
This is a repository copy of Constructing training set using distance between learnt 
graphical models of time series data on patient physiology, to predict disease scores.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/233136/

Version: Published Version

Article:

Chakrabarty, Dalia, Roy, Gargi, Wang, Kangrui et al. (3 more authors) (2023) Constructing 
training set using distance between learnt graphical models of time series data on patient 
physiology, to predict disease scores. PLoS ONE. e0292404.. ISSN: 1932-6203

https://doi.org/10.1371/journal.pone.0292404

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1371/journal.pone.0292404
https://eprints.whiterose.ac.uk/id/eprint/233136/
https://eprints.whiterose.ac.uk/


RESEARCH ARTICLE

Constructing training set using distance
between learnt graphical models of time
series data on patient physiology, to predict
disease scores

Dalia ChakrabartyID
1☯*, Kangrui Wang2☯, Gargi Roy1☯, Akash Bhojgaria3‡,

Chuqiao Zhang1☯, Jiri Pavlu4‡, Joydeep Chakrabartty3‡

1Department of Mathematics, Brunel University London, Uxbridge, United Kingdom, 2Department of
Computer Science, University of Warwick, Coventry, United Kingdom, 3Department of Haematology,

HealthCareGlobalEKOCancer Hospital, Kolkata, India, 4Hammersmith Hospital, Catherine Lewis Centre,
London, United Kingdom

☯ These authors contributed equally to this work.
‡ AB, JP and JC also contributed equally to this work.

* dalia.chakrabarty@brunel.ac.uk

Abstract

Interventional endeavours in medicine include prediction of a score that parametrises a new

subject’s susceptibility to a given disease, at the pre-onset stage. Here, for the first time, we

provide reliable learning of such a score in the context of the potentially-terminal disease

VOD, that often arises after bone marrow transplants. Indeed, the probability of surviving

VOD, is correlated with early intervention. In our work, the VOD-score of each patient in a

retrospective cohort, is defined as the distance between the (posterior) probability of a ran-

dom graph variable—given the inter-variable partial correlation matrix of the time series

data on variables that represent different aspects of patient physiology—and that given

such time series data of an arbitrarily-selected reference patient. Such time series data is

recorded from a pre-transplant to a post-transplant time, for each patient in this cohort,

though the data available for distinct patients bear differential temporal coverage, owing to

differential patient longevities. Each graph is a Soft RandomGeometric Graph drawn in a

probabilistic metric space, and the computed inter-graph distance is oblivious to the length

of the time series data. The VOD-score learnt in this way, and the corresponding pre-trans-

plant parameter vector of each patient in this retrospective cohort, then results in the training

data, using which we learn the function that takes VOD-score as its input, and outputs the

vector of pre-transplant parameters. We model this function with a vector-variate Gaussian

Process, the covariance structure of which is kernel parametrised. Such modelling is easier

than if the score variable were the output. Then for any prospective patient, whose pre-

transplant variables are known, we learn the VOD-score (and the hyperparameters of the

covariance kernel), using Markov Chain Monte Carlo based inference.
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1 Introduction

It is highly desirable for medical practitioners to avail of a capacity for prediction at the pre-

onset stage, of the risk of onset and progression of a disease in a new patient, using data on

parameters that inform on this patient’s predisposition to the given disease. Such information

potentially helps to undertake early intervention when the onset risk is predicted as high. The

desired prediction of the risk parameter in a prospective patient is possible via the learning of

the functional relationship between the vector of pre-onset variables, and a variable that para-

metrises or scores such risk of onset of the disease. It is only if this functional learning is ren-

dered possible, that prediction of the risk score is rendered possible, at the known pre-

disposition parameters of the new patient. Here we recall that the pre-requisite for supervised

learning of a function that represents the relationship between a pair of variables, is training

data on the input-output pairs. In our problem, one of this pair of variables is the vector of

pre-disposition parameters, and the other is the score of the risk of disease onset. So, unless

values of this score are accessible for each patient—whose predisposition parameters are

known—the sought training set will remain out of reach. In other words, the automated pre-

diction of the score that informs doctors about susceptibility of a prospective patient to a (con-

sidered) disease will remain elusive, unless we find a way to generate the value of such score

for each patient in a retrospective cohort, thereby generating the desired training dataset.

In this paper, we discuss a method for predicting the risk score for a new patient of certain

blood cancers, to develop the disease called Sinusoidal Obstruction Syndrome/Veno Occlusive

Disease (or VOD hereon) that often sets in, following a Haematopoietic Stem-Cell Transplan-

tation (HSCT), that a patient has undergone as an attempted cure of their underlying blood

cancer [1–6, 13]. VOD causes constriction of the veins in a patient’s body [6, 7], causing possi-

ble malfunctioning of different vital organs, such as the lungs, kidneys, central nervous system,

etc. [13]. Hepatic VOD is a common manifestation of this disease and we will refer to this

manifestation, when we speak of VOD below, unless stated otherwise. We will also refer to

HSCT below as a “bone marrow transplant” or simply as “transplant”.

VOD is a life-threatening complication that often follows bone marrow transplants, with

mortality rates reported as� 80%, [8–12]. Owing to the high mortality rates of this disease,

VODmanagement demands frequent examination of symptoms, though there exist multiple

conditions that “mimic VOD/SOS”, rendering “real-life differential diagnosis a true challenge”

[13]. This is echoed by [14] and by [15] who advocates a “high index of suspicion” that they

say “is needed to diagnose hepatic SOS”. Diagnosis of VOD is traditionally monitored using

the Baltimore or the modified Seattle criteria, while some of the shortcomings of these criteria

have been addressed via a new diagnostic criterion and a scale for severity grading of suspected

VOD that have been advanced by the European Society for Blood and Marrow Transplanta-

tion [16, 17]. Crucially, [6, 16, 18–20] reiterate the proposal of [9], to emphasise that early diag-

nosis and treatment are positively correlated with survival, as do [13]. This motivates the need

for prediction of the risk of a prospective patient to develop VOD, at the pre-transplant stage.

We quantify this risk in the form of the VOD score that we will predict at the pre-transplant

stage for a new transplant candidate, given their pre-transplant parameters that will inform on

this patient’s underlying cancer; co-morbidities; relevant demographic and clinical

parameters.

In lieu of an objective score for VOD onset and development, it may appear possible to

undertake the learning of the pattern in the data collected from a retrospective set of bone-

marrow transplant recipients, whose sufferance of VOD has been identified using a given

model or interpretation of severity categorisation. We will need to review such attempts at

using standard machine learning (ML) tools, [21], in the context of the question that
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Haematologist-Oncologists’ fundamentally desire an answer to, at the pre-transplant stage,

namely: “how severely will VOD develop in a prospective patient?”. The efficacy of the

reported ML tools in providing a reliable and explainable (and preferably continuous-valued)

quantification of the virulence of VOD progression in the prospective patient will need to be

reviewed, against any “black boxed” facility that lacks interpretability; lacks generalisability—

to other implementation of VODmitigation and HSCT protocol parameters—in spite of the

large sample size, (as flagged up in the critical review by [22]). Such ML tools also typically per-

form inaccurate predictions; definitely fail in predictions when asked to extrapolate beyond

the convex hull of the training set; and predict on the basis of potentially incorrect labelling of

the target variable. So a review of this approach will be undertaken shortly in Section 2. There

we will recall the nuances that challenge general automated predictive modelling, [23–25], in

addition to criticisms of the usage of ML approaches within VOD prediction, [22, 26].

Indeed, in such an ML-based approach, there is no objective VOD-score that is made avail-

able, but these ML-based approaches use the categorised VOD status of patients in a retrospec-

tive cohort as the target variable, i.e. these approaches use the VOD status of patients who have

already undergone the transplant. Such a VOD status is elicited by physicians, but this suffers

from the problem that it is not sufficiently unambiguous, given the (aforementioned) possible

conflation of symptoms of VOD and other underlying diseases [13, 15]. Irrespective of the

diversity of the machine learning tools that are employed to learn the relationship between

pre-transplant vector variable and the VOD score variables, (though the usable techniques

reported here are ensemble methods), these fundamental shortcomings of the ML approaches

leave us wanting for a reliable prediction of the VOD score of a prospective candidate for

HSCT, at the pre-transplant stage.

Our work learns the continuous score of each retrospective patient, in an automated and

entirely data-driven way, that is integrated for all levels of severity of the disease, to then learn

the sought relationship between this score variable and the vector of pre-transplant variables.

Ultimately, we predict the uncertainty-included real-valued score of a prospective patient at

the pre-transplant stage. The main advantage of our method lies in the fact that we can predict

the VOD-score before the transplant—thus enabling the crucially-helpful early intervention—

by using only the data that are available. Patients identified to be more at risk of developing

VOD after their HSCT, are then treated with VOD prophylaxis, namely, Defibrotide, [6, 19,

20, 27]. Defibrotide being expensive—at $500 per vial, of which two to three are required every

day for adequate effect over the pre-transplant period of about eight days—is affordable for

usage towards the mitigation of VOD onset only in those patients who are at high VOD risk.

At the same time, such at-risk patients are monitored carefully post-transplant, to flag up any

early signs of VOD onset. Importantly, we avoid reliance on the monitoring of symptoms for

the grading of severity of the disease, since ambiguous manifestation of the relevant symptoms

occurs commonly. We offer a reliable VOD-score that is uncertainty-included, while retaining

capacity for acknowledging physicians’ priors towards a patient’s VOD status.

