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ABSTRACT

This paper proposes an adaptation method for end-to-end speech

recognition. In this method, multiple automatic speech recognition

(ASR) 1-best hypotheses are integrated in the computation of the

connectionist temporal classification (CTC) loss function. The in-

tegration of multiple ASR hypotheses helps alleviating the impact

of errors in the ASR hypotheses to the computation of the CTC

loss when ASR hypotheses are used. When being applied in semi-

supervised adaptation scenarios where part of the adaptation data do

not have labels, the CTC loss of the proposed method is computed

from different ASR 1-best hypotheses obtained by decoding the un-

labeled adaptation data. Experiments are performed in clean and

multi-condition training scenarios where the CTC-based end-to-end

ASR systems are trained on Wall Street Journal (WSJ) clean train-

ing data and CHiME-4 multi-condition training data, respectively,

and tested on Aurora-4 test data. The proposed adaptation method

yields 6.6% and 5.8% relative word error rate (WER) reductions in

clean and multi-condition training scenarios, respectively, compared

to a baseline system which is adapted with part of the adaptation data

having manual transcriptions using back-propagation fine-tuning.

Index Terms— End-to-end speech recognition, connection-

ist temporal classification, semi-supervised adaptation, multiple-

hypothesis, back-propagation

1. INTRODUCTION

Mismatch between training and test data is common when using au-

tomatic speech recognition (ASR) systems in realistic conditions.

Among other robustness methods, adaptation algorithms developed

for ASR aim at alleviating this mismatch. Adapting large and com-

plex models, especially deep neural network (DNN)-based models,

is challenging with typically a small amount of adaptation (target)

data and without explicit supervision [1].

Adaptation algorithms use adaptation data, which should be

matched to the target test data, to adapt the trained ASR system

and close the gap between training and test. The transcriptions, or

labels, of the adaptation data are required in supervised adaptation.

However, manual transcriptions are not always available because

obtaining these transcriptions for a large amount of data is costly.

When manual transcriptions are not available, ASR hypotheses, or

“pseudo-labels”, can be used in the place of manual transcriptions.

The ASR hypotheses are obtained by decoding the adaptation data

using the trained (non-adapted) system. When ASR hypotheses

are used, inaccurate information is present because the automatic

transcriptions are typically not free of errors.

End-to-end speech recognition uses a single neural network ar-

chitecture within the deep learning framework to perform speech-to-

text task. In the training of end-to-end speech recognition systems,

the need for having prior alignments between acoustic frames and

output symbols is eliminated thanks to the use of training criteria

such as the attention mechanism [2] or the connectionist temporal

classification (CTC) loss function [3].

Connectionist temporal classification (CTC) is the process of

automatically labeling unsegmented data sequences using a neural

network [4]. The training of a neural network using the CTC loss

function thus does not require prior alignments between the input

and target sequences. In the training of neural network using CTC

loss and characters as output symbols, for a given transcription of the

input sequence, there are as many possible alignments as there are

different ways of separating the characters with blanks. As the exact

character sequence, derived from the transcription, corresponding to

the input sequence is not known, the sum over all possible charac-

ter sequences is performed [3]. In semi-supervised or unsupervised

adaptation where ASR hypotheses are used, the computation of the

CTC loss could be unfavorably affected because there are errors in

the transcriptions which are in essence the ASR hypotheses.

In this paper, we propose an adaptation method for CTC-based

end-to-end speech recognition in which the impact of errors in the

transcriptions to the CTC loss computation is alleviated by combin-

ing CTC losses computed from different ASR 1-best hypotheses. In

the present paper, the ASR 1-best hypotheses are obtained by using

ASR systems with different acoustic features to decode the unla-

beled adaptation data. We show the effectiveness of the proposed

adaptation method in semi-supervised adaptation scenarios where

the CTC-based end-to-end speech recognition systems are trained

either on clean training data from the Wall Street Journal (WSJ) cor-

pus [5] or on multi-condition training data of the CHiME-4 corpus

[6], while evaluating on the test data of Aurora-4 corpus [7].

The paper is organized as follows. Section 2 presents related

works. The proposed adaptation method using multiple ASR hy-

potheses and CTC losses combination is introduced in section 3.

Sections 4 and 5 present about ASR systems training and adapta-

tion experiments, respectively. Results are presented in section 6.

