r 

) . (2.6) 
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If the acceptance criterion is obeyed, we state that ρ
(t ) 
j = ρ

(⋆,t ) 
j ; else ρ

(t ) 
j = ρ

(t−1) 
j ; j = 

1 , . . . , N r . Thus, the ρ-parameters are updated in the first block of the t th iteration. 

Then in the 2nd block of this iteration, at the updated ρ of ρ
(t ) 
1 , . . . , ρ

(t ) 
N r 

, we update the 

f -parameters. We propose the kth f -parameter from a truncated Normal that is left truncated 

at 0 to ensure non-negativity of the parameter; has a mean that is the current value of the 

parameter, i.e. f 
(t−1) 
k ; has a constant variance v k , ∀ k = 2, . . . , N e . Thus, 

f 
(⋆,t ) 
k ∼ T N 

(

f 
(t−1) 
k , 0, ∞ , ν2 

k 

)

, for k = 2, . . . , N e . 

Then acceptance of this proposed value of f k depends on adherence to the acceptance criterion: 

α2 

(

f (⋆,t ) , f (t−1) 
)

≥ u, 

and 

α2 

(

f (⋆,t ) , f (t−1) 
)

= 

π

(

ρ
(t ) 
1 , . . . , ρ

(t ) 
N r 

, f 
(⋆,t ) 
2 , . . . , f 

(⋆,t ) 
N e 

| D 

)

π

(

ρ
(t ) 
1 , . . . , ρ

(t ) 
N r 

, f 
(t−1) 
2 , . . . , f 

(t−1) 
N e 

| D 

)

×
�

(

f 
(t−1) 
2 , 0, ∞ , ν2 

2 

)

. . . �

(

f 
(t−1) 
N r 

, 0, ∞ , ν2 
N r 

)

�

(

f 
(⋆,t ) 
2 , 0, ∞ , ν2 

1 

)

. . . �

(

f 
(⋆,t ) 
N r 

, 0, ∞ , ν2 
N r 

) . (2.7) 

If the acceptance criterion is obeyed, we state that f 
(t ) 
k = f 

(⋆,t ) 
k ; else f 

(t ) 
k = f 

(t−1) 
k ; k = 

2, . . . , N e . This way, we update the f -parameters in the 2nd block of the t th iteration. 

2.3. What is N r and N e in 1st-stage? 

We definitely do not wish to learn the number N r of R-bins that the radial range [ r 0 , r max ) 

is partitioned into; neither do we want to learn the number N e of ε-bins. This reluctance 

about treating N r and N e as variables stems from desired avoidance of an MCMC-based im- 

plementation in which the dimensionality of the state space vector (ρ1 , . . . , ρN r , f 2 , . . . , f N e ) 
T 

is a variable. Such an implementation will generally be Reversible Jump MCMC; we wish to 

avoid it since it is a cumbersome inferential tool, and its need for the application at hand is 

over-ridden by provisions in the data for deterministic choice of N r and of N e . 

We choose N r to be such that if the interval [ r 0 , r max ) is partitioned into these many R-bins, 

then there will be at least one datum in each such bin. At the same time, we appreciate that the 

larger is N r , smaller is the error in approximating the function ρ(R) with its vectorised-version 

ρ. 

We could invoke similar considerations to guide our choice of N e , except that there is 

the additional complication that computation of value of the energy variable, requires input 

from the potential function. To acknowledge this, we first employ the N r R-bins over which 

the frequency distribution of particle numbers is constructed, and treat this as proportional 

to the frequency distribution of the particle gravitational mass, i.e a rudimentary indicator 

of ρ. We then employ this vectorised version of the gravitational mass density function, in 

the discretised Poisson Equation, to compute a rudimentary value of the vectorised version 

(referred to as �0 = (�1 , 0 , . . . , �N r , 0 ) 
T ) of the gravitational potential function, where � j, 0 

is defined over the jth R-bin; j = 1 , . . . , N r . Then adding the ith observed value of V 
2 

3 / 2

to this preliminary indicator for the gravitational potential (vector), we generate N data values 
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of energy ε. We normalise these values such that all such indicator values of energy lie in 

[-1,0). The histogram of the set of such computed values of energy is constructed using N e 

bins, with bounds of 0 and -1, where N e is chosen to ensure that no energy bin is bereft of a 

computed energy value. With a preliminary choice of N e , a chain of MCMC is run, and the 

gravitational mass density vector ρ learnt from it, is again employed to learn the vectorised 

version of the gravitational potential, by inputting the learnt ρ into the discretised Poisson 

Equation. Normalised energy values computed by adding observations of V 
2 

3 / 2 are then again 

used to compute the energy histogram with N e bins, over the interval [-1,0). If the number 

of data points within each energy bin is ≥ 1 , then N e is retained as the number of ε-bins 

in the learning exercise. We appreciate that the computational time rises super-linearly with 

increase in N e , and therefore, in the first instance of choosing N e to construct the indicative 

histogram of energy values, we choose the smallest N e that satisfies the constraint that no 

ε-bin is empty of an input. 

2.4. Learning & predicting sought gravitational mass density and phase space pdf : 

2nd-stage 

At the end of the 1st-Stage, we obtain the originally-absent training data sets: 

D ρ := { (r 1 , ρ1 ) , . . . , (r N r , ρN r ) } , 
and 

D ε := { ( ̃  ε 2 , f 2 ) , . . . , ( ̃  ε N e , f N e ) } . 
In the 2nd-Stage, the aim is to perform supervised learning of the gravitational mass density 

function and the phase space pdf , using D ρ and D ε , respectively. We do this by treating either 

function as random function, which is equivalent to saying that each unknown function is 

treated as if it attains a given form, with a probability. In other words, we undertake the 

Bayesian approach, in which we model a random structure with a probability distribution. 

Now, a probability distribution on a space of functions is of course a stochastic process. 

Thus, we treat the random function ρ(·) as a random realisation from an adequately selected 

stochastic process, and we treat the random function f W (·) as a random realisation from a 

stochastic process as well. We aim to invoke generic stochastic processes to model the sought 

functions. Thus, processes that are such that the realised functions are constrained to abide 

by given equations, are not ideal. On the other hand, if these functions are considered to be 

generated by respective Gaussian Processes, ( GP s), then the only constraint that each function 

has to abide by, is that the joint probability distribution of a finite number of realisations of 

the function is Multivariate Normal, [23] . In other words, the we would need to set: 

ρ(·) ∼ GP (μρ (·) , K ρ (·, ·)) and f W (·) ∼ GP (μ f (·) , K f (·, ·)) , 
where μρ (·) and K ρ (·, ·) are the mean and covariance functions of the GP that ρ(·) is a 

realisation of, and μ f (·) and K f (·, ·) are the mean and covariance functions of the GP that 

f W (·) is a realisation of. 

Then by definition of GPs, the joint of N r realisations of ρ(·) - namely, ρ1 , . . . , ρN r - is a 

Multivariate Normal, with a mean vector μρ and variance-covariance matrix 

�ρ = [ Cov(ρc , ρd )] ≡ [ K ρ (r c , r d )] ; c, d ∈ { 1 , . . . , N r } , 
where the covariance between the pair ρc , ρd of ρ-parameters, is modelled as a declining 

function K ρ (·, ·) of the difference between the inputs r c and r d , ∀ c, d ∈ { 1 , . . . , N r } . Then 
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K ρ (·, ·) is a function that parametrises the covariance of this Multivariate Normal density, 

and thereby the covariance structure of the GP that underlines the function ρ(·) ; we say that 

this covariance structure is parametrised with the covariance kernel K (·, ·) . Many forms of 

K (·, ·) are possible [24] ; we can for example choose the simple Square Exponential (or SQE) 

form of this kernel function. Under the SQE form of the kernel, 

Cov(ρc , ρd ) = K (r c , r d ) := A exp 

(

−
(r c − r d ) 

2 

ℓ 2 

)

, 

where the amplitude A > 0 and the length scale ℓ ∈ R are the hyperparameters of this kernel 

function that we learn from the data. The same values of the hyperparameters will suffice, for 

all elements of the covariance matrix, i.e. ∀ c, d ∈ { 1 , . . . , N r } , as long as the ρ(·) function is 

continuous 2 However, given the training data D ρ alone, we cannot be confident if the sought 

function is continuous; on the other hand, the distribution of the output variable in the training 

set, across the design input points, can indicate if the underlying function is not continuous. 

In other words, the underlying function may still not be continuous, though a finite discrete 

sample of input-output pairs from the function may suggest continuity. But if the training 

sample indicates lack of continuity, the function is not likely to be continuous. We will 

however proceed with the SQE covariance kernel for the sake of simplicity of computation 

- which we acknowledge, might compromise accuracy of predictions. We will check on this 

accuracy by predicting the value of ρ(R) at test inputs. 

As stated above, the joint of N r realisations of ρ(·) is the Multivariate Normal ( MN ) with 

parameters μρ and �ρ . 