Once the (relative) VOD-scores are learnt for each patient in the retrospective cohort, we

populate the training set comprising pairs of values of pre-transplant parameter vector and

VOD-score, to learn the functional relation between these two variables, by modelling this

function as a random realisation from a Gaussian Process (GP). In fact, the need for learning

of far fewer hyperparameters of the kernel—that parametrises the correlation function of this

GP—prompts our treatment of the scalar-valued VOD-score variable, (instead of the high-

dimensional pre-transplant parameter vector), as the input to this sought function. This model

choice leads to the need to learn the VOD-score at which the observed vector of pre-transplant

parameters of the prospective-patient is realised; this is distinguished from the conventional

closed-form prediction of the output of a GP-modelled function, at a test input [28].
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[29] suggest the use of biomarkers for VOD identification. This however is not relevant

to our work as we seek to predict the score that parametrises the risk for a patient at the pre-

transplant stage, to develop VOD after they undergo the transplant. Indeed, identification

of the gradation of VOD progression in a patient, using (multiple) biomarkers of their

plasma, is relevant only at the post-transplant stage. While such biomarkers-based testing

would be useful in lifting possible ambiguities about a patient’s VOD progression—thereby

permitting confident diagnosis of VOD severity in each patient of a retrospective cohort—

biomarkers-based testing demands infrastructure that is often out of bounds in multiple

institutions. For example, some of the Haematologist-Oncologists in our team did not have

access to the infrastructure that permits biomarkers-based testing of bone-marrow trans-

plant recipients.

The paper is organised as follows. Section 2 discusses existing work in the context of pre-

dicting VOD progression in a prospective patient. Thereafter, we discuss our model in Section

3, which leads us to Section 4, in which we put forward the learning of the VOD-progression

score of a prospective patient. Following such discussion, our results are presented in Section

5, while in Section 6, the ranking of the various risk factors for VOD is reported, in order of

the potency of influence on VOD-progression. We conclude the paper with Section 7.

2 Our work in the context of existing work

[21] report on the results of the prediction of VOD status in a prospective recipient of HSCT,

by (supervised) learning of the pattern in the data comprising observations on 20 selected fea-

tures (as the inputs), and the severity category (as a target variable), using a variety of machine

learning tools, for three different models or definitions that they invoke to assess VOD status

in each of about 2500 HSCT recipients in a retrospective set. These models respectively ask:

whether VOD did onset in a patient in this retrospective set or not; whether severe-to-very

severe VOD happened to any such patient or not; and whether “early death” was noted in a

patient or not. Then it is clear that this approach cannot provide an answer to the question of

how severe VOD will be in a prospective patient; instead, it answers separate questions, such

as: “will the prospective patient develop VOD?”; “will the prospective patient develop severe-

to-very severe VOD?”; “will the prospective patient suffer from early death due to VOD onset

and development?”.

These questions will not directly answer the question framed above to replicate the straight-

forward query that the Haematologist-Oncologist desires a response to. The deviation of the

answers that are potentially available from these ML approaches, from the answer desired by

physicians at the pre-transplant stage, stems exactly from what [22] identify as the drawback of

these ML approaches, namely that these methods “oversimplify clinical questions by dichoto-

mizing outcomes”; see also [23, 24]. While acknowledging this need to avoid such drawbacks,

we state that interpretation of the severity level of VOD would be that much clearer, if the

Oncologist could be provided a continuous, real-valued VOD onset + development score for

any prospective patient, which for example, if lower than a cutoff, will indicate that VOD will

not set in, in this patient, while a value higher than an identified threshold could be identified

as severe VOD. Additionally, for clarity of comparison amongst patients, we realise that the

VOD-score variable—if categorised—should ideally be on an equidistant scale. Else, usage of

mean of such scores, as a central tendency, will be misplaced [30]. Basically, unless this scale is

equidistant, a patient with a “high” score will in general need to be interpreted carefully in

comparison to one who has a “low” score—and not as much at a higher risk of developing

VOD, compared to another patient with a “moderate” score, as this patient is, compared to the

patient with the “low” score.
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Importantly, we provide a continuous real-valued VOD score in our method, where this

score parametrises the risk for the given prospective patient to develop VOD within the moni-

tored time interval. Our scores are offered within a scheme that is integrated across all levels of

VOD susceptibility, and robust to variations in cohort size and features. We will demonstrate

capacity of extrapolation in our predictions, i.e. even when the prospective patient’s pre-trans-

plant features lie outside the convex hull of that of the retrospective patients in the training set,

we are able to sucessfully predict the VOD score in our Bayesian approach, using even weak

priors centred on the physicians’ opinions.

The diverse machine learning tools that [21] use to perform automated prediction in test

cases, include logistic regression; Naïve Bayes; bagging techniques such as Random Forest; and

boosting techniques such as Extreme gradient boosting (XGBoost) and Adaboost. Of these,

XGBoost was noted to achieve optimal accuracy of prediction. Subsequent to cross-validation,

the Receiver Operating Characteristic Area Under the Curve (ROCAUC) was computed to

inform on the accuracy of the undertaken classification, for each considered model of categori-

sation. This was reported as 0.750 when VOD onset—or not—was the model of the categorisa-

tion; 0.778 when severe to very severe VOD onset was the categorisation model; and 0.738 for

early death—or not—was used as the caegorisation. These ROCAUC values are not good for

any of the three criteria, even with the best-performing learning algorithm, prompting the

need to improve accuracy. Our presented method offers much higher accuracy.

The interpretability issue that [22] rightly hold machine learning “black boxes” to be defi-

cient in, is available in our model, where every step is lucidly interprtable and understandable.

Lack of generalisability of machine learning results is another problem, [22]. Following on

from the critical review by [22], usage of “a large dataset does not necessarily mean” that the

method “can be applied to different datasets (i.e., not generalizable to a different time and/or

location)”. Multi-cohort and multi-institutional generalisability to cover for unevenness in

VOD prophylaxes used in different countries is the major aim of our work, and we demon-

strate this partially here, via our multi-cohort and multi-institutional application.

Again, the very construction of the training set used in machine learning approach, is in

itself questionable, since the diagnosis of VOD and its intensity is not unambiguous as sug-

gested in the literature [13, 15], and likely to not be similarly unambiguous across cohorts/

institutions. So using such diagonised labels as the target variable, could induce errors.

3 Model

For a retrospective-patient, the pre-transplant attributes are recorded, in addition to their

physiological parameters. The latter parameters include blood pressure, body temperature,

capillary saturation, etc., and these parameters are recorded from a pre-fixed time point before

the transplant, to a chosen time after the transplant, though not all patients survive this full

time interval, given the potentially-terminal nature of the diseases that such patients are

afflicted with. However, a prospective-patient is one who is being considered at the pre-trans-

plant stage, so that their pre-transplant attributes are recorded, but no time series data on their

physiological parameters is available at this pre-transplant stage.

We anticipate using the information available on physiological parameters of the consid-

ered retrospective-patients, to learn the VOD-score of each such patient. Once we are able to

learn such a VOD score, we will populate the pair: value of a patient’s pre-transplant attribute

vector, and their learnt VOD-score. Doing this for all retrospective-patients, will populate the

originally-absent training set that is a requisite for the supervised learning of the relationship

between a patient’s pre-transplant attribute, and their VOD score. So once this training set is

generated, we will pursue the supervised learning of the relation between the pre-transplant
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attribute and VOD score—by modelling their relationship with a Gaussian Process. Having

modelled this relationship as a function that is sampled from a Gaussian Process, we will then

predict the VOD-score in a prospective-patient, given their known pre-transplant attributes.

However, we appreciate that such eventual prediction (of the VOD score of a prospective

patient) is only possible, if we can successfully initiate the learning+prediction strategy that we

have delineated here. In other words, we can predict the VOD score of a new patient, only if

we have been able to use the information on physiological parameters of each retrospective

patient, to inform on their respective VOD scores.

However, there is no reliable and robust model that offers the functional relationship

between the temporally-evolving physiological parameters of a retrospective-patient, and their

VOD-score. Imposing an ad hoc parametric form to said functional relationship will in general

be a mistake, and will result in wrong predictions of the VOD-score for any patient in the

cohort of retrospective patients, leading to an unreliable training set that is to be used in the

prediction of the VOD-score of a prospective-patient. Observations of physiological parame-

ters alone, can only allow for a physician-elicited, categorised parametrisation of the intentsity

of VOD progression in a patient. But such elicited scores are insufficiently reliable, given the

reported conflation of “signs and symptoms” of VOD with “other post-transplant complica-

tions” [14]; the same is suggested by [13, 15]. Additionally, there is of course no scope of reli-

able assignment of a continuous VOD-score on the basis of such observations and elicited

scores.

In light of this worry, we formulate a new method to learn the relative VOD-score in any

retrospective patient, using diversely long time series datasets on physiological parameters,

where such time series data is available for each retrospective-patient. The time series data of

one patient does not have the same temporal coverage as that of another patient in general,

owing to differential patient longevities; hence our qualification of these time series datasets

as “diversely long”. This then presents another challenge to the learning strategy that uses

such time series data. Our methodology should be then robust to the length of the time series

data.

To address such idiosyncracy of the data, we learn the relative VOD-score by computing a

distance between a pair of graphical models, learnt given a pair of time series data sets of the

respective pair of retrospective-patients. In our work, any such graphical model is built out of

realisations of a random graph variable, that is constructed in a probabilistic metric space,

such that each edge of a graph is a probability. Now, the measure of affinity between two nodes

in this graph, is complimentary to the distance between these nodes. So in this graph, the

mutual affinity is also a probability. In fact, the inter-nodal distance function is a cumulative

probability distribution, corrected by a constant, and the inter-nodal affinity is also a probabil-

ity corrected by a constant. This inter-nodal affinity is found to be given by the marginal prob-

ability of the edge variable that joins the considered pair of nodes. If in a sample of realisations

of this random graph, the sample mean of the marginal probability of an edge, exceeds a pre-

selected cutoff probability, the edge exists in our final graphical model; else it does not.

Given that the graph variable is random, we can define its probability distribution; so, we

can compute a statistical distance (eg. the Hellinger distance) between the posterior probability

densities of any of two random graphs, given the respective time series data. Such an inter-

graph distance then informs on the difference in the correlation structure of the physiological

parameters of one patient, compared to that of another, where such a difference in the correla-

tion structures stem from the differential progress of VOD in the two patients. Thus, the usage

of such an inter-graph distance, as a marker of the relative progress of VOD in a patient—ren-

ders the length of the time series data of the physiological parameters, irrelevant. In our work,

the inter-graph distance between the graphical model of a patient, and that of an arbitrarily-
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chosen reference patient, models the score of VOD progression in this patient, relative to that

of the reference patient.