Finally, section 7 concludes the paper.

2. RELATED WORKS

Adaptation of end-to-end speech recognition has been investigated

in a number of studies [8, 9, 10, 11, 12, 13, 14, 15, 16]. In [9],

adaptation of the end-to-end model was achieved by introducing

Kullback-Leibler divergence (KLD) regularization and multi-task

learning (MTL) criterion into the CTC loss function. The training

criteria are the linear combination of the standard CTC loss and the

KLD or the MTL criterion. Multiple hypotheses were previously

used in cross-system acoustic model adaptation where the transcrip-

tions for adaptation were generated by several systems, which were

built with various phoneme sets or acoustic front-ends [17, 18].
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In the present work, a new loss function created by combining

the CTC losses computed from different ASR 1-best hypotheses is

used during adaptation. The ASR 1-best hypotheses are obtained

by decoding the unlabeled adaptation data with ASR systems using

different acoustic features.

3. PROPOSED ADAPTATION METHOD

3.1. Training of CTC-based end-to-end speech recognition

Given a T -length acoustic feature vector sequence X = {xt ∈
R

d|t = 1, ..., T}, where xt is a d-dimensional feature vector at

frame t, and a transcription C = {cl ∈ U|l = 1, ..., L} which

consists of L characters, where U is a set of distinct characters, dur-

ing the training of the neural network the standard CTC loss function

LCTC is defined as follows:

LCTC = − logPθ(C|X), (1)

where θ are the network parameters. The network is trained to min-

imize LCTC . In equation (1), C is the transcription of X which

can be either a manual transcription or an ASR hypothesis. In the

present work, the ASR systems are trained using manual transcrip-

tions in supervised training mode. The convolutional neural network

(CNN) [19] - bidirectional long short-term memory (BLSTM) [20]

architecture is used.

The CTC loss function in equation (1) can be computed thanks

to the introduction of the CTC path a which forces the output char-

acter sequence to have the same length as the input feature sequence

by adding blank as an additional label and allowing repetition of la-

bels [3]. The CTC loss LCTC is thus computed by integrating over

all possible CTC paths B−1(C) expanded from C:

LCTC = − logPθ(C|X) = − log
∑

a∈B−1(C)

Pθ(a|X). (2)

3.2. Multiple-hypothesis CTC-based adaptation

Given adaptation data, among other adaptation methods mentioned

in section 2, the CTC-based end-to-end speech recognition system

can be adapted by using back-propagation algorithm [21] to fine-

tune the trained neural network [15]. During the minimization of

the CTC loss function using stochastic gradient descent [22], the

parameters of the neural network are updated. When the manual

transcriptions of the adaptation data are not available, ASR 1-best

hypotheses obtained by using the trained neural network to decode

the adaptation data can be used in the adaptation process.

In this paper, we propose to integrate multiple ASR 1-best hy-

potheses in the computation of the CTC loss function during adapta-

tion, when the manual transcriptions are not available, as follows:

L
∗
CTC = −

(
N∑

i=1

logPθ(Ĉi|X)

)
, (3)

where Ĉi, i = 1, ..., N are the 1-best hypotheses obtained by decod-

ing the unlabeled adaptation data using N different trained neural

networks. By combining multiple 1-best hypotheses in the computa-

tion of the CTC loss, the impact of the errors in the ASR hypotheses

to the computation of the CTC loss function could be alleviated. Us-

ing property of the logarithm, the equation (3) can be rewritten as

follows:

L
∗

CTC = − log

N∏

i=1

Pθ(Ĉi|X) = − log

N∏

i=1




∑

ai∈B−1(Ĉi)

Pθ(ai|X)



 ,

(4)

where ai is a CTC path linking the 1-best hypothesis Ĉi and the

acoustic feature sequence X .

In the computation of the new CTC loss L∗
CTC in the present pa-

per, different ASR 1-best hypotheses are obtained by decoding the

adaptation data with different ASR systems. Different ASR hypothe-

ses could be obtained by other means, for instance by using N-best

hypotheses from one decoding. This possibility is not explored in

the present paper. Also, no confidence-based filtering [1] is applied

on the ASR hypotheses. In the experiments of the present paper, the

use of two systems (N = 2) is explored.