[ ρ(r 1 ) , . . . , ρ(r N r )] = MN ( μρ, �ρ ) , 

which given our vectorised learning in the 1st-Stage, is equivalent to stating that the joint 

[ ρ1 , . . . , ρN r ] = MN ( μρ, �ρ ) , 

i.e. probability of data on the output of the sought function, conditional on μρ and �ρ , is the 

Multivariate Normal density with parameters μρ and �ρ , [25] . In fact, the only unknowns in 

the mean vector and covariance matrix are the amplitude and length scale (hyperparameters): 

A ρ and ℓ ρ , where Cov(ρc , ρd ) = K (r c , r d ) = A ρ exp (−(r c − r d ) 
2 /ℓ 2 ρ ) , ∀ c, d ∈ { 1 , . . . , N r } . 

But, this conditional probability of data is the likelihood of the model parameters given 

the data, i.e. the likelihood is 

L (A ρ, ℓ ρ | D ρ ) = 
1 

√ 
| 2π�ρ| 

exp 

( 

−
( ρ − ρ̄) T �−1 

ρ ( ρ − ρ̄) 

2 

) 

, (2.8) 

where ρ̄ is the empirical mean of the ρ-parameters learnt in the 1st-Stage. In our application, 

we actually standardise the data with the sample mean and standard deviation of the ρ- 

parameters; this renders �ρ the correlation matrix, implying that A ρ= 1. 

If learning both A ρ and ℓ ρ , we choose adequate priors on these variables, to then define 

their joint posterior probability density, given the data D ρ . We choose to work with Truncated 

Normal and Normal priors that are centred at the seed values of the variables, and variances 

that are typically 3 to 10 times that of the proposal density used in our MCMC-based inference 

on these unknowns. The seed values are chosen as 1, typically. The joint posterior pdf of 

2 In an upcoming contribution, Chakrabarty & Wang suggest a judicious continuity descriptor as globally Lipschitz. 
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the unknowns given data D ρ is then proportional to the product of the likelihood (given 

in Eq. (2.8) ) and the prior. We perform posterior sampling using Random Walk Metropolis 

Hastings, in which ℓ ρ is proposed from a Normal proposal density with a mean given by the 

current value of ℓ ρ and an experimentally chosen constant variance. A ρ if learnt, is proposed 

from a Truncated Normal proposal density, which is assigned the current A ρ to be the mean, 

and the constant variance of this proposal density is chosen through experimentation. The 

MCMC-based inference allows for the learning of the marginal posterior pdf on each learnt 

variable, using which, the 95 % Highest Probability Density credible region (HPD) on each 

learnt variable is computed, [26] . 

We undertake the same route delineated above, to learn hyperparameters ℓ f and A f (if 

learnt), of the covariance structure of the GP that the phase space pdf is treated as a random 

realisation from. Again, the joint probability of the f -parameters learnt in the 1st-Stage, at 

design energy values, is a Multivariate Normal density, with mean μ f and variance-covariance 

matrix � f = [ Cov( f c , f d )] = [ K f (ε c , ε d )] = A f exp (−(ε c − ε d ) 
2 /ℓ 2 f ) , for c, d ∈ { 2, . . . , N e } . 

In our application we typically standardise the f -parameters using the sample mean and 

standard deviation of the outputs in the training set D f , rendering � f the correlation matrix 

and A f = 1 then. We compute the 95 % HPD on each learnt variable., given the training data 

D f . 

2.5. Uncertainties in learnt training sets 

We have discussed the learning of the functions ρ(·) and f W (·) given training data 

sets that were learnt in the 1st-Stage, as if ρ-parameters and f -parameters are learnt 

in the 1st-Stage without errors. This is not true. We in fact learnt each of these pa- 

rameters with their respective 95 % HPD. Thus, the correct representation of D ρ is 

{ (r 1 , [ ρ(min) 
1 , ρ

(max) 
1 ]) , . . . , (r N r , [ ρ

(min) 
N r 

, ρ
(max) 
N r 

]) } , where [ ρ
(min) 
j , ρ

(max) 
j ] is the 95 % HPD on 

the learnt ρ j , j = 1 , . . . , N r . Similarly, each f -parameter is learnt in the 1st-Stage with 95 % 

HPD. 

When we learn the hyperparameters of the covariance kernel that we invoke to parametrise 

the covariance matrix of the Multivariate Normal likelihood, we actually model the covariance 

matrix as �X + D X , for X = 
′′ ρ ′′ , “ f ′′ , where D ρ is a diagonal matrix, with diagonal elements 

of ((ρ
(max) 
1 − ρ

(min) 
1 ) / 5) 2 , . . . , ((ρ

(max) 
N r 

− ρ
(min) 
N r 

) / 5) 2 while D f is a diagonal matrix, with diag- 

onal elements of (( f 
(max) 
2 − f 

(min) 
2 ) / 5) 2 , . . . , (( f 

(max) 
N e 

− f 
(min) 
N e 

) / 5) 2 . We treat the distribution 

of the uncertainty learnt on any parameter as approximated by a Normal, such that the width 

of the 95 % HPD on the parameter is 5 times the standard deviation of this distribution of 

the “noise” that we in fact learn on this parameter. Thus, the variance-covariance matrix of 

the Multivariate Normal likelihood density, is augmented by a diagonal matrix, diagonals of 

which are the variances of the error distribution on each parameter, [23] . 

2.6. Prediction of gravitational mass density and phase space pdf 

The ulterior motivation behind the learning of the gravitational mass density function 

and the phase pace pdf is to predict values of the gravitational mass density at test radii, 

r 
(t est ) 
1 , . . . , r 

(t est ) 
N t 

i.e radii that are not included as design radii r 1 , . . . , r N r in the training 

data D ρ . We define r (t est ) = (r 
(t est ) 
1 , . . . , r 

(t est ) 
N t 

) T . Let gravitational mass density at R = r (t est ) 
q 

be ρt est ) 
q . Then it follows from the joint probability of ρ1 , . . . , ρN r , ρ

(t est ) 
1 , . . . , ρ

(t est ) 
N t 

to be 
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Multivariate Normal, that the posterior predictive of ρ
(t est ) 
1 , . . . , ρ

(t est ) 
N t 

is also Multivariate 

Normal [23] : 

[ ρ
(t est ) 
1 , . . . , ρ

(t est ) 
N t 

|{ r c } N r c=1 , { r 
(t est ) 
q } N t q=1 , ρ1 , . . . , ρN r , ℓ ρ, A ρ] = MN ( μ⋆ 

ρ, �
⋆ 
ρ ) , 

where 

μ⋆ 
ρ = [ K ρ (r (t est ) 

q , r c )]( [ K ρ ( r c , r d )] + D ρ ) −1 ρ, 

and 

�⋆ 
ρ = [ K ρ (r (t est ) 

q , r (t est ) 
p )] − [ K ρ (r (t est ) 

q , r c )]( [ K ρ ( r c , r d )] + D ρ ) −1 [ K ρ (r c , r 
(t est ) 
q )] , 

where c, d ∈ { 1 , . . . , N r } ; p, q ∈ { 1 , . . . , N t } ; ρ = (ρ1 , . . . , ρN r ) 
T ; K (·, ·) = A ρ exp (−(· −

·) 2 /ℓ 2 ρ ) . Thus, the mean value of the gravitational mass density is predicted at R = r (t est ) 
q 

as the qth component of the μ⋆ vector defined above, with uncertainty on this prediction 

given as the (standard deviation that is) square root of the qth diagonal element of the matrix 

�⋆ 
ρ given above. This way, we predict values of the gravitational mass density function at a 

test radius. 

The posterior predictive of values of the phase space pdf - conditional on the test input 

energies ε 
(t est ) 
1 , . . . , ε 

(t est ) 
N s 

; the design energy values in learnt training set D f ; the learnt f - 

parameters; and the learnt A f , ℓ f - is also Multivariate Normal. Mean and variance of this 

posterior predictive are closed-form and identified. In other words, the phase space pdf can 

be predicted in a closed-form way, with known uncertainty, at a test energy. 

To summarise, the 2nd-Stage allows the prediction of the gravitational mass density at any 

radius, and the phase space pdf at any energy. 

2.7. Testing for the assumption of isotropy in the data: 3rd-stage 

In the 1st-Stage, we have performed the learning of the vectorised gravitational mass 

density function as ρ, and the vectorised phase space pdf as f , using the empirical or observed 

data D . In the 2nd-Stage, we have performed the learning of the gravitational mass density 

function ρ(R) , and the phase space pdf f W ( ε), using the training data sets that comprise values 

of the respective vectorised function. 

