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Abstract

We present a 3-staged method for automated learning of the spatial density function of the mass of
all gravitating matter in a real galaxy, for which, data exist on the observable phase space coordinates
of a sample of resident galactic particles that trace the galactic gravitational potential. We learn this
gravitational mass density function, by embedding it in the domain of the probability density function
(pdf) of the phase space vector variable, where we learn this pdf as well, given the data. We generate
values of each sought function, at a design value of its input, to learn vectorised versions of each
function; this creates the training data, using which we undertake supervised learning of each function,
to thereafter undertake predictions and forecasting of the functional value, at test inputs. We assume
that the phase space that a kinematic data set is sampled from, is isotropic, and we quantify the relative
violation of this assumption, in a given data set. Illustration of the method is made to the real elliptical
galaxy NGC4649. The purpose of this learning is to produce a data-driven protocol that allows for
computation of dark matter content in any example real galaxy, without relying on system- specific
astronomical details, while undertaking objective quantification of support in the data for undertaken
model assumptions.
© 2022 The Author(s). Published by Elsevier Ltd on behalf of The Franklin Institute.
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1. Introduction

The mass distribution of all gravitating matter in an external galaxy, is a coveted system
property in astronomy and cosmology. The density function of the mass of gravitational
matter in the galaxy - i.e. of luminous as well as dark galactic matter - if learnt or estimated,
will permit computation of the spatial distribution of dark matter in the galaxy. Ubiquity
of the shape of the total gravitational mass density function continues to be questioned [1—
3], while agreement exists on the importance of galactic mass distribution in constraining
galaxy formation [1,4-6], and evolution [7,8]. Computation of the spatial distribution of dark
matter in a galaxy, will indeed need to include astronomical models of the link between
luminous galactic matter, and photometric information obtained from such matter in the galaxy.
This is however more easily accomplished than the learning (or estimation) of the total, or
gravitational mass density function of elliptical galaxies - which is relatively more difficult in
elliptical galaxies than in disky galaxies. The latter systems being rotationally supported, the
rotational velocity measurements of their resident particles, taken at different galactocentric
radii, offer an estimate of the gravitational mass enclosed within the given radius [9]. For
elliptical galaxies, no reliable universal parametric model exists to link light and total (or
gravitational) mass, thereby compromising the ambition of learning gravitational mass density
using only photometric information. It follows, that in an elliptical galaxy, it is in general
best to avoid reliance on such a link when attempting learning or estimation of the total (or
gravitational) mass density function.

In this paper, we focus on the learning of gravitational mass distribution of elliptical galax-
ies, without resorting to astronomical details of individual galaxies, except for observations
of the observable phase space variables of a sample of resolved galactic particles that trace
the galactic gravitational field - and hence are referred to as tracers. Thus, our methodol-
ogy offers a black- boxed protocol in which data comprising such observations is input for a
given galaxy, and the protocol outputs the cumulative (with galactocentric radius) gravitational
mass in this galaxy, (along with its phase space probability distribution), under an assumption
on the symmetry of the galactic phase space, where the validity of this assumption for the
considered galaxy, is also quantified.

Almost all galactic mass modelling exercises that employ tracer kinematic data, resort to
the Jeans Equation formalism. Within this framework, the galaxy is treated as autonomous and
Hamiltonian. Adherence of the temporal evolution of the probability density function (pdf)
of the galactic phase space vector to the Collisionless Boltzmann Equation (CBE) is used,
to formulate a deterministic link between moments (and spatial derivatives of moments) of
this pdf and the gravitational potential [10]. Such a link is useful, considering that one of the
inputs in Jeans Equation, is the variance of the line-of-sight (LOS) component of the velocity
vector - which is observed at some locations in the galaxy - and the gravitational potential
function that is the desired output in this exercise. However, tacitly imposing an arbitrarily-
chosen correlation structure on a sample of observations - sparsely sampled typically - is not
a reliable way of learning the spatial distribution of a moment. Indeed, a persisting difficulty
with conventional estimation of galactic mass distribution is the approximating of an unknown
spatially-varying function with a discrete sample of pairs of the input variable of this function,
and the corresponding, widely-uncertain value of the output variable. This problem is further
compounded by seeking spatial derivatives of such an approximated &functiong. While the
presence of such a sample can in principle allow for supervised learning of the sought function,
the large error on the output variable will only learn the function (treated as random), as
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highly uncertain, thereby offering meaningless spatial derivatives. Here by &meaninglessg,
we imply error bars so large, that the value of the derivative is rendered uninformative. This
problem with the estimation of total galactic mass distribution, plagues both the usage of
tracer kinematics (i.e. observations of phase space coordinates of individual galactic particles)
in Jeans Equation formalisms, as well as observations of temperature of hot gas, modelled
under assumed hydrostatic equilibrium [11,12]. Imposing a smoothness by hand, on such
&approximatedg functions, will naturally need to be justified; else the function is rendered
ad hoc and the learnt/estimated mass distribution of the galaxy then stands compromised.
Additionally, given the observational limitations that typify this domain, data does not
exist on everything other than the sought output, i.e. the galactic gravitational potential. This
includes data on the parametrisation of anisotropy of the galactic phase space. Indeed, one
major idiosyncratic difficulty with the Jeans Equation formalism, is the absence of information
on how deviant the galactic phase space pdf is, from invariance to rotation, i.e. from phase
space isotropy. This then triggers the need for specification of values of such deviation from
phase space isotropy in a galaxy. Such values are fundamentally ad hoc, since it is the
lack of information on the anisotropy parametrisation that motivates the need for its manual
specification. The resulting galactic gravitational mass is then rendered arbitrary. Then from
the above, it appears that an automated route to mass modelling would be one that: avoids
computing spatial derivatives of functions that are learnt (or worse, approximated) as highly-
uncertain; permits quantification of anisotropy of the galactic phase space; eschews reliance
on photometric observations. In this paper, we advance a 3-staged protocol that undertakes
the learning of the gravitational mass density function of a galaxy, while also learning the
phase space pdf of the galaxy, using available noisy measurements on a small sample of
the 3 observable components of the 6-dimensional phase space vector, treating the galaxy as
autonomous and Hamiltonian [13], while assuming that within the spatial extent of the galaxy
that we offer the density functions for, the galactic potential is central [14], and the galactic
phase space pdf is an isotropic function of location and momentum vectors [15]. At the same
time, we quantify how this assumption of isotropy is supported in the data, by computing a
parametrisation of the departure of the system from this assumption, given the available data.
We do not possess training data on the 2 functions that we desire to learn, namely the
gravitational mass density function and the phase space pdf. This would then negate the
undertaking of supervised learning of these functions, it would seem. However, in the 1st-Stage
of our work, we will generate such originally-absent training data, by discretising the relevant
range of the domain variable relevant to each function, and learning the vectorised version
of each function, given the data. This effectively offers the functional value over each design
partition of the relevant range of values of the domain variable, i.e. offers that originally-
absent training data on the gravitational mass density and phase space pdf. In the 2nd-Stage,
we will implement these produced training sets, to learn each function, by modelling them
as random realisations from an adequately chosen stochastic process, allowing for predictions
and forecasting of values of the functions. Ultimately in the 3rd-Stage, we will check the
assumption of isotropy in the data, and compute how anisotropic the galaxy is, given a data
set. We will illustrate our 3-staged method on the data available on an observed sample
of Planetary nebulae (PNe) and another sample of Globular Clusters (GCs), for the galaxy
NGC4649. These empirical data sets on the 2 types of tracers in this galaxy, was shared with
us by Dr. Kristin Woodley. Kinematics of GCs in this galaxy have been employed by [16-18],
while kinematic information of PNe in this galaxy has been employed by Teodorescu et al.
[19]. The data on GCs that we employ here, is a subsample of the bigger sample used by
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other authors. Indeed, while we advocate our 3-staged protocol for the objective and automated
mass modelling of a sample of galaxies, using kinematic information on tracer samples, it is
crucially important to note that any other information - either as data or priors - if available to
the astronomer for an individual galaxy in this sample, can definitely be incorporated within
this framework that is Bayesian by nature. All through, inference is carried out using different
Markov Chain Monte Carlo (MCMC) algorithms [20].

2. Method

The system is treated as autonomous, implying that the probability density function
(pdf) of the phase space vector W does not bear an explicit dependence on time. Here
W = (X1, X2, X3, Vi, V5, V3)T, where the location of a galactic particle is X = (X1, Xa, X3)7,
and its velocity vector is V = (V}, V5, V3)T. In this system, we discuss dynamics per unit
mass of a galactic particle, such that the state of any particle is specified by its veloc-
ity, along with its location. Let the phase space vector W € WW C R, i.e. W is the phase
space of the galaxy. Thus in this autonomous system, the phase space pdf is denoted
Jw (@), x2(t), x3(t), vi(t), v2(t), v3(t)), though we will often drop the time-dependence of
phase space coordinates from our notation, for brevity’s sake. We express the location and
velocity vectors in the basis {eq, e>, €3} such that the line-of-sight is along ez, implying that
X; and X, are the location coordinates in the plane of the sky; these location coordinates
are observable. The component V3 of the velocity vector is the speed with which the parti-
cle is moving along the line-of-sight; this is the third observable. Thus, X3, V|, V, cannot be
observed.

The system gravitational potential at location X is denoted W (X, X, X3); again, the lack
of explicit time-dependence in the potential, owes to the autonomous nature of the system.
Our treatment of this dynamical system having reached a stationary state maybe circumspect,
but with observations available only at a snapshot - rather than online - we need to assume
so much, in order to undertake any tractable analysis.

The system is also treated as Hamiltonian [14]; this is motivated by the collisionless nature
of galaxies. Then as the system moves along a trajectory in phase space, the flow of phase
is conserved, i.e.

dfw (x1(t), x2(t), x3(2), vi(t), v2(2), v3(t)) _
dt

i.e., the Collisionless Boltzmann Equation (CBE) holds [9].

A corollary of the phase space pdf abiding by CBE is that fy () can be recast as a
function of integrals of motion [9,21], such as Iy, ..., I, where I; : VW — R in general, with
d(l)/dt =0, for k =1, ..., n. Then it follows that phase space trajectories that are allowed
in W, have to lie at the intersection of n such sub-volumes of VW within which the phase space
coordinates abide by the constraints that d () (xy,...,v3)/dt =0,...,dL,(x1,...,v3)/dt =
0. In other words, phase space trajectories in V¥ have n constraints imposed on them, confining
them to 6 — n degrees of freedom; recall that W C RS. Then to be allowed even 1 degree of
freedom, n < 5.

We recall that one such integral of motion is the energy of any galactic particle. Energy
is given partly by the kinetic energy of the particle, and partly by its potential energy. As
we perform the analysis per unit mass, the total energy per unit mass is the sum of half the

0,

1638



D. Chakrabarty Journal of the Franklin Institute 360 (2023) 1635-1671

squared (Euclidean) norm of the velocity vector, and the gravitational potential at the location
of the particle, in this galaxy.

We assume the galaxy to be spherically symmetric. Thus, the gravitational potential is
central, i.e. a function of the components of the location vector, via its explicit dependence

on galactocentric radius R := ,/X? 4+ X} + X2, i.e. its notation is updated from above as W(R).