3.3. Analysis

We analyze the new loss function L∗
CTC for the simplified case

where two 1-best hypotheses are used. The equation (4) becomes:

L
∗

CTC = − log








∑

ai∈B−1(Ĉ1)

Pθ(ai|X)








∑

bj∈B−1(Ĉ2)

Pθ(bj |X)







 ,

(5)

where ai and bj are ones of the CTC paths linking the 1-best hy-

potheses Ĉ1 and Ĉ2, respectively, with the acoustic feature sequence

X . From equation (5), it can be seen that a probability Pθ(ai|X),
computed by using the CTC path ai, would be multiplied with all

the probabilities Pθ(bj |X), bj ∈ B−1(Ĉ2). This weighting, based

on the probabilities computed from different CTC paths in B−1(Ĉ2),
could possibly alleviate the impact of uncertainty in the CTC paths

ai ∈ B−1(Ĉ1), caused by transcription errors in Ĉ1, to the compu-

tation of the CTC loss L∗
CTC .

4. SPEECH RECOGNITION SYSTEM AND DATA

The effectiveness of the proposed adaptation method is evaluated in

semi-supervised adaptation scenarios where only part of the adapta-

tion data have manual transcriptions. This scenario is popular when

manual transcriptions can be obtained only for a small amount of

adaptation data instead of total amount of adaptation data, to reduce

the cost. The end-to-end ASR systems are trained using the stan-

dard CTC loss function (see equation (1)). The proposed CTC loss

function L∗
CTC is used only in the adaptation using the proposed

multiple-hypothesis CTC-based adaptation method. Other adapta-

tions use the standard CTC loss function as in equation (1).

4.1. CTC-based end-to-end speech recognition systems

4.1.1. Acoustic features

CNN-BLSTM neural network architecture is trained with CTC loss

to map acoustic feature sequences to character sequences. A base-

line system is trained by using 40-dimensional log-Mel filter-bank

(FBANK) features [23] as acoustic features. The FBANK features

are augmented with 3 dimensional pitch features [24, 25]. Delta and

acceleration features are appended to the static features. The fea-

ture extraction of the baseline system was performed by using the

standard feature extraction recipe of Kaldi toolkit [25].

To have additional ASR hypotheses, another system is trained to

decode the unlabeled adaptation data. The system is trained by us-

ing 40-dimensional subband temporal envelope (STE) features [26]



together with 3-dimensional pitch features. Similar to the system

trained with FBANK features, the delta and acceleration features are

included. STE features track energy peaks in perceptual frequency

bands which reflect the resonant properties of the vocal tract. These

features have been shown to be on par with the standard FBANK fea-

tures in various speech recognition scenarios [27, 28]. FBANK and

STE features are also complementary to each other and combining

the systems using these features yielded significant WER reductions

compared to single system [26, 27, 28].

4.1.2. Neural network architecture

The neural network architecture for end-to-end ASR systems is

made up of initial layers of the VGG net architecture (deep CNN)

[29] followed by a 6-layer pyramid BLSTM (BLSTM with subsam-

pling [24]). We use a 6-layer CNN architecture which consists of

two consecutive 2D convolutional layers followed by one 2D Max-

pooling layer, then another two 2D convolutional layers followed by

one 2D max-pooling layer. The 2D filters used in the convolutional

layers have the same size of 3×3. The max-pooling layers have

patch of 3×3 and stride of 2×2. The 6-layer BLSTM has 1024

memory blocks in each layer and direction, and linear projection is

followed by each BLSTM layer. The subsampling factor performed

by the BLSTM is 4 [24]. During decoding, CTC score is used in a

one-pass beam search algorithm [24]. The beam width is set to 20.

Training and decoding are performed using the ESPnet toolkit [24].

4.2. Data

4.2.1. Clean training data

WSJ is a corpus of read speech [5]. All the speech utterances are

sampled at 16 kHz and are fairly clean. The WSJ’s standard training

set train si284 consists of around 81 hours of speech. During

training, the standard development set test dev93, which consists

of around 1 hour of speech, is used for cross-validation.