Both sets of learning in the previous two stages were undertaken under the assumption 

that the phase space that the tracer particles - observable phase space coordinates of which 

we use in our work - live in an isotropic phase space W . Equivalently, we recall that the 

learning in the first 2 stages has been undertaken under the assumption that the phase space 

pdf is an isotropic function of the location vector X and velocity vector V , i.e. this pdf is 

f W (‖ x ‖ , ‖ v ‖ , x · v ) , where ‖ · ‖ denotes Euclidean norm. This assumption is affected by 

expressing the support of the phase space pdf as energy ε, (or a function thereof); the modelled 

phase space pdf then adheres to the assumption that it is an isotropic function of X and V , 

(since energy = �(R) + V 
2 / 2, where ‖ X ‖ = R and ‖ V ‖ = V ). 

[27] advance a new Bayesian test of hypothesis to test for the null 

H 0 : f W (X 1 , X 2 , X 3 , V 1 , V 2 , V 3 ) = f W (ε) against 

H 1 : f W (X 1 , X 2 , X 3 , V 1 , V 2 , V 3 ) � = f W (ε) . 

Taking inspiration from the methodology presented therein, here we forward a parametrisation 

of how anisotropic the learnt phase space pdf vector is. This new parameter for quantifying 
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anisotropy in the learnt (vectorised) form of a phase space pdf is a divergence measure between 

the joint posterior probability density of the learnt parameters given the empirical data under 

consideration, and the posterior given the “generated data”. We discuss such generated data, 

and the motivation behind the formulation of this parametrisation of departure from isotropy, 

before discussing implementation. 

We generate a data set D 
(gen) - comprising the same number ( N data ) of observations as 

in the empirical data 4 D , where said observations are on X p , V 3 and the parametrisation of 

noise in the measurement of V 3 , as the standard deviation S of the error density in V 3 . Here 

D 
(gen) is generated by sampling location and velocity coordinates from the (vectorised) state 

space pdf ( f ) learnt under the assumption of isotropy, using empirical data, at the (vectorised) 

gravitational mass density ( ρ) that is simultaneously learnt using D . So out of the 6 sampled 

phase space coordinates - sampled from the phase space space pdf learnt in the 1st-Stage, 

at the ρ learnt in the 1st-Stage - we retain only the N data sampled values of the (X p , V 3 , S) 

triad, to serve as data points in D 
(gen) . 3 

Remark 2.2. Data D 
(gen) is sampled from an isotropy-abiding phase space pdf that was learnt 

using empirical data D , at gravitational mass density (and thereby potential) learnt using D , 

under the assumption that the phase space pdf is isotropic. In other words, the data D 
(gen) 

is sampled from an isotropic phase space pdf , unlike the empirical data D , which might, or 

might not have been sampled from an isotropic galactic phase space pdf . It then follows that, 

ρ and f learnt under the assumption of an isotropic phase space, using data D 
(gen) , will be 

more “compatible”, (or at least, as compatible) with the used data, than the ρ, f learnt under 

the assumption of an isotropic phase space, using empirical data D . So the difference between 

such a parametrised “compatibility” will inform on how much less such compatibility is with 

the empirical data D , than with the generated data D 
(gen) . Here we parametrise “compatibility”

of a learnt set of ρ, f with a given data set, by the joint posterior pdf of the ρ-parameters 

and f -parameters that are learnt using the given data set. 

So the modus operandi of our computation of the compatability of a learnt ρ; f pair, with 

a given empirical data set, is 

1. That we first learn ρ1 , . . . , ρN r and f 2 , . . . , f N e given the empirical data D that com- 

prises N data data points, using the learning scheme delineated under 1st-Stage, under 

the assumption that this data is sampled from an isotropic phase pace pdf . Let the joint 

posterior pdf of the sought parameters, given this empirical data be 

π(ρ1 , . . . , ρN r , f 2 , . . . , f N e | D ) . 

2. Then we sample N data values of (X p , V 3 ) - using Rejection Sampling - from the f that 

is learnt under the assumption of isotropy, using D , at the (vectorised) potential that 

is computed using the ρ learnt using D under the same assumption, (in the 1st-Stage). 

These N data samples constitute the generated data D gen . 

3. We learn ρ1 , . . . , ρN r and f 2 , . . . , f N e given the generated data D gen , using the learning 

scheme delineated under 1st-Stage, under the assumption of isotropy. We use the same 

priors on each parameter, as we do in our learning undertaken with D , and allow for 

3 We recall here that observations on X 1 and X 2 are condensed into values of X p := 

√ 

X 2 1 + X 2 2 . 
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the chain to run for the same number of post-burnin iterations ( N iter − N burnin ). Let the 

joint posterior of the parameters given the generated data be 

πgen (ρ1 , . . . , ρN r , f 2 , . . . , f N e | D gen ) . 

4. Compute the difference between posterior density of parameters learnt given empirical 

and generated data, obtained at each post-burnin iteration of the chains run (respectively) 

with D and D gen . We will employ a divergence measure between the posterior densities 

to compute this difference. 

We use a divergence measure between the post-burnin values of the (logarithm of the) joint 

posterior π (·) of ρ and f computed within the MCMC chains, run using the empirical data, 

and π (·) 
gen run using the generated data. (We recall that our MCMC-based inference readily 

offers the logarithm of this joint posterior, but replacing π (·) 
gen with its logarithm, and π (·) with 

its logarithm, in the definition of the Kullbeck-Leibler divergence, does not make statistical 

sense. Neither does replacing the posterior values with their respective logarithms in the 

definition of Hellinger distance = 
∑ N iter 

t= N b urnin ( 

√ 

( 
√ 

π (t ) −
√ 

π
(t ) 
gen ) ) 

2 / 
√ 

2 , [28] ). So we simply 

use the sum over t = N burnin , N burnin + 1 , . . . , N iter , of the difference between the logarithm of 

π (t ) and the logarithm of π (t ) 
gen as the divergence measure δ(π, πgen ) that we use in our work. 

In other words, the divergence between the computed log (π (t ) ) and log (π (t ) 
gen ) is suggested as 

δ(π, πgen ) = 

N iter 
∑ 

t= N burnin +1 

⎛ 

⎜ 
⎝ 

1 −
(

log (π (t ) ) 

log (π
(t ) 
gen ) 

)

N iter − N burnin 

⎞ 

⎟ 
⎠ . 

However, we do not know how to interpret a value of δ(π, πgen ) ; we ask if a computed 

value of δ(·, ·) can be considered such that we can reject the assumption of an isotropic 

phase space. While a computed δ(π, πgen ) of 0 implies that the phase space that the (used) 

empirical data has been sampled from is isotropic, a non-zero δ(π, πgen ) is indicative of such 

phase space being anisotropic. The strength of the effect - namely, anisotropy - is computable 

and interpretable in a comparative sense, i.e. we quantify how much more anisotropic the 

phase space pdf is, from which a given empirical data set (say, of size N ) is sampled, as 

distinguished from the phase space pdf that underlines another data set (say, of size N 
/ ). 

3. Illustration of the 3-staged learning strategy on real galaxy NGC4649 

In our empirical illustration, we use the kinematic data comprising observed values of 

R p ; of V 3 ; and of the measurement noise in V 3 , (parametrised as S), of 269 PNe and 115 

GCs in the elliptical galaxy NGC4649. These 2 datasets were shared with us by Dr. Kristin 

Woodley. From this data on the tracked PNe, we discard the observations of PNe that move 

with observed | v 3 | > 700 km s −1 . In fact, all PNe except one, appear in the original data set 

to bear a V 3 value in [ −650, 650] km s −1 ; this motivates our treatment of the single PNe with 

V 3 < −700 km s −1 as an outlier that is omitted from the data that we work with. The single 

PNe with such high, absolute LOS speed in this data set, is depicted in red in the lower right 

panel of Fig. 1 that displays the plot of V 3 of the observed PNe against R p . Observations of 

the remaining PNe are used in our work; these observations comprise the data set D PNe . 
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Fig. 1. Right lower panel: plot in black, of observed values of V 3 of the PNe, against R p , for those tracked PNe, 

| v 3 | of which is ≤ 700 km s −1 ; observations that disobey this constraint are in red. Left lower panel: same as in 

the right lower panel, except the data plotted here is for the tracked GCs. GCs with errors in the observation of V 3 
in excess of 100 km s −1 are depicted in red. PNe and GCs, observations of which are in black, comprise the data 

sets D PNe and D GC that we perform our learning with. Histograms of the observed sample of R p values in D PNe 

and D GC , are depicted in broken and solid lines in the top left panel . In the top right panel , in black, we display 

the histogram of a rudimentary proxy for the energy variable as computed using the observed V 3 values, and the 

potential computed in Poisson Equation using a scaled frequency distribution of the observed R p values. In broken 

lines, we join the f -parameters learnt using the 9 energy bins - suggested by this histogram. All depictions in red 

will appear to be in grey in the monochromatic version of the paper. 

