

This is a repository copy of Review of nitrogen cycling in temperate winter soil under climate change.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/id/eprint/233129/

Version: Accepted Version

Article:

Sahoo, M. orcid.org/0000-0003-3552-4691, Baù, D. and Thornton, S.F. (2025) Review of nitrogen cycling in temperate winter soil under climate change. Environmental Science and Pollution Research, 32 (38). pp. 22226-22237. ISSN: 0944-1344

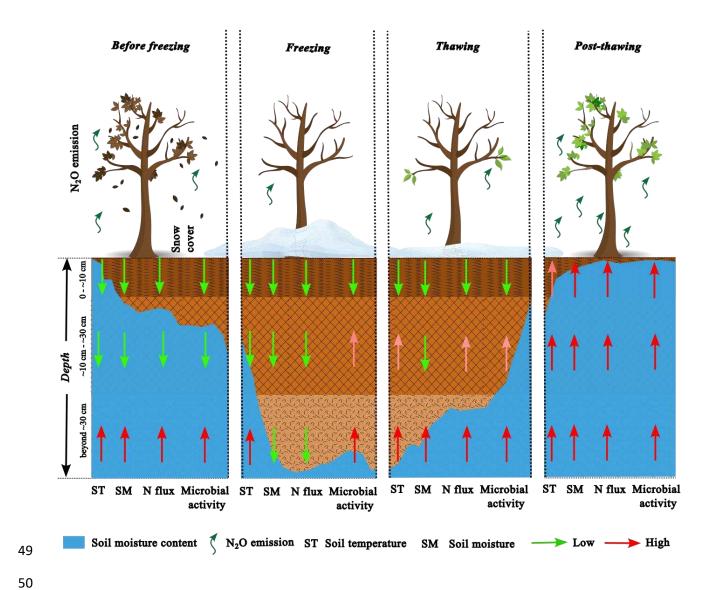
https://doi.org/10.1007/s11356-025-36932-0

© 2025 The Authors. Except as otherwise noted, this author-accepted version of a journal article published in Environmental Science and Pollution Research is made available via the University of Sheffield Research Publications and Copyright Policy under the terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown


If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Review of nitrogen cycling in temperate winter soil under climate change By Madhumita Sahoo, Domenico Baù and Steven F. Thornton University of Sheffield, Sheffield United Kingdom of Great Britain and Northern Ireland **Corresponding Author:** Madhumita Sahoo MSCA Postdoctoral Researcher, Groundwater Protection and Restoration Group (GPRG), School of Mechanical, Aerospace and Civil Engineering, University of Sheffield, Sheffield United Kingdom of Great Britain and Northern Ireland Email: m.sahoo@sheffield.ac.uk; sahoomadhu1989@gmail.com

Review of nitrogen cycling in temperate winter soil under climate change

Abstract In recent years the biogeochemical cycling of nitrogen (N) in soils under temperate climates during winter has received growing attention due to rising N emissions and the accumulation of N on the soil surface and in nearby water bodies. While the N cycle has traditionally been considered to slow during cold periods, recent studies show that freezethaw cycles (FTCs) can significantly reshape N dynamics by altering soil structure and stimulating microbial activity. This review synthesizes key abiotic drivers, such as soil moisture, temperature, and snow cover, along with anthropogenic influences that affect N transformations and transport in winter. We identified the key research gaps in the existing approaches and emphasized the need to incorporate winter N fluxes into annual N budgets to improve our understanding of terrestrial N cycling under climate change. Keywords-Soil temperature, soil moisture content, snow cover thickness, terrestrial nitrogen cycle, climate warming

1. Introduction

Global warming is expected to affect overall weather patterns in temperate and high latitude regions, with particularly significant impacts on winter conditions. Soils in these regions may experience disturbances in microbial communities and soil structure. Regions that previously exhibited stable winter soil temperatures are now increasingly affected by warmer, more variable, and wetter conditions (Kreyling et al., 2020). These changes influence the release and mobility of nutrients in the environment. Because biogeochemical cycles are temperature-sensitive, they may be substantially altered under shifting winter climate regimes.

The release of nutrients, particularly nitrogen (N) and phosphorus (P), along with carbon (C), has been widely observed in temperate regions during winter. Elevated seasonal concentrations of nitrate (NO₃-) in water bodies, surface accumulation of nitrates and other salts, and enhanced emissions of nitrous oxide (N₂O) in early spring point to intriguing dynamic processes driving these patterns (Gao et al., 2015; Johnson and Stets, 2020; Kreyling et al., 2020; Gao et al., 2021). The accumulation and movement of N into groundwater could potentially impair water quality. Therefore, identifying the key factors which influence winter N production and its transport within soil strata is essential.

