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Review of nitrogen cycling in temperate winter soil under climate change
Abstract
In recent years the biogeochemical cycling of nitrogen (N) in soils under temperate
climates during winter has received growing attention due to rising N emissions and the
accumulation of N on the soil surface and in nearby water bodies. While the N cycle has
traditionally been considered to slow during cold periods, recent studies show that freeze—
thaw cycles (FTCs) can significantly reshape N dynamics by altering soil structure and
stimulating microbial activity. This review synthesizes key abiotic drivers, such as soil
moisture, temperature, and snow cover, along with anthropogenic influences that affect N
transformations and transport in winter. We identified the key research gaps in the existing
approaches and emphasized the need to incorporate winter N fluxes into annual N budgets

to improve our understanding of terrestrial N cycling under climate change.

Keywords- Soil temperature, soil moisture content, snow cover thickness, terrestrial nitrogen cycle,

climate warming
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1. Introduction

Global warming is expected to affect overall weather patterns in temperate and high
latitude regions, with particularly significant impacts on winter conditions. Soils in these
regions may experience disturbances in microbial communities and soil structure. Regions
that previously exhibited stable winter soil temperatures are now increasingly affected by
warmer, more variable, and wetter conditions (Kreyling et al., 2020). These changes
influence the release and mobility of nutrients in the environment. Because biogeochemical
cycles are temperature-sensitive, they may be substantially altered under shifting winter
climate regimes.

The release of nutrients, particularly nitrogen (N) and phosphorus (P), along with
carbon (C), has been widely observed in temperate regions during winter. Elevated seasonal
concentrations of nitrate (NO3") in water bodies, surface accumulation of nitrates and other
salts, and enhanced emissions of nitrous oxide (N20) in early spring point to intriguing
dynamic processes driving these patterns (Gao et al., 2015; Johnson and Stets, 2020;
Kreyling et al., 2020; Gao et al., 2021). The accumulation and movement of N into
groundwater could potentially impair water quality. Therefore, identifying the key factors
which influence winter N production and its transport within soil strata is essential.

The global averaged temperature has reached approximately 1°C above pre-industrial
levels in 2017, increasing at 0.2°C/decade according to Intergovernmental Panel for Climate
Change (IPCC) (Allen et al., 2018). Climate change-driven warming is expected to increase
the number of snow-free days, increase the frequency of freeze-thaw cycles (FTC), and
reduce the extent of frozen soils in mid- and high-latitudes (Henry, 2007; Peng et al., 2016;

Kreyling et al., 2019; Liet al., 2021). The accumulation and movement of N species through
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the soil profile to groundwater may impact its quality over different timescales, depending
on the prevailing temperature dynamics (cycling frequency), soil biogeochemical properties
(reactive N content), catchment hydrology (residence time) and processes that attenuate N
compounds. It is crucial to identify the factors which affect winter N production and its
direction of movement within soil (Urakawa et al., 2014). This review focuses on the
biogeochemical cycling of N during winter, emphasizing both natural drivers and
anthropogenic practices that influence the fate and transport of soil N compounds under
present climate warming conditions.

The soil N cycle (Fig. 1) is largely influenced by factors such as soil moisture content,
organic matter, pH, porosity, and soil temperature. During winter decreases in air and soil
temperatures and the freezing of soil moisture tend to slow N transformations. However, soil
FTCs are known to alter the N cycle significantly (Marion, 1995; Li et al., 2017; Wang et
al., 2020; Yin et al., 2024). FTCs can: (i) change the soil aggregate structure, modifying
porosity and hydraulic conductivity; (ii) increase solute concentrations in soil pore water;

and (iii) influence microbial activity (Wang et al., 2020).
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Fig. 1. Terrestrial nitrogen cycle (adapted from Marion, 1995; Kuypers et al., 2018).