Again, from the full data set that consists of observations on GCs, we discard those 

observations that bear a measurement error s > 100km s −1 , where we recall that s i is the 

value of this error of the measurement of V 3 of the i-th GC in the data set. GCs with such 

errors in V 3 are depicted in red in the plot of V 3 against R p , shown in the lower left panel 

of Fig. 1 . Observations of the remaining 115 GCs comprise the data D GC that we use in our 

work. A “large” value of S, on comparable V 3 value, does render attaining convergence in 

the learning difficult. Hence we impose this arbitrary cutoff of 100 km s −1 on s. The sample 

size of D PNe is about 2.33 times that of D GC . 

For this galaxy, effective radius is suggested to be about 9.86 kpc [18] . Then 5 times 

the effective radius is ∼ 50 kpc, which is in excess of the r max in either data set that we 

use. Hence in this application, r gal ≡ r max . As motivated earlier in Section 2.3 , we choose 

the partitioning of the radial interval [ r 0 , r max ) given a data set, keeping in mind that each 

R-bin should be ideally populated with at least one datum, as well as that a trade-off exists 

between increasing the number N r of such R-bins that we partition the relevant range of 
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values of radius R into, and the computational effort (which increases as N 
3 
r ). Then for the 

data D PNe , the optimal choice is for r 0 = 2. 2 kpc, r max = 33 kpc and R-bin width δr = 1 . 1 

kpc. For D GC , r 0 = 3 . 44 kpc, r max = 44. 04 kpc and R-bin width δr = 1 . 4 kpc are suitable 

values. Histograms of the sample of observed values of R p - as included in the data sets 

D PNe and D GC - are displayed in the top left panel of Fig. 1 , in broken and solid lines, 

respectively. Indeed the observations of the GCs are so sparse at higher radii, that we cannot 

satisfy the desired property that the histogram of R p of the observed GCs hosts ≥ 1 data 

point in each R-bin - a strict imposition of this desirable characteristic of the radial binning 

will lead to unsatisfactorily fewer R-bins, or truncation of the radial range that we can learn 

the gravitational mass density to. (Our latent aim is to extend this radial coverage to mimic 

5 R e f f of this galaxy, as closely as possible, where 5 R e f f for NGC4649 is about 50 kpc). 

In the top right panel of Fig. 1 we present the motivation behind choosing the number N e 

of ε-bins for either data set. As stated in Section 2.3 , one way to generate the value of energy 

is to use a rudimentary proxy for the energy variable, namely, the sum of the observed value 

of V 
2 

3 / 2 and of �0 , where �0 is the vectorised version of the potential function, computed 

by using a scaled frequency distribution of the sample of observed R p values in Poisson 

equation; the scaled frequency serves as a proxy for a rudimentary (vectorised) gravitational 

mass density. The histogram of the resulting (normalised) sample of such computed energy 

values is shown in solid lines in the figure. The figure includes only the energy-histogram 

for the GC data, for ease of visualisation. A chosen N e of 9 serves the purpose of populating 

every ε-bin with at least one data point. This is found to be true for the PNe data as well. 

We corroborate the choice of N e = 9 for the GC data, by running a chain with these many 

ε-bins, (and radial binning as discussed above), and note the (vectorised version of the) learnt 

(normalised) density over energy - i.e. the phase space pdf - to be as depicted with the filled 

circles and error bars, in red (or grey in the monochromatic print of the paper). The mean of 

the learnt f -parameters are joined with broken lines to aid visualisation. It is evident that a 

choice of N e = 9 does not lead to any bin being rendered empty; density in the most sparsely 

populated bin is about 10 
−3 times that of the density in the most densely populated one. 

3.1. Results from 1st-stage 

Logarithm (to the base 10) of the components of the ρ vector that we learn using D PNe 

are displayed in black, as plotted against the (logarithm of the) location of the corresponding 

R-bin, in the right panel of Fig. 2 ; the 95 % HPD on each learnt ρ-parameter is overplotted on 

the mean value of the learnt ρ-parameter. The components of the f vector learnt using this 

data set, are plotted against the energy value of the corresponding ε-bin, where the energy 

value has been normalised by −�(0) . This plot is depicted in the left panel of this figure. 

Components of ρ and f that are learnt using data D GC , are shown in red (or the grey in the 

monochromatic version of the paper) in the left and right panels, respectively. 

Both chains that are run with the two data sets are started with a seed ρ(R) function that 

is plotted in green in the right panel; this function is ρseed (r) = K/ (10 + r 2 ) 1 . 5 , where the 

constant K = 10 
11 , though other values of this constant that are 6 decades apart have been 

noted to yield the same results. Again, the seed for the learning of the f -parameters is a 

horizontal line, i.e. the seed f (ε) function is a uniform density. This is depicted in green in 

the left panel. 

We also include the logarithm of a scaled (truncated) Gaussian in broken lines in the 

left panel, where this fit curve is 0. 3 N (−0. 9 , 0. 175 
2 ) ; this is the optimal fit to the learnt 
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Fig. 2. Right panel: plot of logarithm (to the base 10) of the ρ-parameters learnt using D PNe against logarithm of 

the radius, (depicted in black), while the ρ-parameters learnt using data D GC are in red. The 95 % HPDs on each 

learnt parameter is overplotted on the mean value of the learnt parameter that is depicted in filled circles. Left panel: 

logarithm of the f -parameters learnt using the data comprising the observations of the PNe and the GCs are plotted 

in black and red respectively, against the energy variable that is normalised with −�(0) . The seed gravitational mass 

density function and the seed phase space pdf that we start each chain of MCMC with - with either data set - is 

depicted in green. In the broken lines we display a Gaussian (with mean of -0.9 and variance of 0.175 2 ) in this 

normalised energy variable, with this Gaussian scaled by 0.3. All depictions in red will appear to be in grey, and 

depictions in green in lighter grey, in the monochromatic version of the paper. 

f -parameters given the two data sets. It is clear that a (truncated) Normal is not a good fit to 

all f -parameters learnt with either data set. A scaled Gaussian is a better fit but even then, 

it fits the f -parameters learnt at less negative energy values less well than parameters learnt 

at lower energies; a scaled truncated Normal is a better fit to the results learnt using the data 

on the GCs than results obtained using the data on PNe. So an important indicator of these 

results is that there is no apriori motivation behind modelling the galactic phase space density 

to be a truncated Normal. 

Traces of the learnt ρ-parameters and f -parameters display convergence. We display traces 

of the ρ-parameters learnt using D PNe in Fig. 3 ; these traces display convergence. Again, the 

f -parameters learnt using D GC are shown in black in Fig. 4 , with the traces of f -parameters 

learnt using D PNe overplotted in green. Again, these traces also display convergence, offering 

confidence in our learning of the ρ-parameters and the f -parameters. 

3.2. Learning the ρ(·) function and the phase space pdf and predicting - implementation of 

the 2nd-stage 

Learning the ρ-parameters and the f -parameters using the data sets D GC and D PNe provides 

the training data sets D 
(GC) 
ρ ; D 

(GC) 
f and D 

(PNe ) 
ρ ; D 

(PNe ) 
f , respectively. Then we employ these 

training sets to learn the gravitational mass density function and the phase space pdf , by 

modelling these functions as realisations from respective GPs. Covariance functions of the 

underlying GPs are kernel parametrised, and the (length scale and amplitude) hyperparameters 

of these kernels are learnt using these training sets that are generated in the 1st-Stage. 

In Fig. 5 we see results from the learning of the multivariate Normal likelihood that results 

from the modelling of the sought ρ(·) and f W (·) functions with respective GPs, using the 

training data that are subsets of D 
(GC) 
ρ and D 

(GC) 
f , respectively. Trace of the length scale 

hyperparameter of the covariance matrix of the Multivariate Normal likelihood is depicted for 

each functional learning, in the left panels of the figure. The training data used for the learning 
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Fig. 3. Traces of 16 of the ρ-parameters learnt using data D PNe . 