The global averaged temperature has reached approximately 1°C above pre-industrial levels in 2017, increasing at 0.2°C/decade according to Intergovernmental Panel for Climate Change (IPCC) (Allen et al., 2018). Climate change-driven warming is expected to increase the number of snow-free days, increase the frequency of freeze-thaw cycles (FTC), and reduce the extent of frozen soils in mid- and high-latitudes (Henry, 2007; Peng et al., 2016; Kreyling et al., 2019; Li et al., 2021). The accumulation and movement of N species through

the soil profile to groundwater may impact its quality over different timescales, depending on the prevailing temperature dynamics (cycling frequency), soil biogeochemical properties (reactive N content), catchment hydrology (residence time) and processes that attenuate N compounds. It is crucial to identify the factors which affect winter N production and its direction of movement within soil (Urakawa et al., 2014). This review focuses on the biogeochemical cycling of N during winter, emphasizing both natural drivers and anthropogenic practices that influence the fate and transport of soil N compounds under present climate warming conditions.

The soil N cycle (Fig. 1) is largely influenced by factors such as soil moisture content, organic matter, pH, porosity, and soil temperature. During winter decreases in air and soil temperatures and the freezing of soil moisture tend to slow N transformations. However, soil FTCs are known to alter the N cycle significantly (Marion, 1995; Li et al., 2017; Wang et al., 2020; Yin et al., 2024). FTCs can: (i) change the soil aggregate structure, modifying porosity and hydraulic conductivity; (ii) increase solute concentrations in soil pore water; and (iii) influence microbial activity (Wang et al., 2020).

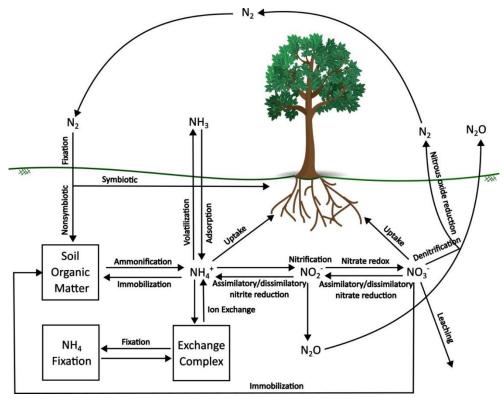


Fig. 1. Terrestrial nitrogen cycle (adapted from Marion, 1995; Kuypers et al., 2018).

The porous structure of the soil undergoes repeated phase transitions and chemical reactions during FTCs. The formation and expansion of ice crystals during freezing can enlarge pore spaces, impacting saturated hydraulic conductivity, bulk density, infiltration rates and soil aggregate stability (Wang et al., 2012; Lai et al., 2017). These physical changes, combined with chemical and microbial responses, affect the N distribution. Although microbial activity is typically reduced in frozen soils, it is not entirely halted as enzymatic processes can persist at subzero temperatures (Ekwunife et al., 2022).

This review aims to integrate these perspectives, with a specific focus on how winter climate change and FTCs influence *in situ* nitrogen biotransformation and the export of nitrogen species to the environment.

• Section 2 outlines the physicochemical and biological factors that influence nitrogen fluxes under FTCs.

- Sections 3 and 4 discuss the role of land use and anthropogenic activities.
- Section 5 presents identified research gaps, recommendations, and suggestions for future work.

While existing reviews and meta-analyses have addressed microbial processes, chemical transformations and physical mechanisms affecting N dynamics individually (Matzner and Borken, 2008; Kurylyk et al., 2014; Liu et al., 2024), others have focused on the effects of land use, meteorological factors (e.g., precipitation and snow fall), presence or absence of vegetation, plant root N uptake, and snow cover in late winter/early spring (Rennenberg et al., 2009; Ollivier et al., 2011; Williams et al., 2015; Zhu et al., 2015). This review integrates these perspectives, with a specific focus on how winter climate change and FTCs influence *in situ* N biotransformation and the export of nitrogen species to the environment.

2. Effect of FTCs on different stages of the N cycle

Nitrogen transformation during a FTC occurs in three distinct stages: freezing, thawing and post-thawing (Müller et al., 2002). The freezing stage is characterized by a decrease of the soil temperature below 0°C, with the formation of ice crystals in pore spaces creating a downward movement of the freezing front. At this stage the soil layers below the freezing front still contain unfrozen soil pore water (Brooks et al., 2011). In this stage, ammonium (NH₄⁺) and NO₃⁻ concentrations can increase as unfrozen soil moisture, along with solutes, is drawn towards the freezing front (Müller et al., 2002; Liu et al., 2022). Soil freezing is considered analogous to soil drying and creates a strong sink for the upward movement of water. Chemical potentials of water due to gradients in hydrostatic pressure, solute

concentration and temperature create a strong thermodynamic sink for water at the freezing front (Marion, 1995; Congreves et al., 2018; Li et al., 2023).