Once the (relative) score variable is learnt using the aforementioned inter-graph distance,

we model the functional relationship between this (relative) VOD score and the vector of pre-

transplant parameters, by modelling this function as a sample function of a Gaussian Process

(GP). To minimise the learning of the parameters that specify the covariance function of this

GP, we suggest choosing the lower-dimensional of these two variables, i.e. the scalar-valued

VOD-score variable, as the input of this function. This model choice renders the output of this

function a vector, i.e. this sought function is then rendered vector-valued. Then modelling

such a function as the sample function of a GP implies that the invoked GP is vector-variate,

such that the joint probability of a finite number of outputs of this function is then matrix Nor-

mal—a density that is parametrised by a vector-valued mean and two covariance matrices.

Of these two covariance matrices of the matrix Normal likelihood, the inter-column covari-

ance matrix informs on the covariance between a pair of pre-transplant parameters. On the

other hand, the inter-row covariance matrix is such, that an element of this matrix is the

covariance between the pre-transplant variables of one patient, and those of another patient.

Then any element of the inter-row covariance matrix can be parametrised using a kernel func-

tion, i.e. is modelled as a declining function of the difference between the pair of input values

(i.e. VOD scores), the covariance between the outputs at which, is this considered element.

The idea behind kernel parametrisation of a covariance function relies on the model that the

further a pair of inputs, lower is the covariance between the outputs relevant at each such

input. We choose a simple kernel, and learn the hyperparameters of this chosen kernel func-

tion, given the data.

As for the inter-column covariance matrix, we cannot undertake its kernel parametrisation

since there is no identifiable “input” variable that the kernel could be defined as a function of.

So we learn this matrix using the unbiased estimate of covariance between each pair of col-

umns in the data comprising the pre-transplant parameters of the retrospective patients.

Thus, likelihood of these model parameters in our work is then rendered matrix Normal, as

distinguished from the multivariate Normal density that would have resulted, had we chosen

to learn a scalar-valued function. We argue that the comparatively more complicated logistics

of this model—over the model that uses the vector of pre-transplant variables as the input—

are outdone by the ease of making inference upon far fewer kernel hyperparameters in this

model, (using Markov Chain Monte Carlo, or MCMC techniques). Importantly, difficulties

with the mixed nature of the pre-transplant variables are also mitigated by considering these

variables to comprise the output—than the input. Whenever the VOD-score of a prospective

patient is sought, we will learn anew, the hyperparameters of the kernel that parametrises the

inter-row covariance matrix, simultaneously with the VOD-score of this prospective patient.

Crucially, we also rank the pre-transplant attributes by potency of its effect on the VOD-

score.

3.1 Model details

Let the j-th retrospective-patient’s physiological parameter vector Θ, observed a time point

T = ti, be θðjÞ
ti
, where Θ 2 H � Rm, i.e. there arem number of physiological parameters that are

observed for any patient. Thus, Θ = (Θ1, . . ., Θm)
T. There are Np number of retrospective-

patients in the observed data set, such that (s.t.) j = 1, . . ., Np. Observations of physiological

parameters are undertaken from the pre-transplant time point tmin to a post-transplant time

point tðjÞmax, for the j-th patient; tðjÞmax � tmax, where observations are maximally taken till post-

transplant time tmax, though the j-th patient may survive to tðjÞmax. So ti 2 ½tmin; t
ðjÞ
max�.
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The time series data on them physiological parameters, of the j-th retrospective patient,

available during the time interval ½tmin; t
ðjÞ
max� is then represented as the data matrix

Dj ≔ ðθðjÞ
tmin

..

.
. . . ..

.
θðjÞ

t
ðjÞ
max

Þ. Thus, for the j-th patient, this data matrixDj is

ðtðjÞmax � tmin þ 1Þ �m-dimensional; j = 1, . . ., Np.

Thus, data matrices of all retrospective patients share a common number of columns and a

varying number of rows, driven by the patient’s longevity.

Pre-transplant parameters are observed for both retrospective-patients, as well as pro-

spective-patients. Let the pre-transplant parameter vector Y be d-dimensional s.t.

Y 2 Y � Rd. Some components of the pre-transplant parameter vector Y are numerical in

nature, while others are binary, and still other pre-transplant parameters are categorical tak-

ing values at more than two levels. We replace a categorical pre-transplant parameter that

takes values at k categories, with k − 1 number of binary dummy covariates as per the stan-

dard practice. For example, the categorical variable of “Cancer type”—which can take values

of “Acute Lymphoblastic Leukaemia (ALL)”; “Acute Myeloid Leukaemia (AML)”; “Aplastic

Aneamia”; “Chronic Myeloid Leukaemia (CML)”; “Myelofibrosis”; “Other”—is replaced by

5 binary variables called “ALL”, “AML”, “Aplastic”, “CML”, and “Myelofibosis”, s.t. if the

“Cancer type” in any patient is of the “Other” class, then each of these binary variables take

the value of 0.

We use time series dataDj of the j-th retrospective patient, to learn the graphical model of

this dataset, 8j = 1, . . ., Np. Here, any such graphical model is learnt using realisations of a Ran-

dom Geometric Graph (RGG) [31, 32] drawn in probabilistic metric space [33, 34], rendering

it a Soft Random Geometric Graph (SRGG).

3.2 RGG in a probabilistic metric space

A Random Geometric Graph (RGG) is one in which the edge between any pair of nodes exists

only if the mutual distance between these two nodes falls below a threshold distance τ> 0. In a

Soft Random Geometric Graph (SRGG) such uncertainty on the edge variable between any

nodal pair is acknowledged, as is the uncertainty on the location of any node; distance between

two nodes is then a random variable (D� 0) and probability that the edge between two nodes

exists, is given by the “connection function” ϕ(D), where � : R�0 ! ½0; 1�.
A probability metric space ðH; F;DÞ is s.t. any point in it is a random variable in sample

spaceH, and for any of 2 pointsYk;Y‘ 2 H, we can define the cumulative distribution func-

tion (cdf) F
Yk;Y‘

ðsÞ 2 Fþ of a “disparity” parameter Sk,ℓ � 0 between these 2 points s.t. Sk,ℓ = 0

, k = ℓ. Thus, F
Yk ;Y‘

ðsÞ � FSk;‘
ðsÞ. Here, Fþ is the space of cdfs with non-negative support.

Also, Δ is defined as a binary operation—on Fþ—that is commutative, associative, and has an

identified identity.

We learn a graph as an RGG that is constructed in a native probabilistic metric space,

s.t. the length of an edge between any two nodes of such a graph—i.e. the mutual “dis-

tance”—is a probability; these two nodes are associated with two random variables inH.

Then, any inter-nodal distance, (offset by a constant), is a probability, while the probability

of the edge to exist between these nodes, is identified with the complimentary affinity mea-

sure (offset by another constant) between these variables that are associated with these

nodes. This edge probability is in fact the (posterior) probability of the edge variable, given

the partial correlation Rk,ℓ between the random variables Θk and Θℓ associated with the k-

th and ℓ-th nodes respectively. We now discuss the partial correlation matrix and the edge

marginal.
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The partial correlation matrix R = [rk,ℓ] is computed given the inter-column correlation

matrix S = [σk,ℓ] as

Rk;‘ ¼ �ck;‘=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ck;kc‘;‘

q

; k 6¼ ‘; and Rk;k ¼ 1 for k ¼ ‘;

where the precision matrix is S−1 = [ψk,ℓ].

3.3 Graphical model of physiological parameters

Wemotivate the pdf of |Rk,ℓ|—the absolute of the k, ℓ-th partial correlation variable—given

the k, ℓ-th edge parameter Gk,ℓ and the k, ℓ-th variance parameter υk,ℓ, asN ðgk;‘; uk;‘Þ to
account for the limiting conditions that at Gk,ℓ = x, density of |Rk,ℓ| is highest for |rk,ℓ|! x,

where x = 0, 1, Similarly, at Gk,ℓ = x, density of |Rk,ℓ| is lowest for |rk,ℓ|! 1 − x. Here υk,ℓ is

the scale that controls the decline in the density as |rk,ℓ| moves away from gk,ℓ. The above

holds 8k 6¼ ℓ, k, ℓ 2 {1, . . ., m}.

Then using uniform U½0; 1� prior on υk,ℓ, and Bernoulli(0.5) prior on Gk,ℓ, we write the joint

posterior probability density of Gk,ℓ and υk,ℓ given the observation on Rk,ℓ. Thereafter, we mar-

ginalise υk,ℓ out of this joint posterior, to attain the marginal posterior of the k, ℓ-th edge vari-

able as

mðGk;‘jrk;‘Þ ¼ K=

ffiffiffi

2

p

r

exp
�ðSk;‘Þ

2

2

 !

� jSk;‘jerfc
jSk;‘j
ffiffiffi

2
p

� �

" #

;

where Sk,ℓ≔ |Gk,ℓ − |rk,ℓ|| 2 [0, 1].

