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Abstract

Selecting in-domain data from a large pool of diverse and out-

of-domain data is a non-trivial problem. In most cases sim-

ply using all of the available data will lead to sub-optimal and

in some cases even worse performance compared to carefully

selecting a matching set. This is true even for data-inefficient

neural models. Acoustic Latent Dirichlet Allocation (aLDA) is

shown to be useful in a variety of speech technology related

tasks, including domain adaptation of acoustic models for au-

tomatic speech recognition and entity labeling for information

retrieval. In this paper we propose to use aLDA as a data sim-

ilarity criterion in a data selection framework. Given a large

pool of out-of-domain and potentially mismatched data, the task

is to select the best-matching training data to a set of repre-

sentative utterances sampled from a target domain. Our tar-

get data consists of around 32 hours of meeting data (both far-

field and close-talk) and the pool contains 2k hours of meet-

ing, talks, voice search, dictation, command-and-control, audio

books, lectures, generic media and telephony speech data. The

proposed technique for training data selection, significantly out-

performs random selection, posterior-based selection as well as

using all of the available data.

Index Terms: Acoustic Latent Dirichlet Allocation, data selec-

tion, speech recognition

1. Introduction

Bootstrapping an speech recognition system for a new domain

is a common practical problem. A typical scenario is to have

some limited in-domain data from a target domain that ASR

system is being built for and a pool of out-of-domain data, of-

ten containing a diverse set of potentially mismatched data. Us-

ing all of the available data is not a good choice in some cases,

especially when the pooled data contains a lot of mismatched

data to your target domain. There are two main concerns about

using all of the available data. Some times the performance is

sub-optimal compared to carefully selecting a matching set and

in some cases the performance can be even worse [1, 2]. The

other concern is the amount of computation needed to train the

models. If a comparable or ideally a better model can be trained

with a fraction of the available data, then it would be more com-

putationally efficient to train with the smaller set. In these cases

data selection becomes a crucial problem. The same problem

is applicable for adaptation data selection as well, where the

aim is to select data for adapting acoustic model using a limited

in-domain dataset.

∗Core part of this work was performed while the author was study-
ing at the University of Sheffield

In this paper we propose to use acoustic Latent Dirichlet

Allocation (aLDA) for matching acoustically similar data to the

limited in-domain data from a pool of diverse data. aLDA is

already applied for domain discovery [3] and domain adapta-

tion [4] in automatic speech recognition as well as media entity

recognition, such as show and genre identification in informa-

tion retrieval systems for media archives [5, 6, 7].

Next section briefly discusses LDA and aLDA. Section 3

describes the experimental setup and how aLDA data selection

technique works, followed by the conclusion in section 4 and

references.

2. Acoustic Latent Dirichlet Allocation

As shown in our previous works [3, 4, 5], aLDA domain pos-

teriors have a unique distribution across different domains that

can be used to characterise the acoustic scenery. In this work

we make use of aLDA domain posterior features as a basis of

acoustic similarity in a data selection problem. The idea is that

using acoustically similar data to a target domain for training

acoustic models should improve the ASR accuracy on that do-

main. While using all of the available data which does not nec-

essarily match the target domain could potentially harm the ac-

curacy.

LDA is an unsupervised probabilistic generative model for

collections of discrete data. Since speech observations are con-

tinuous data, first it needs to be represented by some discrete

symbols, here called acoustic words. A GMM with N mixture

components is employed for this purpose. The index of Gaus-

sian component with the highest posterior probability is then

used to represent each frame with a discrete symbol. Frames of

every acoustic document of length T , di = {u1, ...,ut, ...,uT }
are represented as:

vt = argmax
n

P (Gn|ut), 1 ≤ n ≤ N (1)

where Gn is a Gaussian component from a mixture of N com-

ponents. With this new representation, document di is repre-

sented as d̃i = {v1, ..., vt, ..., vT }. For each acoustic word

vt in each acoustic document d̃i, term frequency-inverse docu-

ment frequency (tf-idf) can be computed as:

wt = tfidf(vt, d̃i, D̃) = tf(vt, d̃i) idf(vt, D̃) (2)

where D̃ is the set of all acoustic documents represented with

acoustic words. With each document now represented with tf-

idf scores as d̄i = {w1, ..., wt, ..., wT }, the LDA models can

be trained.