4.2.2. Multi-condition training data

The multi-condition training data of CHiME-4 corpus [6] consists of

around 189 hours of speech, in total. The CHiME-4 multi-condition

training data consists of the clean speech utterances from WSJ

training corpus and simulated and real noisy data. The real data

consists of 6-channel recordings of utterances from WSJ corpus

spoken in four environments: café, street junction, public transport

(bus), and pedestrian area. The simulated data was constructed

by mixing WSJ clean utterances with the environment background

recordings from the four mentioned environments. All the data

were sampled at 16 kHz. Audio recorded from all the microphone

channels are included in the CHiME-4 multi-condition training

data, named tr05 multi noisy si284 in the ESPnet CHiME-4

recipe. The dt05 multi isolated 1ch track set was used for

cross-validation during training.

4.2.3. Test and adaptation data

Test and adaptation sets are created from the test sets of the Aurora-4

corpus [7]. The Aurora-4 corpus has 14 test sets which were created

by corrupting two clean test sets, recorded by a primary Sennheiser

microphone and a secondary microphone, with six types of noises:

airport, babble, car, restaurant, street, and train, at 5-15 dB SNRs.

The two clean test sets were also included in the 14 test sets. There

are 330 utterances in each test set. The noises in Aurora-4 are dif-

ferent from those in the CHiME-4 multi-condition training data. In

this work, the .wv1 data [7] from 7 test sets created from the clean

test set recorded by the primary Sennheiser microphone are used to

create test and adaptation sets.

From 2310 utterances taken from the 7 test sets of .wv1 data,

a test set of 1400 utterances (approx. 2.8 hours of speech), a la-

beled adaptation set of 300 utterances (approx. 36 minutes), and an

unlabeled adaptation set of 610 utterances (approx. 1.2 hours) are

separated. The selection of the utterances in the three sets are ran-

dom. The utterances in the three sets are not overlapped. These sets

are used for testing and adaptation in both clean training and multi-

condition training scenarios.

5. ADAPTATION EXPERIMENTS

Let MFB and MSTE be the end-to-end models trained with FBANK

and STE features, respectively, on the clean or multi-condition train-

ing data, the semi-supervised adaptation experiment is performed as

follows (in this section, for the sake of clarity, notations for clean

and multi-condition training data are not included):

• First the back-propagation algorithm is used to fine-tune the mod-

els MFB and MSTE in supervised mode using the labeled adaptation

set of 300 utterances to obtain the adapted model M̂FB and M̂STE,

respectively (see Figure 1). This step is done to make use of the

available labeled adaptation data and to reduce further the WERs

of the ASR systems.

• The models M̂FB and M̂STE are subsequently used to decode the

unlabeled adaptation set of 610 utterances. Assume that HFB
610

and HSTE
610 are the sets of 1-best hypotheses obtained from these

decoding and T300 is the set of manual transcriptions available

for the 300 utterances set, we group the 300-utterance and 610-

utterance sets to create an adaptation set of 910 utterances whose

labels could be either T300 ∪HFB
610 or T300 ∪HSTE

610.

• Finally, the 910-utterance set is used to adapt the model MFB,

which is the initial model, using back-propagation algorithm to

obtain the semi-supervised adapted model M̃FB.

Fig. 1: Supervised adaptation of initial models MFB and MSTE using

the 300-utterance set with manual transcriptions T300. The models

can be trained either on clean or multi-condition training data.

The 910-utterance adaptation set in which 610 utterances do

not have manual transcriptions is used to adapt the initial FBANK-

based system in semi-supervised mode since only 300 utterances

have manual transcriptions. The conventional semi-supervised adap-

tation using the 910-utterance adaptation set can be done with the

labels from T300 and, either HFB
610 or HSTE

610. This adaptation uses

the standard CTC loss LCTC . The proposed multiple-hypothesis

CTC-based adaptation method, denoted as MH-CTC, uses the T300

manual transcriptions and both sets of 1-best hypotheses, HFB
610 and



Fig. 2: Semi-supervised adaptations using the 910-utterance adap-

tation set, of which the labels include the manual transcriptions T300

and one of the sets of 1-best hypotheses, HFB
610 and HSTE

610, or both.

HSTE
610. This adaptation used the L∗

CTC loss. These semi-supervised

adaptation experiments are depicted in Figure 2.