Fig. 4. Traces of the f -parameters learnt using data D GC in black, with traces of the corresponding f -parameter 

learnt using data D PNe overplotted in green (or grey in the monochromatic version of the paper). 

of either function comprises ρ-parameters and f -parameters that are respectively plotted in 

black, in the right panels of Fig. 5 , against logarithm of the radius, and against logarithm 

of the negative of values of the energy variable. The data points in either D 
(GC) 
ρ or D 

(GC) 
f , 

that are not plotted in black in Fig. 5 , are the test data points. We undertake prediction of 

the mean value of the learnt ρ(·) and f W (·) function, at the inputs of the test data points; 

such predicted values of the respective function are plotted in red, with 2.5 times the standard 

deviation in the value of the function at the given test input overplotted on either side of the 

predicted mean. (Here, we choose to use 5 times the predicted standard deviation as the width 

of the error bar, drawing motivation from the standard result that for Normally distributed 

variables, there is 95 % probability for the variable value to lie within a interval of width 2.5 
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Fig. 5. Traces of the length scale hyperparameter ℓ ρ , that is learnt using the training set that is a subset of D 
(GC) 
ρ , 

is plotted in the top left panel. Again trace of the ℓ f learnt when using a training set that is subset of D 
(GC) 
f , is 

displayed in the lower left panel. In the top right panel, log of those values of ρ(·) that comprise the training data 

set that is a subset of D 
(GC) 
ρ , are plotted against log of design radii. Predictions of the mean functional value at 

test radii, performed following the learning of this function, are shown in red filled circles, with an error bar of 

width given as 5 times the predicted standard deviation of the functional value. The true value of the function at the 

corresponding test radius is plotted in green. Forecasting is also performed at a radius that is more central in the 

galaxy, than the innermost training data point; this is shown in red. In the lower right panel, we plot predicted values 

of the learnt phase space pdf , at test energy values, using a training set that is a subset of D 
(GC) 
f . The predicted 

mean values are shown in red circles with 5 times the predicted standard deviation overlaid in red. The true value 

of the pdf is overplotted in green broken lines. All depictions in red and green appear as grey and light grey in the 

black and white version of this paper. 

times the standard deviation, symmetrically about the mean of this distribution). However, the 

true value of the function is known to us - as one of the outputs in D 
(GC) 
ρ or D 

(GC) 
f , that we 

do not use as part of the training data employed towards the learning+prediction exercise that 

we undertake here. This known value of the ρ(·) or f W (·) function at a test radius/energy, 

is then overplotted on the predicted value of the function, in green. We also perform one 

forecasting - at a test radius that is less than the innermost design input. The uncertainty in 

our forecasting is expectedly higher than that of prediction. GP-based forecasting is also in 

general of inferior quality to prediction following GP-based learning; our results corroborate 

these expectations [29] . 

We use the capacity for predicting at test inputs, to predict values of the learnt function 

f W (·) at multiple (100) values of the energy. The results are shown in Fig. 6 . Logarithm 

(to the base 10) of the predicted value of the function is plotted against logarithm of the 
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Fig. 6. Right panel: logarithm of the predicted values of the function f W (·) learnt using the training set that is a 

subset of the data D 
(PNe ) 
f , plotted in black against the logarithm of the negative of test energies. A scaled Gaussian 

is fit to these predicted values; it is then overlaid on these predicted functional values (in green or grey in the 

monochrome version of the paper). Left panel: similar to that in the right panel, but here, the predictions follow the 

phase space pdf learning undertaken with GC data. 

negative of the test energy at which this functional value is computed. A truncated Normal 

density that is scaled by the factor γ is fit to the predicted functional values; the Gaussian 

with mean of about -3 ×10 
7 km 

2 s −2 and standard deviation of 0.5701 ×10 
7 km 

2 s −2 , scaled 

by a factor of γ= 1.1786, is found to be the best fit to the values predicted using the training 

data that comprises observations of GCs, On the other hand the scaled Gaussian that best fits 

the predictions made after learning using PNe observations, is the Gaussian with a mean of 

about -3.67 ×10 
7 km 

2 s −2 and standard deviation of 0.5251 ×10 
7 km 

2 s −2 , scaled by a factor 

of γ= 1.0856. It is seen that the incompatibility of the truncated Normal density with the 

learnt phase space pdf is not just in the demand for a non-unit scale factor γ , but also in the 

departure of this form from the pdf as learnt using the kinematic data. 

3.3. Results from 3rd-stage 

In Fig. 7 , the lower panels display plots of the V 3 values of the PNe (in the right) and 

GCs (in the left), against the observed values of R p of these particles. These are the data 

points in the data sets D PNe and D GC , respectively, and are displayed in black circles. On 

these, the data points of the corresponding generated data set, are overplotted in red cross. 

The generated data D 
(gen) 
PNe is constructed by sampling X 1 , X 2 , V 3 from the f learnt using D PNe , 

at the potential computed with the ρ learnt using D PNe , in addition to the measurement error 

in V 3 . Similarly, the generated data set D 
(gen) 
GC comprises sampled X 1 , X 2 , V 3 values, generated 

using Rejection Sampling, from the f learnt using D GC , at the potential computed with the 

ρ learnt using D GC , in addition to the measurement error S in the values of V 3 . The top 

right panel shows the traces of the logarithm of the joint posterior πPNe (·|·) of the f and ρ, 

given the empirical PNe data D PNe (in black), learnt under the assumption of isotropy, and the 

posterior π (PNe ) 
gen (·|·) of the same parameters given the generated data D 

(gen) 
PNe (in red). A similar 

plot is displayed on the top left, in which the trace of the log of posterior π (GC) ( ρ, f | D GC ) 

is plotted in black, while that of π (GC) 
gen ( ρ, f | D GC ) is plotted in red. 

Using these traces of the joint posterior computed given the empirical data set and the 

corresponding generated data set, we compute the value of the divergence δ(·, ·) . We find that 

δ(π (PNe ) , π (PNe ) 
gen ) ≈ 259 . 77 , while δ(π (GC) , π (GC) 

gen ) ≈ 44. 66 . Thus, we identify the empirical 
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Fig. 7. Lower right panel: V 3 values in data D PNe plotted in black, against values of R p = 

√ 

X 2 1 + X 2 2 in this data 

set. Values of V 3 are plotted in red against the corresponding value of R p in the generated data set D 
(gen) 
PNe . Lower 

left panel: same as in the figure included in the lower right panel, except here, the plots are of points in the set 

D GC and the generated data of the same size, namely, D 
(gen) 
GC . Top right panel: trace of the joint posterior of the 

ρ-parameters and the f -parameters, learnt using data D PNe in black, while the joint posterior of these parameters 

learnt using D 
(gen) 
PNe is in red. Top left panel: same as in the figure in the top right panel, except here, the traces of 

joint posteriors of learnt parameters given D GC and D 
(gen) 
GC are shown in black and red, respectively. 

PNe data set D PNe to deviate from the assumption that it has been sampled from an isotropic 

phase space pdf , more than the data comprising the GC observations, namely the data D GC . 

Then indeed, the anisotropy parameter - defined as the ratio of the 2nd moment of the 

tangential component of the velocity vector to that of the radial component of the velocity 

vector, subtracted from 1, [10] - is likely to bear a higher value for the PNe data, over 

the GC data. However, our method does not offer a value of this anisotropy parameter. Our 

parametrisation of the anisotropy in the phase space that a given set of empirical data is 

sampled from, informs on the departure from an isotropic form, of the pdf of the phase space 

coordinates that live in this phase space. 

Our parametrisation of anisotropy, offers information on the anisotropy of the phase space 

pdf that the empirical data D I is sampled from, in comparison to the anisotropy of the pdf 

that another data D II is sampled from. If however, we wish to offer information on data D I 

in isolation - specifically on the anisotropy of the underlying pdf that D I is sampled from - 

our identification of such anisotropy via the parameter δ(π (I ) , π (I ) 
gen ) does not appear possible, 

(though a discussion of the same is suggested in the conclusive section). Thus, our method 

currently offers only a comparative quantification of anisotropy of the phase space pdf that 
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underlines a data set, in reference to the anisotropy borne in the density that underlines another 

data set. 

Remark 3.1. It will be desirable to reconcile the computed δ(·, ·) divergence measure, with 

the astronomically-motivated anisotropy parameter that is used in Jeans equation. Here, we 

have not been able to motivate a transformation of δ(·, ·) that offers a meaningful connection 

with the anisotropy parameter. However, a possible means of achieving the same is discussed 

in Section 5 . 

4. Comments on results obtained from empirical illustration 

In this section, we discuss the main takeaway from the implementation of the 3-staged 

strategy to learn the gravitational mass density function, along with the phase space pdf , of 

the galaxy NGC4649, using data on observable phase space coordinates of 2 different types 

of galactic particles. 

4.1. Phase space pdf s learnt using PNe data distinct from that learnt using GC data 

The phase space pdf that is learnt using observations of tracked PNe, is not consistent with 

the pdf learnt using the GC data, within the learnt 95 % HPDs. This reinforces the result that 

the f -parameters learnt using the 2 different data sets in the 1st-Stage, are different within 

95 % HPDs. We see that the phase space pdf learnt with uncertainties of 95 % HPDs, using 

the PNe and GC data sets, are distinct. 

4.2. Distinction between phase space pdf s that PNe and GC data are sampled from - 

implications 

The discrepancy between the learnt phase space pdf s feeds into the worry that the phase 

space pdf learnt using either data set - which we expect to interpret as the phase space pdf of 

the galaxy - is not consistently learnt for this galaxy, given the two data sets. One suggestion 

for a resolution to this worry is that it might be that the assumptions undertaken to permit the 

learning, are differently adhered to, under the two data sets, s.t. the inconsistent results are 

due to such differential obeying, (by the observed PNe and GC samples), of the undertaken 

assumptions about the galaxy having equilibrated - i.e. behaving as an autonomous dynamical 

system - and/or about the galactic phase space being isotropic. 