Then under spherical symmetry, Poisson Equation links the gravitational mass density p(R)
to the potential as:

L d (dVR) G (R)
- - = 47
R2dR dR P,

where G is the known Newton’s Gravitational constant. Assuming the potential to be central
is perhaps not a bad assumption, as long as we attempt our learning only at locations that are
at most “moderately” distant from the centre of the galaxy. This is indeed not verifiable given
the observations that offer values of X; and X5, (along with V3). One possible suggestion for
a limit on the spatial extent under consideration, could be the smaller between the maximal
galactocentric radius r,,,, that observations are available to, and a benchmark photometrically-
relevant radius, such a 5 times the effective radius (7.77). We use this convention and consider
only results obtained within such a galactocentric radius

Fgal = min[7,qy, 5reff]~

Let us suggest that fw () is recast as the one and only integral of motion of energy

2

\%
e(X1, X2, X3, V1, Vo, V3) 1= W(R) + R

where

Vo= V2 VE+VE Ri= X2+ X} + X2

Then it implies that fw (X1, X2, X3, V1, V2, V3) = fw(e (X1, X2, X3, V1, V2, V3)) = fw (P(R) +
V2/2).

Definition 2.1. A function of the 2 vectors X e X CR> and V e V C R3 is isotropic, if the
function is invariant to rotation QX and rotation QV, for any 3 x 3-dimensional orthogonal
matrix Q.

It follows that function fw(R,V) is an isotropic function of X and V, for R =

\/Xﬁ +X7+ X5V = \/Vf + V3 + V7, since
R=|X |:=VX'X = /(QX)T (QX),

given that for orthogonal matrix Q € R**3, QTQ = I; similarly for V =|| V |. Here | - |
denotes Euclidean norm.

So the phase space pdf, if recast as a function of the sole integral of motion, energy, is
an isotropic function of location and velocity, i.e. fw(e) = fw (W(R) + V?/2) is an isotropic
function of X and V.

Remark 2.1. We model the phase space pdf as a function of energy of the considered galactic
particle. So in our model, the phase space distribution of the system is isotropic.

1639



D. Chakrabarty Journal of the Franklin Institute 360 (2023) 1635-1671

2.1. Ist-stage: generating originally-absent training sets

Our aim here is to learn the phase space pdffw(e¢) and the gravitational mass density
function p(R).

To undertake the supervised learning of p(R), one needs a training data set comprising
pairs of design values of radius R, and the gravitational mass density computed at this design
radius. We do not possess such a training set apriori. Any such training set built from a
simulated model of the galaxy is irrelevant since it is the essential lack of information about
the galaxy under consideration, that motivated our pursuit of the galactic gravitational mass
density function and the phase space pdf. In other words, we do not have information about
these pursued functions p(R) and fw(e). In lieu of such information, any constructed model
of the gravitational mass density of the galaxy - constructed with the aim of simulating values
of this function at design radii - is rendered arbitrary, i.e. irrelevant to the galaxy at hand.
Similarly, we state that there exists no information-driven model of the phase space pdf of the
considered galaxy; if information exists to constrain such a model pdf, we would not need to
embark upon our learning exercise.

2.1.1. Information available; priors

It may however be that we possess information on some properties of these system func-
tions, that we would like to input towards the learning of these functions, at design inputs.
Such information comprises

» Non-negativity of both the phase space pdf and the gravitational mass density function,
at all energy and radius.

* Monotone non-increasing nature of p(R) with increasing values of R. This is motivated
by the gravitationally bound nature of the system, assumed spherically symmetric. Then
under the central (gravitational) potential W(R) we expect matter at radius R = r to be
more tightly packed than matter at R = r/, for r < r/.

» The phase space pdf integrates to 1, over all energy values.

We will incorporate each of these known pieces of information on properties of the 2
sought functions via the inference that we will undertake.

Additionally, it may be possible that for a galaxy under consideration, priors exist on
the shape of either, or both, of the sought functions. However, in our approach we advocate
caution over priors motivated by astronomical theory, parameters of which are then fed generic
values. We state this, backed by apprehension about a high level of diversity in a sample of
galaxies observed within any observational programme; galactic properties are expected to be
sensitive to the effect of the highly multivariate internal and external evolutionary influences
- inclusive of non-linear dynamical effects - on the evolution of individual galaxies. This is
particularly true for the phase space pdf, which does not need to follow any global parametric
shape, and indeed, may violate the assumed isotropy that we model the pdf to abide by.
Given that a galaxy is composed of multiple, dynamically interacting - in fact, differentially
correlated - components, implies that the phase space pdf may not be a single or monolithic
function of the integrals of motion, but may manifest different functional forms within distinct
sub-volumes of the galactic phase space. There is no pressing motivation for the phase space
pdf to be globally Normal or skewed-Normal in energy. In light of this discussion, we will
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impose only weak priors on the sought gravitational mass density function p(R), and the
phase space pdf fw(e).

2.1.2. Embedding p(R) in domain of pdf fw(e)

As seen above, expressing the phase space pdf as a function of energy, allows for the grav-
itational potential to be embedded in the support of the pdf, such that, the gravitational mass
density p(R) - which is deterministically computable, given W(R) - is effectively embedded
in the support of the pdf. To summarise,

Jw X1, Xa, X3, Vi, Va, V) = fw(e) = fw (W(R) +V?/2)
implies that the phase space pdf is
fw(e) = fw(Y(R),V) = fw(p(R),V).

Let the data available for the galaxy under consideration, comprise Ny, values of the
observables X|, Xz, V3 of one type of galactic particles, where the noise on V3 is also observed,
with noise on X; and X, observat1ons negligible, compared to the noise on V3. In fact, the
noise s; on the i-th observation v3 of V3, is modelled as the standard deviation of the error
density for V3 observations, where we model this error density to be a Normal with a zero
mean. Thus, the error on the observed value v(l) is €, ~ N (0, sz) We denote this available
kinematic data of the Ny, particles of a given type, as D = {(xf’), xé’), vgl), sY; "‘”“.

Now, assuming the N, data points in D to be independent, likelihood of the model - of
the sought gravitational mass density and phase space pdf - given the data D, is expressed
as the product of values of the probability density function gy (-) of the observable U :=
(X1, X, V3)T, (given the model mass density and phase space pdf), computed at each of the
data points in D. In other words, in the absence of measurement noise, likelihood is

Niata @ @) @) ) )
ot o) = [ L

i=1
where the pdf of the observable U can be computed from the phase space pdf by integrating
out from the latter, all those phase space coordinates that are not observed and C(, -) is the
normalisation of this pdf of the observables. Thus,

) 2.1

(max,i) (max,i) (max,i)
A3 V2 Vi

gu(xi”,xg),vg”lp() Sw( )) / N . -
x(mm.l) v(mm.l) V(rmll,l)
3 2 1

fw (w (p <\/ @) + (§)2 +x§)) + (v +03+ (vé‘“)z)/z)dvldvzdxs,

where this density of the observables will need to be subsequently normalised by
C(fw(-), ¥(-)), which is defined as the integral over all values of the observables, i.e. this
normalisation is:

Clfw(),¥()) = /gU(xlvxL v3lp (), fw(-))dxidxodvs.

Recognising that values of X; and X, appear in the integrals relevant to RHS of the equa-
tion that defines gy (-|-), via the term X7 + X7, we replace (x\”)>+ (x{”)? in the integrand
with (x{7)?, where we define

X; =X] +X;.
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Similarly, we replace (vg"))2 + (vg))2 in the integrand with (v[(j))z, where we define
2. 2 2
V=V +Vy,

and dvidv, by 2mv,dv,, i.e. the double integral with respect to (w.r.t.) V| and V, is replaced
by a single integral w.r.t. v,, by invoking isotropy in velocity-space. Thus, the definition of
gu (+) reduces to:

gu (xfi), K1), fw('))

x(nmx,i) y(max.i)
3 P . .
=2 / . / o Tw <x11 <,0 <,/ (x5)? +x§>> + (vf, + (v§'))2) /2)v,,dv,,dx3. (2.2)

In light of the introduction of X,,, as motivated just above, we clarify the normalisation of
the pdf of the observables as

CUfiw (), W()) =27 / / g0 G v3l0 (). fiv (Nxpdrpdvs. 23)
=0y ST,

Here, the maximal value that V3 can attain at a given value of X, is obtained by recalling
the definition of energy as sum of potential and kinetic energies. When energy attains the
highest value (of 0), kinetic energy is maximal, at x3 = 0, i.e. at potential W(x,). This follows

from W(x,) < W( /xg +x§), Vx3 # 0. Then the maximal value of V3 is computed using this

maximal kinetic energy at V; =V, = 0. Thus, the maximal value of V3 is ,/0 —2W(x,). The
minimal value of V3 is the negative of this computed maximal value. The maximal value of
X, is the maximal radius 7, observations of U till which, we consider in our learning.
However, it appears impossible to compute the likelihood introduced in Eq. (2.1), since
calculation of gy (-) appears impossible, given that learning of fw (¢) and p(r) appears impos-
sible. The last claim is due to the fact that training data set {(g;, fw (e j))}l}’;1 is unavailable,

and training data {(ry, \If(rk))}fcv;1 is also unavailable, VN,, N, € N. However, such training
sets are pre-requisites for the supervised learning of the phase space pdf and gravitational
mass density function. In lieu of these training sets - and with the aim of generating such
training data sets - we learn “vectorised versions” of each of the sought functions, where we
explain below, what we imply by vectorised version of a sought function.

We discretise the relevant interval ([rg, 7;uqr]) in the domain of the sought function p(-),
into N, partitions. Each such partition is referred to as an “R-bin”. Then the j-th R-bin
comprises r € [ro+ (j — 1)é,, 0 + jé,), (j = 1,...,N,), where we choose to use a constant
width §, for all R-bins. So we use &, = (Fuax — 19)/N,. Then we approximate the function
p(r) as

pj=p), Yrelrg+ (j—1Dé,ro+jé); j=1,...,N.

We define the N,-dimensional vector p = (p1, ..., pN,)T, and replace our ambition of learning
p(r) - for now - by learning p, i.e. each of the N, “p-parameters” py, ..., pn,.

Similarly, we discretise the relevant range of normalised energy values ([-1, 0)), into N,
“e-bins”, such that we approximate the function fw (g) as

fi=fw(), Yee[-1+ (k—-1)8,,—1+Kké.); k=1,...,N,,
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where 8, = 1/N,. Here by “normalised energy”, we imply the variable ¢ that takes value
& € [—1,0), where we normalise ¢ to & as:
- e
§:= .
—W¥(0))

We define the N,-dimensional vector f = (fi, ..., fv.)T. In fact, for every trial f - i.e. at every
iteration of the inference, we normalise f; with a global scale s.t. fy <1, Vk =2,...,N,.
and learn f5, ..., f,, so that we can deterministically assign to f; the value such that (f; +
2+ fa+ ...+ fu—1) + fn)de/2 = 1, ie. the (trapezoidal implementation) of the Riemann
sum approximation of the area under the phase space pdf equals 1. Thus, we learn f, ..., fu,
and treat f] as deterministically known, given the learnt “f-parameters” in every iteration of
the adopted inferential scheme.

Thus, the Bayesian inference using MCMC that we will undertake, will make infer-
ence on the state space parameter vector (o1, ..., pPn,, f2, .-, fNe)T, given the data D.
We summarise, that by vectorised-version of the sought p(-) and fw(-) functions, we
imply the vectors p and f, respectively. Learning the N, p-parameters enables realisa-
tion of the pairs: (rq, p1),..., (rn,, pn,), and learning the f-parameters leads to the pairs:
(€2, f2), ..., (En,, fv,). While the first set is the originally-absent training set that will allow
for the supervised learning of the p(R) function, the latter set is such a training data set for
learning fw(¢). Eq. (B.1), provides the means to compute the gravitational potential W(R),
given a vectorised version of p(R).