The pdf of the observable Rk,ℓ motivated above is of course, not uniquely Normal; a smooth

function that declines symmetrically about the mean of Gk,ℓ, will be usable. Essentially, the

only information that we possess on this density, are used in the design of this density, but the

availability of such informaton is not sufficient to specify the form of the pdf further. However,

we seek a form of the edge marginal that will help define the edge set of the sought graphical

model; so the pdf of Rk,ℓ as a Normal suffices, and a form of the pdf of the observable Rk,ℓ that

allows for a closed-form marginal posterior of the edge variable, is desired. Indeed, that

closed-form edge marginal will be specific to the Normal form of the pdf of the observable,

given model parameters—as used in our work. Bayesian inference on the edge variable Gk,ℓ

from diverse choices of this pdf, is however likely to converge in mean, though the uncertainty

learnt on the inferred value of this edge variable will vary as the chosen form of this pdf is

made to vary. Then treating the parametrisation of the uncertainty as a random variable—

such as the variance parameter υ of our chosen Normal form of the pdf of Rk,ℓ—helps address

the effect of varying the chosen form of this pdf. Eventually, it is the marginalisation over all

values of this variance parameter that provides the edge marginal, 8k< ℓ; ℓ = 2, . . .,m. Thus,

the learning of the graphical model is not sensitively dependent on the choice of a particular

form of the conditional pdf of Rk,ℓ. Since the edges occur idependently of each other, the joint

posterior of all edges, conditional on the (partial) correlation matrix, is the product of the edge

marginalm(Gk,ℓ|rk,ℓ) given above, over all nodal pairs.

The aforementioned marginal posterior of the variable Gk,ℓ that is the edge between the k-th

and ℓ-th nodal pair—conditional on the partial correlation Rk,ℓ = rk,ℓ between variables Θk and

Θℓ—is sampled from, using Rejection Sampling. We generate Niter such samples, and let the

sample generated in the q-th iteration be fgðqÞ
k;‘ g

m

k<‘;‘¼2
. Then the SRGG variable defined on ver-

tex set V is updated, via the updating of the edge set EðqÞ ¼ fgðqÞ
k;‘ g

m

k<‘;‘¼2
. Thus, the edge set of

the SRGG variable is updated 8q.
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Then using the edge sets Eð1Þ; Eð2Þ; . . . ;EðNiterÞ, we construct the sample estimate of the mar-

ginal probability of the edge variable Gk,ℓ, as

m̂ðgk;‘jrk;‘Þ ¼
X

Niter

q¼1

ðgðqÞ
k;‘ Þ=Niter;

which is the relative frequency for GðqÞ
k;‘ to be 1. This sample estimate m̂ðGk;‘jrk;‘Þ of the edge

marginal probability is computed for all k, ℓ pairs. As long as this estimated marginal probabil-

ity of the k, ℓ-th edge exceeds the cutoff (or the threshold) probability τ, the edge exists in the

final “graphical model” GðjÞ
mj;t

ðRj;VÞ of the j-th patient; else it does not.

Graphical model GðjÞ
mj;t

ðRj;VÞ is defined on the vertex set V, for the partial correlation

matrix Rj ¼ ½rðjÞk;‘� and edge marginalmj � m̂ð�jrðjÞ�;� Þ, on edge set

E ¼ fgk;‘ : gk;‘ ¼ 1 if m̂ðgk;‘jrðjÞk;‘Þ � t; else gk;‘ ¼ 0gm

k<‘;‘¼2
:

In the q-th iteration of Rejection Sampling, the random graph defined on vertex set V, is

G
ðqÞðRj;VÞ. The edge set E(q) = {gk,ℓ}k<ℓ;ℓ2{2,. . .,m} of G

ðqÞðRj;VÞ is s.t. gk,ℓ will be 1 or 0. Here

q = 1, . . ., Niter.

3.4 Inter-graph distance & VOD-score

At every trial or iteration of Rejection Sampling, undertaken using data setsDi andDj, we

record the posterior probabilities of the random graphs GðqÞðRi;VÞ and GðqÞðRj;VÞ that are
iterated over, given the partial correlation matrices of the respective data sets. Let the posterior

of the j-th patient’s random graph variable, computed at its value sampled in the q-th iteration

—given the partial correlation matrix Rj—be pðGðqÞðRj;VÞjDjÞ.
We define a distance using the graphs sampled in the iterations of the two separate Rejec-

tion Sampling undertakings using two different patients’ data. In our work, this is the discre-

tised Hellinger distance δi,j between the posterior probabilities of the two graph variables,

given the respective data. To be precie, δi,j is the distance between the graphical models learnt

given the time series data setsDi andDj respectively, where these datasets comprise informa-

tion on the physiological parameters of the i-th and j-th patients. The squared discretised Hel-

linger distance is

ðdi;jÞ
2 ¼

X

Niter

q¼1

ð
ffiffiffiffiffiffiffi

u
ðqÞ
i

q

�
ffiffiffiffiffiffiffi

u
ðqÞ
j

q

Þ2=Niter;

where

u
ðqÞ
i � lnðpðGðqÞðRi;VÞjDiÞÞ � B;

where the logarithm of the posterior that we obtain from the MCMC chain, is scaled by the

scale

B≔maxf� : � ¼ lnðpðGðqÞðRi;VÞjDiÞÞ; q 2 f1; . . . ;Niterg; i 2 f1; . . . ;Npgg:

Here Np is the number of patients in the retrospective cohort and i, j 2 {1, . . ., Np}.

δi,j is a distance function since it is non-negative; symmetric; obeys the triangle rule; and is

0, i = j.
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3.5 Learning relative VOD-scores

We arbitrarily choose one of the Np retrospective patients as the “reference patient”, whom

we assign a VOD-score of 1. Then the VOD-scores of all other patients are computed relative

to this reference patient. Without loss of generality, let the 1st patient in the retrospective

cohort be referred to as the reference patient. Then we compute the distance δ1,j between the

graphical models of the 1st, i.e. the reference patient, and the j-th retrospective patient,

8j = 2, . . ., Np. We model the absolute difference between the VOD-scores of two retrospec-

tive patients to be proportional to the computed distance between the graphical models

learnt given the respective time series data on the physiological parameters of these two

patients. Then, if the VOD-score of the j-th patient is Sj, upon setting the constant of propor-

tionality to be unity, |sj − 1| = δ1,j which implies that either δ1,j = sj − 1 or δ1,j = 1 − sj.

At the same time, the distance between the i-th and j-th retrospective patients’ learnt graph-

ical models is δi,j = |δ1,j − δ1,i|. Here i 6¼ j, 8i, j = 2, . . ., Np.

• Then for sj < 1 and si < 1,

• under Case 1, when (observed or) computed δ1,i > δ1,j, sj = δi,j + si,

• while under Case 2 of observed δ1,i < δ1,j, sj = si − δi,j.

• Again, for sj � 1 and si � 1,

• in Case 1 when δ1,i > δ1,j, sj = si − δi,j,

• while in Case 2 of observed δ1,i < δ1,j, sj = si + δi,j.

• Similarly, we address the cases that emanate from the possibilties of: sj � 1 and si < 1; sj < 1

and si � 1.

Thus, ambiguities exist in the values that sj 8j = 2, . . ., Np can attain, given the data

Dd ≔ fdi;jg
Np

i6¼j;i;j¼1. Such ambiguities deter us from opting to compute sj deterministically.

Additionally, complexity of deterministic computation of sj for j = 2, . . ., Np rises superli-

nearly with Np, since internal consistency is required amongst all scores. In light of this,

instead on deterministic computation of the scores, we learn s2; . . . ; sNp
within an MCMC

approach, given data Dδ.

In the t-th iteration of the MCMC chain, we propose the value s
ð?;tÞ
j of Sj from a Normal pro-

posal density, with a mean that is the current value s
ðt�1Þ
j as in the previous iteration, i.e. the t

− 1-th iteration; variance of the proposal density is fixed via experimentation. Indeed in our

strategy, the VOD-score of a patient can be positive or negative, and this prompts the choice of

the Normal as the proposal density.

To formulate the likelihood of Sj, we define the pdf of the observable δ1,j, given Sj = sj, as a

Normal with a chosen variance, and a mean of sj − 1 if sj > 1, or 1 − sj if sj � 1. Since this condi-

tional pdf—and thereby the likelihood of Sj—is computed in the t-th iteration, at the proposed

value of Sj, we know if the value at which this pdf is computed, exceeds 1 or not. Thus, in the

t-th iteration, mean of this conditional pdf is identified (8j = 2, . . ., Np), and thereby, the likeli-

hood is computed as the product of such pdfs, over all j = 2, . . ., Np.

The choice of the Normal form of this pdf can be questioned; it is motivated by the limiting

conditions that the density is maximised if δ1,j equals the mean of this density, and that the

density tends to 0, as the value of δ1,j increasingly deviates from this mean. Of course any other

bell-shaped form of this conditional density of the observable would have worked as well,

though in the Bayesian inference paradigm that is relevant in our work on the score variables,
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the mean value of Sj that is inferred upon, will be robust to the form chosen for the pdf of the

observable. This notwithstanding, the uncertainty learnt on Sj would vary as we vary the form

of the pdf of the observable given this score variable. However, the information on Sj is high in

this inferential exercise, and such uncertainties are expected to be low. We further enhance

such information on Sj by designing priors that include information on how in the t-th itera-

tion, the proposed value of Sj compares, to the proposed value of Si, (Si 6¼ Sj). Thus, in the t-th

iteration, parameters of the prior on Sj, computed at its proposed value s
ð?;tÞ
j can be identified.

For example, if proposed s
ð?;tÞ
j > 1 and proposed s

ð?;tÞ
i > 1, with observed δ1,j > δ1,i, the prior is

chosen asN ðsð?;tÞi þ di;j; vÞ, where the prior variance v is fixed by choice, and the prior mean

stems from the result that under these conditions, sj = δi,j + si, (as stated above). In this way,

the prior on Sj is selected, for each case that is relevant for the proposed values of Si and Sj, and

the observed δi,j, 8i 6¼ j, i, j 2 {2, . . ., Np}.