A graphical representation of the LDA model is shown at

Figure 1, as a three-level hierarchical Bayesian model. In this
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Figure 1: Graphical model representation of LDA

model, the only observed variables are wt’s. α and β are dataset

level parameters, θ
d̃i

is a document level variable and zt is a

latent variable indicating the domain from which wt was drawn.

The following joint distribution is the result of the generative

process of LDA:

p(θ, z, d̄|α, β) = p(θ|α)

T
∏

t=1

p(zt|θ)p(wt|zt, β) (3)

The posterior distribution of the latent variables given the acous-

tic document and α and β parameters is:

p(θ, z|d̄, α, β) =
p(θ, z, d̄|α, β)

p(d̄|α, β)
(4)

Computing p(d̄|α, β) requires some intractable integrals. A

reasonable approximate can be acquired using variational ap-

proximation, which is shown to work reasonably well in various

applications [8]. The approximated posterior distribution is:

q(θ, z|γ, φ) = q(θ|γ)

T
∏

t=1

q(zt|φt) (5)

where γ is the Dirichlet parameter that determines θ and φ is

the parameter for the multinomial that generates the latent vari-

ables.

Training minimises the Kullback-Leiber Divergence be-

tween the real and the approximated joint probabilities (equa-

tions 4 and 5) [8]:

argmin
γ,φ

KLD
(

q(θ, z|γ, φ) || p(θ, z|d̄, α, β)
)

(6)

The posterior Dirichlet parameter γ(d̄) can be used as fea-

tures representing the acoustic conditions. These features are

used in different tasks, for example for genre and show entity

identification and classification tasks [5, 6, 7, 9] or for domain

discovery and adaptation in speech recognition [3, 4].

3. Experimental Setup

To evaluate the effectiveness of aLDA for data-selection in

ASR, we are trying to solve this practical problem: given a

small set of in-domain data and a large pool of out-of-domain

and potentially mismatched data, what’s the best set of data that

can be selected from the pool to train a model for the in-domain

data.

3.1. Data

The in-domain dataset consists of 32 hours of meeting data.

Meeting participants used a wide-variety of devices to join the

online meetings, including different headsets, earphones with

microphones, laptop/table/phone microphone in a far-field set-

ting (arm-length distance) and table-top meeting microphones.

Essentially the data is a mixture of far-field and close-talking in

Table 1: Statistics of the in-domain dataset

Characterisitc Notes

Gender 37% female / 63% male

Nativeness 77% native / 23% non-native

Device

53% laptop computer

11% desktop computer

19% mobile phone

9% tablet

8% other devices

Distance to microphone 27% far-field / 73% close-talk

Table 2: Statistics of the out-of-domain dataset

Domain
Duration

(hours)
Percentage

Generic media 782 39.1%

Audio books 339 17.0%

Meeting 228 11.4%

Telephony speech 218 10.9%

Talks 172 8.6%

Command and Control 112 5.6%

Lectures 111 5.6%

Dictation 38 1.9%

Total 2000 100%

different environments. Table 1 summarises some statistics of

the in-domain dataset.

Meetings are mostly real discussions about IT-related top-

ics and there was no control on the participants’ recording and

environmental conditions. From this in-domain set, 10 hours is

used as the dev set and 22 hours as the test set.

The pool of out-of-domain dataset consists of 2000 hours of

diverse and multi-domain data. Table 2 summarises the amount

of data for each domain.

Around 39% of the pooled data belongs to the generic me-

dia domain which includes professional and amateur media

recordings from radio, TV, pod-casts and YouTube. Meeting

data (which is considered to be the best matching data for our

in-domain data) is only 11% of the pooled data and they were

not a part of the in-domain meeting recordings.

The data used for language modelling is fixed in all experi-

ments and includes around 200 million words from Wikipedia,

TedTalks, YouTube subtitles and e-books with a vocabulary of

size 300 thousand words [10, 11]. For the lexicon, a base CMU

dictionary was used and for the OOVs, a seq-to-seq g2p model

was trained on the base lexicon and used to generate the missing

pronunciations [12].