The porous structure of the soil undergoes repeated phase transitions and chemical
reactions during FTCs. The formation and expansion of ice crystals during freezing can
enlarge pore spaces, impacting saturated hydraulic conductivity, bulk density, infiltration
rates and soil aggregate stability (Wang et al., 2012; Lai et al., 2017). These physical changes,
combined with chemical and microbial responses, affect the N distribution. Although
microbial activity is typically reduced in frozen soils, it is not entirely halted as enzymatic
processes can persist at subzero temperatures (Ekwunife et al., 2022).

This review aims to integrate these perspectives, with a specific focus on how winter
climate change and FTCs influence in situ nitrogen biotransformation and the export of
nitrogen species to the environment.

. Section 2 outlines the physicochemical and biological factors that influence

nitrogen fluxes under FTCs.
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. Sections 3 and 4 discuss the role of land use and anthropogenic activities.
. Section 5 presents identified research gaps, recommendations, and
suggestions for future work.

While existing reviews and meta-analyses have addressed microbial processes,
chemical transformations and physical mechanisms affecting N dynamics individually
(Matzner and Borken, 2008; Kurylyk et al., 2014; Liu et al., 2024), others have focused on
the effects of land use, meteorological factors (e.g., precipitation and snow fall), presence or
absence of vegetation, plant root N uptake, and snow cover in late winter/early spring
(Rennenberg et al., 2009; Ollivier et al., 2011; Williams et al., 2015; Zhu et al., 2015). This
review integrates these perspectives, with a specific focus on how winter climate change and
FTCs influence in situ N biotransformation and the export of nitrogen species to the

environment.

2. Effect of FTCs on different stages of the N cycle

Nitrogen transformation during a FTC occurs in three distinct stages: freezing, thawing
and post-thawing (Miiller et al., 2002). The freezing stage is characterized by a decrease of
the soil temperature below 0°C, with the formation of ice crystals in pore spaces creating a
downward movement of the freezing front. At this stage the soil layers below the freezing
front still contain unfrozen soil pore water (Brooks et al., 2011). In this stage, ammonium
(NH4") and NOs™ concentrations can increase as unfrozen soil moisture, along with solutes,
is drawn towards the freezing front (Miiller et al., 2002; Liu et al., 2022). Soil freezing is
considered analogous to soil drying and creates a strong sink for the upward movement of

water. Chemical potentials of water due to gradients in hydrostatic pressure, solute
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concentration and temperature create a strong thermodynamic sink for water at the freezing
front (Marion, 1995; Congreves et al., 2018; Li et al., 2023).

The thawing stage occurs as the soil temperature approaches 0°C and ice within the
soil matrix starts to melt. Under these conditions NO3 is no longer released but the NHs"
concentration can increase due to mineralization of the soil organic matter (Marion, 1995).
During the post-thawing period the temperature rises above 0°C and the rate of N
mineralization tends to decrease, while nitrification rates increase substantially. Nitrification
during post-thawing conditions has been related to both autotrophic and heterotrophic
processes (Miiller et al., 2002; Yang et al., 2020). N20 is produced in deeper soil layers and
is converted to N2 by the time it reaches the soil surface. The depletion of NH4" and organic
N occurs during the post-thaw stage. High soil moisture content from snow melt leads to soil
saturation and the development of anaerobic conditions (Peng et al., 2019; Ekwunife et al.,
2022). NOs™ is mobilized with soil moisture and may accumulate at the soil surface or be
transported to adjacent water bodies (Liu et al., 2022). In addition, thawing and post-thawing
stages result in an increase in infiltration and subsurface flow. As much as 86% of thawed
water has been observed to contribute to subsurface flow from 30 cm depth (Zhang et al.,
2024). During this stage, leaching of NOs™ to groundwater is likely to occur (Taylor and
Parkinson, 1988; Joseph and Henry, 2008). Understanding both the direction and magnitude
of the nitrogen flux during FTCs is critical for effective nutrient management. The
commonly identified factors influencing N transformation and transport under these
conditions are discussed in the following subsections.