To learn the p-parameters and f-parameters, we recall the definition of the probability
density of the observables, expressed in terms of the phase space pdf and in that, replace the
sought functions with their respective vectorised forms. Thus, considering the projection of the
phase space pdf into the space of observables - which is what the RHS of Eq. (2.2) manifests
- over each e-bin individually, and summing over all such energy partitions, this equation
reduces to

@ G 0 Ne
o vl fy=2m Y [f,- f

(min, i) (min, i)
P X3

(max,i) (max,i)
Vp X3

vpdvde3:|, 2.4

where the integrals on the RHS represent the volume that the j-th e-bin, i.e. energy-partition,
occupies in the space of the unobservables. From the definition of energy, at a given r) =
(@)
P

(xy)?2 ~|—x§, and given vgi), the maximal value of V, is given as

A ) \2
(vl(,’“‘”‘”))2 =0-20(r") — (V§Z)> )

ie. (vimavi) = \/ —2W(r®) — (v{")2, while (v{"in) = —\/—Z\I'(r(i)) — (v{")2. Again, from

(@)
3

maxD _ root of the

the definition of energy, at given x{ and v

equation: 0 = \Il(,/ ()c,(,i))2 + x%) + (vgi))2/2. The minimal X3 value is 0. The gy (-) computed

this way from Eq. (2.4) is then normalised by the RHS of Eq. (2.3), which we refer to now
as C(f, V), in light of the vectorisation of the functions.

While Eq. (2.4) allows for computation of the pdf of the observables, conditional on the
model parameters pi, ..., pn,, f2, ..., fn, in the noise-free instance, noise in the measurement
of V3 exists, and we need to perform learning of our model parameters, while acknowledging
such noise. As we state above, we model the noise on the i-th observation of V5 to be the

, the maximal value of X3 is x
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€ ~ N(O, s[z). We ignore the noise in the X, measurement, in comparison to the noise in the
measurement of V3. Then in the presence of this noise, the pdf of the i-th datum given the

model parameters, is updated to the convolution of gy (xfi),xéi), v§5)| p, f) with the Gaussian

in vy), with parameters O and s7, as mean and variance, respectively. This updated pdf of the
i-th datum given the model parameters, is then to be normalised by the normalisation C(f, p)
of the pdf of the observable given (vectorised) forms of the phase space pdf and gravitational
mass density function. Thus, likelihood of the model parameters given data D that includes

the observational noise in V3, under the assumption of independent data points, is

Naa gy <Xfi), ) Pl f ) * N (vgi) ; 0, S,2>
ors s pns o D) =] CT o :

i=1

2.5)

Having defined the likelihood of the model parameters - that are the p-parameters and the
f-parameters - given the data D, we can write the posterior pdf of these model parameters
given this data, subsequent to the selection of priors on the model parameters. As stated
above, we will motivate the case here, for weak priors, since we want to avoid biasing
our inference, especially on the f-parameters, in this learning exercise in which the data
has weaker informative influence on the f-parameters, over the p-parameters. In case the
astronomer is blessed with information on the gravitational mass density and phase space
pdf of a given galaxy, such information can be translated to more informative priors in such
situations. Our weak priors 7my(6) include Normal and truncated Normal priors on a model
parameter 6 € {p1, ..., pn,, f2, ..., fn,}, With a mean that is the chosen seed value of 6, and
a variance that is large - namely, 3 to 10 times the variance used in the proposal density that
trial values of this model parameter 6 are proposed from, in any iteration of the undertaken
MCMC-based inference. Our experimentation indicates robustness of the inferred results on
Pls -5 PN.s f2, ..., fn., to the choice of priors.

We choose a seed value for f; by considering the “seed phase space pdf’ to be uniform,
such that the seed value of f; is fy, Vj =2,..., N.. Again, we choose a “seed gravitational
mass density function”, to bear pre-chosen forms, eg. an NFW form [2], such that p; is
computed using this chosen form, at radius R=r;, k=1,...,N,. We have experimented
with different forms of the seed gravitational mass density function, and find our inferred
results to be insensitive to the chosen seeds, i.e. each learnt parameter is inferred to be
consistent within the learnt uncertainties on itself, (which given our MCMC-based inference,
is the 95% Highest Probability Density credible region learnt for this parameter, given the
data).

Thus, the posterior pdf is given as

n(plv -~~7pN,7f27~-~’pr|D) (&8

C(p1s-s o frn s S D)0 (p1) - .. o (on, )0 (f2) - - - o (fi,)

where any global scale in the definition of the posterior of the model parameters given the
data, is irrelevant to the MCMC-based posterior sampling that we undertake towards making
inference on the model parameters.
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2.2. Inference on model parameters in the Ist-stage

We choose to employ the Metropolis-within-Gibbs algorithm [22], towards such inference,
to appreciate the expectedly higher correlation amongst the p-parameters and amongst the
f-parameters, compared to the correlation amongst p-parameter-f-parameter pairs. Thus, we
update the p-parameters in the Ist block of an iteration, given the data D, and then in the
2nd block of the iteration, at the updated p vector, we update the f-parameters, given the
data.

In the O-th iteration, the p-parameters and the f-parameters are assigned respective seed
values, using the seed gravitational mass density form and the seed phase space pdf stated
above. In the 7-th iteration, (r =1, ..., Nj.,), let the current value of p; be p,ﬁ’_l) and the
current value of f; is fj(’fl); k=1,...,N,, j=1,...,N,. In the Ist block of this ¢-th
iteration, the proposed p;, is sampled from a truncated Normal proposal density as

j

pirt) ~ TN(p_,(-”l), 0, 00, QZ), for j = N,, and

,oj(-*’t) ~ ’T,/\/(,oj(.t*l), ,05111) 0, 0]»2), for 1 <j <N,
where the truncated Normal density with mean a, left truncation b, right truncation ¢, and
variance d is depicted as TN (a, b, c,d). As can be appreciated from this proposal scheme
suggested above, the p-parameters are proposed at the outermost radial bin first, and then the
other p-parameters are sequentially proposed, as we move inwards, from the outermost radial
bin. Thus, the constant jump-scale o; is used to propose p; in any iteration.

The demand that a proposed p; not fall below the recently-updated pj, is implemented via
proposing from the truncated Normal density that is left truncated at this minimally allowed
value for p; in any iteration. This allows for adherence of each p-parameter to the physically-
motivated constraint of monotonic non-increasing with increasing radius, and at the same time,
also satisfies positivity. The correlation amongst the p-parameters that is suggested via this
monotonicity, once allowed to percolate to the learning of the p-parameters via the MCMC-
based inference, renders the learning robust to small to moderately large changes in seeds
and priors. Unlike p;, Vj=1,..., N, — 1, there is no value that py, can be deterministically
known to be in excess of - other than 0O, (since all p-parameters are non-negative). Thus, the
uncertainty in our learnt value of py, is typically the highest, amongst uncertainties on all
other learnt p-parameters.

Then the p-parameters proposed in (the first block of) this zth iteration are accepted or
not depending on whether the following acceptance criterion is obeyed:

ai(p™?, p" V) = u,
where U = u, with U ~ Uniform[O0, 1], and

*,1 Wt t—1 t—1
w (ot N D)
ar(p™", pV) = x
(r=1) (t=1) @-1) =Dp
T p] v PN, v J2 9--'7fN( |

\D(pl(tfl), ,02(*”), 00, 012) . \IJ(p,(\,’:l), 0, co, 02')

\P(,of*”), ,oé’*l), 00, 012) . \IJ(,o,(\,*r”), 0, co, azr)

(2.6)
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If the acceptance criterion is obeyed, we state that p; p(* . else ,oj(. = pj(' D, j=
1,..., N,. Thus, the p-parameters are updated in the first block of the rth iteration.
Then in the 2nd block of this iteration, at the updated p of p(” ceey ,o,f,[), we update the

f-parameters. We propose the kth f-parameter from a truncated Normal that is left truncated
at 0 to ensure non-negativity of the parameter; has a mean that is the current value of the
parameter, i.e. fk(’_l); has a constant variance v;, Vk =2, ..., N,. Thus,

O~ TN(f0,0,00,07), for k=2,..., N,
Then acceptance of this proposed value of f; depends on adherence to the acceptance criterion:

Olz(f(*’t),f([_l)) >u

and

(pf’),...,p,(\}), 0 R )

(pl(’),...,p}\j), ¢= ”,...,f,@i‘”m)
\IJ(f(’ D 0, 00, 1)2) (f(’ D 0, 00, v,%,r>

(fz(”) 0, oo, v) (f(”) 0, oo, v%,) .

If the acceptance criterion is obeyed, we state that f = k(*"); else fk(’) = (’ Dk =
2,...,N,. This way, we update the f-parameters in the 2nd block of the rth iteratlon.

ay(f&0, f0D) =

Q2.7)

2.3. What is N, and N, in Ist-stage?

We definitely do not wish to learn the number N, of R-bins that the radial range [rg, #ax)
is partitioned into; neither do we want to learn the number N, of e-bins. This reluctance
about treating N, and N, as variables stems from desired avoidance of an MCMC-based im-
plementation in which the dimensionality of the state space vector (o1, ..., on,, f2, ..., fN‘,)T
is a variable. Such an implementation will generally be Reversible Jump MCMC; we wish to
avoid it since it is a cumbersome inferential tool, and its need for the application at hand is
over-ridden by provisions in the data for deterministic choice of N, and of N,.

We choose N, to be such that if the interval [rg, 7,4, ) is partitioned into these many R-bins,
then there will be at least one datum in each such bin. At the same time, we appreciate that the
larger is N,, smaller is the error in approximating the function p(R) with its vectorised-version
p.

We could invoke similar considerations to guide our choice of N,, except that there is
the additional complication that computation of value of the energy variable, requires input
from the potential function. To acknowledge this, we first employ the N, R-bins over which
the frequency distribution of particle numbers is constructed, and treat this as proportional
to the frequency distribution of the particle gravitational mass, i.e a rudimentary indicator
of p. We then employ this vectorised version of the gravitational mass density function, in
the discretised Poisson Equation, to compute a rudimentary value of the vectorised version
(referred to as Wy = (¥ ,..., ‘-IJN,YO)T) of the gravitational potential function, where W,
is defined over the jth R-bin; j =1,..., N,. Then adding the ith observed value of V32/2
to this preliminary indicator for the gravitational potential (vector), we generate N, values
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of energy ¢. We normalise these values such that all such indicator values of energy lie in
[-1,0). The histogram of the set of such computed values of energy is constructed using N,
bins, with bounds of 0 and -1, where N, is chosen to ensure that no energy bin is bereft of a
computed energy value. With a preliminary choice of N,, a chain of MCMC is run, and the
gravitational mass density vector p learnt from it, is again employed to learn the vectorised
version of the gravitational potential, by inputting the learnt p into the discretised Poisson
Equation. Normalised energy values computed by adding observations of V32 /2 are then again
used to compute the energy histogram with N, bins, over the interval [-1,0). If the number
of data points within each energy bin is > 1, then N, is retained as the number of e-bins
in the learning exercise. We appreciate that the computational time rises super-linearly with
increase in N,, and therefore, in the first instance of choosing N, to construct the indicative
histogram of energy values, we choose the smallest N, that satisfies the constraint that no
&-bin is empty of an input.

2.4. Learning & predicting sought gravitational mass density and phase space pdf:
2nd-stage

At the end of the 1st-Stage, we obtain the originally-absent training data sets:

D,D = {(rlv pl)v M) (rNﬂ pN,-)}’

and

D, :={(&, f2), ..., (én,, fn)}-

In the 2nd-Stage, the aim is to perform supervised learning of the gravitational mass density
function and the phase space pdf, using D, and D,, respectively. We do this by treating either
function as random function, which is equivalent to saying that each unknown function is
treated as if it attains a given form, with a probability. In other words, we undertake the
Bayesian approach, in which we model a random structure with a probability distribution.
Now, a probability distribution on a space of functions is of course a stochastic process.