The referenced performance which can be considered as an up-

per bound performance for all the mentioned adaptation methods

is that obtained with the supervised adaptation where all 910 ut-

terances have manual transcriptions T910. During adaptation, the

learning rate is kept unchanged compared to that used during train-

ing because this configuration yields better performance than using

different learning rates during training and adaptation. On the other

hand, the 1-best hypotheses are obtained after one pass of decoding.

6. RESULTS

6.1. Clean training

In the scenario where the systems are trained on the WSJ clean train-

ing data and tested on the test set consisting of 1400 Aurora-4 ut-

terances, the initial systems which use the models MFB and MSTE,

respectively, have WERs of 55.2% and 60.3%, respectively. The re-

sults of applying different adaptation methods to the FBANK-based

system are shown in Table 1. Adapting the initial FBANK-based and

STE-based systems with the labeled adaptation set of 300 utterances

reduces the WERs of these systems measured on the 1400-utterance

test set to 27.2% and 24.5%, respectively. The corresponding WERs

measured on the 610-utterance unlabeled adaptation set are 29.1%

and 25.6%, respectively.

Supervised adaptation using the 300-utterance adaptation set

with manual transcriptions T300 is used as the baseline. It can

be observed from Table 1, that, the proposed multiple-hypothesis

CTC-based adaptation method yields 6.6% relative WER reduction

compared to the baseline. In contrast, the two conventional semi-

supervised adaptations which use both manual transcriptions and

one of the sets of 1-best hypotheses, HFB-C
610 or HSTE-C

610 , do not yield

WER reduction compared to the FBANK-based baseline system.

6.2. Multi-condition training

The experiments in the clean training scenario are repeated for the

multi-condition training scenario. When being trained on multi-

condition training data of CHiME-4 and tested on the 1400-utterance

test set from Aurora-4, the initial CTC-based end-to-end ASR sys-

tems using FBANK and STE features have WERs of 31.0% and

33.8%, respectively. Adapting the initial FBANK-based and STE-

Table 1: Adaptation of the FBANK-based ASR system trained on

WSJ clean training set with different adaptation methods. HFB-C
610 and

HSTE-C
610 are obtained in the decoding using clean training models.

Adaptation method # Utts. Adapt. data’s labels WER

No adapt. (initial model) N/A N/A 55.2

Supervised-300 (baseline) 300 T300 27.2

Semi-supervised-FB 910 T300 ∪ HFB-C
610 28.4

Semi-supervised-STE 910 T300 ∪ HSTE-C
610 27.4

MH-CTC (proposed) 910 T300 ∪ HFB-C
610 ∪ HSTE-C

610 25.4

Supervised-910 910 T910 13.2

Table 2: Adaptation of the FBANK-based ASR system trained

on CHiME-4 multi-condition training set with different adaptation

methods. HFB-M
610 and HSTE-M

610 are obtained in the decoding using

multi-condition training models.

Adaptation method # Utts. Adapt. data’s labels WER

No adapt. (initial model) N/A N/A 31.0

Supervised-300 (baseline) 300 T300 17.2

Semi-supervised-FB 910 T300 ∪ HFB-M
610 17.7

Semi-supervised-STE 910 T300 ∪ HSTE-M
610 17.9

MH-CTC (proposed) 910 T300 ∪ HFB-M
610 ∪ HSTE-M

610 16.2

Supervised-910 910 T910 6.7

based systems with the labeled adaptation set of 300 utterances re-

duces the WERs of these systems measured on the 1400-utterance

test set to 17.2% and 17.3%, respectively. The corresponding WERs

which are measured on the 610-utterance unlabeled adaptation set

are 18.3% and 18.9%, respectively. Results of the adaptation ex-

periments in this scenario are shown in Table 2. Similar to in the

clean training scenario, the proposed adaptation method (MH-CTC)

yields 5.8% relative WER reduction compared to the baseline. The

semi-supervised adaptations using single 1-best hypotheses HFB-M
610

or HSTE-M
610 together with the manual transcriptions T300 do not yield

WER reduction compared to the baseline.

In both clean and multi-condition training scenarios, the super-

vised adaptations which use manual transcriptions for all 910 utter-

ances have the lowest WERs.