2.1 Soil moisture and soil temperature
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Unfrozen water moves from a high-moisture zone to low-moisture zone carrying
solutes (NOs"and other salts) during a FTC (Marion, 1995). A high moisture content due to
thawing or the presence of antecedent moisture can result in anaerobic conditions, which
lead to the production N2O through denitrification (Congreves et al., 2018; Sennett et al.,
2024). During freezing solutes move upwards towards the freezing front by convection,
while a concentration gradient of the unfrozen soil water between the frozen and unfrozen
area drives downward diffusion of solutes. Convection and diffusion mechanisms induce the
movement of soil solutes in opposite directions, with the final direction of soil solutes
determined by the relative strength of the two processes (Wang et al., 2022). A coupled heat
and water model study by Zhang et al. (2021) showed upward moisture migration from a
depth of 1.5 m. Soil moisture is an important driver of overall microbial activity. Microbial
biomass has been reported to vary along moisture gradients at a catchment scale (Brockett
et al., 2012). Studies made in agricultural fields with dry and wet conditions under FTCs
showed a higher release of NH4" and NOs™ for wet fields than in dry fields (Zhao et al., 2017,
Kong et al., 2023).

A study by Kastovska et al. (2022) in an Alpine meadow found that even a short-term
increase in air temperature of 2°C can accelerate nutrient cycling. Air temperature can
directly influence soil temperature at shallow depth (approx. 5 cm) in the absence of
vegetation or snow cover (Edwards et al., 2006; Soong et al., 2020). Soils within mid- and
high-latitudes experience a warm winter temperature, thus influencing nutrient cycling
(Kreyling et al., 2019; Sahoo, 2022). Soil temperature influences soil moisture distribution
and migration during FTCs (Wu et al., 2015a). Soil temperature gradients greater than 0 can

be observed between 0-100 cm depth (Wu et al., 2023).
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As temperatures rise during thawing and post-thawing stages, concentrations of NH4"
and NOs™ in pore water can increase due to enhanced release from soil organic matter
(Ouyang et al., 2013; Wang et al., 2020). Soil moisture and temperature directly affect the
size of microbial populations, thus influencing soil enzyme activity (Wu, 2020; Lin and
Hernandez-Ramirez, 2022). Soil microbial activities are reported to be functional during
FTCs. During the freezing stage, N2O emissions can result from soil enzyme activities.
However, as the soil temperature increases during the thawing stage, the release of microbial
biomass nitrogen (MBN) due to microbial lysis can subsequently add to the N2O production
due to high microbial activity (Peng et al., 2019). Mild cooling temperature (> -5°C) during
FTCs do not generate significant N products (Zhang et al., 2022c). Laboratory-based FTC
studies usually freeze soil at >-20°C, which can stop microbial activity (Ejack and Whalen,
2021). Microbial communities show higher sensitivity to rapid freezing compared to slower
freezing rates (Xu et al., 2016; Gao et al., 2021). Soil temperature fluctuations can damage
plant roots and, together with microbial lysis, result in excess nutrient release. Reduced root
uptake may result in the movement of N products with soil moisture (Kreyling et al., 2020).

2.2, Snow cover

The presence or absence of snow cover can impact soil temperature and moisture
content, which in turn affect microbial activity and the biogeochemical cycling of N (Rixen
et al., 2008; Zhao et al., 2018; Green et al., 2022; Xu, 2022). Snow cover is a thermal
insulator and dissociates soil temperature from the atmospheric temperature (Brooks et al.,
2011). Soil microbes slowly adapt to low temperatures (Smith et al. 2010). Soil temperature,
number of FTCs and net N mineralization are closely correlated with the depth and duration

of winter snow cover (Mellander et al., 2007; Ekwunife et al., 2022).
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Studies by Brooks et al. (2011) and Shibata et al. (2013) have shown that thick snow
cover can facilitate microbial N mineralization. Microbial activity continued below the
freezing front and surface snow cover protects it from extreme low temperatures (Coxson
and Parkinson, 1987). In contrast, snow-free winters have been associated with increased
NH4" and NOs™ concentrations in soil, as well as elevated N2O emissions (Matzner and
Borken, 2008; Brooks et al., 2011; Zhao et al., 2018; Yin et al., 2024).