3.2. Baseline

The purpose of this study is to show how aLDA data selection

can improve ASR accuracy of a target domain and for that rea-

son all of the model architectures are the same in all of the ex-

periments and the only difference is the amount of data used

for training the acoustic models. For acoustic models, TDNN-

LSTM model with 3 layers and 1024 nodes in each layer was

trained using the lattice-free MMI objective function [13] in

Kaldi toolkit [14]. During decoding a pruned 3-gram language

model was used to generate lattices and the lattices were then

rescored using a 5-gram language model. Table 3 presents the
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Table 3: Baseline results

Model
WER

Overall Far-field Close-talk

Baseline with all data 29.4 53.4 20.9

WER for the test set and for its far-field and close-talk subsets.

WER for the far-field subset of the test set is very high and that

shows how challenging this dataset is.

3.3. aLDA Data Selection

All of the in-domain data was used for training the aLDA model

with the procedure described in section 2 using a vocabulary

size of 1024 (number of Gaussian mixture components) and

2048 latent domains. Both these values were selected based on

our previous experiments [4, 5]. The trained aLDA model was

then used to get the posterior Dirichlet parameter γ for all of the

utterances in the training, dev and test set. The posterior vectors

from the dev set were then clustered into 512 clusters using k-

means clustering algorithm and the centroid of each cluster was

used to represent each cluster.

An iterative approach was used to select the matching data

from the pool of out-of-domain data. For each γi (centroid of

the cluster i) the distance to all of the utterances in the training

set is computed as:

Φ(γi, γj), ∀γj ∈ S
trn

(7)

where S
trn is the set of all Dirichlet posterior vectors of the

training set and Φ is the cosine distance between the two vectors

defined as:

Φ(γi, γj) = 1−
γiγj

||γi||2 ||γj ||2
(8)

The closest utterance (in terms of cosine distance between the

Dirichlet posteriors and cluster centroid) that was smaller than

a λ threshold was added to the selection and was removed from

the pool. This iterative process continued until either the mini-

mum distance criterion could not be met for all of the γi or the

pool was depleted. Algorithm 1 shows this iterative process.

Tuning the λ threshold requires exploration of a range of

values. In our experiments we found that this threshold value is

not very sensitive and values in the range of 0.1 to 0.25 resulted

in sensible amounts of data. In the final experiment a threshold

value of 0.2 was used. This threshold value can also be used

to control the amount of data being selected as well if there is

budget on the amount of data.

3.4. Combining Text LDA with aLDA

Text-based LDA (tLDA) can also be used to further improve the

aLDA data selection. The idea is that aLDA captures acoustic

similarities in the data and tLDA can further help with linguistic

content’s similarity. tLDA is already shown to improve classi-

fication accuracy in LDA based acoustic information retrieval

[5] as well as language modelling tasks [15, 16, 17, 18, 19].

Training tLDA models followed a similar procedure to aLDA

Algorithm 1 Data-selection based on Dirichlet posterior

Input: Training data S
trn of M utterances,

Training set Dirichlet posteriors {γtrn
1 , . . . , γtrn

M },

Dev set posterior centroids {γdev
1 , . . . , γdev

N },

Distance threshold λ

Initialize: Snew = {}; count = 0;

while S
trn 6= ∅ do

count = 0
for All γdev

i ∈
{

γdev
1 , . . . , γdev

N

}

do

d = min Φ(γdev
i , γtrn

j ) ∀γtrn
j ∈ {γtrn

1 , . . . , γtrn
M }

if d < λ then

j∗ = argmin
j

Φ(γdev
i , γtrn

j )

Remove γtrn
j∗ from {γtrn

1 , . . . , γtrn
M } set

S
trn = S

trn \ {strnj∗ }

S
new = S

new ∪ {strnj∗ }

count = count+ 1

end if

end for

if count == 0 then

break

end if

end while

Output: Snew

and a comparable number of latent topics and vocabulary size

was used. In our experiments tLDA on its own was not outper-

forming the baseline and hence those results are not included

in this paper. An explanation for it could be the fact that pure

linguistic similarity does not necessarily mean that the acoustic

conditions are similar as well and thus cannot compensate for

the acoustic mismatch.

Different approaches for combining aLDA and tLDA scores

were examined. Including but not limited to linear combination

of posteriors, two level hierarchical search and two independent

search followed by union. At the end using two approaches

independently and then combining the selected data resulted in

the best performance.