Thus, we treat the random function p(-) as a random realisation from an adequately selected
stochastic process, and we treat the random function f (-) as a random realisation from a
stochastic process as well. We aim to invoke generic stochastic processes to model the sought
functions. Thus, processes that are such that the realised functions are constrained to abide
by given equations, are not ideal. On the other hand, if these functions are considered to be
generated by respective Gaussian Processes, (GPs), then the only constraint that each function
has to abide by, is that the joint probability distribution of a finite number of realisations of
the function is Multivariate Normal, [23]. In other words, the we would need to set:

p() ~GP (), Kp(-, ) and fw () ~ GP(yr (), Kr (-, ),

where pu,(-) and K, (-, ) are the mean and covariance functions of the GP that p(-) is a
realisation of, and us(-) and Ky (-, -) are the mean and covariance functions of the GP that
fw (+) is a realisation of.

Then by definition of GPs, the joint of N, realisations of p(-) - namely, p;, ..., pn, - is a
Multivariate Normal, with a mean vector p, and variance-covariance matrix

X, =[Cov(pc, pa)l = [K,(re, ra)l; ¢, d € {1,...,N},

where the covariance between the pair p., p; of p-parameters, is modelled as a declining
function K, (-,-) of the difference between the inputs r. and ry, Ve, d € {1, ..., N,}. Then

1647



D. Chakrabarty Journal of the Franklin Institute 360 (2023) 1635-1671

K,(-,-) is a function that parametrises the covariance of this Multivariate Normal density,
and thereby the covariance structure of the GP that underlines the function p(-); we say that
this covariance structure is parametrised with the covariance kernel K (-, -). Many forms of
K (-, -) are possible [24]; we can for example choose the simple Square Exponential (or SQE)
form of this kernel function. Under the SQE form of the kernel,

. (I’ c—Td )2

Cov(pc, pa) = K(re,rq) == Aexp <—T>,
where the amplitude A > 0 and the length scale £ € R are the hyperparameters of this kernel
function that we learn from the data. The same values of the hyperparameters will suffice, for
all elements of the covariance matrix, i.e. Yc,d € {1, ..., N,}, as long as the p(-) function is
continuous’ However, given the training data D, alone, we cannot be confident if the sought
function is continuous; on the other hand, the distribution of the output variable in the training
set, across the design input points, can indicate if the underlying function is not continuous.
In other words, the underlying function may still not be continuous, though a finite discrete
sample of input-output pairs from the function may suggest continuity. But if the training
sample indicates lack of continuity, the function is not likely to be continuous. We will
however proceed with the SQE covariance kernel for the sake of simplicity of computation
- which we acknowledge, might compromise accuracy of predictions. We will check on this
accuracy by predicting the value of p(R) at test inputs.

As stated above, the joint of N, realisations of p(-) is the Multivariate Normal (MA\/) with
parameters p, and X,.

[p(rl)v "'vp(rNr)] = MN(M’pv Ep)s

which given our vectorised learning in the 1st-Stage, is equivalent to stating that the joint

[pla IREN] ION,—] = MN("’pﬂ Z,O)a

i.e. probability of data on the output of the sought function, conditional on g, and X, is the
Multivariate Normal density with parameters u, and X,, [25]. In fact, the only unknowns in
the mean vector and covariance matrix are the amplitude and length scale (hyperparameters):
A, and £,, where Cov(pc, pa) = K(re, ra) = Apexp(—(re — ra)?*/£2), Ve, d € {1, ..., N}.

But, this conditional probability of data is the likelihood of the model parameters given
the data, i.e. the likelihood is

[/(Apv ep|Dp) =

5 Tzfl _ 7
(p=P"Z,p p)>7 08)

1
V2 X, exp( 2
where p is the empirical mean of the p-parameters learnt in the Ist-Stage. In our application,
we actually standardise the data with the sample mean and standard deviation of the p-
parameters; this renders X, the correlation matrix, implying that A,=1.

If learning both A, and ¢,, we choose adequate priors on these variables, to then define
their joint posterior probability density, given the data D,. We choose to work with Truncated
Normal and Normal priors that are centred at the seed values of the variables, and variances
that are typically 3 to 10 times that of the proposal density used in our MCMC-based inference
on these unknowns. The seed values are chosen as 1, typically. The joint posterior pdf of

2 In an upcoming contribution, Chakrabarty & Wang suggest a judicious continuity descriptor as globally Lipschitz.
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the unknowns given data D, is then proportional to the product of the likelihood (given
in Eq. (2.8)) and the prior. We perform posterior sampling using Random Walk Metropolis
Hastings, in which £, is proposed from a Normal proposal density with a mean given by the
current value of £, and an experimentally chosen constant variance. A, if learnt, is proposed
from a Truncated Normal proposal density, which is assigned the current A, to be the mean,
and the constant variance of this proposal density is chosen through experimentation. The
MCMC-based inference allows for the learning of the marginal posterior pdf on each learnt
variable, using which, the 95% Highest Probability Density credible region (HPD) on each
learnt variable is computed, [26].

We undertake the same route delineated above, to learn hyperparameters £, and Ay (if
learnt), of the covariance structure of the GP that the phase space pdf is treated as a random
realisation from. Again, the joint probability of the f-parameters learnt in the 1st-Stage, at
design energy values, is a Multivariate Normal density, with mean u , and variance-covariance
matrix Xp = [Cov(fe, fa)] = [Kr(ec, €q)] = Apexp(— (& — €q) /62) for ¢,d € {2,...,N.}.
In our application we typically standardise the f-parameters using the sample mean and
standard deviation of the outputs in the training set Dy, rendering X, the correlation matrix
and Ay =1 then. We compute the 95% HPD on each learnt variable., given the training data
Dy.

2.5. Uncertainties in learnt training sets

We have discussed the learning of the functions p(-) and f(-) given training data
sets that were learnt in the 1st-Stage, as if p-parameters and f-parameters are learnt
in the Ist-Stage without errors. This is not true. We in fact learnt each of these pa-
rameters with their respective 95% HPD. Thus, the correct representation of D, is
{(rl’ [p(mm)’pl(max)])’ (rN’ [p(mm)’ ]i;:zax)])}’ where [p;min)’p](l71ax)] is the 95% HPD on
the learnt p;, j =1, ... ,N . S1m11arly, each f-parameter is learnt in the 1st-Stage with 95%
HPD.

When we learn the hyperparameters of the covariance kernel that we invoke to parametrise
the covariance matrix of the Multivariate Normal likelihood, we actually model the covariance

matrix as Xy + Dy, for X =" p”, “f”, where D, is a diagonal matrix, with diagonal elements
of ((p"™ — p"™)/5)2, .. ((,O(max) ("”"))/5)2 while Dy is a diagonal matrix, with diag-
onal elements of ((f,"*" fz(m’”)) /52, () — Y ("”")) /5)?. We treat the distribution

of the uncertainty learnt on any parameter as appr0x1mated by a Normal, such that the width
of the 95% HPD on the parameter is 5 times the standard deviation of this distribution of
the “noise” that we in fact learn on this parameter. Thus, the variance-covariance matrix of
the Multivariate Normal likelihood density, is augmented by a diagonal matrix, diagonals of
which are the variances of the error distribution on each parameter, [23].

2.6. Prediction of gravitational mass density and phase space pdf

The ulterior motivation behind the learning of the gravitational mass density function

and the phase pace pdf is to predict values of the gravitational mass density at test radii,
(test) (test)

o, STy, i.e radii that are not included as design radii ry,...,ry, in the training
data D,. We define r = (", ... ry®’)T. Let gravitational mass density at R = r{'*"
be p/*". Then it follows from the joint probability of py, ..., oy, Ve ](v’f”) to be
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Multivariate Normal, that the posterior predictive of pl(m'), ...,pl(\,i”’) is also Multivariate

Normal [23]:
[pl(te.vl)’ ey pl(\/ttmt)|{rc}i‘v;1, {r;le“)};v;]’ P1s -5 PN, Epv Ap] = MN(”’Z? E;)s

where

=K, (ry ) r))(K (re, ra)] + D) ' p,

and
X5 = [K, (r{ ), r8ON] = [K, (rd), r)1([Ky (res ra)] 4 D) ™ K (e, i),
where c,d €{l,....,N,}; p,ge{l,....N}; p=(p1,...,pon)"; K(-,-)=A,exp(—(- —

)? /Ef)). Thus, the mean value of the gravitational mass density is predicted at R = r;’”’)
as the gth component of the u* vector defined above, with uncertainty on this prediction
given as the (standard deviation that is) square root of the gth diagonal element of the matrix
X7 given above. This way, we predict values of the gravitational mass density function at a
test radius.

The posterior predictive of values of the phase space pdf - conditional on the test input
energies &'“", ..., sl(éf”); the design energy values in learnt training set Dy; the learnt f-
parameters; and the learnt A 7> 2s - is also Multivariate Normal. Mean and variance of this
posterior predictive are closed-form and identified. In other words, the phase space pdf can
be predicted in a closed-form way, with known uncertainty, at a test energy.

To summarise, the 2nd-Stage allows the prediction of the gravitational mass density at any
radius, and the phase space pdf at any energy.

2.7. Testing for the assumption of isotropy in the data: 3rd-stage

In the Ist-Stage, we have performed the learning of the vectorised gravitational mass
density function as p, and the vectorised phase space pdf as f, using the empirical or observed
data D. In the 2nd-Stage, we have performed the learning of the gravitational mass density
function p(R), and the phase space pdffw(¢), using the training data sets that comprise values
of the respective vectorised function.

Both sets of learning in the previous two stages were undertaken under the assumption
that the phase space that the tracer particles - observable phase space coordinates of which
we use in our work - live in an isotropic phase space W. Equivalently, we recall that the
learning in the first 2 stages has been undertaken under the assumption that the phase space
pdf is an isotropic function of the location vector X and velocity vector V, i.e. this pdf is
Sfwdl x|,/ vI],x-v), where || - || denotes Euclidean norm. This assumption is affected by
expressing the support of the phase space pdf as energy ¢, (or a function thereof); the modelled
phase space pdf then adheres to the assumption that it is an isotropic function of X and V,
(since energy = W(R) 4+ V?/2, where | X |=R and |V |=V).

[27] advance a new Bayesian test of hypothesis to test for the null

Hy : fw (X1, X2, X3, V1, V2, V3) = fw(e) against

Hy : fw (X1, Xo, X3, Vi, Vo, V3) # fw(e).

Taking inspiration from the methodology presented therein, here we forward a parametrisation
of how anisotropic the learnt phase space pdf vector is. This new parameter for quantifying
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anisotropy in the learnt (vectorised) form of a phase space pdf is a divergence measure between
the joint posterior probability density of the learnt parameters given the empirical data under
consideration, and the posterior given the “generated data”. We discuss such generated data,
and the motivation behind the formulation of this parametrisation of departure from isotropy,
before discussing implementation.

We generate a data set Dleen) . comprising the same number (N,,,) of observations as
in the empirical data* D, where said observations are on Xp, V3 and the parametrisation of
noise in the measurement of Vi, as the standard deviation S of the error density in V3. Here
D@ is generated by sampling location and velocity coordinates from the (vectorised) state
space pdf (f) learnt under the assumption of isotropy, using empirical data, at the (vectorised)
gravitational mass density (p) that is simultaneously learnt using D. So out of the 6 sampled
phase space coordinates - sampled from the phase space space pdf learnt in the Ist-Stage,
at the p learnt in the 1st-Stage - we retain only the Ny,, sampled values of the (X,, V3, S)
triad, to serve as data points in D™ 3

Remark 2.2. Data D is sampled from an isotropy-abiding phase space pdf that was learnt
using empirical data D, at gravitational mass density (and thereby potential) learnt using D,
under the assumption that the phase space pdf is isotropic. In other words, the data D
is sampled from an isotropic phase space pdf, unlike the empirical data D, which might, or
might not have been sampled from an isotropic galactic phase space pdf. It then follows that,
p and f learnt under the assumption of an isotropic phase space, using data D@, will be
more “compatible”, (or at least, as compatible) with the used data, than the p, f learnt under
the assumption of an isotropic phase space, using empirical data D. So the difference between
such a parametrised “compatibility” will inform on how much less such compatibility is with
the empirical data D, than with the generated data D", Here we parametrise “compatibility”
of a learnt set of p, f with a given data set, by the joint posterior pdf of the p-parameters
and f-parameters that are learnt using the given data set.