2.3. Soil pH and salinity

Soil pH along with moisture content, temperature, and frequency and duration of FTCs
controls soil microbial N transformation (Shibata, 2016). Soil N2O emissions are positively
correlated with pH during FTCs (Osei et al., 2024). Deng et al. (2024) suggested that pH
increased with decrease in soil moisture content. Frozen soil inhibits soil microbial activity
thus leading to increase in pH. Alternately FTCs have been found to increase the quantity of
exchangeable NH4-N; freezing increases adsorbed bases, thus increasing pH during the
freezing stage than in subsequent stages (Marion, 1995).

Salt accumulation in shallow soil layers due to upward migration of solutes during
FTCs increases the soil salinity (Cary and Mayland, 1972; Gray and Granger, 1986; Liu et
al., 2021; Wang et al., 2022). In this context, evaporation during post-thawing enables salt
migration to the soil surface (Liu et al., 2021). The constituent salts in the soil pore water
can have different eutectic temperatures, such that salts with a higher eutectic temperature
in the solution precipitate, while salts with lower eutectic point temperature remain in the
solution. FTCs thus affect soil quality as well as soil structure. Soils undergoing freezing <
-10°C may precipitate Na2SO4 (eutectic temperature -1.2°C), while salts like NaCl (eutectic

temperature -21.2°C) may exist in the solution (Wang et al., 2022).
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2.4. Soil texture
Soil texture and antecedent moisture content affect infiltration rates. FTCs can
influence infiltration rates by affecting soil structure (Yang et al., 2023). The finer the soil
texture, the greater the capillary rise height and water migration during FTCs (Lyu et al.,
2023). Studies by Gray and Granger (1986) and Wu et al. (2015b) examining various soil
solute fluxes under FTCs showed that large fluxes can occur in light-textured soils (e.g., silt
loam). Dry clay soil exhibits higher infiltration rates than other soil during FTCs, but
structural disturbances caused in the process may result in clogging of pores, thus reducing
soil permeability (Fouli et al., 2013).
2.5. Organic matter content and microbial activity
Decomposition of soil organic matter by microbes during winter is the primary source of
N products (Freppaz et al., 2007; Li et al., 2017; Kreyling et al., 2020; Tang et al., 2022;
Wang and Hu, 2024). The quality and quantity of organic matter affects N mineralization
(Congreves et al., 2018). Frequent and rapid FTCs can have a damaging effect on the soil
microbial community (Han et al., 2018). The ability of the microbial community in nitrogen
fixation and denitrification is drastically impacted over repeated FTCs, gradually
decreasing the microbial biomass. The soil biotic composition of warmer regions has
shown adaptability and is relatively less responsive to high temperature fluctuations during
FTCs (Kreyling et al., 2020). FTCs occurring in organic matter-rich soil within mid- and
high-latitude zones are reported to increase N production compared to soils in warmer
regions (Kreyling et al., 2020; Kazmi et al., 2023).
Nitrogen fixation and denitrification processes are dependent on microbial activity.

Soil temperature and moisture directly affect the size of the microbial population and their

12
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enzyme activity during FTCs (Wu, 2020). Yang et al. (2020) found winter drought can
decrease microbial biomass. During the freezing stage, temperature-sensitive microbes in
the topsoil (0-10 cm) perish (Zhao and Hu, 2023). Snow cover provides an insulation during
the freezing stage and a substantial number of microbes can survive and maintain relatively
high activity under snow cover (Groffman et al., 2011; Shibata et al., 2013; Li et al., 2017;
Isobe et al., 2022; Jiang et al., 2024; Kastovska et al., 2022).