Remark 4.1. If differential adherence to the assumption of isotropy is true, 

• then it follows that the learnt f 
(GC) 

W (·) and the learnt f 
(PNe ) 

W (·) functions are incorrect 

representations of the galactic phase space pdf . 

• The outcome of our learning is that the phase space pdf that underlines the GC data is 

different - by departing less from the assumption of this pdf being isotropic - compared 

to the pdf that the PNe data are sampled from. Such differential departure from the 

assumption of isotropy confirms that the phase space pdf that the GC data are sampled 

from is distinct from the pdf that the PNe data are sampled from. 

Hence the phase space of this galaxy is not a monolithic structure, but partitioned into - at 

least two - sub-volumes, the distributions of the phase space vectors in which are distinct. One 
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of these sub-volumes hosts the PNe and the other the GCs that are observationally tracked 

in this galaxy. 

Thus, our learning adduces evidence towards this partitioned picture of the galactic phase 

space on NGC4649. The galactic phase space pdf is composed of (at least two) distinct basins 

of attractions, and the orbits of the galactic PNe population and the GC populations live in the 

respective basins. It then follows, that the observable phase space coordinates of the tracked 

PNe that comprise the data D PNe , are sampled from the phase space pdf that is generated 

by the orbital distribution in the basin of attraction of the galactic phase space, that includes 

orbits of the tracked PNe. Similarly, D GC is sampled from the pdf that is generated by the 

orbital distribution of the basin of attraction that the tracked GCs are a part of. A galaxy - 

as a complex and multicomponent dynamical system - is likely to have a phase space that 

is marked by multiple attractors, and the current proposition of the same for the phase space 

pdf of NGC4649, is likely. Of course, if this is true, then the phase space pdf that the PNe 

data are sampled from - and therefore learnt with - will in general be unequal to the pdf that 

is learnt with the GC data, and one manifestation of this difference in the native phase space 

densities, will be in their differential anisotropies, in general. 

4.3. Gravitational mass enclosed within a radius 

Computing the gravitational mass that is enclosed within a given radius, by numerically 

integrating over the vectorised gravitational mass density function, supplemented with pre- 

dicted and forecast density values, is not a robust computation. Different implementation of 

the Riemann sum - that approximates the integral 

4π

r 
∫ 

s=0 

s 2 ρ(s) ds 

that gives value M(r) of the mass enclosed within radius R = r - yields different M(r) . 

This owes to the very steep shape of the gravitational mass density function at low radii, 

compounded by the large (uniform) width of the R-bins that we use in our learning, given 

the available data. 

We found a useful way of addressing the steepness of the density at low radii, by fitting 

a parametric function to the logarithm of the learnt ρ-parameters, plotted against log of the 

design radii. In the right panel of Fig. 8 we display the trend in the log of the uncertainty- 

included ρ-parameters learnt using the GCs data, against log (R) . The inner few ρ-parameters 

betray a linear trend in this plot, i.e. a power-law relation is anticipated for the gravitational 

mass density function - between ≈ 4kpc and ≈ 29 kpc. We realise that such linear fits to 

the learnt ρ-parameters in this radial interval can have the maximal and minimal slopes, 

as depicted by the broken straight lines (in red), in the right panel of Fig. 8 . These fits 

then suggest the uncertainties in the mass values enclosed within the interval of ≈ [4, 29] 

kpc in this galaxy. To the maximal possible value of this computed enclosed mass in the 

computed uncertainty interval, we add the value of the gravitational mass that is distributed 

uniformly within the sphere of radius of about 4 kpc, at the corresponding uncertainty level, 

to produce the uncertainty-included gravitational mass values enclosed within 29 kpc. This is 

[8 . 81 × 10 
12 , 1 . 37 × 10 

13 ] M �. where the mass enclosed within the inner 4 kpc of the galaxy 

lies in the interval [1 . 11 × 10 
12 , 3 . 61 × 10 

12 ] M �. 
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Fig. 8. Left panel: logarithm of the vectorised form of the gravitational mass density parameters - or ρ parameters - 

learnt with the empirical GC data, plotted against logarithm of radius. The maximally and minimally sloped straight 

lines fits to this data, in the radial interval of about 4.4 to 29 kpc, are shown in the broken red lines. Right panel: 

same as in the left panel, except ρ-parameters learnt using the empirical PNe data are plotted. Linear fits to these 

data in the radial interval of about 3.3 to 22 kpc are shown in red lines. 

From the ρ-parameters learnt using the PNe data, linear fits appear possible within the 

radial range of about [5.5, 22] kpc, to the values of logarithm of the learnt ρ-parameters, and 

log of radius R. These maximally and minimally sloped linear fits are depicted in the left 

panel of Fig. 8 . Adding the result on the gravitational mass enclosed within this radial interval, 

to the values relevant to radial intervals: between 5.5 kpc and r min = 3 . 3 kpc for this data 

set; ≤ 3 . 3 kpc (by spreading mass uniformly at R ≤ r min ), we get that uncertainty-included 

gravitational mass included within 22 kpc is [4. 6 × 10 
12 , 1 . 29 × 10 

13 ] M �. Gravitational mass 

enclosed with 3.3 kpc from learning done with this data set, is [3 . 3 × 10 
12 , 9 × 10 

12 ] M �. 

Thus, the enclosed mass values learnt with both data sets concur within uncertainties. 

When comparing results obtained with a given kinematic data set, but with different meth- 

ods, we advocate comparison of the gravitational mass density functions - or values of the 

same learnt/estimated in the different methods at fixed radii - if the density is available. This is 

preferred to a direct comparison of learnt/estimated values of the gravitational mass enclosed 

within a given radius. A comparison of the gravitational mass density values helps avoid the 

accumulation of the uncertainties that render the enclosed mass values more uncertain; in 

a method like ours, in which the density is implemented to compute the mass, numerical 

integration over the uncertainty-included, non-linear density function leads to this uncertainty 

inflation. There is the additional uncertainty in the enclosed mass, stemming from the lack of 

information in the region inner to the inner-most radial bin. 

4.4. Coincidence of gravitational mass density functions learnt using 2 data sets & possible 

implications 

It is noted that even while the phase space pdf s learnt with the two data sets are distinct, 

the gravitational mass density functions overlap within the learnt 95 % HPDs. We note that 

in NGC4649, data on distinct particle types imply distinct phase space pdf s - and therefore 

distinct moments of the learnt phase space pdf s - while implying the coincident gravitational 

mass density functions. This is similar to what [30] note for this galaxy, when they refer to 

the possibility that “the PNe and GCs trace different kinematics”. 
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It then follows that gravitational mass distribution in this galaxy cannot be computed as 

produced self-consistently. Such is clear from consideration of the Jeans equation, which 

results from computing the 0th and 2nd order moments of the phase space pdf , using the 

Collisionless Boltzmann Equation or CBE, to connect spatial derivatives of such moments 

to the radially-cumulative gravitational mass distribution M(R) . So in general we expect that 

inputting unequal phase space pdf s in Jeans equation will imply distinct mass distributions. In 

contrast, that coincident mass distributions are produced from the inputting of the distinct pdf s 

for this galaxy, appears to imply that the gravitational mass distribution does not follow self- 

consistently from the phase space pdf . One - perhaps less interesting - possibility is that the 

consistency that is noted between the cumulative gravitational mass values computed using 

the ρ-parameters learnt given the data set on the two types of tracer particles, is only an 

artefact of the largeness of the uncertainties on the computed mass values, caused by the size 

of the 95 % HPDs learnt on the ρ-parameters. 

4.5. Model checking 

A check of how good the model and results are, in the available empirical data, can be 

answered by checking for overlap between such empirical data, and data that is generated 

using the models learnt given such empirical data. In other words, we can perform model 

checking in our work, via our consideration of the generated data above. If the learnt models 

and results are compatible with the given data, then data that is generated from the learnt 

models, will concur with the empirical data. If such generated data does not concur with the 

empirical data, then the model assumptions could be wrong, and/or results of the analysis 

could be wrong. 

We have already generated data from our learnt model of the phase space pdf , at the 

respective learnt gravitational mass density function - both learnt given an empirical data on 

one type of tracer particles in this galaxy. We have found (in the 3rd-Stage) that the generated 

and empirical GC data are closer to each other, than the generated and empirical PNe data. 

In other words, our results obtained with the GC data are less circumspect, than our results 

reported using the PNe data. 

4.6. Non-normal nature of learnt pdf s 

A Normal approximation for the phase space pdf is in fact worse when we perform the 

learning with PNe data than GC data - with the scaled Normal form unable to fit f W (·) 
learnt with the PNe data for energies � -2 ×10 

7 km 
2 s −2 , while this parametric form deviates 

from the function learnt using the GC data for energies in excess of about -1 ×10 
7 km 

2 s −2 , 

approximately. 