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

The thawing stage occurs as the soil temperature approaches 0°C and ice within the soil matrix starts to melt. Under these conditions NO₃ is no longer released but the NH₄⁺ concentration can increase due to mineralization of the soil organic matter (Marion, 1995). During the post-thawing period the temperature rises above 0°C and the rate of N mineralization tends to decrease, while nitrification rates increase substantially. Nitrification during post-thawing conditions has been related to both autotrophic and heterotrophic processes (Müller et al., 2002; Yang et al., 2020). N2O is produced in deeper soil layers and is converted to N₂ by the time it reaches the soil surface. The depletion of NH₄⁺ and organic N occurs during the post-thaw stage. High soil moisture content from snow melt leads to soil saturation and the development of anaerobic conditions (Peng et al., 2019; Ekwunife et al., 2022). NO₃ is mobilized with soil moisture and may accumulate at the soil surface or be transported to adjacent water bodies (Liu et al., 2022). In addition, thawing and post-thawing stages result in an increase in infiltration and subsurface flow. As much as 86% of thawed water has been observed to contribute to subsurface flow from 30 cm depth (Zhang et al., 2024). During this stage, leaching of NO₃ to groundwater is likely to occur (Taylor and Parkinson, 1988; Joseph and Henry, 2008). Understanding both the direction and magnitude of the nitrogen flux during FTCs is critical for effective nutrient management. The commonly identified factors influencing N transformation and transport under these conditions are discussed in the following subsections.

2.1. Soil moisture and soil temperature

Unfrozen water moves from a high-moisture zone to low-moisture zone carrying solutes (NO₃⁻ and other salts) during a FTC (Marion, 1995). A high moisture content due to thawing or the presence of antecedent moisture can result in anaerobic conditions, which lead to the production N2O through denitrification (Congreves et al., 2018; Sennett et al., 2024). During freezing solutes move upwards towards the freezing front by convection, while a concentration gradient of the unfrozen soil water between the frozen and unfrozen area drives downward diffusion of solutes. Convection and diffusion mechanisms induce the movement of soil solutes in opposite directions, with the final direction of soil solutes determined by the relative strength of the two processes (Wang et al., 2022). A coupled heat and water model study by Zhang et al. (2021) showed upward moisture migration from a depth of 1.5 m. Soil moisture is an important driver of overall microbial activity. Microbial biomass has been reported to vary along moisture gradients at a catchment scale (Brockett et al., 2012). Studies made in agricultural fields with dry and wet conditions under FTCs showed a higher release of NH₄⁺ and NO₃⁻ for wet fields than in dry fields (Zhao et al., 2017; Kong et al., 2023).

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

A study by Kaštovská et al. (2022) in an Alpine meadow found that even a short-term increase in air temperature of 2°C can accelerate nutrient cycling. Air temperature can directly influence soil temperature at shallow depth (approx. 5 cm) in the absence of vegetation or snow cover (Edwards et al., 2006; Soong et al., 2020). Soils within mid- and high-latitudes experience a warm winter temperature, thus influencing nutrient cycling (Kreyling et al., 2019; Sahoo, 2022). Soil temperature influences soil moisture distribution and migration during FTCs (Wu et al., 2015a). Soil temperature gradients greater than 0 can be observed between 0-100 cm depth (Wu et al., 2023).

As temperatures rise during thawing and post-thawing stages, concentrations of NH₄⁺ and NO₃ in pore water can increase due to enhanced release from soil organic matter (Ouyang et al., 2013; Wang et al., 2020). Soil moisture and temperature directly affect the size of microbial populations, thus influencing soil enzyme activity (Wu, 2020; Lin and Hernandez-Ramirez, 2022). Soil microbial activities are reported to be functional during FTCs. During the freezing stage, N₂O emissions can result from soil enzyme activities. However, as the soil temperature increases during the thawing stage, the release of microbial biomass nitrogen (MBN) due to microbial lysis can subsequently add to the N2O production due to high microbial activity (Peng et al., 2019). Mild cooling temperature (\geq -5°C) during FTCs do not generate significant N products (Zhang et al., 2022c). Laboratory-based FTC studies usually freeze soil at \geq -20°C, which can stop microbial activity (Ejack and Whalen, 2021). Microbial communities show higher sensitivity to rapid freezing compared to slower freezing rates (Xu et al., 2016; Gao et al., 2021). Soil temperature fluctuations can damage plant roots and, together with microbial lysis, result in excess nutrient release. Reduced root uptake may result in the movement of N products with soil moisture (Kreyling et al., 2020).

2.2. Snow cover

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

The presence or absence of snow cover can impact soil temperature and moisture content, which in turn affect microbial activity and the biogeochemical cycling of N (Rixen et al., 2008; Zhao et al., 2018; Green et al., 2022; Xu, 2022). Snow cover is a thermal insulator and dissociates soil temperature from the atmospheric temperature (Brooks et al., 2011). Soil microbes slowly adapt to low temperatures (Smith et al. 2010). Soil temperature, number of FTCs and net N mineralization are closely correlated with the depth and duration of winter snow cover (Mellander et al., 2007; Ekwunife et al., 2022).