Microorganisms active during winter are classified into winter-adapted, snowmelt-
specialist and spring-adapted by Sorensen et al. (2020), based on their population during the
three stages of a FTC. Different microorganisms contribute to the overall N biogeochemical
process during winter. Soil fungi are reported to be more active than bacteria during FTCs
in deep soil layers (Starke et al., 2016; Sorensen et al., 2018; Sorensen et al., 2020; Jiang et
al., 2024). Isobe et al. (2018) observed an increase in the population of nitrifying bacteria in
mid-winter and in denitrifying bacteria and fungi during thawing and post-thawing stages in
temperate forests.

2.6. Frequency and duration of FTCs

Climate change-induced warming is expected to increase the frequency and magnitude
of FTCs, thus leading to the disturbance of the soil biota and release of nutrients (Kreyling
et al., 2020). Frequent FTCs can reduce the soil snow cover, which can enhance N2O
emissions and even NOs™ leaching to groundwater (Peng et al., 2019; Green et al., 2022;
Pastore et al., 2023). Soil texture may be affected due to frequent freezing and thawing of
pore water. Increases in permeability due to the disturbance of the soil pore structure can
result in preferential flow and an increase in the extent of groundwater and surface water

contamination by N compounds (Fouli et al., 2013).
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287 The first thaw cycle has been reported to have a higher mineralization rate than later

288 FTCs (Otgonsuren et al., 2020; Kong et al., 2025). Repeated FTCs accelerate the
289 decomposition of above ground litter, and induce changes in microbial activity (Coxson and
290 Parkinson, 1987; Taylor and Parkinson, 1988; Congreves et al., 2018). Studies by Teepe et
291 al. (2001), Gao et al. (2015), Sanders-DeMott et al., (2018) and Gao et al. (2021) indicate
292 that prolonged intervals between freezing and thawing can suppress soil enzymatic activity
293 and delay N2O flux peaks, which often drop within one to two days after thawing.

294 3. Impact of FTCs on different types of land use

295 Biogeochemical cycling of N during winter has been examined across various land-
296 use types in mid- and high-latitude regions. Table 1 summarizes the key factors identified in
297 the literature as influencing N fluxes during FTCs in this context. The most important factors
298 are the winter soil moisture and soil temperature, which influence soil microbial activity (as
299 discussed in Section 2). Different land-use patterns vary in their organic matter content, thus
300 affecting the microbial activity and in turn create significantly different rates of N cycling.
301 Furthermore, anthropogenic activities may add to the accelerated N production and flux. The
302 following sections discuss common anthropogenic activities which have been reported to
303 influence N production during winter.

304 Table 1. Summary of FTC effects across different land-use types and soil types, and the most

305 influential factors associated with N flux during winter
L"l;)l;[()ie [?:e Soil type Factors 1nﬂueV1:,ic1111t1eng flux during References
MP Soil moisture, soil temperature Wang et al. (2020)
Silt loam Soil moisture, salt content Wu et al. (2015b)
Agriculture Silt loam Soil temperature, microbial activity | Souriol and Henry
land (2024)
Silt clay loam | Microbial activity Hu et al. (2024)
MP Soil moisture, microbial activity Wang et al. (2020)

14



MP Soil moisture Liu et al. (2022)
Clay Soil moisture, microbial activity Lin and Hernandez-
Ramirez (2022)
MP Soil  moisture, soil texture, | Ekwunife et al. (2022)
microbial activity
Sandy loam Soil moisture, soil temperature, | Sennett et al. (2024)
precipitation, snow cover
MP Soil moisture, soil temperature, soil | Gray and Granger
texture (1986)
Sandy loam Duration and frequency of FTCs, | Ejack and Whalen
microbial activity (2021)
- Soil moisture, soil temperature, | Zhao et al. (2017)
duration of FTCs
Clay and loam | Soil moisture, soil temperature Wang et al. (2022)
MP pH, soil texture, temperature, | Deng et al. (2024)
duration and depth of FTCs,
microbial activity
MP Microbial activity Wang and Hu (2024)
Grassland MP Soi.l ‘ moisture, pH, microbial | Jiang et al. (2024)
activity
MP Intensity and frequency of FTCs Gao et al. (2015)
MP Soil moisture, soil temperature, | Andrade-Linares et al.
organic matter, microbial activity (2021)
MP Snow cover, microbial activity Gavazov et al. (2017)
MP Snow cover, microbial activity Lietal. (2017)
MP Soil moisture, soil temperature, | Wu (2020)
snow cover, microbial activity
MP Soil moisture, soil temperature, | Kazmi et al. (2023)
microbial activity
MP Microbial activity Peng et al. (2019)
Forest MP Intensity and frequency of FTCs Gao et al. (2021)
Sand Soil temperature, snow cover, | Mellander et  al.
microbial activity (2007)
- Microbial activity Liet al. (2024)
Sandy silt, silty | Soil moisture, soil temperature, | Weigel et al. (2021)
sand microbial activity
- Snow cover Wipf et al. (2009)
MP Snow cover, frequency of FTCs Yin et al. (2024)
Desert MP Snow cover, microbial activity Zhao et al. (2018)
MP Microbial activity Kimura and Okuro