So the modus operandi of our computation of the compatability of a learnt p; f pair, with
a given empirical data set, is

1. That we first learn py, ..., py, and f, ..., fy, given the empirical data D that com-
prises N4, data points, using the learning scheme delineated under 1st-Stage, under
the assumption that this data is sampled from an isotropic phase pace pdf. Let the joint
posterior pdf of the sought parameters, given this empirical data be

(1, -5 PN, f2o o5 [, D).

2. Then we sample Ny, values of (X,, V3) - using Rejection Sampling - from the f that
is learnt under the assumption of isotropy, using D, at the (vectorised) potential that
is computed using the p learnt using D under the same assumption, (in the 1st-Stage).
These Njuq samples constitute the generated data D,

3. We learn py, ..., pn, and f, ..., fy, given the generated data Dy, using the learning
scheme delineated under 1st-Stage, under the assumption of isotropy. We use the same
priors on each parameter, as we do in our learning undertaken with D, and allow for

3 We recall here that observations on X; and X» are condensed into values of X, := . /Xl2 + Xzz.
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the chain to run for the same number of post-burnin iterations (Nj.; — Npyrnin). Let the
joint posterior of the parameters given the generated data be

ngeiz(pl’ «++5 PN,>» f2v ey ng|Dgen)‘

4. Compute the difference between posterior density of parameters learnt given empirical
and generated data, obtained at each post-burnin iteration of the chains run (respectively)
with D and Dy.,. We will employ a divergence measure between the posterior densities
to compute this difference.

We use a divergence measure between the post-burnin values of the (logarithm of the) joint
posterior 7 of p and f computed within the MCMC chains, run using the empirical data,
and JTAE;,L run using the generated data. (We recall that our MCMC-based inference readily
offers the logarithm of this joint posterior, but replacing (), with its logarithm, and 7 ¢ with
its logarithm, in the definition of the Kullbeck-Leibler divergence, does not make statistical

sense. Neither does replacing the posterior values with their respective logarithms in the
definition of Hellinger distance :Ziv;’j(,bumm G/ (Wr® — ,/néé,),))z/ V2, [28]). So we simply
use the sum over t = Npyrnin, Npwrnin + 1, - - ., Niger, Of the difference between the logarithm of

7" and the logarithm of 7{!) as the divergence measure §(x, 77, ) that we use in our work.

In other words, the divergence between the computed log(r ) and log(z ")) is suggested as

gen
)
v (1 ()
log (7gen)

Niter - Nburnin

d(m,m gen) =
t=Npurnin+1

However, we do not know how to interpret a value of 8(m, me,); we ask if a computed
value of §(-,-) can be considered such that we can reject the assumption of an isotropic
phase space. While a computed (7, mg,) of O implies that the phase space that the (used)
empirical data has been sampled from is isotropic, a non-zero (7, g, ) is indicative of such
phase space being anisotropic. The strength of the effect - namely, anisotropy - is computable
and interpretable in a comparative sense, i.e. we quantify how much more anisotropic the
phase space pdf is, from which a given empirical data set (say, of size N) is sampled, as
distinguished from the phase space pdf that underlines another data set (say, of size N/).

3. Illustration of the 3-staged learning strategy on real galaxy NGC4649

In our empirical illustration, we use the kinematic data comprising observed values of
Ry; of V3; and of the measurement noise in V3, (parametrised as §), of 269 PNe and 115
GCs in the elliptical galaxy NGC4649. These 2 datasets were shared with us by Dr. Kristin
Woodley. From this data on the tracked PNe, we discard the observations of PNe that move
with observed |v3] > 700km s~'. In fact, all PNe except one, appear in the original data set
to bear a V5 value in [—650, 650] km s~!; this motivates our treatment of the single PNe with
V3 < —700 km s~! as an outlier that is omitted from the data that we work with. The single
PNe with such high, absolute LOS speed in this data set, is depicted in red in the lower right
panel of Fig. 1 that displays the plot of V3 of the observed PNe against R,. Observations of
the remaining PNe are used in our work; these observations comprise the data set Dpy,.
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Fig. 1. Right lower panel: plot in black, of observed values of V3 of the PNe, against R, for those tracked PNe,
[v3| of which is <700 km s~!; observations that disobey this constraint are in red. Left lower panel: same as in
the right lower panel, except the data plotted here is for the tracked GCs. GCs with errors in the observation of V3
in excess of 100km s~! are depicted in red. PNe and GCs, observations of which are in black, comprise the data
sets Dpye and Dgc that we perform our learning with. Histograms of the observed sample of R, values in Dpy.
and Dgc, are depicted in broken and solid lines in the top left panel. In the top right panel, in black, we display
the histogram of a rudimentary proxy for the energy variable as computed using the observed V3 values, and the
potential computed in Poisson Equation using a scaled frequency distribution of the observed R, values. In broken
lines, we join the f-parameters learnt using the 9 energy bins - suggested by this histogram. All depictions in red
will appear to be in grey in the monochromatic version of the paper.

Again, from the full data set that consists of observations on GCs, we discard those
observations that bear a measurement error s > 100km s~!, where we recall that s; is the
value of this error of the measurement of V3 of the i-th GC in the data set. GCs with such
errors in V3 are depicted in red in the plot of V3 against R,, shown in the lower left panel
of Fig. 1. Observations of the remaining 115 GCs comprise the data Dge that we use in our
work. A “large” value of S, on comparable V3 value, does render attaining convergence in
the learning difficult. Hence we impose this arbitrary cutoff of 100km s~' on s. The sample
size of Dpy, is about 2.33 times that of Dgc.

For this galaxy, effective radius is suggested to be about 9.86 kpc [18]. Then 5 times
the effective radius is ~ 50 kpc, which is in excess of the r,,, in either data set that we
use. Hence in this application, g = 7. As motivated earlier in Section 2.3, we choose
the partitioning of the radial interval [ry, r,,4,) given a data set, keeping in mind that each
R-bin should be ideally populated with at least one datum, as well as that a trade-off exists
between increasing the number N, of such R-bins that we partition the relevant range of

1653



D. Chakrabarty Journal of the Franklin Institute 360 (2023) 1635-1671

values of radius R into, and the computational effort (which increases as Nf). Then for the
data Dpy., the optimal choice is for ry = 2.2 kpc, 70 = 33 kpc and R-bin width §, = 1.1
kpc. For Dge, rog = 3.44 kpc, rpae = 44.04 kpc and R-bin width 6, = 1.4 kpc are suitable
values. Histograms of the sample of observed values of R, - as included in the data sets
Dpy. and Dge - are displayed in the top left panel of Fig. 1, in broken and solid lines,
respectively. Indeed the observations of the GCs are so sparse at higher radii, that we cannot
satisfy the desired property that the histogram of R, of the observed GCs hosts > 1 data
point in each R-bin - a strict imposition of this desirable characteristic of the radial binning
will lead to unsatisfactorily fewer R-bins, or truncation of the radial range that we can learn
the gravitational mass density to. (Our latent aim is to extend this radial coverage to mimic
5R.ss of this galaxy, as closely as possible, where 5R.;; for NGC4649 is about 50 kpc).

In the top right panel of Fig. 1 we present the motivation behind choosing the number N,
of e-bins for either data set. As stated in Section 2.3, one way to generate the value of energy
is to use a rudimentary proxy for the energy variable, namely, the sum of the observed value
of V32 /2 and of W,, where W, is the vectorised version of the potential function, computed
by using a scaled frequency distribution of the sample of observed R, values in Poisson
equation; the scaled frequency serves as a proxy for a rudimentary (vectorised) gravitational
mass density. The histogram of the resulting (normalised) sample of such computed energy
values is shown in solid lines in the figure. The figure includes only the energy-histogram
for the GC data, for ease of visualisation. A chosen N, of 9 serves the purpose of populating
every ¢-bin with at least one data point. This is found to be true for the PNe data as well.
We corroborate the choice of N, =9 for the GC data, by running a chain with these many
e-bins, (and radial binning as discussed above), and note the (vectorised version of the) learnt
(normalised) density over energy - i.e. the phase space pdf - to be as depicted with the filled
circles and error bars, in red (or grey in the monochromatic print of the paper). The mean of
the learnt f-parameters are joined with broken lines to aid visualisation. It is evident that a
choice of N, = 9 does not lead to any bin being rendered empty; density in the most sparsely
populated bin is about 10~ times that of the density in the most densely populated one.

3.1. Results from Ist-stage

Logarithm (to the base 10) of the components of the p vector that we learn using Dpy,
are displayed in black, as plotted against the (logarithm of the) location of the corresponding
R-bin, in the right panel of Fig. 2; the 95% HPD on each learnt p-parameter is overplotted on
the mean value of the learnt p-parameter. The components of the f vector learnt using this
data set, are plotted against the energy value of the corresponding e-bin, where the energy
value has been normalised by —W(0). This plot is depicted in the left panel of this figure.
Components of p and f that are learnt using data D¢, are shown in red (or the grey in the
monochromatic version of the paper) in the left and right panels, respectively.

Both chains that are run with the two data sets are started with a seed p(R) function that
is plotted in green in the right panel; this function is pgq(r) = K/(10 + r?)!, where the
constant K = 10!, though other values of this constant that are 6 decades apart have been
noted to yield the same results. Again, the seed for the learning of the f-parameters is a
horizontal line, i.e. the seed f(¢) function is a uniform density. This is depicted in green in
the left panel.

We also include the logarithm of a scaled (truncated) Gaussian in broken lines in the
left panel, where this fit curve is 0.3AN (—0.9, 0.175%); this is the optimal fit to the learnt
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Fig. 2. Right panel: plot of logarithm (to the base 10) of the p-parameters learnt using Dpy, against logarithm of
the radius, (depicted in black), while the p-parameters learnt using data Dgc are in red. The 95% HPDs on each
learnt parameter is overplotted on the mean value of the learnt parameter that is depicted in filled circles. Left panel:
logarithm of the f-parameters learnt using the data comprising the observations of the PNe and the GCs are plotted
in black and red respectively, against the energy variable that is normalised with —W(0). The seed gravitational mass
density function and the seed phase space pdf that we start each chain of MCMC with - with either data set - is
depicted in green. In the broken lines we display a Gaussian (with mean of -0.9 and variance of 0.1752) in this
normalised energy variable, with this Gaussian scaled by 0.3. All depictions in red will appear to be in grey, and
depictions in green in lighter grey, in the monochromatic version of the paper.

f-parameters given the two data sets. It is clear that a (truncated) Normal is not a good fit to
all f-parameters learnt with either data set. A scaled Gaussian is a better fit but even then,
it fits the f-parameters learnt at less negative energy values less well than parameters learnt
at lower energies; a scaled truncated Normal is a better fit to the results learnt using the data
on the GCs than results obtained using the data on PNe. So an important indicator of these
results is that there is no apriori motivation behind modelling the galactic phase space density
to be a truncated Normal.