Studies by Brooks et al. (2011) and Shibata et al. (2013) have shown that thick snow cover can facilitate microbial N mineralization. Microbial activity continued below the freezing front and surface snow cover protects it from extreme low temperatures (Coxson and Parkinson, 1987). In contrast, snow-free winters have been associated with increased NH₄⁺ and NO₃⁻ concentrations in soil, as well as elevated N₂O emissions (Matzner and Borken, 2008; Brooks et al., 2011; Zhao et al., 2018; Yin et al., 2024).

2.3. Soil pH and salinity

Soil pH along with moisture content, temperature, and frequency and duration of FTCs controls soil microbial N transformation (Shibata, 2016). Soil N₂O emissions are positively correlated with pH during FTCs (Osei et al., 2024). Deng et al. (2024) suggested that pH increased with decrease in soil moisture content. Frozen soil inhibits soil microbial activity thus leading to increase in pH. Alternately FTCs have been found to increase the quantity of exchangeable NH₄-N; freezing increases adsorbed bases, thus increasing pH during the freezing stage than in subsequent stages (Marion, 1995).

Salt accumulation in shallow soil layers due to upward migration of solutes during FTCs increases the soil salinity (Cary and Mayland, 1972; Gray and Granger, 1986; Liu et al., 2021; Wang et al., 2022). In this context, evaporation during post-thawing enables salt migration to the soil surface (Liu et al., 2021). The constituent salts in the soil pore water can have different eutectic temperatures, such that salts with a higher eutectic temperature in the solution precipitate, while salts with lower eutectic point temperature remain in the solution. FTCs thus affect soil quality as well as soil structure. Soils undergoing freezing ≤ -10°C may precipitate Na₂SO₄ (eutectic temperature -1.2°C), while salts like NaCl (eutectic temperature -21.2°C) may exist in the solution (Wang et al., 2022).

2.4. Soil texture

Soil texture and antecedent moisture content affect infiltration rates. FTCs can influence infiltration rates by affecting soil structure (Yang et al., 2023). The finer the soil texture, the greater the capillary rise height and water migration during FTCs (Lyu et al., 2023). Studies by Gray and Granger (1986) and Wu et al. (2015b) examining various soil solute fluxes under FTCs showed that large fluxes can occur in light-textured soils (e.g., silt loam). Dry clay soil exhibits higher infiltration rates than other soil during FTCs, but structural disturbances caused in the process may result in clogging of pores, thus reducing soil permeability (Fouli et al., 2013).

2.5. Organic matter content and microbial activity

Decomposition of soil organic matter by microbes during winter is the primary source of N products (Freppaz et al., 2007; Li et al., 2017; Kreyling et al., 2020; Tang et al., 2022; Wang and Hu, 2024). The quality and quantity of organic matter affects N mineralization (Congreves et al., 2018). Frequent and rapid FTCs can have a damaging effect on the soil microbial community (Han et al., 2018). The ability of the microbial community in nitrogen fixation and denitrification is drastically impacted over repeated FTCs, gradually decreasing the microbial biomass. The soil biotic composition of warmer regions has shown adaptability and is relatively less responsive to high temperature fluctuations during FTCs (Kreyling et al., 2020). FTCs occurring in organic matter-rich soil within mid- and high-latitude zones are reported to increase N production compared to soils in warmer regions (Kreyling et al., 2020; Kazmi et al., 2023).

Nitrogen fixation and denitrification processes are dependent on microbial activity. Soil temperature and moisture directly affect the size of the microbial population and their enzyme activity during FTCs (Wu, 2020). Yang et al. (2020) found winter drought can decrease microbial biomass. During the freezing stage, temperature-sensitive microbes in the topsoil (0-10 cm) perish (Zhao and Hu, 2023). Snow cover provides an insulation during the freezing stage and a substantial number of microbes can survive and maintain relatively high activity under snow cover (Groffman et al., 2011; Shibata et al., 2013; Li et al., 2017; Isobe et al., 2022; Jiang et al., 2024; Kaštovská et al., 2022).

Microorganisms active during winter are classified into winter-adapted, snowmelt-specialist and spring-adapted by Sorensen et al. (2020), based on their population during the three stages of a FTC. Different microorganisms contribute to the overall N biogeochemical process during winter. Soil fungi are reported to be more active than bacteria during FTCs in deep soil layers (Starke et al., 2016; Sorensen et al., 2018; Sorensen et al., 2020; Jiang et al., 2024). Isobe et al. (2018) observed an increase in the population of nitrifying bacteria in mid-winter and in denitrifying bacteria and fungi during thawing and post-thawing stages in temperate forests.

2.6. Frequency and duration of FTCs

Climate change-induced warming is expected to increase the frequency and magnitude of FTCs, thus leading to the disturbance of the soil biota and release of nutrients (Kreyling et al., 2020). Frequent FTCs can reduce the soil snow cover, which can enhance N₂O emissions and even NO₃⁻ leaching to groundwater (Peng et al., 2019; Green et al., 2022; Pastore et al., 2023). Soil texture may be affected due to frequent freezing and thawing of pore water. Increases in permeability due to the disturbance of the soil pore structure can result in preferential flow and an increase in the extent of groundwater and surface water contamination by N compounds (Fouli et al., 2013).