4 Learning relationship between (learnt) VOD-score & pre-
transplant variables

Learning VOD-scores s1; . . . ; sNp
of the Np retrospective patients, capacitates the desired super-

vised learning of the function that represents relation between the VOD-score variable S and

the d-dimensional pre-transplant parameter vector Y that is observed for all retrospective

patients, as well as any test (or prospective) patient whose VOD-score we would wish to pre-

dict. Then using the training dataD≔ fðsj; yjÞg
Np

j¼1 that materialises upon our learning of the

originally-absent VOD-scores of the retrospective patients, we undertake the supervised learn-

ing of the functional link between Y and VOD-score, using Gaussian Ppocess (GP) based

modelling. Then any undertaken kernel parametrisation of the covariance structure of the GP

that generates this function, will require expressing the correlation between a pair of the output

variables that are outputs at each of two designed input values. So we realise that if we employ

Y as the input variable, (and S as the output) of the sought function, the covariance kernel will

then need to be computed at each of two design input vectors, i.e. at each pair of values of Y;

also, hyperparameters of such a kernel will need to be learnt. In this approach, we will need to

(minimally) learn d hyperparameters, in the (simplest) kernel, and the joint probability of the

Np outputs at the design inputs that live in the training setD will be multivariate Normal. Pre-

dictions of mean and variance of the output VOD-score of a test patient are then closed-form.

However, we can lessen our learning-load, if instead of this approach, we set the output to be

Y, rendering the input variable S. Then in the simplest kernel, we will need to learn only one

hyperparameter. In addition to the comparatively easier learning in this approach, (over the

previous approach), we benefit from avoiding computing the kernel in terms of the compo-

nents Y1, . . ., Yd (pre-transplant parameters), which are mixed (binary and numerical) by

nature.

However, in this approach, the joint of the Np vector-valued outputs is matrix Normal,

which renders coding heavier than in the other model. The main worry in this model pertains

to the prediction of the input score s(test) for a test patient with observed pre-transplant vector

y(test). Indeed in this case, we will not predict value s(test) of the input, but learn it—along with

the kernel hyperparameters—using MCMC. To summarise, we will undertake the model in

which Y is the output and S the input to the sought function f : R! Y � Rd.

In the model of the relationship between S and Y as Y = f (S), where the vector-valued func-

tion f (�) is sought, we set f ð�Þ � GPðμð�Þ;Kð�; �ÞÞ, where μ(�) and K(�, �) are the mean and

covariance functions respectively of this vector-variate GP [35, 36]. Then by definition of this

GP, the joint probability ½Y1; . . . ;YNp
� of outputs at each of the Np design inputs that populate
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the training setD, is matrix Normal, i.e. ½Y1; . . . ;YNp
� ¼MNðμ;ΣPatient;ΣYÞ:Here we set the

mean matrix μ to a constant matrix, the i-th row of which is the mean of Yi across the sample

of Np patients, (i = 1, . . ., d). The inter-patient covariance matrix is Σ
ðNp�NpÞ
Patient , while the inter-

pre-transplant-variable covariance matrix Σðd�dÞ
Y . Here, the ij-th element of the inter-patient

covariance matrix SPatient informs on the correlation between the i-th and the j-th patients’

pre-transplant parameter vectors; i, j = 1, . . ., d. The bc-th element of the inter-pre-transplant-

variable covariance matrix SY informs on the correlation between the b-th and c-th compo-

nents of Y; c, b = 1, . . ., d.

There are d = 30 pre-tansplant variables that are observed; this implies that learning of dis-

tinct elements of SY would entail the learning of (302 − 30)/2 parameters. Making inference on

these parameters directly using MCMC, is an infeasible task. At the same time, there is no vari-

able that can be considered as an input variable at which the Np-dimensional vector of values

of Yc for the Np patients, is realised, for any c = 1, . . ., d. Distinguished from this, a d-dimen-

sional vector of values of Y1, . . ., Yd is realised at a given value of the VOD-score variable S of a

patient. Thus, the d × d-dimensional inter-pre-transplant-variable covariance matrix SY—an

element of which informs on the correlation between a pair of pre-transplant variables—can-

not be kernel parametrised, but the Np × Np-dimensional inter-patient covariance matrix

SPatient can be kernel parametrised. So we will use the unbiased estimate of the covariance

between any pair of pre-transplant variables, as an element of SY. On the other hand, SPatient =

[σij] = [K(si, sj)], where we choose the simple Square Exponential (SQE) kernel for K(�, �), i.e. K
(si, sj) = a exp(−(si − sj)

2/2ℓ2). We learn the 2 hyperparameters a and ℓ, given dataD.

As suggested above, that f(�) is modelled as a sample function of a vector-variate GP, implies

that the joint probability density of the Np outputs (realised respectively at each design input),

is matrix Normal. But this density is the density of the data variable DY ≔ ðY1;
..
.
; . . . ..

.
;YNp

Þ on
the output variable, conditional on the parameters of the model, at the given design points. So,

this density is the likelihood of the kernel hyperparameters:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞ�dNp jΣY j
�Np jΣPatientj

�d
q

�

exp ð�TrðΣ�1

Y ðDY � μÞTΣ�1

PatientðDY � μÞÞ=2Þ;

where dataDY comprises values of Y at the chosen design points s1; . . . ; sNp
. We invoke ade-

quate priors on the kernel hyperparameters, and multiply the same with this likelihood, to

allow for the joint posterior probability density of these parameters given the dataDY and the

given design points. We then generate posterior samples using MCMC, allowing for the com-

putation of the marginal posterior probability of each parameter given the data. The marginals

then allow for the learning of the 95% Highest Probability Density credible region (HPDs) on

each parameter, given the data.

Our interests are however ulterior to the learning of the kernel hyperparameters; indeed,

we want to learn the value s(test) of the VOD-score of a new (or prospective) patient, who is

examined at the pre-transplant stage, s.t. their pre-transplant parameter vector is recorded as

y(test). Thus, the augmented data on the outputs (Daug) now includes y
1
; . . . ; yNp

—from the ret-

rospective (training) patients—as well as y(test). Thus,Daug ¼ ðy
1
; . . . ; yNp

; y(test)). Conditioning

the density of variables Daug; S1; . . . ; SNp
on the model parameters ℓ, a and on S(test), reduces to

the ratio of: the joint density ofDaug and S1; . . . ; SNp
; SðtestÞ, conditional on parameters ℓ, a, and
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the density of S(test) conditional on ℓ, a, i.e.

f ðDaug; s1; . . . ; sNp
j‘; a; sðtestÞÞ ¼ f ðDaug; s1; . . . ; sNp

; sðtestÞj‘; aÞ=f ðsðtestÞj‘; aÞ:

Setting the conditional density f(s(test)|ℓ, a) as Uniform over a chosen interval in the VOD-

score, we write the logarithm of the density of the data variable given the unknowns as

logð fDaug ;S1 ;...;SNp
j‘;a;SðtestÞðDaug ; s1; . . . ; sNp

j‘; a; sðtestÞÞÞ ¼

�Tr
�

C
�1

Y ðDaug � μaugÞ
TΨ�1

PatientðDaug � μaugÞ
�

=2þ constant;

whereCPatient is the (Np + 1) × (Np + 1)-dimensional inter-column correlation matrix of the d

× (Np + 1)-dimensional augmented dataDaug. The inter-row correlation matrix of this aug-

mented dataDaug isCY which is d × d-dimensional, but elements of which are different from

elements of SY owing to the added column in the augmented data, over the original dataDy

on the output variable. The mean matrix of the augmented data matrix is also changed from

that ofDy, and is d × (Np + 1)-dimensional. Our MCMC-based inference permits ignorance of

the unknown constant that is added to the log likelihood.

Along with this likelihood, we invoke priors on the hyperparameters ℓ and a, and incorpo-

rate priors elicited by the Haematologist-Oncologists on S(test), to formulate the joint posterior

probability density pð‘; a; sðtestÞjDaug ; s1; . . . ; sNp
Þ. We learn the marginals of each learnt param-

eter using MCMC, allowing for the learning of 95% HPDs on each learnt parameter.

5 Results

The multi-dimensional time series data on (m =)11 physiological parameters, and the data for

(d =)30 pre-transplant parameters, for Np = 25 patients in the retrospective cohort, was

obtained by the Haematologist-Oncologists in our team; there was no inclusion-exclusion rele-

vant to the recuitment of patients in the retrospective cohort, and data of all patients treated

till the end of 2021 was included in this retrospective cohort. In Fig 1 we represent the learnt

graphical models of three patients in this retrospective cohort. We used a cutoff probability

τ = 0.6 to learn all graphical models; a different τ would affect the sparsity of the learnt graphi-

cal model, but would not have affected computation of scores of VOD progression, since it is

the distance between the probability of the SRGG variable learnt using two datasets, that

informs on scores. The graphical models in Fig 1 include that of the reference patient with an

assigned VOD-score of 1, and two other patients, whose VOD-scores are learnt as higher and

lower than 1 respectively. Hereon, all learnt VOD-scores are learnt relative to the score of 1

Fig 1. Graphical models of 3 patients in the retrospective cohort, (with the learnt mean relative score of 0.4374, 1 and 1.5526, from left to right) learnt given the time
series data on the physiological parameters of each patient from a pre-transplant to a post-transplant time point. Parameter name is indicated at each node and the
empirical probability for an edge to exist is marked on the edge. Only edges with probability> τ = 0.6 are included.

https://doi.org/10.1371/journal.pone.0292404.g001
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that is assigned to the arbitrarily-chosen reference patient, but we will not necessarily imple-

ment the adjective “relative” when we discuss a learnt score below.

5.1 Scores frommulti-institution and multi-cohort patient data

If data on multiple retrospective cohorts are available, we first identify an arbitrarily-chosen

patient as the reference patient of each such cohort. Thereafter, we compute the distance

between the graphical model that is learnt for any patient in a cohort, and that for the pre-

selected reference patient of this cohort. A reference patient in any cohort, is assigned a VOD

progression score of 1, and on this scale, the score of any other patient in this cohort is com-

puted, given the distance between their graphical model and that learnt for the reference

patient of this cohort.

Next, we select the cohort—referred to as cohortA—the reference patient of which will be

considered to be the reference patient over all the available cohorts. In other words, we choose

the arbitrarily-selected reference patient of cohortA to be the “universal” reference patient.