Traces of the learnt p-parameters and f-parameters display convergence. We display traces
of the p-parameters learnt using Dpy, in Fig. 3; these traces display convergence. Again, the
f-parameters learnt using Dgc are shown in black in Fig. 4, with the traces of f-parameters
learnt using Dpy,. overplotted in green. Again, these traces also display convergence, offering
confidence in our learning of the p-parameters and the f-parameters.

3.2. Learning the p(-) function and the phase space pdf and predicting - implementation of
the 2nd-stage

Learning the p-parameters and the f-parameters using the data sets Dgc and Dpy, provides
the training data sets D{°); D}Gc) and D{PN); D;P Ne) " respectively. Then we employ these
training sets to learn the gravitational mass density function and the phase space pdf, by
modelling these functions as realisations from respective GPs. Covariance functions of the
underlying GPs are kernel parametrised, and the (length scale and amplitude) hyperparameters
of these kernels are learnt using these training sets that are generated in the 1st-Stage.

In Fig. 5 we see results from the learning of the multivariate Normal likelihood that results
from the modelling of the sought p(-) and fw(-) functions with respective GPs, using the
training data that are subsets of D{®“) and D;GC), respectively. Trace of the length scale
hyperparameter of the covariance matrix of the Multivariate Normal likelihood is depicted for
each functional learning, in the left panels of the figure. The training data used for the learning
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Fig. 4. Traces of the f-parameters learnt using data Dgc in black, with traces of the corresponding f-parameter
learnt using data Dpy, overplotted in green (or grey in the monochromatic version of the paper).

of either function comprises p-parameters and f-parameters that are respectively plotted in
black, in the right panels of Fig. 5, against logarithm of the radius, and against logarithm
of the negative of values of the energy variable. The data points in either D{°) or D(fGC),
that are not plotted in black in Fig. 5, are the test data points. We undertake prediction of
the mean value of the learnt p(-) and fy (-) function, at the inputs of the test data points;
such predicted values of the respective function are plotted in red, with 2.5 times the standard
deviation in the value of the function at the given test input overplotted on either side of the
predicted mean. (Here, we choose to use 5 times the predicted standard deviation as the width
of the error bar, drawing motivation from the standard result that for Normally distributed
variables, there is 95% probability for the variable value to lie within a interval of width 2.5
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Fig. 5. Traces of the length scale hyperparameter £,, that is learnt using the training set that is a subset of D;,GC),

is plotted in the top left panel. Again trace of the £ learnt when using a training set that is subset of DO is
displayed in the lower left panel. In the top right panel, log of those values of p(-) that comprise the training data
set that is a subset of D;,GC), are plotted against log of design radii. Predictions of the mean functional value at
test radii, performed following the learning of this function, are shown in red filled circles, with an error bar of
width given as 5 times the predicted standard deviation of the functional value. The true value of the function at the
corresponding test radius is plotted in green. Forecasting is also performed at a radius that is more central in the
galaxy, than the innermost training data point; this is shown in red. In the lower right panel, we plot predicted values
of the learnt phase space pdf, at test energy values, using a training set that is a subset of D). The predicted
mean values are shown in red circles with 5 times the predicted standard deviation overlaid in red. The true value
of the pdf is overplotted in green broken lines. All depictions in red and green appear as grey and light grey in the
black and white version of this paper.

times the standard deviation, symmetrically about the mean of this distribution). However, the
true value of the function is known to us - as one of the outputs in D;)GC) or D(GC), that we
do not use as part of the training data employed towards the learning+prediction exercise that
we undertake here. This known value of the p(-) or fy(-) function at a test radius/energy,
is then overplotted on the predicted value of the function, in green. We also perform one
forecasting - at a test radius that is less than the innermost design input. The uncertainty in
our forecasting is expectedly higher than that of prediction. GP-based forecasting is also in
general of inferior quality to prediction following GP-based learning; our results corroborate
these expectations [29].

We use the capacity for predicting at test inputs, to predict values of the learnt function
Jfw () at multiple (100) values of the energy. The results are shown in Fig. 6. Logarithm
(to the base 10) of the predicted value of the function is plotted against logarithm of the
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Fig. 6. Right panel: logarithm of the predicted values of the function fw (-) learnt using the training set that is a
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is fit to these predicted values; it is then overlaid on these predicted functional values (in green or grey in the
monochrome version of the paper). Left panel: similar to that in the right panel, but here, the predictions follow the
phase space pdf learning undertaken with GC data.

negative of the test energy at which this functional value is computed. A truncated Normal
density that is scaled by the factor y is fit to the predicted functional values; the Gaussian
with mean of about -3x 107 km? s~2 and standard deviation of 0.5701x107 km? s~2, scaled
by a factor of y=1.1786, is found to be the best fit to the values predicted using the training
data that comprises observations of GCs, On the other hand the scaled Gaussian that best fits
the predictions made after learning using PNe observations, is the Gaussian with a mean of
about -3.67x 107 km? s=2 and standard deviation of 0.5251x 107 km?2 s~2, scaled by a factor
of y=1.0856. It is seen that the incompatibility of the truncated Normal density with the
learnt phase space pdf is not just in the demand for a non-unit scale factor y, but also in the
departure of this form from the pdf as learnt using the kinematic data.

3.3. Results from 3rd-stage

In Fig. 7, the lower panels display plots of the V3 values of the PNe (in the right) and
GCs (in the left), against the observed values of R, of these particles. These are the data
points in the data sets Dpy, and Dgc, respectively, and are displayed in black circles. On
these, the data points of the corresponding generated data set, are overplotted in red cross.
The generated data D}%f,? is constructed by sampling X, X», V3 from the f learnt using Dpye,
at the potential computed with the p learnt using Dpy,, in addition to the measurement error
in V3. Similarly, the generated data set Dgg’) comprises sampled X, X5, V3 values, generated
using Rejection Sampling, from the f learnt using Dgc, at the potential computed with the
p learnt using Dgc, in addition to the measurement error S in the values of V3. The top
right panel shows the traces of the logarithm of the joint posterior 77V¢(-|-) of the f and p,
given the empirical PNe data Dpy, (in black), learnt under the assumption of isotropy, and the
posterior 77>V (-|-) of the same parameters given the generated data D" (in red). A similar

plot is displayed on the top left, in which the trace of the log of posterior 7 “©)(p, f|Dgc)
is plotted in black, while that of 75 (p, f|Dgc) is plotted in red.

Using these traces of the joint posterior computed given the empirical data set and the
corresponding generated data set, we compute the value of the divergence (-, -). We find that

8(mPNe) ng(glNe)) A 259.77, while 8(r(©©), 7(G9)) ~ 44.66. Thus, we identify the empirical

gen
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Fig. 7. Lower right panel: V3 values in data Dpy, plotted in black, against values of R, =, /Xl2 +X22 in this data

set. Values of V3 are plotted in red against the corresponding value of R, in the generated data set D;,g]f}';). Lower

left panel: same as in the figure included in the lower right panel, except here, the plots are of points in the set

Dgc and the generated data of the same size, namely, D(G*”'é"). Top right panel: trace of the joint posterior of the

p-parameters and the f-parameters, learnt using data Dpy, in black, while the joint posterior of these parameters

learnt using D;;g;f}';) is in red. Top left panel: same as in the figure in the top right panel, except here, the traces of

joint posteriors of learnt parameters given Dgc and Dgg") are shown in black and red, respectively.

PNe data set Dpy, to deviate from the assumption that it has been sampled from an isotropic
phase space pdf, more than the data comprising the GC observations, namely the data Dgc.

Then indeed, the anisotropy parameter - defined as the ratio of the 2nd moment of the
tangential component of the velocity vector to that of the radial component of the velocity
vector, subtracted from 1, [10] - is likely to bear a higher value for the PNe data, over
the GC data. However, our method does not offer a value of this anisotropy parameter. Our
parametrisation of the anisotropy in the phase space that a given set of empirical data is
sampled from, informs on the departure from an isotropic form, of the pdf of the phase space
coordinates that live in this phase space.

Our parametrisation of anisotropy, offers information on the anisotropy of the phase space
pdf that the empirical data D; is sampled from, in comparison to the anisotropy of the pdf
that another data Dy; is sampled from. If however, we wish to offer information on data D;
in isolation - specifically on the anisotropy of the underlying pdf that D; is sampled from -
our identification of such anisotropy via the parameter §("), 7)) does not appear possible,
(though a discussion of the same is suggested in the conclusive section). Thus, our method
currently offers only a comparative quantification of anisotropy of the phase space pdf that
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underlines a data set, in reference to the anisotropy borne in the density that underlines another
data set.

Remark 3.1. It will be desirable to reconcile the computed §(-, -) divergence measure, with
the astronomically-motivated anisotropy parameter that is used in Jeans equation. Here, we
have not been able to motivate a transformation of §(-, -) that offers a meaningful connection
with the anisotropy parameter. However, a possible means of achieving the same is discussed
in Section 5.

4. Comments on results obtained from empirical illustration

In this section, we discuss the main takeaway from the implementation of the 3-staged
strategy to learn the gravitational mass density function, along with the phase space pdf, of
the galaxy NGC4649, using data on observable phase space coordinates of 2 different types
of galactic particles.

4.1. Phase space pdfs learnt using PNe data distinct from that learnt using GC data

The phase space pdf that is learnt using observations of tracked PNe, is not consistent with
the pdf learnt using the GC data, within the learnt 95% HPDs. This reinforces the result that
the f-parameters learnt using the 2 different data sets in the 1st-Stage, are different within
95% HPDs. We see that the phase space pdf learnt with uncertainties of 95% HPDs, using
the PNe and GC data sets, are distinct.

4.2. Distinction between phase space pdfs that PNe and GC data are sampled from -
implications

The discrepancy between the learnt phase space pdfs feeds into the worry that the phase
space pdf learnt using either data set - which we expect to interpret as the phase space pdf of
the galaxy - is not consistently learnt for this galaxy, given the two data sets. One suggestion
for a resolution to this worry is that it might be that the assumptions undertaken to permit the
learning, are differently adhered to, under the two data sets, s.t. the inconsistent results are
due to such differential obeying, (by the observed PNe and GC samples), of the undertaken
assumptions about the galaxy having equilibrated - i.e. behaving as an autonomous dynamical
system - and/or about the galactic phase space being isotropic.

Remark 4.1. If differential adherence to the assumption of isotropy is true,

« then it follows that the learnt fv(VGC)(-) and the learnt fv(‘,P N e)(-) functions are incorrect
representations of the galactic phase space pdf.

» The outcome of our learning is that the phase space pdf that underlines the GC data is
different - by departing less from the assumption of this pdf being isotropic - compared
to the pdf that the PNe data are sampled from. Such differential departure from the
assumption of isotropy confirms that the phase space pdf that the GC data are sampled
from is distinct from the pdf that the PNe data are sampled from.

Hence the phase space of this galaxy is not a monolithic structure, but partitioned into - at
least two - sub-volumes, the distributions of the phase space vectors in which are distinct. One
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of these sub-volumes hosts the PNe and the other the GCs that are observationally tracked
in this galaxy.

Thus, our learning adduces evidence towards this partitioned picture of the galactic phase
space on NGC4649. The galactic phase space pdf is composed of (at least two) distinct basins
of attractions, and the orbits of the galactic PNe population and the GC populations live in the
respective basins. It then follows, that the observable phase space coordinates of the tracked
PNe that comprise the data Dpy,., are sampled from the phase space pdf that is generated
by the orbital distribution in the basin of attraction of the galactic phase space, that includes
orbits of the tracked PNe. Similarly, Dgc is sampled from the pdf that is generated by the
orbital distribution of the basin of attraction that the tracked GCs are a part of. A galaxy -
as a complex and multicomponent dynamical system - is likely to have a phase space that
is marked by multiple attractors, and the current proposition of the same for the phase space
pdf of NGC4649, is likely. Of course, if this is true, then the phase space pdf that the PNe
data are sampled from - and therefore learnt with - will in general be unequal to the pdf that
is learnt with the GC data, and one manifestation of this difference in the native phase space
densities, will be in their differential anisotropies, in general.