3.5. Results and Discussion

In this section LDA based data selection is compared against

random selection, using all of the available data (2000 hours)

and phone-posterior based data selection [20]. Table 5 sum-

merises the results of the experiments. For the random selection

two budgets of 500 and 1000 hours are used and each experi-

ment is repeated 2 times and an average value plus the stan-

dard deviation of the runs are provided (due to the data size

and computation time this experiment could not be repeated

more). Using all of the available data, the WER on the test set is

29.4. Phone-posterior based selection with a predefined budget

of 1000 hours yields a WER of 29.0 which is slightly better than

using all of the available data, but savings on computation time

is massive (50% less data used for training the model). aLDA

method selects 49.7% of the data and brings down the error by
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Table 4: WER and amount of data for different data selection

methods

Method
Amount of data

(hours)
WER

Random selection
500 31.5 (±2.00)

1000 30.1 (±0.98)

All of data 2000 29.4

Phone-posterior 1000 29.0

aLDA 995.4 28.5

aLDA + tLDA 1103.9 28.3

Table 5: Amount of selected data by aLDA

Component
Duration

(hours)

Percentage

of domain

Generic media 317.5 40.6%

Meeting 205.5 90.1%

Audio books 147.6 43.5%

Talks 136.9 79.6%

Lectures 94.6 85.2%

Telephony speech 84.3 38.7%

Dictation 6.3 16.6%

Command and Control 2.7 2.4%

Total 995.4 n/a

0.9% absolute. Combing aLDA with tLDA further reduces the

error to 28.3% while selecting only 108.5 hours more data.

The results presented in table 5 show the effectiveness of

the proposed aLDA data selection and how it can be further

improved by using tLDA.

3.6. Analysis of the Selected Data

From the pool of 2000 hours, aLDA technique selected 995.4

hours. In this section the selected data is analysed to understand

which parts of the training data was found to be the best match

to the target in-domain data.

The training pool consists of data from 8 domains: audio

books, command and control, dictation, generic media, lectures,

meetings, talks and telephony speech. From these domains only

the meeting data seems to be the best match, at least in terms of

the domain tags associated with each component. As mentioned

in section 3.1, the meeting data in our training set is not a part

of the test set recordings, but rather some generic and diverse

meeting data. It includes data from the AMI [21] and ICSI [22]

projects as well as some other internal and external sources and

in that sense it’s not considered as an strictly in-domain data.

The majority of the selected data belongs to the generic me-

dia domain (which was the predominant class in our pool), also

almost all of the available meeting data was selected showing

that it was a very good match to our in-domain meeting data, at

least compared to other data sources. Other interesting obser-

vation is the amount of data from dictation and command and

control domains, where in total only 8 hours is selected. Check-

ing those data, they are very clean audio. Command and control

data set has a lot of very short utterances (single words) and that

could contribute to the LDA domains posterior mismatch and

not being selected.

In the previous section it was shown that including the

data from tLDA selection improves the ASR performence while

adding only 108 extra hours. Inspecting those extra data reveals

that most of them are selected from talks and telephone speech

(35h and 65h respectively). Suggesting that the textual simi-

larities of those domains was picked up by the tLDA and we

end up using all of the available talks data in the training of the

aLDA+tLDA model. Those extra data improves the accruacy

by 0.2% absolute.

4. Conclusions

Selecting matching data to a small set of in-domain data from

a large pool of out-of-domain and mismatched data is a non-

trivial problem. This problem arises in many practical applica-

tions of speech recognition where the task is to build an ASR

system for a new target domain where there is a very limited

amount of data is available. Often using all of the potentially

mismatched data results in sub-optimal and poor performance

compared to carefully selecting a matching subset.

In this paper aLDA based data selection is proposed for

the first time and its effectiveness is experimented on a large

dataset. Our in-domain dataset contains 32 hours of meeting

data (mixed far-field and close-talking) and the pool of out-of-

domain data consists of 2000 hours of data from very diverse

domains. Using all of the available data, the baseline WER is

29.4%. Using the proposed iterative data selection technique

and with slightly less than half of the training data the overal

WER on our 20-hour test set is 0.9% absolute better than using

all of the available data. Combining aLDA with tLDA further

reduces the WER to 28.3%.

Future work can include automatic distance threshold find-

ing, exploring the effectiveness of aLDA data selection with

data augmentation, finding better ways to combine aLDA and

tLDA and further analysis of the selected data by aLDA+tLDA.
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