7. CONCLUSION

This paper has proposed an adaptation method for end-to-end speech

recognition. Multiple ASR 1-best hypotheses were used in the com-

putation of the CTC loss function to alleviate the impact of errors

in the ASR hypotheses to the computation of CTC loss when the

1-best hypotheses are used as labels instead of manual transcrip-

tions. The 1-best hypotheses were obtained by using a main ASR

system and an additional ASR system which use FBANK and STE

features, respectively, to decode the unlabeled adaptation data. In

clean and multi-condition training scenarios, the proposed adap-

tation method yielded 6.6% and 5.8% relative WER reductions,

respectively, compared to the baseline system which was adapted

with back-propagation fine-tuning using an adaptation subset having

manual transcriptions. In contrast, conventional semi-supervised

back-propagation fine-tuning did not yield WER reduction com-

pared to the baseline system. To our knowledge, this is the first time

the integration of multiple ASR hypotheses in the CTC loss function

has been shown to be consistently effective in reducing WER, and

thus, is promising for future work.



8. REFERENCES

[1] P. Bell, J. Fainberg, O. Klejch, J. Li, S. Renals, and P. Swi-

etojanski, “Adaptation algorithms for speech recognition: an

overview,” in arXiv preprint arXiv: 2008.06580, 2020.

[2] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and

Y. Bengio, “Attention-based models for speech recognition,”

in Proc. Advances in Neural Information Processing Systems

(NIPS), 2015, pp. 577–585.

[3] A. Graves and N. Jaitly, “Towards end-to-end speech recogni-

tion with recurrent neural networks,” in Proc. of the 31st In-

ternational Conference on Machine Learning, Beijing, China,

June 2014, pp. 1764–1772.

[4] A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber,

“Connectionist temporal classification: labelling unsegmented

sequence data with recurrent neural networks,” in Proc. of

the 23rd International Conference on Machine Learning, Pitts-

burgh, USA, June 2006, pp. 369–376.

[5] D. B. Paul and J. M. Barker, “The design for the Wall Street

Journal-based CSR corpus,” in HLT ’91 Proceedings of the

workshop on Speech and Natural Language, New York, USA,

February 1992, pp. 357–362.

[6] E. Vincent, S. Watanabe, A. A. Nugraha, J. Barker, and

R. Marxer, “An analysis of environment, microphone and data

simulation mismatches in robust speech recognition,” Com-

puter Speech and Language, vol. 46, pp. 535–557, September

2017.

[7] N. Parihar and J. Picone, Aurora working group: DSR front

end LVCSR evaluation: AU/384/02, Institute for Signal and

Information Processing Technical Report, 2002.

[8] L. Samarakoon, B. Mak, and A. Y. S. Lam, “Domain adap-

tation of end-to-end speech recognition in low-resource set-

tings,” in Proc. IEEE Spoken Language Technology Workshop,

Athens, Greece, December 2018, pp. 382–388.

[9] K. Li, J. Li, Y. Zhao, K. Kumar, and Y. Gong, “Speaker adapta-

tion for end-to-end CTC models,” in Proc. IEEE Spoken Lan-

guage Technology Workshop, Athens, Greece, December 2018,

pp. 542–549.

[10] T. Ochiai, S. Watanabe, S. Katagiri, T. Hori, and J. Hershey,

“Speaker adaptation for multichannel end-to-end speech recog-

nition,” in Proc. IEEE ICASSP, Calgary, Canada, April 2018,

pp. 6707–6711.

[11] M. Delcroix, S. Watanabe, A. Ogawa, S. Karita, and

T. Nakatani, “Auxilary feature based adaptation of end-to-end

ASR systems,” in Proc. INTERSPEECH, Hyderabad, India,

September 2018, pp. 2444–2448.

[12] Z. Meng, Y. Gaur, J. Li, and Y. Gong, “Speaker adaptation

for attention-based end-to-end speech recognition,” in Proc.

INTERSPEECH, Graz, Austria, September 2019, pp. 241–245.

[13] E. Tsunoo, Y. Kashiwagi, S. Asakawa, and T. Kumakura,

“End-to-end adaptation with backpropagation through WFST

for on-device speech recognition system,” in Proc. INTER-

SPEECH, Graz, Austria, September 2019, pp. 764–768.

[14] L. Sari, N. Moritz, T. Hori, and J. Le Roux, “Unsupervised

speaker adaptation using attention-based speaker memory for

end-to-end ASR,” in Proc. IEEE ICASSP, Barcelona, Spain,

May 2020, pp. 7384–7388.