The first thaw cycle has been reported to have a higher mineralization rate than later FTCs (Otgonsuren et al., 2020; Kong et al., 2025). Repeated FTCs accelerate the decomposition of above ground litter, and induce changes in microbial activity (Coxson and Parkinson, 1987; Taylor and Parkinson, 1988; Congreves et al., 2018). Studies by Teepe et al. (2001), Gao et al. (2015), Sanders-DeMott et al., (2018) and Gao et al. (2021) indicate that prolonged intervals between freezing and thawing can suppress soil enzymatic activity and delay N₂O flux peaks, which often drop within one to two days after thawing.

3. Impact of FTCs on different types of land use

Biogeochemical cycling of N during winter has been examined across various landuse types in mid- and high-latitude regions. Table 1 summarizes the key factors identified in the literature as influencing N fluxes during FTCs in this context. The most important factors are the winter soil moisture and soil temperature, which influence soil microbial activity (as discussed in Section 2). Different land-use patterns vary in their organic matter content, thus affecting the microbial activity and in turn create significantly different rates of N cycling. Furthermore, anthropogenic activities may add to the accelerated N production and flux. The following sections discuss common anthropogenic activities which have been reported to influence N production during winter.

Table 1. Summary of FTC effects across different land-use types and soil types, and the most influential factors associated with N flux during winter

Type of Land Use	Soil type	Factors influencing N flux during winter	References
Agriculture land	MP	Soil moisture, soil temperature	Wang et al. (2020)
	Silt loam	Soil moisture, salt content	Wu et al. (2015b)
	Silt loam	Soil temperature, microbial activity	Souriol and Henry
			(2024)
	Silt clay loam	Microbial activity	Hu et al. (2024)
	MP	Soil moisture, microbial activity	Wang et al. (2020)

	MP	Soil moisture	Liu et al. (2022)
	Clay	Soil moisture, microbial activity	Lin and Hernandez-
	-		Ramirez (2022)
	MP	Soil moisture, soil texture,	Ekwunife et al. (2022)
		microbial activity	
	Sandy loam	Soil moisture, soil temperature, precipitation, snow cover	Sennett et al. (2024)
	MP	Soil moisture, soil temperature, soil	Gray and Granger
	1411	texture	(1986)
	Sandy loam	Duration and frequency of FTCs, microbial activity	Ejack and Whalen (2021)
		Soil moisture, soil temperature,	Zhao et al. (2017)
	_	duration of FTCs	Zilao et al. (2017)
	Clay and loam	Soil moisture, soil temperature	Wang et al. (2022)
) (D	TT 1	D (1/0004)
	MP	pH, soil texture, temperature,	Deng et al. (2024)
		duration and depth of FTCs,	
	MP	microbial activity	Wana and Ha (2024)
		Microbial activity	Wang and Hu (2024)
Grassland	MP	Soil moisture, pH, microbial activity	Jiang et al. (2024)
	MP	Intensity and frequency of FTCs	Gao et al. (2015)
	MP	Soil moisture, soil temperature,	Andrade-Linares et al.
		organic matter, microbial activity	(2021)
	MP	Snow cover, microbial activity	Gavazov et al. (2017)
	MP	Snow cover, microbial activity	Li et al. (2017)
Forest	MP	Soil moisture, soil temperature,	Wu (2020)
		snow cover, microbial activity	
	MP	Soil moisture, soil temperature,	Kazmi et al. (2023)
		microbial activity	
	MP	Microbial activity	Peng et al. (2019)
	MP	Intensity and frequency of FTCs	Gao et al. (2021)
	Sand	Soil temperature, snow cover,	Mellander et al.
		microbial activity	(2007)
	_	Microbial activity	Lí et al. (2024)
	Sandy silt, silty	Soil moisture, soil temperature,	Weigel et al. (2021)
	sand	microbial activity	
	-	Snow cover	Wipf et al. (2009)
	MD	Constant Constant	Vi4 -1 (2024)
Desert	MP	Snow cover, frequency of FTCs	Yin et al. (2024)
	MP	Snow cover, microbial activity	Zhao et al. (2018)
	MP	Microbial activity	Kimura and Okuro (2024)

Wetland	-	Soil temperature, snow cover, Ding et al. (2023)
		precipitation, microbial activity

(MP = multiple sample points)

3.1. Movement of N fluxes due to FTCs

Thawing and post-thawing stages are associated with high export of NO₃⁻ into water bodies by overland flow (Liu et al., 2022; Zhao et al., 2017). The topography of a region plays an important role in controlling the discharge of snowmelt runoff (Park et al., 2010). Changes in stream chemistry during the thawing stage can be observed due to N inputs from land. Dissolved N may leach into groundwater, eventually reaching streams as subsurface discharge. Alternatively, NO₃⁻ can accumulate in groundwater as legacy N (Green et al., 2022).