(2024)

15
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Wetland - Soil temperature, snow cover, | Ding et al. (2023)
precipitation, microbial activity

(MP = multiple sample points)

3.1. Movement of N fluxes due to FTCs

Thawing and post-thawing stages are associated with high export of NOs™ into water
bodies by overland flow (Liu et al., 2022; Zhao et al., 2017). The topography of a region
plays an important role in controlling the discharge of snowmelt runoft (Park et al., 2010).
Changes in stream chemistry during the thawing stage can be observed due to N inputs from
land. Dissolved N may leach into groundwater, eventually reaching streams as subsurface
discharge. Alternatively, NO3 can accumulate in groundwater as legacy N (Green et al.,
2022).

In parallel, N2O emissions to the atmosphere enhance the greenhouse effect (Liu et al.,
2023; Peng et al., 2019). In addition, FTCs may result in the release of amino acids in soils
during early spring, which can be subsequently used by plants as an N source (Inselsbacher

et al., 2014).

3.2. Management practices before and during winter which contribute to N fluxes

Fertilizer application and snow removal

Fertilizer application during autumn is a common practice in prairie states, such as
those in the United States. Nitrogen amendments increase N mineralization and soil
respiration. However, elevated rates of winter N mineralization in the absence of plant
demand may result in the loss of this N from the system (Contosta et al., 2011; Zong et al.,
2018; Geng et al., 2019; Zhang et al., 2022b).

Snow removal has been shown to increase NO3™ and NH4" concentrations in soil pore
water (Viglietti et al., 2014; Zhao et al., 2018). Snowpack acts as an insulation layer,

protecting the soil from extreme cold and thus maintaining a relatively warm environment
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for soil microbial activity (see Section 2.2). Bokhorst et al. (2013) and Li et al. (2017)
observed that snow removal increased the mortality of fine plant roots and soil microbes. In
addition, plots without snow cover exhibited lower denitrification enzyme activity compared
to those under snow, indicating the importance of snowpack in sustaining microbial nitrogen
transformation during winter.
Cover crops

Studies by Zhang et al. (2022a) and Heuchan et al. (2024) on adding crop residues to
soil after the autumn harvest showed that FTCs significantly changed the microbial
community in the straw-amended soil considered. Soil microbes in the amended soil were
less resistant to freeze-thaw stress and perished, releasing nutrients to the soil. These findings
highlight the potential for organic amendments to modify soil biogeochemistry under winter
conditions. Cover crops were found to retain soil N under FTC conditions. Lu et al. (2015)
investigated the influence of grassland management practices on nitrogen dynamics during
FTCs. Grazing was found to reduce N2O production by 36.8%, while mowing enhanced
emissions during FTCs. This contrast was attributed to a greater increase in microbial
population in mowed plots compared to grazed areas, which likely stimulated microbial
activity and nitrogen transformation during FTCs. Cover crops (or frost-tolerant crops) have
been used as a best management practice in regions which witness mild winters (<-4°C).
However, growing cover crops in heavy frosted regions (>-18°C) may not prove to be
beneficial during FTCs owing to damage of plant cells and increase in emission of N2O
(Cober et al., 2018; Olofsson and Ernfors, 2022).