Subsequently, upon learning the graphical model for each patient in each cohort, we com-

pute the distance dA,B between graphs learnt for the reference patient in cohortA, and that

learnt for the reference patient of any other cohort—say, cohortB. Then relative to the refer-

ence patient of cohortA—who is arbitrarily assigned the VOD score of 1—the score of the ref-

erence patient of cohortB is 1 + dA,B or 1 − dA,B, depending respectively on whether the

reference patient in cohortB is identified by doctors to have VODmore progressed than the

reference patient in cohortA, or vice-versa. In fact, it is only patients whose VOD progression

status is clearly concludable by physicians, who are considered as possible candidates for the

reference patient in cohortB.

So, relative to the score of 1 that is assigned to the “universal” reference patient—who we

selected as the reference of cohortA—the VOD-score of the chosen reference patient in

cohortB is changed from 1, to 1 + dA,B or 1 − dA,B, as the case maybe, i.e. is shifted by dA,B or

−dA,B respectively. This inter-reference-patient distance dA,B is then used to adjust the dis-

tances computed for all patients in cohortB. To be precise, the relative VOD-score of each

patient in cohortB, is now shifted by dA,B or −dA,B, as the case maybe. This results in the score

of any patient in cohortB, relative to the reference patient of cohortA, who is the reference

acoss all cohorts, by our choice.

So data could be collected in different institutions, and/or at different times, but it is possi-

ble in our work, to use all such datasets, and assess VOD progression of all patients for whom

data is available. In our work, we use time series data on physiological parameters of patients

in three cohorts, who were monitored in different institutions.

Such physiological parameters include body weight, body temperature, systolic and dia-

stolic pressures, etc., amongst 11 parameters. These physiological parameters are recorded on

multiple instances, for individual patients over a given time interval—namely about 8 days

before the transplant to (maximally) 18 days after the transplant. However, not all patients sur-

vive this stipulated period of observation as they might succumb to an underlying disease

before this full temporal interval is up. Thus, the data matrices comprising the time series mea-

surements of the physiological parameters of different patients, will not have the same number

of rows necessarily, though the number of columns of these matices is the same. Thus, the

observed physiological information for the j-th patient in the w-th cohort is contained in an

nj × 11-dimensional matrix PðwÞ
j ; here w = I, II, III, j = 1, . . ., 5 for Cohort I; j = 1, . . ., 8 for

Cohort II; j = 1, . . ., 12 for Cohort III. In Fig 2, variation of the physiological parameters with

the time point of observation of 10 physiological parameters are depicted, for the 1st patient in

Cohort I and the 1st patient in Cohort II. (The 1st patient in Cohort II was found in our work
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Fig 2. Plots of temporal variation of physiological parameters of two different patients—The 1st patient from Cohort 1 and the 1st patient in Cohort II.

The temporal coverage of these plots extend from 8 days before the the bone marrow transplant, to 18 days after. The left-most two columns are those of the 1st
patient in Cohort I while the two right-most columns depict parameters of the 1st patient in Cohort II. These physiological parameters are: systolic blood pressure
—plotted in panels at positions (1,1) and (3,1) respectively for the patients in Cohort I and Cohort II; dystolic pressure plotted in panels at the (2,1) and (4,1)
coordinates, for these two patients respectively; pulse rate for these patients in panels at (1,2) and (3,2) positions respectively; respiratory rate in panels at positions
(2,2) and (4,2); body temperature in panels at positional coordinates (1,3) and (3,3); capillary saturation in panels at positions (2,3) and (4,3); body weight in
panels at (1,4) and (3,4); fluid balance in panels at (2,4) and (4,4); total bilurbin in panels at positions (1,5) and (3,5); creatinine in panels at positional coordinates
(2,5) and (4,5) respectively, for the patients in Cohorts I and II.

https://doi.org/10.1371/journal.pone.0292404.g002
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to have a higher risk score of SOS/VOD, than the 1st patient in Cohort I, who in fact did not

develop VOD, as diagnosed post-transplant).

We learnt the VOD-scores of each of the 5 patients in Cohort I, relative to that of the 5-th

patient of this cohort, who we arbitrarily assign the reference patient of this cohort. In Cohort

II, we arbitrarily chose the 1st patient as the reference patient. The scores of all patients in

Cohort III were learnt using the 12-th patient as the reference patient of this cohort. However,

we desired that scores of all patients across the three cohorts be learnt relative to the score of

one identified, “universal” reference patient. We chose the 1st patient of Cohort II as the “uni-

versal” reference patient of the whole “retrospective cohort”, by which we imply the cohort

comprising all 25 patients from Cohort I, Cohort II and Cohort III, for each of whom, we have

post-transplant information.

To achieve the scores of patients in Cohort I and in Cohort III, with respect to the “univer-

sal” reference patient—to be precise, the 1st patient in Cohort II—we proceed as suggested

above. We compute the distance between the graphical models learnt for the erstwhile refer-

ence patient (number 5) of Cohort I, and the “universal” reference patient, as well as between

the originally-selected reference patient (number 12) in Cohort III and the “universal” refer-

ence patient.

We computed the inter-graph distance δ�,� between the reference patients of Cohort I (and

of Cohort III), and the “universal” reference patient—who is 1st and the originally chosen ref-

erence patient of Cohort II—using information obtained from the doctors about

• whether VOD was more progressed in the originally-chosen reference (or 5th) patient of

Cohort I, compared to the 1st patient in Cohort II (i.e. the “universal” reference patient) or not;

• whether VOD was more progressed in the originally-chosen reference (or 12th) patient of

Cohort III, compared to the 1st patient in Cohort II or not.

In each case, the “universal” reference patient, i.e. the 1st patient in Cohort II, was diag-

nosed by the Haematologists to clearly have VOD progressed more severely; in fact, both the

originally-chosen reference patients were diagnosed at the post-transplant stage to be VOD-

free. The inter-graph distance between the 5th patient of Cohort I and 1st patient of Cohort II

is computed to be 1.17; the distance between the 12th patient in Cohort III and the 1st patient

in Cohort II is 2.43. We recall that the “universal” reference patient, i.e. the 1st patient of

Cohort II has a score of 1 assigned to them. Then given that this “universal” reference patient

had more severe VOD than the other two patients, the score of the 5th patient in Cohort I is

-0.17, while that of the 12th patient in Cohort III is -1.43.

Indeed, in this form of learning, we do not retain the capacity for learing uncertainties on

the VOD-score of the reference patients in Cohort I and III. This is why in Table 1, the entries

under the column for the 95% Highest Probability Density credible regions is stated as “N.A.”

for these two patients. Of course, for the 1st patient of Cohort II, who is the “universal” refer-

ence patient, the score is assigned as 1, leaving no scope for uncertainties on this score. This is

again reflected in the table.

So now that we have shifted the score for the 5th patient, (i.e. the originally-chosen refer-

ence patient in Cohort I), by -1.17, all other patients in Cohort I—whose originally learnt

scores were learnt using a value of 1 for this 5th patient of this cohort—have their scores shifted

by -1.17. The resulting scores, along with the uncertainties, are reported in Table 1.

Similarly, all patients in Cohort III have their scores shifted by -2.43, since the originally-

assigned score of 1 on the erstwhile reference patient of this cohort (patient number 12), had

their score shifted from 1 to -1.43. These updated scores of all in Cohort III are again reported

in Table 1.
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This way, we express the scores of all patients in the retrospective cohort, relative to the

score of 1 that has been assigned to the arbitrarily-chosen “universal” reference patient for the

whole cohort. Hereon, we speak only of the full retrospective cohort.

5.2 Learnt VOD-scores and interpretation

While we learn the VOD-score, interpreting that score to predict whether a patient will

develop VOD after undergoing the transplant—or not—will be driven by calibration of our

learnt scores against diagnosis of VOD status, which however is only possible post-tansplant,

since VOD—if it develops in a patient—develops due to the transplant. (Here we recall that

our aim is to predict, at the pre-transplant stage, the VOD-score of a prospective patient). We

use the available information on the post-transplant VOD status of patients in the retrospective

cohort, to cross-reference against our learnt VOD-scores for each such patient. Such cross-

referencing informs on how to interpret our learnt VOD-scores, from the context of VOD sta-

tus, i.e. whether the learnt score implies that VOD will onset in the patient, or not. Of course,

our VOD-score informs on more than the binary VOD status; our predicted continuous

VOD-score also informs on how intensely VOD will progress in a patient, after they have

undergone the transplant.

Table 1. VOD-scores learnt in the retrospective cohort, independently of the VOD status observed for a patient,

indicated with a “Y” for onset of VOD, and “N” for no VOD onset, as identified post-transplant by the physicians.
Score of the “universal” reference patient is set as 1 with no uncertainties, and all other scores are learnt relative to this
score.

Mean of learnt score Learnt 95% HPD VOD status

0.11 [0.089, 0.31] N

0.44 [0.29, .67] Y

-0.069 [-0.24, 0.11] N

-0.96 [-1.54, -0.37] N

-0.17 N.A. N

1 N.A. Y

1.37 [1.34, 1.40] Y

0.48 [0.43, 0.52] Y

1.51 [1.46, 1.55] Y

0.44 [0.38, 0.48] Y

0.54 [0.49, 0.57] Y

0.50 [0.46, 0.54] Y

1.55 [1.51, 1.60] Y

-1.18 [-1.19, -1.17] N

-1.26 [-1.26, -1.24] N

-1.74 [-1.75, -1.73] N

-2.32 [-2.33, -2.306] N

-1.55 [-1.55, -1.539] N

-1.20 [-1.20, -1.186] N

-1.45 [-1.46, -1.44] N

-2.13 [-2.14, -2.127] N

-1.58 [-1.587, -1.572] N

-1.30 [-1.31, -1.299] N

-1.18 [-1.19, -1.177] N

-1.43 N.A. N

https://doi.org/10.1371/journal.pone.0292404.t001
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In Table 1, we present the VOD-scores that we have learnt for each patient in the retrospec-

tive cohort, and we compare this to the presented VOD status of the corresponding patient, as

observed by the physicians, after the transplant. Cross-referencing against the post-transplant

VOD status, informs on the result that, a learnt mean VOD-score S� 0.11 implies avoidance

of onset of VOD. Any patient for whom the learnt mean VOD-score is>0.11 is noted to have

developed VOD. Scoring with respect to the arbitrarily-chosen “universal” reference patient,

allows us to maintain this cutoff mean score of 0.11 as the benchmark value, against which

VOD onset is checked. If we take the uncertainties on the learnt scores into account, then we

note that scores can maximally be 0.31 for the patient to not have VOD.