4.3. Gravitational mass enclosed within a radius

Computing the gravitational mass that is enclosed within a given radius, by numerically
integrating over the vectorised gravitational mass density function, supplemented with pre-
dicted and forecast density values, is not a robust computation. Different implementation of
the Riemann sum - that approximates the integral

r

4 / s*p(s)ds
s=0

that gives value M(r) of the mass enclosed within radius R = r - yields different M (r).
This owes to the very steep shape of the gravitational mass density function at low radii,
compounded by the large (uniform) width of the R-bins that we use in our learning, given
the available data.

We found a useful way of addressing the steepness of the density at low radii, by fitting
a parametric function to the logarithm of the learnt p-parameters, plotted against log of the
design radii. In the right panel of Fig. 8§ we display the trend in the log of the uncertainty-
included p-parameters learnt using the GCs data, against log(R). The inner few p-parameters
betray a linear trend in this plot, i.e. a power-law relation is anticipated for the gravitational
mass density function - between & 4kpc and =~ 29kpc. We realise that such linear fits to
the learnt p-parameters in this radial interval can have the maximal and minimal slopes,
as depicted by the broken straight lines (in red), in the right panel of Fig. 8. These fits
then suggest the uncertainties in the mass values enclosed within the interval of = [4, 29]
kpc in this galaxy. To the maximal possible value of this computed enclosed mass in the
computed uncertainty interval, we add the value of the gravitational mass that is distributed
uniformly within the sphere of radius of about 4 kpc, at the corresponding uncertainty level,
to produce the uncertainty-included gravitational mass values enclosed within 29 kpc. This is
[8.81 x 10'2, 1.37 x 10"*] M. where the mass enclosed within the inner 4 kpc of the galaxy
lies in the interval [1.11 x 102, 3.61 x 10'2] Mg.

1661



D. Chakrabarty Journal of the Franklin Institute 360 (2023) 1635-1671

e e IR e
~ 10 ‘ 1 ~ w0 1
A LS R = =
< r = Etﬁ;i- ] 2, r Afﬁ; § ]
= 9l Bf-ﬁ 4% 9 o935, .
o r ™~ ® r 3, ]
s ~ = F ]
= [ Lo ] g [ ]
o8 = S8 -
g r ] g r ]
) F b & F 1
o SR
2 ~L S ~L

g bl I

0.6 0.8 1 1.2 1.4 0.8 1 1.2 14 16
log(Radius in kpc) log(Radius in kpc)

Fig. 8. Left panel: logarithm of the vectorised form of the gravitational mass density parameters - or p parameters -
learnt with the empirical GC data, plotted against logarithm of radius. The maximally and minimally sloped straight
lines fits to this data, in the radial interval of about 4.4 to 29 kpc, are shown in the broken red lines. Right panel:
same as in the left panel, except p-parameters learnt using the empirical PNe data are plotted. Linear fits to these
data in the radial interval of about 3.3 to 22 kpc are shown in red lines.

From the p-parameters learnt using the PNe data, linear fits appear possible within the
radial range of about [5.5, 22] kpc, to the values of logarithm of the learnt p-parameters, and
log of radius R. These maximally and minimally sloped linear fits are depicted in the left
panel of Fig. 8. Adding the result on the gravitational mass enclosed within this radial interval,
to the values relevant to radial intervals: between 5.5 kpc and r,,;, = 3.3 kpc for this data
set; < 3.3 kpc (by spreading mass uniformly at R < r,,;,), we get that uncertainty-included
gravitational mass included within 22 kpc is [4.6 x 10'2, 1.29 x 10'3] M. Gravitational mass
enclosed with 3.3 kpc from learning done with this data set, is [3.3 X 10'2,9 x 10'%] Mg.
Thus, the enclosed mass values learnt with both data sets concur within uncertainties.

When comparing results obtained with a given kinematic data set, but with different meth-
ods, we advocate comparison of the gravitational mass density functions - or values of the
same learnt/estimated in the different methods at fixed radii - if the density is available. This is
preferred to a direct comparison of learnt/estimated values of the gravitational mass enclosed
within a given radius. A comparison of the gravitational mass density values helps avoid the
accumulation of the uncertainties that render the enclosed mass values more uncertain; in
a method like ours, in which the density is implemented to compute the mass, numerical
integration over the uncertainty-included, non-linear density function leads to this uncertainty
inflation. There is the additional uncertainty in the enclosed mass, stemming from the lack of
information in the region inner to the inner-most radial bin.

4.4. Coincidence of gravitational mass density functions learnt using 2 data sets & possible
implications

It is noted that even while the phase space pdfs learnt with the two data sets are distinct,
the gravitational mass density functions overlap within the learnt 95% HPDs. We note that
in NGC4649, data on distinct particle types imply distinct phase space pdfs - and therefore
distinct moments of the learnt phase space pdfs - while implying the coincident gravitational
mass density functions. This is similar to what [30] note for this galaxy, when they refer to
the possibility that “the PNe and GCs trace different kinematics”.
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It then follows that gravitational mass distribution in this galaxy cannot be computed as
produced self-consistently. Such is clear from consideration of the Jeans equation, which
results from computing the Oth and 2nd order moments of the phase space pdf, using the
Collisionless Boltzmann Equation or CBE, to connect spatial derivatives of such moments
to the radially-cumulative gravitational mass distribution M (R). So in general we expect that
inputting unequal phase space pdfs in Jeans equation will imply distinct mass distributions. In
contrast, that coincident mass distributions are produced from the inputting of the distinct pdfs
for this galaxy, appears to imply that the gravitational mass distribution does not follow self-
consistently from the phase space pdf. One - perhaps less interesting - possibility is that the
consistency that is noted between the cumulative gravitational mass values computed using
the p-parameters learnt given the data set on the two types of tracer particles, is only an
artefact of the largeness of the uncertainties on the computed mass values, caused by the size
of the 95% HPDs learnt on the p-parameters.

4.5. Model checking

A check of how good the model and results are, in the available empirical data, can be
answered by checking for overlap between such empirical data, and data that is generated
using the models learnt given such empirical data. In other words, we can perform model
checking in our work, via our consideration of the generated data above. If the learnt models
and results are compatible with the given data, then data that is generated from the learnt
models, will concur with the empirical data. If such generated data does not concur with the
empirical data, then the model assumptions could be wrong, and/or results of the analysis
could be wrong.

We have already generated data from our learnt model of the phase space pdf, at the
respective learnt gravitational mass density function - both learnt given an empirical data on
one type of tracer particles in this galaxy. We have found (in the 3rd-Stage) that the generated
and empirical GC data are closer to each other, than the generated and empirical PNe data.
In other words, our results obtained with the GC data are less circumspect, than our results
reported using the PNe data.

4.6. Non-normal nature of learnt pdfs

A Normal approximation for the phase space pdf is in fact worse when we perform the
learning with PNe data than GC data - with the scaled Normal form unable to fit fw ()
learnt with the PNe data for energies > -2x 107 km? s~2, while this parametric form deviates
from the function learnt using the GC data for energies in excess of about -1x107 km? s~2,

approximately.

4.7. Anisotropy and non-normality

One interesting observation that we have noted above is that the Normal is not a good fit
to the phase space pdf learnt with either observed data set. In fact, it is a scaled (truncated)
Gaussian that is an approximate fit to the mean value of the pdf predicted at a given energy,
subsequent to our learning of the parameters that specify the Gaussian Process - a sample
path of which is the sought pdf, as per our modelling strategy.
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Additionally, we find that such a scaled Gaussian is a worse fit to the pdf results that
are learnt using the PNe data than results obtained using the GC data. The fit is worse at
higher energies. At the same time we recall that we have learnt the phase space pdf that
the empirical PNe data are sampled from to be more anisotropic than the phase space pdf
that the empirical GC data is sampled from. This motivates curiosity on whether departure
from (scaled) Normality at higher energies, is the cause/effect for the phase space pdf - that
underlines the PNe orbital distribution in the galaxy - to be anisotropic. From the point
of view of the Central Limit Theorem, there is no a priori reason for this distribution to
be Normal as the galactic particles interact gravitationally, i.e. particles are not mutually
independent, but there exists correlation between the phase space variable vector of one
particle and another. So we take away the lesson that a (truncated) Normal description of
a phase space pdf that is learnt/predicted using empirical data on a certain type galactic
particles, is incorrect, but adopt a data-driven answer to the question that is italicised above.
A future simulation study is suggested to explore the connection between non-Normality and
anisotropy of a learnt phase space pdf.

4.8. Comparison of results on modelling of the gravitational mass distribution in NGC4649

Using kinematic data of nearly 300 PNe, measured using the FORS2 Cassegrain spectro-
graph of the ESO Very Large Telescope unit 1 (Antu), [19] report that the mass of the dark
matter halo component in their model, within 3 times the effective radius of this galaxy, is
4 x 10'' Mg, which is @almost one-half of the total massg of about 1.15 x 10'> Mg within
3R.sr in their model. They state this total mass to be similar to that estimated using globular
cluster kinematic data; observations from XMM-Newton; and Chandra observations. We recall
that effective radius for this galaxy is suggested to be about 9.86 kpc, [18]. Cambell [31] re-
ports a mass of about 1.2 x 10> Mg to slightly in excess of 2 x 10'> Mg, as enclosed
within about 4.3 times the effective radius, using tracer kinematics data input to different
models, the anisotropy and form of the potential of which are varied using pre-chosen values
of parameters that distinguish different potential forms, (and anisotropy), from each other. In
our model-free learning of the gravitational mass density function, as stated above, the mass
enclosed within 29 kpc, using GC data lies in the interval [8.81 x 102, 1.37 x 10"3] Mg,
while that within 22 kpc, learnt using the PNe data is in [4.6 x 10'2,1.29 x 10'3] M. We
have stated in Section 4.3 why it is less inaccurate to compare values of gravitational mass
density function learnt/estimated across different methods, that the enclosed mass. Das et al.
[30] state that “averaging all the GCs velocity dispersions” estimated using GC kinematic data
in the NMAGIC method, yields enclosed mass values - enclosed within an annular region ex-
tending from a radius of about 21.8 kpc to about 36.9 kpc - that “correspond to the values fit
by Shen & Gebhardt (2010)”, where Shen and Gebhardt [32] offer an enclosed mass estimate
of about 10'2 Mg. Das et al. [30] advance that their results indicate that “it is possible that
the PNe and GCs trace different kinematics” in NGC4649. We find the gravitational mass
density learnt using the PNe and GC kinematic data sets to be consistent within the learnt
95% HPDs, though the phase space pdfs that we learn using the data on the two types of
tracers, are distinct.
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5. Conclusion

This paper offers a 3-staged protocol to learn the gravitational mass density, and phase
space probability density function in real galaxies, using noisy, small-sample kinematic data
that are available, on galactic particles that trace the galactic gravitational field. The for-
mulation and implementation of said protocol adopt the approach that any such galaxy is
a sample point in a statistical sample; the only galaxy-specific information invoked within
this implementation is the accessed kinematic data. Thus, the method allows for automated
- and yet reliable - learning of the distribution of gravitational mass in a galaxy, without
this result being offered as predicated upon details of the (parametric) model employed to
model the mass distribution in the galaxy. In addition, the phase space pdf is learnt, while
the major assumption of phase space isotropy that is made in the learning achievable within
this approach, is tested within the available data.