Artificial soil warming and the application of biochar
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Artificial soil warming during winter has been shown to promote N mineralization due
to the increase in soil temperature (Zong et al., 2018). However, due to low-temperature
conditions in the atmosphere, microbial retention of nutrients is limited, increasing the risk
of N losses through leaching or gaseous emissions (Liu et al., 2023).

Biochar amendment has been proposed as a strategy to modulate N cycling during
FTCs. Fuetal. (2019) and Wang et al. (2024) found that applying approximately 2% biochar
by weight to soil can help maintain the inorganic N content of the soil, affecting the N
mineralization rate and ultimately plant growth. Biochar application was found to inhibit soil

water migration, reduce NHa4" concentrations, and increase NOs™ levels during FTCs.

4. Other abiotic factors affecting N fluxes during FTCs

Winter rain events can reduce or delay snow accumulation, leading to so-called ‘Rain
on Snow (ROS)’ events. These events alter the insulating properties of snow cover and delay
its establishment on the soil surface. Viglietti et al. (2014) observed that late snow
accumulation can cause a significant increase in soil pore water NO3™ during the spring and
summer seasons, suggesting a possible reduction in plant uptake caused by root damage.
FTCs coupled with winter rain events can loosen the soil structure, subsequently eroding
nutrient-rich sediments (Inamdar et al., 2018; Tang et al., 2019).

Winter drought can also be a major abiotic stressor affecting N dynamics. Yang et al.
(2020) found severe drought during winter can alter microbial community structure in
temperate semi-arid grasslands. Decreased snow cover can damage the below ground root
system and microbial biomass (See Section 2.2). Most of the inorganic N surplus may be
recycled via enhanced heterotrophic microbial assimilation of NO3™ and NH4" under winter

drought conditions.

18



373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

5. Conclusions

This review has focused specifically on studies conducted in temperate climates.
Research related to permafrost regions and the effects of climate warming on
biogeochemical processes in these zones requires a separate and dedicated analysis, which
is beyond the scope of the present review.

Understanding how climate warming influences the fate and transport of N in soil is
of critical importance. Based on the reviewed literature, several key research gaps emerge:

1. Disciplinary separation of winter N transport research: most studies approach
winter N transport either from a hydrogeological or a biogeochemical perspective. However,
N dynamics during winter seasons are influenced by a combination of physical, chemical,
and biological processes. A more integrated approach that accounts for these interactions
would improve predictions of soil N availability in temperate region soils.

2. Limited studies on multiple FTCs: research on how repeated FTCs affect soil
structure and microbial communities remains scarce. Since soils often undergo multiple
FTCs during winter, understanding their cumulative effects is essential for accurately
assessing winter N fluxes.

3. Neglect of flux directionality: the direction in which N moves (e.g. toward
groundwater, surface runoff or atmospheric emission) has received limited attention.
Investigating how climatic and soil conditions influence the N flux direction could help
inform better soil and water resource management strategies.

These research gaps offer opportunities to advance our understanding of N cycling
during winter. Climate change-induced warming has led to higher availability of N in winter

across temperate latitudes. While this increased N may be short-lived and limited to the early
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growing season, the associate N fluxes to the atmosphere and waterbodies could have lasting
impacts.

This review highlighted the most common biotic and abiotic factors influencing N
dynamics during winter. Most existing studies have focused on single FTC events, limiting
our understanding of how the duration and intensity of temperature fluctuations shape N
cycling. The thickness and persistence of snow cover emerge as dominant controls on these
processes. While many studies have addressed N>O emissions and microbial activity in this
context, broader measurements of N cycle products would provide a more comprehensive
view of winter soil biogeochemistry.

Interdisciplinary collaborative research will be essential to address these complexities.
Given the variability in soil properties across regions, further studies on FTCs across diverse
soil types are needed to understand how climate change affects terrestrial processes that

regulate N export from soils to both surface water and groundwater systems.
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