In parallel, N₂O emissions to the atmosphere enhance the greenhouse effect (Liu et al., 2023; Peng et al., 2019). In addition, FTCs may result in the release of amino acids in soils during early spring, which can be subsequently used by plants as an N source (Inselsbacher et al., 2014).

3.2. Management practices before and during winter which contribute to N fluxes

Fertilizer application and snow removal

Fertilizer application during autumn is a common practice in prairie states, such as those in the United States. Nitrogen amendments increase N mineralization and soil respiration. However, elevated rates of winter N mineralization in the absence of plant demand may result in the loss of this N from the system (Contosta et al., 2011; Zong et al., 2018; Geng et al., 2019; Zhang et al., 2022b).

Snow removal has been shown to increase NO₃ and NH₄ concentrations in soil pore water (Viglietti et al., 2014; Zhao et al., 2018). Snowpack acts as an insulation layer, protecting the soil from extreme cold and thus maintaining a relatively warm environment

for soil microbial activity (see Section 2.2). Bokhorst et al. (2013) and Li et al. (2017) observed that snow removal increased the mortality of fine plant roots and soil microbes. In addition, plots without snow cover exhibited lower denitrification enzyme activity compared to those under snow, indicating the importance of snowpack in sustaining microbial nitrogen transformation during winter.

Cover crops

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

Studies by Zhang et al. (2022a) and Heuchan et al. (2024) on adding crop residues to soil after the autumn harvest showed that FTCs significantly changed the microbial community in the straw-amended soil considered. Soil microbes in the amended soil were less resistant to freeze-thaw stress and perished, releasing nutrients to the soil. These findings highlight the potential for organic amendments to modify soil biogeochemistry under winter conditions. Cover crops were found to retain soil N under FTC conditions. Lu et al. (2015) investigated the influence of grassland management practices on nitrogen dynamics during FTCs. Grazing was found to reduce N₂O production by 36.8%, while mowing enhanced emissions during FTCs. This contrast was attributed to a greater increase in microbial population in mowed plots compared to grazed areas, which likely stimulated microbial activity and nitrogen transformation during FTCs. Cover crops (or frost-tolerant crops) have been used as a best management practice in regions which witness mild winters (\leq -4°C). However, growing cover crops in heavy frosted regions (≥-18°C) may not prove to be beneficial during FTCs owing to damage of plant cells and increase in emission of N2O (Cober et al., 2018; Olofsson and Ernfors, 2022).

Artificial soil warming and the application of biochar

Artificial soil warming during winter has been shown to promote N mineralization due to the increase in soil temperature (Zong et al., 2018). However, due to low-temperature conditions in the atmosphere, microbial retention of nutrients is limited, increasing the risk of N losses through leaching or gaseous emissions (Liu et al., 2023).

Biochar amendment has been proposed as a strategy to modulate N cycling during FTCs. Fu et al. (2019) and Wang et al. (2024) found that applying approximately 2% biochar by weight to soil can help maintain the inorganic N content of the soil, affecting the N mineralization rate and ultimately plant growth. Biochar application was found to inhibit soil water migration, reduce NH₄⁺ concentrations, and increase NO₃⁻ levels during FTCs.

4. Other abiotic factors affecting N fluxes during FTCs

Winter rain events can reduce or delay snow accumulation, leading to so-called 'Rain on Snow (ROS)' events. These events alter the insulating properties of snow cover and delay its establishment on the soil surface. Viglietti et al. (2014) observed that late snow accumulation can cause a significant increase in soil pore water NO₃⁻ during the spring and summer seasons, suggesting a possible reduction in plant uptake caused by root damage. FTCs coupled with winter rain events can loosen the soil structure, subsequently eroding nutrient-rich sediments (Inamdar et al., 2018; Tang et al., 2019).

Winter drought can also be a major abiotic stressor affecting N dynamics. Yang et al. (2020) found severe drought during winter can alter microbial community structure in temperate semi-arid grasslands. Decreased snow cover can damage the below ground root system and microbial biomass (See Section 2.2). Most of the inorganic N surplus may be recycled via enhanced heterotrophic microbial assimilation of NO₃⁻ and NH₄⁺ under winter drought conditions.

5. Conclusions

This review has focused specifically on studies conducted in temperate climates. Research related to permafrost regions and the effects of climate warming on biogeochemical processes in these zones requires a separate and dedicated analysis, which is beyond the scope of the present review.

Understanding how climate warming influences the fate and transport of N in soil is of critical importance. Based on the reviewed literature, several key research gaps emerge:

- 1. Disciplinary separation of winter N transport research: most studies approach winter N transport either from a hydrogeological or a biogeochemical perspective. However, N dynamics during winter seasons are influenced by a combination of physical, chemical, and biological processes. A more integrated approach that accounts for these interactions would improve predictions of soil N availability in temperate region soils.
- 2. Limited studies on multiple FTCs: research on how repeated FTCs affect soil structure and microbial communities remains scarce. Since soils often undergo multiple FTCs during winter, understanding their cumulative effects is essential for accurately assessing winter N fluxes.
- 3. Neglect of flux directionality: the direction in which N moves (e.g. toward groundwater, surface runoff or atmospheric emission) has received limited attention. Investigating how climatic and soil conditions influence the N flux direction could help inform better soil and water resource management strategies.