4.7. Anisotropy and non-normality 

One interesting observation that we have noted above is that the Normal is not a good fit 

to the phase space pdf learnt with either observed data set. In fact, it is a scaled (truncated) 

Gaussian that is an approximate fit to the mean value of the pdf predicted at a given energy, 

subsequent to our learning of the parameters that specify the Gaussian Process - a sample 

path of which is the sought pdf , as per our modelling strategy. 
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Additionally, we find that such a scaled Gaussian is a worse fit to the pdf results that 

are learnt using the PNe data than results obtained using the GC data. The fit is worse at 

higher energies. At the same time we recall that we have learnt the phase space pdf that 

the empirical PNe data are sampled from to be more anisotropic than the phase space pdf 

that the empirical GC data is sampled from. This motivates curiosity on whether departure 

from (scaled) Normality at higher energies, is the cause/effect for the phase space pdf - that 

underlines the PNe orbital distribution in the galaxy - to be anisotropic . From the point 

of view of the Central Limit Theorem, there is no a priori reason for this distribution to 

be Normal as the galactic particles interact gravitationally, i.e. particles are not mutually 

independent, but there exists correlation between the phase space variable vector of one 

particle and another. So we take away the lesson that a (truncated) Normal description of 

a phase space pdf that is learnt/predicted using empirical data on a certain type galactic 

particles, is incorrect, but adopt a data-driven answer to the question that is italicised above. 

A future simulation study is suggested to explore the connection between non-Normality and 

anisotropy of a learnt phase space pdf . 

4.8. Comparison of results on modelling of the gravitational mass distribution in NGC4649 

Using kinematic data of nearly 300 PNe, measured using the FORS2 Cassegrain spectro- 

graph of the ESO Very Large Telescope unit 1 (Antu), [19] report that the mass of the dark 

matter halo component in their model, within 3 times the effective radius of this galaxy, is 

4 × 10 
11 M �, which is ǣalmost one-half of the total mass ǥ of about 1 . 15 × 10 

12 M � within 

3 R e f f in their model. They state this total mass to be similar to that estimated using globular 

cluster kinematic data; observations from XMM-Newton; and Chandra observations. We recall 

that effective radius for this galaxy is suggested to be about 9.86 kpc, [18] . Cambell [31] re- 

ports a mass of about 1 . 2 × 10 
12 M � to slightly in excess of 2 × 10 

12 M �, as enclosed 

within about 4.3 times the effective radius, using tracer kinematics data input to different 

models, the anisotropy and form of the potential of which are varied using pre-chosen values 

of parameters that distinguish different potential forms, (and anisotropy), from each other. In 

our model-free learning of the gravitational mass density function, as stated above, the mass 

enclosed within 29 kpc, using GC data lies in the interval [8 . 81 × 10 
12 , 1 . 37 × 10 

13 ] M �, 

while that within 22 kpc, learnt using the PNe data is in [4. 6 × 10 
12 , 1 . 29 × 10 

13 ] M �. We 

have stated in Section 4.3 why it is less inaccurate to compare values of gravitational mass 

density function learnt/estimated across different methods, that the enclosed mass. Das et al. 

[30] state that “averaging all the GCs velocity dispersions” estimated using GC kinematic data 

in the NMAGIC method, yields enclosed mass values - enclosed within an annular region ex- 

tending from a radius of about 21.8 kpc to about 36.9 kpc - that “correspond to the values fit 

by Shen & Gebhardt (2010)”, where Shen and Gebhardt [32] offer an enclosed mass estimate 

of about 10 
12 M �. Das et al. [30] advance that their results indicate that “it is possible that 

the PNe and GCs trace different kinematics” in NGC4649. We find the gravitational mass 

density learnt using the PNe and GC kinematic data sets to be consistent within the learnt 

95 % HPDs, though the phase space pdfs that we learn using the data on the two types of 

tracers, are distinct. 
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5. Conclusion 

This paper offers a 3-staged protocol to learn the gravitational mass density, and phase 

space probability density function in real galaxies, using noisy, small-sample kinematic data 

that are available, on galactic particles that trace the galactic gravitational field. The for- 

mulation and implementation of said protocol adopt the approach that any such galaxy is 

a sample point in a statistical sample; the only galaxy-specific information invoked within 

this implementation is the accessed kinematic data. Thus, the method allows for automated 

- and yet reliable - learning of the distribution of gravitational mass in a galaxy, without 

this result being offered as predicated upon details of the (parametric) model employed to 

model the mass distribution in the galaxy. In addition, the phase space pdf is learnt, while 

the major assumption of phase space isotropy that is made in the learning achievable within 

this approach, is tested within the available data. 

It is proposed that the method be converted into a black- box for astronomers usage; this 

will be addressed in a future contribution. The methodology discussed here, can be generalised 

to include radial and energy bins the widths of which are logarithmic, than constants. 

An added advantage of the method is that it can accommodate results on summaries of 

the mass distribution learnt/estimated using other techniques, and that too, the astronomer can 

impose their confidence on such a summary, within the prior structure used in the learning 

of the ρ-parameters. For example, an estimate of the mass enclosed within a given radius 

may be available for the considered galaxy, though the astronomer may be cautious about the 

usage of this enclosed mass value, given their lack of conviction regarding the technique used 

to attain this enclosed mass value. Then the relevant sum over all the relevant ρ-parameters 

can be computed at every iteration of the MCMC chain that is run to learn the parameters, 

and a Gaussian-shaped prior pdf on this sum is designed, with a mean given by this measured 

enclosed mass, while the prior variance is maintained as an adequately-chosen large value, to 

reflect the weak belief in the centring of the current enclosed mass on this measured enclosed 

mass. On the other hand, if information on such enclosed mass is obtained from a different 

technique - say lensing measurements, if available for this galaxy - then the astronomer may 

have stronger faith in the available enclosed mass. Then the (Normal) prior of the relevant 

sum of the ρ-parameters is designed as centred at this given enclosed mass, with a smaller 

value of the prior variance, compared to that used in the previous example. Using such extra 

information - if available - will guide the learning of the parameters better than if such 

information is not used in the learning. 

From a purely inferential point of view, this application offers a clear example of how 

physically-motivated constraints of positivity and monotonicity can be imposed on the sought 

functions, purely through MCMC. 

The ultimate aim of supervised learning of the spatial density function of the gravitating 

mass of all matter in the galaxy - as well as of learning the pdf of the phase space vector 

variable - appears unattainable, given that the training data that is the requisite for such 

learning is not available at the outset. Said training set would comprise pairs of design value 

of the domain variable of the sought function, and values of the function computed at this 

design input. So the first stage of our protocol is dedicated to the generation of the originally- 

absent training sets - undertaken by embedding the gravitational mass density in the support 

of the phase space pdf , within a vectorised approach to each sought function. Using the thus 

generated training sets, we then learn the gravitational mass density function and the phase 

space pdf , given the tracer particle kinematic data at hand. The generation of the training sets 
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are undertaken within the model assumptions that includes isotropy of the phase space that the 

empirical kinematic data is sampled from; at the last stage of this protocol, we quantify this 

departure of the phase space that such an empirical data set is sampled from, from invariance 

to rotation, i.e. to isotropy. We illustrate the method on the 2 empirical data sets that are 

available to us, for the galaxy NGC 4649. 

Learning with these 2 data sets in this example galaxy has indicated that the phase space 

of this galaxy has perhaps not equilibrated in its evolution and/or the galactic phase space 

is split into distinct sub-volumes that are not fully mixed, at the time when said data sets 

were observed, with each of the 2 available empirical data sets sampled from a distinct sub- 

volume of this galaxy. Further to the above, self-consistent solutions for the gravitational 

potential may not be possible in this galaxy. Neither result is surprising given the complex, 

multi-component nature of the dynamical system that a galaxy is. 