[15] C.-T. Do, S. Zhang, and T. Hain, “Selective adaptation of end-

to-end speech recognition using hybrid CTC/attention archi-

tecture for noise robustness,” in Proc. of the 28th European

Signal Processing Conference (EUSIPCO), Amsterdam, The

Netherlands, August 2020, pp. 321–325.

[16] F. Ding, W. Guo, B. Gu, Z. Ling, and J. Du, “Adaptive speaker

normalization for CTC-based speech recognition,” in Proc.

INTERSPEECH, Shanghai, China, October 2020, pp. 1266–

1270.

[17] D. Giuliani and F. Brugnara, “Experiments on cross-system

acoustic model adaptation,” in Proc. IEEE Automatic Speech

Recognition and Understanding Workshop (ASRU), Kyoto,

Japan, Dec. 2007, pp. 117–122.

[18] S. Stueker, C. Fuegen, S. Burger, and M. Woelfel, “Cross-

system adaptation and combination for continuous speech

recognition: the influence of phoneme set and acoustic front-

end,” in Proc. INTERSPEECH, Pittsburgh, USA, September

2006, pp. 521–524.

[19] Y. LeCun and Y. Bengio, “Convolutional networks for images,

speech, and time series,” in The Handbook of Brain Theory

and Neural Networks. MIT Press, 1995.

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”

Neural Computation, vol. 9, pp. 1735–1780, November 1997.

[21] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning

representations by back-propagating errors,” Nature, vol. 323,

no. 9, pp. 533–536, 1986.

[22] S. Ruder, “An overview of gradient descent optimisation algo-

rithms,” in arXiv preprint arXiv: 1609.04747, 2016.

[23] A.-R. Mohamed, G. Hinton, and G. Penn, “Understanding how

deep belief networks perform acoustic modelling,” in Proc.

IEEE ICASSP, Kyoto, Japan, March 2012, pp. 4273–4276.

[24] S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba,

Y. Unno, N. E. Y. Soplin, J. Heymann, M. Wiesner, N. Chen,

A. Renduchintala, and T. Ochiai, “ESPnet: end-to-end speech

processing toolkit,” in Proc. INTERSPEECH, Hyderabad, In-

dia, September 2018, pp. 2207–2211.

[25] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,

N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,

J. Silovsky, G. Stemmer, and K. Vesely, “The Kaldi speech

recognition toolkit,” in Proc. IEEE Automatic Speech Recogni-

tion and Understanding Workshop (ASRU), Hawaii, USA, De-

cember 2011.

[26] C.-T. Do and Y. Stylianou, “Improved automatic speech recog-

nition using subband temporal envelope features and time-

delay neural network denoising autoencoder,” in Proc. INTER-

SPEECH, Stockholm, Sweden, August 2017, pp. 3832–3836.

[27] R. Doddipatla, T. Kagoshima, C.-T. Do, P.N. Petkov, C. Zorila,

E. Kim, D. Hayakawa, H. Fujimura, and Y. Stylianou, “The

Toshiba entry to the CHiME 2018 challenge,” in Proc. CHiME

2018 Workshop on Speech Processing in Everyday Environ-

ments, Hyderabad, India, September 2018, pp. 41–45.

[28] C.-T. Do, “Subband temporal envelope features and data aug-

mentation for end-to-end recognition of distant conversational

speech,” in Proc. IEEE ICASSP, Brighton, UK, May 2019, pp.

6251–6255.

[29] K. Simonyan and A. Zisserman, “Very deep convolutional net-

works for large-scale image recognition,” in Proc. Interna-

tional Conference on Learning Representations, 2015.


	1  Introduction
	2  Related works
	3  Proposed adaptation method
	3.1  Training of CTC-based end-to-end speech recognition
	3.2  Multiple-hypothesis CTC-based adaptation
	3.3  Analysis

	4  Speech recognition system and data
	4.1  CTC-based end-to-end speech recognition systems
	4.1.1  Acoustic features
	4.1.2  Neural network architecture

	4.2  Data
	4.2.1  Clean training data
	4.2.2  Multi-condition training data
	4.2.3  Test and adaptation data


	5  Adaptation experiments
	6  Results
	6.1  Clean training
	6.2  Multi-condition training

	7  Conclusion
	8  References