These research gaps offer opportunities to advance our understanding of N cycling during winter. Climate change-induced warming has led to higher availability of N in winter across temperate latitudes. While this increased N may be short-lived and limited to the early

growing season, the associate N fluxes to the atmosphere and waterbodies could have lasting impacts.

This review highlighted the most common biotic and abiotic factors influencing N dynamics during winter. Most existing studies have focused on single FTC events, limiting our understanding of how the duration and intensity of temperature fluctuations shape N cycling. The thickness and persistence of snow cover emerge as dominant controls on these processes. While many studies have addressed N₂O emissions and microbial activity in this context, broader measurements of N cycle products would provide a more comprehensive view of winter soil biogeochemistry.

Interdisciplinary collaborative research will be essential to address these complexities. Given the variability in soil properties across regions, further studies on FTCs across diverse soil types are needed to understand how climate change affects terrestrial processes that regulate N export from soils to both surface water and groundwater systems.

REFERENCES

Allen, M.R., O.P. Dube, W. Solecki, F. Aragón-Durand, W. Cramer, S. Humphreys, M. Kainuma, J. Kala, N. Mahowald, Y. Mulugetta, R. Perez, M. Wairiu, and K. Zickfeld, 2018: Framing and Context. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 49-92, doi:10.1017/9781009157940.003.

420 Andrade-Linares, D.R., Zistl-Schlingmann, M., Foesel, B., Dannenmann, M., Schulz, S. and Schloter, M., 2021. 421 Short term effects of climate change and intensification of management on the abundance of microbes driving nitrogen turnover in montane grassland soils. Science of the Total Environment, 780, p.146672. 422 423 Bokhorst, S., Metcalfe, D.B. and Wardle, D.A., 2013. Reduction in snow depth negatively affects decomposers 424 but impact on decomposition rates is substrate dependent. Soil Biology and Biochemistry, 62, pp.157-164. 425 Brockett, B.F., Prescott, C.E. and Grayston, S.J., 2012. Soil moisture is the major factor influencing microbial 426 community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil 427 biology and biochemistry, 44(1), pp.9-20. 428 Brooks, P.D., Grogan, P., Templer, P.H., Groffman, P., Öquist, M.G. and Schimel, J., 2011. Carbon and nitrogen 429 cycling in snow-covered environments. Geography Compass, 5(9), pp.682-699. 430 Cary, J.W. and Mayland, H.F., 1972. Salt and water movement in unsaturated frozen soil. Soil Science Society of 431 America Journal, 36(4), pp.549-555. 432 Cober, J.R., Macrae, M.L. and Van Eerd, L.L., 2018. Nutrient release from living and terminated cover crops 433 under variable freeze-thaw cycles. Agronomy Journal, 110(3), pp.1036-1045. 434 Congreves, K.A., Wagner-Riddle, C., Si, B.C. and Clough, T.J., 2018. Nitrous oxide emissions and 435 biogeochemical responses to soil freezing-thawing and drying-wetting. Soil Biology and Biochemistry, 117, 436 pp.5-15. 437 Contosta, A.R., Frey, S.D., and Cooper, A.B., 2011. Seasonal dynamics of soil respiration and N mineralization 438 in chronically warmed and fertilized soils. Ecosphere, 2(3), pp.1-21. 439 Coxson, D.S. and Parkinson, D., 1987. Winter respiratory activity in aspen woodland forest floor litter and soils. 440 Soil Biology and Biochemistry, 19(1), pp.49-59. 441 Deng, Y., Li, X., Shi, F. and Zhang, Y., 2024. Divergent controlling factors of freeze-thaw-induced changes in 442 dissolved organic carbon and microbial biomass carbon between topsoil and subsoil of cold alpine 443 grasslands. Catena, 241, p.108063.

Ding, S., Zou, Y. and Yu, X., 2023. Freeze-thaw cycles alter the growth sprouting strategy of wetland plants by

promoting denitrification. Communications Earth & Environment, 4(1), p.57.

444

- Edwards, K.A., McCulloch, J., Kershaw, G.P. and Jefferies, R.L., 2006. Soil microbial and nutrient dynamics in a wet Arctic sedge meadow in late winter and early spring. Soil Biology and Biochemistry, 38(9), pp.2843-2851.
- Ejack, L. and Whalen, J.K., 2021. Freeze-thaw cycles release nitrous oxide produced in frozen agricultural soils.