If the physicians were mistaken in the identification of VOD status in patients at the post-

transplant stage, then we will be incorrect in our interpretation of 0.11 as the cut-off mean

score, below which VOD status is negative—but if a prospective patient is learnt to attain a

mean score above 0.11, they are interpreted to have developed VOD. Importantly, we note

that the clinical identification of the severity of VOD development in the retrospective

patients, concurred with the magnitude of our learnt VOD-score of the patient. That only

(mean) scores learnt to be in excess of 0.11 are noted to correspond to patients identified by

the Oncologists to have developed VOD, lends confidence in our learning, and in our formula-

tion of the VOD-score variable, as a one-to-one parametrisation of VOD progress. In Fig 3 we

display results of the MCMC-based learning of the scores of 6 retrospective patients using the

inference discussed in Section 3.4.

5.3 VOD-score of a prospective patient

We learnt the VOD-score in 7 prospective patients; for each prospective patient, this learning

was undertaken along with the learning of the length scale and the amplitude hyperparameters

Fig 3. Histogram representations of the marginal posterior probability of VOD-scores of 6 retrospective patients, learnt given

the data Dδ. The marginal density is used to compute the 95%HPD on this patient’s VOD score, (tabulated in Table 1).

https://doi.org/10.1371/journal.pone.0292404.g003
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of the covariance kernel, (see Section 3). For these 7 prospective patients, (P-1, P-2, P-3, P-4,

P-5, P-6, P-7), results of learning the VOD-scores within the learnt 95% HPD are shown in

Table 2. In Fig 4, we plot the results of learning the VOD-score, the length scale hyperpara-

meter ℓ, and the amplitude hyperparameter a, given the observed pre-transplant vector for

prospective patient P-2 (in the lower panel) and prospective patient P-5 (upper panel).

5.3.1 Advantages of risk prediction before transplant. Treatment with VOD prophylaxis

of Defibrotide is expensive—at*$500 per vial, where 2–3 vials need to be administered daily,

to attain proper prophylaxis. This is not affordable for all patients. The Oncologists in our

team inform all their patients about the predicted risk of them developing VOD—with this

risk quantified using our learnt VOD-score. All patients are informed about the relevance of

Table 2. Relative VOD-scores learnt for 7 prospective patients. The predicted VOD status is tabulated in the 4-th column, while the VOD-status, observed as it develops
in the patient post-transplant, is in the 5-th column.

Test patient ID Mean score Learnt 95% HPD Predicted VOD status Observed VOD status

P-1 1.551 [1.543, 1.562] Y Y

P-2 0.484 [0.475, 0.496] Y Y

P-3 0.996 [0.950, 1.045] Y Y

P-4 0.967 [0.949,1.033] Y Y

P-5 0.903 [0.849,0.901] Y Y

P-6 0.111 [0.100.120] N N

P-7 0.111 [0.102, 0.124] N N

https://doi.org/10.1371/journal.pone.0292404.t002

Fig 4. Histogram representations of learnt marginal posterior probability densities of VOD-score (right panels); length scale
hyperparameter ℓ of the covariance kernel (middle panels); and amplitude parameter a of the kernel (left panels), given the training
data, augmented by the observed pre-transplant vector of patient P-1 (lower panels) and patient P-4 (upper panel). The ℓ and a
values learnt using the training set alone, are overplotted in red.

https://doi.org/10.1371/journal.pone.0292404.g004
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the option of Defibrotide usage in their case, in the context of the predicted risk. For all

patients there are other less expensive interventions possible, the evidence of efficaciousness of

which are however anecdotal, distinguished from that of Defibrotide administration [15, 37].

Such less expensive, preventative interventions include fresh frozen plasma; Glutathione;

Ursodexoycholic acid; N-Acetyl Cystiene infusion; Heparin infusion. So while all patients

were offered these, Defibrotide administration is possible only for those who can afford the

same. In other words, costs of Defibrotide typically prohibit universal administration of VOD

prophylaxis at the pre-transplant stage, permitting usage of such pharmacological intervention

only in the high-risk patients. Our work enables knowledge at the pre-translant stage, of a

propsective patient’s risk of developing VOD post-transplant.

Of the five at-risk patients—as identified in our work—VOD prophylaxis administration

was possible in P-2 at the pre-transplant stage; post-transplant, P-2 developed only mild

VOD symptoms. The other four patients who were flagged with high VOD-scores at the

pre-transplant stage, could not be covered by Defobrotide administration at the pre-trans-

plant stage owing to affordability issues relevant to their circumstances. Amongst them,

patient P-1 suffered from early demise, s.t. VOD status in them was inconclusive. Indeed, we

had learnt a high risk of VOD onset in this patient, when they were at the pre-trasplant

stage; learnt mean VOD-score was about 1.55 for P-1 at the pre-transplant stage. Again, P-5

went on develop mild VOD symptoms, where we had learnt a mean score of about 0.9 for

them. P-3 did not develop VOD post-transplant, (we had learnt a score of about 1 for them),

while P-4, (for whom we had learnt a score of 1 at the pre-transplant stage), went on to

develop VOD, post-transplant. P-6 and P-7 did not develop VOD; our learnt mean scores

for them* 0.11.

5.3.2 Prediction at input that lies outside convex hull of the training set. The learning

of the score of test patient P-1 was tricky since pre-transplant thromboembolism was present

for this patient, such a condition was not one that any of the retrospective patients had suffered

from. In other words, our available training dataset could not enable any information to be

gleaned on the relevance of thromboembolism to the VOD score that we aim to learn for any

prospective patient, while the medical opinion of the Haematologist-Oncologists in our team

was that this condition renders patients susceptible to VOD [38]. Since the training data that

we employ, did not bear information on the effect of this condition on VOD-score, learning of

the VOD-score of this patient was expected to be misguided, given the training set that we had

access to. The learning of the VOD-score in this patient is then equivalent to demanding that

we predict at an input (pre-transplant parameters) that lies outside the convex hull of the train-

ing set. Such prediction is equivalent to extrapolation, which—if robust—is a highly desirable

property of any learning strategy.

To undertake the desired extrapolation within our Bayesian methodology, we enhance

the information content affecting the learning of P-1’s score, by allowing for the prior infor-

mation that thromboembolism renders P-1 more susceptible to VOD, than otherwise. The

Haematologist-Oncologists in our team were moderately convinced about this prior. This

led us to a Normal prior on the VOD-score variable S(test) for patient P-1, where mean of this

Normal was varied in the interval [0.5,1.15]—given that VOD-scores in this range corre-

spond to moderate-to-high VOD severity in retrospective patients—and variance of this

Normal prior is set s.t. this variance reflects the moderate levels of conviction of the medical

practitioners amongst us. We used a variance of 0.32, and thereafter relaxed the variance up

to 0.52 to check for prior-sensitivity of our learning. Priors defined by mean and variance val-

ues suggested above, consistently led to P-1’s VOD-score to converge to 1.55. We used

widely different seed values of the sought score in our learning, to attain this result

consistently.
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6 Ranking pre-transplant variables by potency

In this section we discuss the potency of each of the (30) pre-transplant variables that populate

the pre-transplant variable vector Y; it is the relationship between Y and the VOD-score vari-

able that we learn. Once the score sj is learnt for the j-th patient in the retrospective cohort, we

populate the training dataD ¼ fðsj; yjÞg
Np

j¼1, where the vector yj of pre-transplant variables of

the j-th patient are recorded, 8j = 1, . . ., Np. Thereafter, using this dataD, we non-parametri-

cally learn the function f(�), as a sample function of a Gaussian Process, (where Y = f(S)). The

question that we now ask, is about the ranking of the components of the pre-transplant vector

variable Y, by the influence that these variables Y1, . . ., Y30 have, on the VOD-score S.

To address this question we seek the pdf of the data variable DY ¼ fY1;
..
.
; . . . ; ..

.
YNp

g built
with the d=30-dimensional pre-transplant vector variables of the Np patients in the retrospec-

tive cohort, corresponding to the respective design input, given the model parameters, and

compare this to the density of another data variable DY�Yn
and the design inputs, given the

model parameters. HereDY�Yn
is the data variable given as fY�n;1;

..

.
; . . . ; ..

.
;Y�n;Np

g, ie. Y−n,j is

the pre-transplant vector comprising all but the n-th component of Y in the j-th patient. Then

Y�n;j 2 Rd�1, s.t. value of Y−n,j recorded for the j-th retrospective patient is y−n,j, j = 1, . . ., Np;

n = 1, . . ., d = 30. The density of the data variable, given the model parameters—which in our

learning are the hyperparameters ℓ and a of the covariance kernel—is the likelihood. In fact we

compute

gn ≔ logð fDY�Yn
;S1 ;...;SNp

j‘;aðDy�yn
; s1; . . . ; sNp

j‘; aÞÞ

�logð fDY ;S1 ;...;SNp
j‘;aðDy; s1; . . . ; sNp

j‘; aÞÞ;
ð1Þ

for n = 1, . . ., d. Here, the realisation of the data variable DY is the the dataDy that comprises

measurements of the pre-transplant variable vectors of Np patients. Similarly, the data com-

prising measurements of all-but-the-nth-component of the pre-transplant variables isDy−n.