A future endeavour is planned, to undertake reliable and with-uncertainty prediction of 

the anisotropy parameter of a newly observed galaxy, by learning the functional relationship 

between the anisotropy parameter, and the divergence measure δ(·, ·) - that informs on how 

deviant the observed galaxy is from the assumption of phase space isotropy. An in-depth 

simulation study is anticipated, such that we sample synthetic data sets D 1 , . . . , D n from n

distinct known phase space pdf s and learn the sought ρ-parameters and f -parameters in each 

of these cases. We then compute the δ(·, ·) divergence measure for each case, between the joint 

posterior pdf of all parameters given the empirical data and generated data sets, in each of the 

n cases. Thus, for the i-th synthetic empirical data set D i - that is sampled from a phase space 

pdf model ascribed the anisotropy parameter βi - we now know δ(·, ·) , ∀ i = 1 , . . . , n. Then 

using the { (δ(·, ·) , βi ) } n i=1 training set, we can learn the relationship between the anisotropy 

parameter and this divergence measure. That way, for a future galaxy for which δ(·, ·) is 

computed - as delineated in the method presented here - we can predict what its anisotropy 

parameter is. 
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Appendix A. Learning vectorised gravitational mass density and phase space pdf 

functions using synthetic data 

We present results of learning the vectorised gravitational mass density function, (i.e. 

the vector ρ), and the vectorised phase space pdf , (i.e. f ), using synthetic data sets 

that are simulated from respective densities. In fact, we simulate a data set D Iso = 

{ (x 1 
(i) , x 2 

(i) , v3 
(i) , si) } N data 

i=1 , with 270 observations of R p = 

√ 

X 
2 
1 + X 

2 
2 ; V 3 ; and error in the 

observed V 3 , from a basal phase space pdf f Iso ( x , v ) . Here, this pdf is an isotropic function of 

the location variable X , and velocity V , where this known isotropic density f Iso ( x , v ) - that is 

a function of energy ε = �(r) + v 2 / 2 - is defined using the basal potential �(R) , which we 

model as a Plummer potential. This isotropic basal phase space pdf f Iso ( x , v ) is proportional 

to exp (−ε/ 2σ 2 
0 ) and �(R) = M 0 / 

√ 

R 2 + R 2 c with the arbitrarily chosen values of parameter 

M 0 set to 4 × 10 
11 M �; of R c to 1 kpc; of σ0 to 219 km s −1 . G is Newton’s Universal 

Gravitational constant that is known. The true gravitational mass density function is then the 
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Fig. A1. Left lower panel: plot of the ρ-parameters learnt using the synthetic kinematic data set D Iso that is simulated 

from an isotropic phase space pdf at the Plummer potential. The true Plummer gravitational mass density function 

computed using the used Plummer potential in the basal model, is depicted in red, (or grey in the monochrome version 

of the paper), at radial bins used in the learning. Mean of the learnt ρ-parameters is in black filled circles and the 

error bars are the learnt 95 % HPDs. The MCMC chain used for this learning is initialised with ρ-parameters that are 

computed as values of the ǣseed ǥ density function - depicted in green (or light grey in the monochrome version) 

- at the corresponding radial bin. The functional form of this seed density function and the Plummer density are 

discussed in the text. Right lower panel: plot of the f -parameters learnt using this data D Iso . The seed pdf is depicted 

in green (or light grey). Left upper panel: as in the lower left panel, except these ρ-parameters are learnt using the 

data D 
(gen) 
Iso that is generated from the simulated galactic model, the gravitational potential of which is computed 

using the ρ-parameters learnt using D Iso and the phase space pdf of which is represented by the f -parameters learnt 

using D Iso . True values of the ρ-parameters are in red (or grey). Right upper panel: f -parameters learnt using data 

D 
(gen) 
Iso . 

Plummer density GM 0 / 
√ 

(R 2 c + R 2 ) 3 . The data is sampled s.t. the observed values of R p lie 

in the interval [0,8] kpc. Results of learning the vectorised gravitational mass density, i.e. the 

ρ vector, and the vectorised phase space pdf f - using the data D Iso - are presented in the 

bottom left and right panels respectively, of Fig. A.9 . To undertake this learning we use N r 

= 27, with R-bins that are 0.3 kpc wide each. In this learning, we use N e = 12. These binning 

details are primarily motivated - as discussed in Section 3 - to ensure that each R-bin and 

ε-bin has at least 1 observation within it. Consistency between the learnt and true values of 

the ρ-parameters is indicated in this figure. 

Multiple choices of the seed, or the initial form of the gravitational mass density function 

were used; these all led to consistent values (within the learnt error bars) of each ρ-parameter. 

The traces of the parameters displayed in Fig. A.10 , indicate convergence, suggesting that 

the chain is irreducible (and aperiodic), which indicates lack of dependence on the initial 
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Fig. A2. Traces of various ρ-parameters that are learnt using the data D 
(gen) 
Iso . The top right panel depicts the trace 

of the joint posterior of all the parameters that are sought, given this data. 

choices of each parameter that we attempt learning, given the data D Iso . The seed gravitational 

mass density displayed in Fig. A.9 to learn the ρ-parameters given data D Iso , is the function 

1 . 8 × 10 
11 / (1 + R 

2 / 4) 5 . The seed phase space pdf used to learn the f -parameters given data 

D Iso , is chosen to be a uniform density with amplitude 0.3. The ρ-parameters and f -parameters 

learnt using the simulated data D Iso under the assumption that the phase space is isotropic, 

are used to sample the generated data set D 
(gen) 
Iso . The ρ-parameters and f -parameters learnt 

using this generated data set - again under the assumption of an isotropic phase space pdf - 

are displayed in the top panels of Fig. A.9 . The seeds for learning the components of the ρ

and f vectors using the generated data set D 
(gen) 
Iso , are the respective vectors learnt using the 

simulated data D Iso . Other forms of the seeds, including those similar to the aforementioned 

functional form, are also used. Again, the learnt parameters are then consistent within the 

95 % HPDs, with those displayed in the top panels. This is only to be expected since the 

traces of the learnt parameters display convergence, implying that the chain is aperiodic and 

irreducible. In other words, the chain bears the ability to move to any part of the state space, 

having started from any other point in state space [20] . 

The proposal of each ρ-parameter is undertaken to ensure adherence to the monotonicity 

and positivity constraints on any such parameter, as discussed in Section 2.2 . Similarly, the 

proposal of the f -parameters follow the discussion in that section. The prior on each parameter 

is chosen to be a Normal prior, the mean of which is the seed value of the parameter and the 

standard deviation of which is about 2.5 times the scaled seed value. This scale is the same 

for all ρ-parameters, which is different from the scale that is relevant in the learning of all 

the f -parameters. 
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Fig. A3. As in Fig. A.1 , except the ρ-parameters and f -parameters in the left lower panel and right lower panel 

respectively, are learnt using the synthetic data D Aniso that is simulated from an anisotropic phase space pdf at the 

Plummer potential. ρ-parameters and f -parameters in the left upper panel and right upper panel respectively, are 

learnt using the data D 
(gen) 
Aniso that is generated by sampling data points from the f -parameters learnt using D Aniso at 

the potential computed using the ρ-parameters learnt using this data. 

Again, we simulate 270 data points on R p , V 3 , with observational error on V 3 , by simu- 

lating from a basal phase space pdf f Aniso ( x , v ) that is an anisotropic function of the location 

variable X and velocity variable V . This anisotropic basal phase space pdf is f Aniso ( x , v ) ∝ 

exp (−ε/ 2σ 2 
0 ) exp (−L 

2 
z / (R 

2 
a σ

2 
0 )) and the basal potential is �(R) = −GM 0 / 

√ 

R 2 + R 2 c . The 

model parameters M 0 , R c , σ0 are as used in the case in which data was simulated from an 

isotropic phase space pdf , while the parameter R a is set as 4 kpc. Results of learning the 

ρ-parameters and f -parameters using data D Aniso are depicted in Fig. A.11 . The proposal and 

priors used to run the MCMC chain using this data are as used when learning given data 

D Iso . Seeds for the ρ and f vectors in the learning with D Aniso are also the same as those 

used when learning with data D Iso . The ρ and f vectors learnt using D Aniso are input to a 

rejection sampling algorithm, and another data set - called D 
(gen) 
Aniso - comprising 270 number 

of the observables, is generated. 

To predict the level of anisotropy of the phase space of the galaxy under consideration, 

we also computed the divergence measure δ(·, ·) between the (logarithm) of the joint poste- 

rior probability density πIso (·| D Iso ) of all ρ-parameters and f -parameters given data D Iso , 

and the joint πIso (·| D 
(gen) 
Iso ) given the generated data D 

(gen) 
Iso . We then compare this value 

of the divergence measure to the same computed given D Aniso and D 
(gen) 
Aniso . We find that 

δ(πIso , π
(gen) 
Iso ) ≈ 0. 03237 , while δ(πAniso , π

(gen) 
Aniso ) ≈ 0. 1046 . 
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Appendix B. Computing gravitational potential from gravitational mass density 

The gravitational potential �(R) at radius R, is computed by inputting the gravitational 

mass density function ρ(R) in Poisson equation. It is easier to appreciate this computation of 

the potential using the gravitational mass M(R) that is enclosed within the sphere of radius 

R, i.e. M(R) = 

∫ R 

x=0 
4πρ(x ) x 2 dx and G is the known (Universal Gravitational) constant. Then 

for the N r number of radial bins used in our learning - with each bin of width δr - at R = r, 

�(r) = 
−GM(r) 

r 
, where 

M(r) = 

t 
∑ 

s=1 

4π

3 

[

s 3 δ3 
r − (s − 1) 3 δ3 

r 

]

ρs + 
4π

3 

[

R 
3 − (tδr ) 

3 
]

ρt+1 , 

for r ∈ [ tδr , (t + 1) δr ) , 

M(r) = 

N r 
∑ 

s=1 

4π

3 

[

s 3 δ3 
r − (s − 1) 3 δ3 

r 

]

ρs , for r ≥ N r δr 

M(r) = 
4π

3 
[ r 3 ] ρ1 , for r ∈ [0, δr ] . (B.1) 
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