It is proposed that the method be converted into a black- box for astronomers usage; this
will be addressed in a future contribution. The methodology discussed here, can be generalised
to include radial and energy bins the widths of which are logarithmic, than constants.

An added advantage of the method is that it can accommodate results on summaries of
the mass distribution learnt/estimated using other techniques, and that too, the astronomer can
impose their confidence on such a summary, within the prior structure used in the learning
of the p-parameters. For example, an estimate of the mass enclosed within a given radius
may be available for the considered galaxy, though the astronomer may be cautious about the
usage of this enclosed mass value, given their lack of conviction regarding the technique used
to attain this enclosed mass value. Then the relevant sum over all the relevant p-parameters
can be computed at every iteration of the MCMC chain that is run to learn the parameters,
and a Gaussian-shaped prior pdf on this sum is designed, with a mean given by this measured
enclosed mass, while the prior variance is maintained as an adequately-chosen large value, to
reflect the weak belief in the centring of the current enclosed mass on this measured enclosed
mass. On the other hand, if information on such enclosed mass is obtained from a different
technique - say lensing measurements, if available for this galaxy - then the astronomer may
have stronger faith in the available enclosed mass. Then the (Normal) prior of the relevant
sum of the p-parameters is designed as centred at this given enclosed mass, with a smaller
value of the prior variance, compared to that used in the previous example. Using such extra
information - if available - will guide the learning of the parameters better than if such
information is not used in the learning.

From a purely inferential point of view, this application offers a clear example of how
physically-motivated constraints of positivity and monotonicity can be imposed on the sought
functions, purely through MCMC.

The ultimate aim of supervised learning of the spatial density function of the gravitating
mass of all matter in the galaxy - as well as of learning the pdf of the phase space vector
variable - appears unattainable, given that the training data that is the requisite for such
learning is not available at the outset. Said training set would comprise pairs of design value
of the domain variable of the sought function, and values of the function computed at this
design input. So the first stage of our protocol is dedicated to the generation of the originally-
absent training sets - undertaken by embedding the gravitational mass density in the support
of the phase space pdf, within a vectorised approach to each sought function. Using the thus
generated training sets, we then learn the gravitational mass density function and the phase
space pdf, given the tracer particle kinematic data at hand. The generation of the training sets
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are undertaken within the model assumptions that includes isotropy of the phase space that the
empirical kinematic data is sampled from; at the last stage of this protocol, we quantify this
departure of the phase space that such an empirical data set is sampled from, from invariance
to rotation, i.e. to isotropy. We illustrate the method on the 2 empirical data sets that are
available to us, for the galaxy NGC 4649.

Learning with these 2 data sets in this example galaxy has indicated that the phase space
of this galaxy has perhaps not equilibrated in its evolution and/or the galactic phase space
is split into distinct sub-volumes that are not fully mixed, at the time when said data sets
were observed, with each of the 2 available empirical data sets sampled from a distinct sub-
volume of this galaxy. Further to the above, self-consistent solutions for the gravitational
potential may not be possible in this galaxy. Neither result is surprising given the complex,
multi-component nature of the dynamical system that a galaxy is.

A future endeavour is planned, to undertake reliable and with-uncertainty prediction of
the anisotropy parameter of a newly observed galaxy, by learning the functional relationship
between the anisotropy parameter, and the divergence measure (-, -) - that informs on how
deviant the observed galaxy is from the assumption of phase space isotropy. An in-depth
simulation study is anticipated, such that we sample synthetic data sets Dy, ..., D, from n
distinct known phase space pdfs and learn the sought p-parameters and f-parameters in each
of these cases. We then compute the § (-, -) divergence measure for each case, between the joint
posterior pdf of all parameters given the empirical data and generated data sets, in each of the
n cases. Thus, for the i-th synthetic empirical data set D; - that is sampled from a phase space
pdf model ascribed the anisotropy parameter f; - we now know §(-,-), Vi=1,...,n. Then
using the {(8(:, ), B;)}_, training set, we can learn the relationship between the anisotropy
parameter and this divergence measure. That way, for a future galaxy for which §(-,-) is
computed - as delineated in the method presented here - we can predict what its anisotropy
parameter is.
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Appendix A. Learning vectorised gravitational mass density and phase space pdf
functions using synthetic data

We present results of learning the vectorised gravitational mass density function, (i.e.
the vector p), and the vectorised phase space pdf, (i.e. f), using synthetic data sets
that are simulated from respective densities. In fact, we simulate a data set Dy, =

{1, x2D 430 gj)}Naae  with 270 observations of R, = /X2 + X2; V3; and error in the
observed V3, from a basal phase space pdf fis(x, v). Here, this pdf is an isotropic function of
the location variable X, and velocity V, where this known isotropic density f,,(x,v) - that is
a function of energy & = W(r) +v?/2 - is defined using the basal potential W(R), which we
model as a Plummer potential. This isotropic basal phase space pdf fi,(x,v) is proportional
to exp(—8/2002) and W(R) = My/\/R> + R? with the arbitrarily chosen values of parameter
My set to 4 x 10" Mg; of R. to 1 kpc; of op to 219 km s7!. G is Newton’s Universal
Gravitational constant that is known. The true gravitational mass density function is then the
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Fig. Al. Left lower panel: plot of the p-parameters learnt using the synthetic kinematic data set Dy, that is simulated
from an isotropic phase space pdf at the Plummer potential. The true Plummer gravitational mass density function
computed using the used Plummer potential in the basal model, is depicted in red, (or grey in the monochrome version
of the paper), at radial bins used in the learning. Mean of the learnt p-parameters is in black filled circles and the
error bars are the learnt 95% HPDs. The MCMC chain used for this learning is initialised with p-parameters that are
computed as values of the &seedg density function - depicted in green (or light grey in the monochrome version)
- at the corresponding radial bin. The functional form of this seed density function and the Plummer density are
discussed in the text. Right lower panel: plot of the f-parameters learnt using this data Dyy,. The seed pdf is depicted
in green (or light grey). Left upper panel: as in the lower left panel, except these p-parameters are learnt using the
data D;fzn) that is generated from the simulated galactic model, the gravitational potential of which is computed
using the p-parameters learnt using Dy, and the phase space pdf of which is represented by the f-parameters learnt

using Djs,. True values of the p-parameters are in red (or grey). Right upper panel: f-parameters learnt using data
D(gen)

Iso

Plummer density GM,/./(R? + R?)3. The data is sampled s.t. the observed values of R, lie
in the interval [0,8] kpc. Results of learning the vectorised gravitational mass density, i.e. the
p vector, and the vectorised phase space pdf f - using the data Dy, - are presented in the
bottom left and right panels respectively, of Fig. A.9. To undertake this learning we use N,
=27, with R-bins that are 0.3 kpc wide each. In this learning, we use N, = 12. These binning
details are primarily motivated - as discussed in Section 3 - to ensure that each R-bin and
e-bin has at least 1 observation within it. Consistency between the learnt and true values of
the p-parameters is indicated in this figure.

Multiple choices of the seed, or the initial form of the gravitational mass density function
were used; these all led to consistent values (within the learnt error bars) of each p-parameter.
The traces of the parameters displayed in Fig. A.10, indicate convergence, suggesting that
the chain is irreducible (and aperiodic), which indicates lack of dependence on the initial
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Fig. A2. Traces of various p-parameters that are learnt using the data Dl(ff,"). The top right panel depicts the trace

of the joint posterior of all the parameters that are sought, given this data.

choices of each parameter that we attempt learning, given the data D,y,. The seed gravitational
mass density displayed in Fig. A.9 to learn the p-parameters given data Dyy,, is the function
1.8 x 10''/(1 + R?/4)°. The seed phase space pdf used to learn the f-parameters given data
Dy, is chosen to be a uniform density with amplitude 0.3. The p-parameters and f-parameters
learnt using the simulated data Dy, under the assumption that the phase space is isotropic,
are used to sample the generated data set D;f;"). The p-parameters and f-parameters learnt
using this generated data set - again under the assumption of an isotropic phase space pdf -
are displayed in the top panels of Fig. A.9. The seeds for learning the components of the p
and f vectors using the generated data set D}ff)"), are the respective vectors learnt using the
simulated data Dyg,. Other forms of the seeds, including those similar to the aforementioned
functional form, are also used. Again, the learnt parameters are then consistent within the
95% HPDs, with those displayed in the top panels. This is only to be expected since the
traces of the learnt parameters display convergence, implying that the chain is aperiodic and
irreducible. In other words, the chain bears the ability to move to any part of the state space,
having started from any other point in state space [20].

The proposal of each p-parameter is undertaken to ensure adherence to the monotonicity
and positivity constraints on any such parameter, as discussed in Section 2.2. Similarly, the
proposal of the f-parameters follow the discussion in that section. The prior on each parameter
is chosen to be a Normal prior, the mean of which is the seed value of the parameter and the
standard deviation of which is about 2.5 times the scaled seed value. This scale is the same
for all p-parameters, which is different from the scale that is relevant in the learning of all
the f-parameters.
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Fig. A3. As in Fig. A.1, except the p-parameters and f-parameters in the left lower panel and right lower panel
respectively, are learnt using the synthetic data D5 that is simulated from an anisotropic phase space pdf at the
Plummer potential. p-parameters and f-parameters in the left upper panel and right upper panel respectively, are

learnt using the data D/(f,;';z) that is generated by sampling data points from the f-parameters learnt using Dapiso at

the potential computed using the p-parameters learnt using this data.

Again, we simulate 270 data points on R, V3, with observational error on V3, by simu-
lating from a basal phase space pdffaniso(x,v) that is an anisotropic function of the location
variable X and velocity variable V. This anisotropic basal phase space pdf iS faniso(X, V)
exp(—e/203) exp(—L?/(R203)) and the basal potential is W(R) = —GM,//R> + R2. The
model parameters My, R., oy are as used in the case in which data was simulated from an
isotropic phase space pdf, while the parameter R, is set as 4 kpc. Results of learning the
p-parameters and f-parameters using data Dg,;,, are depicted in Fig. A.11. The proposal and
priors used to run the MCMC chain using this data are as used when learning given data
D;,,. Seeds for the p and f vectors in the learning with Dy,;, are also the same as those
used when learning with data Djy,,. The p and f vectors learnt using D5 are input to a
rejection sampling algorithm, and another data set - called DX’:;';)) - comprising 270 number
of the observables, is generated.

To predict the level of anisotropy of the phase space of the galaxy under consideration,
we also computed the divergence measure 6(-, -) between the (logarithm) of the joint poste-
rior probability density 7y (-|Djs) of all p-parameters and f-parameters given data Dy,
and the joint 74, (-|D¥”) given the generated data D“”. We then compare this value
of the divergence measure to the same computed given Dy, and D/(‘fi';i. We find that
8 (M50, 5™ 2 0.03237, while 8 (Taniso, 757 A 0.1046.
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Appendix B. Computing gravitational potential from gravitational mass density

The gravitational potential W(R) at radius R, is computed by inputting the gravitational
mass density function p(R) in Poisson equation. It is easier to appreciate this computation of
the potential using the gravitational mass M (R) that is enclosed within the sphere of radius
R,ie. M(R) = fx R:0 47 p (x)x%dx and G is the known (Universal Gravitational) constant. Then

for the N, number of radial bins used in our learning - with each bin of width §, - at R=r,
—GM(r)
Y(r) = ———, where
r

t
M) =Y 4—”[s33§ — (s — 1)’8%] 0, + 47”[R3 — (18, ] piy1,

3

s=1

for r € [t5,, (t + 1)6,),

N 4
M) =Y —[s°8 — (s — 1)°82]p,, for r > N5,

; ol le

4 4
M(r) = ?[r 11, for r €0, 4,]. (B.1)
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