In the given dataD, if the value of γn is more negative than that of γn/, the model of the rela-

tionship between the observable VOD-score variable, and the observable pre-transplant vari-

ables Y1, . . ., Yn−1, Yn+1, . . ., Yd, is a worse than the model of the relation between S and

Y1; . . . ;Yn=�1;Yn=þ1; . . . ;Yd, given the training data. In other words, the more negative is γn,

the effect of Yn is more sorely missed in the model, given dataD. However, if on removing Yn

from the model, likelihood improves, i.e. if γn > 0, it implies that the model is better without

Yn than with it included in the model. Thus, by varying across all n, we identify the pre-trans-

plant variables by the order of their influence on the VOD-score, i.e. in the model of the rela-

tion between the score and the pre-transplant variables. Ranking of Y1, . . ., Yd, by such

influence is tabulated in Table 3.

6.1 Discussion

In this section, we have discussed a method to rank the considered pre-tramsplant variables by

the strength of their effect on VOD progression. This is an important exercise to undertake;

[18] say, “Recognition of VOD/SOS risk factors helps expedite treatment”; [6] report on VOD

risk factors, as part of a review on VOD incidence and diagnosis. We identify H/O liver dis-

ease—and hepatic dysfunction as a co-morbidity—to potently influence VOD progression.

Indeed, [2, 4, 11, 12, 39] also report pre-existing liver disease as a risk factor of VOD. Existing

pulmonary dysfuction is also concluded to be a risk factor in our work, as was suggested by

[40].
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Again positive CMV serology is noted to be a risk factor by [41], and we find this to influ-

ence VOD onset. In our work, advanced age is noted to be a relevant risk factor, as is suggested

by [4, 42]. We find high values of pre-transplant ferritin to be less influential a factor for VOD

onset than the pre-transplant attributes discussed above, while [43] forward this to be a rele-

vant risk factor. In terms of transplant parameters, we identify HLA mismatch to be an impor-

tant factor of influence, in agreement with [11]. Additionally, gender mismatch is found to be

more potent than ABOmismatch in our work, in influencing VOD progression. Then again,

Table 3. Pre-transplant variables, ranked in order of influence on VOD-score, as identified by the difference in the pdf of the data comprising observations of the

pre-transplant variable vector Y and that of the data on the vector Y−n that comprises all-but-nth-pretransplant-variable, 8n = 1, . . ., d, where d = 30 in our work.
This difference in the density of the data variable built with Y−n, and that built with Y of theNp patients, given the model parameters, is referred to as “Difference in likeli-
hood”, and tabulated in Column 2, in ranked order, for the n-th component of Y, where the name of such component is mentioned in Column 1, under “Attribute”. The
3rd and 4th columns tabulate the difference in the learning of the model parameters ℓ and amplitude respectively, given data on Y−n and given data on Y, where the corre-
sponding omitted n-th component of Y is named in the same row of the 1st column. The difference caused in the posterior probability density of ℓ and amplitude, given
the data on Y and that given data on Y−n, is tabulated in the 5-th column, while the sum of the differences tabulated in the 2nd to the 5th columns, is noted in the 6-th
column.

Attribute Difference in likelihood Difference in ℓ Difference in amplitude Difference in posterior Sum of differences

ALL -2.561 6.67×10−5 -0.002383 596.7 594.2

H/O Liver dis -2.519 6.797×10−5 -0.002347 589.7 587.2

Dis-relapsed -2.519 6.733×10−05 -0.00234 588.5 585.9

Diabetes -2.518 7.104×10−5 -0.002345 589.5 587

GenMis-M:F -2.513 6.886×10−5 -0.002331 586.5 584

GenMis-F:F -2.513 7.036×10−5 -0.002338 588 585.5

Azathropine -2.512 6.896×10−5 -0.00235 590.4 587.9

HLA match -2.511 6.867×10−5 -0.002326 585.8 583.3

CMV-positive -2.508 6.81×10−05 -0.00233 586.4 583.9

Gen-Mis-M:M -2.507 6.581×10−5 -0.002324 585.2 582.7

6-Mercatoprine -2.506 6.753×10−5 -0.002333 587.1 584.6

Myelotarg -2.506 6.702×10−5 -0.002332 586.8 584.3

Aplastic Ane -2.506 6.999×10−5 -0.00234 588.3 585.8

Cytarabine -2.505 6.956×10−5 -0.002335 587.4 584.9

GenMis-F:M -2.504 6.641×10−5 -0.002327 585.9 583.4

CML -2.503 6.937×10−5 -0.002326 585.7 583.2

PulmonaryDysf -2.502 6.612×10−5 -0.002329 586.2 583.7

AML -2.5 6.748×10−5 -0.002327 585.8 583.3

CMV-reactive -2.5 6.762×10−5 -0.002311 582.7 580.2

CardiacDis -2.497 6.796×10−5 -0.002327 585.9 583.4

ABOMismatch -2.495 7.26×10−5 -0.002314 583.3 580.8

HepaticDysfun -2.488 6.996×10−5 -0.0023 580.6 578.1

Dis-remission -2.478 6.749×10−5 -0.002299 580.5 578

Other1 -2.463 5.996×10−5 -0.002278 576.3 573.9

Myleofibrosis -2.463 5.996×10−5 -0.002278 576.3 573.9

Hypertension -2.458 6.868×10−5 -0.002283 577.2 574.8

Gender -2.049 3.499×10−5 -0.00184 488.6 486.5

Age -2.049 3.499×10−5 -0.00184 488.6 486.5

FerritinPre-trans -1.457 0.0001499 -0.001198 353.5 352.1

CRPPre-trans 2.89 -2.474×10−5 0.004648 1245 -1243

1 Diseases other than Acute Myleoid Lukemia (AML), Acute Lymphoblastic Leukaemia (ALL), Chronic Myeloid Leukaemia (CML), Aplastic Anemia and Myleofibrosis

are referred to as “Other” in Table 3.

https://doi.org/10.1371/journal.pone.0292404.t003

PLOS ONE Inter-graph distance to disease scores

PLOSONE | https://doi.org/10.1371/journal.pone.0292404 October 19, 2023 23 / 28

https://doi.org/10.1371/journal.pone.0292404.t003
https://doi.org/10.1371/journal.pone.0292404


in terms of pre-transplant medication, Azathioprine; 6-Mercaptopurine; Myelotarg; and

Cytarabine are found to bear influence on VOD progression—in that order, given our sample;

indeed, [44] have suggested pre-treatment with Myelotarg to affect VOD, while [45, 46] report

VOD and sinusoidal dilation as linked to treatment with Azathioprine.

Our work finds the underlying cancers to be relevant, namely, ALL, Aplastic Anemia,

CML, AML, Myleofibrosis, and “Other” (defined within the table above)—in order of influ-

ence; [47, 48] have reported on the relevance of Advanced malignancy, Acute leukemia and

Neuroblastoma. We find cancer status to be a relevant risk factor, with relapsed state of the dis-

ease—over remission—noted to affect VOD progression, relatively more strongly. The param-

eters of the transplant procedure are not pre-transplant parameters, and are therefore not

included in our ranking of risk factors. Our results—including the addressing of co-morbidi-

ties as influencing VOD—are likely to be sample-bounded. The method of detection of the rel-

ative potency of risk factors is the intended deliverable of our work; results of illustration of

this method on our sample is reported in Table 3.

7 Conclusions

We present reliable learning of scores that inform on how virulently a disease will afflict a

patient at the pre-onset stage, given their pre-onset parameters. In the context of the disease

VOD, we learn the VOD-score of each in a cohort retrospective patients. We learn this score,

using the multivariate time series data on physiological parameters of each patient; data of

such patient physiological parameters is employed to generate the graphical model of the

patient’s evolving physiology. Under the assumption that VOD severity in one patient com-

pared to that in another, is dependent on the difference between the correlation structures of

the temporal evolution of the physiological parameters of this pair of patients, we learn the

score of each patient in the cohort, relative to an arbitrarily-chosen reference patient. This

assumption stems from the understanding that these relevant physiological parameters that

oncologists record for a patient from 8 days before, to 18 days after the bone marrow trans-

plant, are s.t. the inter-physiological-variable correlation structure, as manifest in the graphical

model of the post-transplant time series data of such physiological parameters, is contributed

to by VOD progression. Such contribution is corroborated by the medical opinion of Haema-

tologist-Oncologists.

However, the linear dependence between the difference in a pair of VOD-scores, and the

(Hellinger) distance between probability distributions of the corresponding graph variables, is

a model we use, for the definition of the VOD-score. It is our learning of the graph as a ran-

dom variable that allows learning of its posterior probability, allowing for the Hellinger dis-

tance to be computed, yielding the score in turn. Also, we learn the vector-valued functional

relation between the VOD-score and the pre-transplant vector variable, implying that the

input VOD-score is learnt—instead of predicted—for a new patient, using their pre-transplant

variables.

Our learnt pre-transplant VOD-scores of prospective patients, enabled the physicians to

consider administration of VOD prophylaxis to at-risk patients, at the pre-transplant stage.

For the five out of the seven prospective patients whose VOD-scores learnt at the pre-trans-

plant stage, exceeded 0.11, the Haematologist-Oncologists in the team designed their respec-

tive pre-transplant treatment regimen to preferably include VOD prophylaxis with

Defibrotide. On the other hand, the treatment regimen of patients with pre-transplant VOD-

scores that indicated lack of susceptibility to VOD, precluded Defibrotide.

From a method development point of view, our method has the advantage that we can

learn the VOD score of a prospective patient whose inputs lie outside the convex hull of the
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training set. Additionally, our methodology is a generic one that can be implemented to learn

the progression score of other diseases at the pre-onset stage. Curently the method is being

employed to learn the score of movement recovery in patients who are undergoing physical

rehabilitation, following a movement-impeding critical illness; recovery of one patient relative

to a reference patient is parametrised in this application, as the distance between the graphs

realised from the undertaking of relevant exercises by the two patients. This analysis is paving

the way for the learning of recovery trajectories in patients, as well as for the identification of

the optimal treatment regimens for selected patient groups. Once such movement recovery

scores are learnt, the relation between the pre-illness parameters and score variable will be

learnt, to thereby predict the recovery trajectory for a patient with given pre-injury

parameters.
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