 Biology and Fertility of Soils, 57(3), pp.389-398.
- Ekwunife, K.C., Madramootoo, C.A., and Abbasi, N.A., 2022. Assessing the impacts of tillage, cover crops, nitrification, and urease inhibitors on nitrous oxide emissions over winter and early spring. Biology and Fertility of Soils, pp.1-12.
- Fouli, Y., Cade-Menun, B.J. and Cutforth, H.W., 2013. Freeze-thaw cycles and soil water content effects on infiltration rate of three Saskatchewan soils. Canadian Journal of Soil Science, 93(4), pp.485-496.
- Freppaz, M., Williams, B.L., Edwards, A.C., Scalenghe, R. and Zanini, E., 2007. Simulating soil freeze/thaw cycles typical of winter alpine conditions: implications for N and P availability. Applied Soil Ecology, 35(1), pp.247-255.
- Fu, Q., Yan, J., Li, H., Li, T., Hou, R., Liu, D. and Ji, Y., 2019. Effects of biochar amendment on nitrogen mineralization in black soil with different moisture contents under freeze-thaw cycles. Geoderma, 353, pp.459-467.
- Gao, D., Liu, Z. and Bai, E., 2021. Effects of in situ freeze-thaw cycles on winter soil respiration in mid-temperate
 plantation forests. Science of the Total Environment, 793, p.148567.
- Gao, Y., Zeng, X., Xie, Q. and Ma, X., 2015. Release of carbon and nitrogen from alpine soils during thawing
 periods in the eastern Qinghai-Tibet Plateau. Water, Air, & Soil Pollution, 226, pp.1-9.
- Gavazov, K., Ingrisch, J., Hasibeder, R., Mills, R.T., Buttler, A., Gleixner, G., Pumpanen, J. and Bahn, M., 2017.
 Winter ecology of a subalpine grassland: effects of snow removal on soil respiration, microbial structure,
 and function. Science of the Total Environment, 590, pp.316-324.
- Geng, F., Li, K., Liu, X., Gong, Y., Yue, P., Li, Y. and Han, W., 2019. Long-term effects of N deposition on N2O
 emission in an alpine grassland of Central Asia. Catena, 182, p.104100.
- Gray, D.M. and Granger, R.J., 1986. In situ measurements of moisture and salt movement in freezing soils.

 Canadian Journal of Earth Sciences, 23(5), pp.696-704.

473 Green, D., Rezanezhad, F., Jordan, S., Wagner-Riddle, C., Henry, H.A., Slowinski, S. and Van Cappellen, P., 2022. 474 Effects of winter pulsed warming and snowmelt on soil nitrogen cycling in agricultural soils: A lysimeter study. Frontiers in Environmental Science, 10, p.1020099. 475 476 Groffman, P.M., Hardy, J.P., Fashu-Kanu, S., Driscoll, C.T., Cleavitt, N.L., Fahey, T.J. and Fisk, M.C., 2011. 477 Snow depth, soil freezing and nitrogen cycling in a northern hardwood forest landscape. Biogeochemistry, 478 102, pp.223-238. 479 Han, C.L., Gu, Y.J., Kong, M., Hu, L.W., Jia, Y., Li, F.M., Sun, G.J. and Siddique, K.H., 2018. Responses of soil 480 microorganisms, carbon, and nitrogen to freeze-thaw cycles in diverse land-use types. Applied soil ecology, 481 124, pp.211-217. 482 Henry, H.A., 2007. Soil freeze-thaw cycle experiments: trends, methodological weaknesses, and suggested 483 improvements. Soil Biology and Biochemistry, 39(5), pp.977-986. 484 Heuchan, S.M., Wagner-Riddle, C. and Henry, H.A., 2024. Snow removal and cover crops influence soil nitrogen 485 transfer to the subsequent corn crop. *Plant and Soil*, 496(1), pp.473-483. 486 Hu, Y., Yuan, X., Wang, X., Song, Y., Peng, Z., Yan, B. and Li, X., 2024. Unequal impacts of unidirectional freeze-487 thaw on different soil layers and aggregate sizes: Evidenced by microbial communities and CO₂ emissions. 488 Catena, 241, p.108057. 489 Inamdar, S., Johnson, E., Rowland, R., Warner, D., Walter, R. and Merritts, D., 2018. Freeze-thaw processes and 490 intense rainfall: the one-two punch for high sediment and nutrient loads from mid-Atlantic watersheds. 491 Biogeochemistry, 141, pp.333-349. 492 Inselsbacher, E., Oyewole, O.A. and Näsholm, T., 2014. Early season dynamics of soil nitrogen fluxes in fertilized 493 and unfertilized boreal forests. Soil Biology and Biochemistry, 74, pp.167-176. 494 Isobe, K., Oka, H., Watanabe, T., Tateno, R., Senoo, K. and Shibata, H., 2022. Soil microbial community response 495 to winter climate change is phylogenetically conserved and highly resilient in a cool-temperate forest. Soil 496 Biology and Biochemistry, 165, p.108499. 497 Isobe, K., Oka, H., Watanabe, T., Tateno, R., Urakawa, R., Liang, C., Senoo, K. and Shibata, H., 2018. High soil microbial activity in the winter season enhances nitrogen cycling in a cool-temperate deciduous forest. Soil 498

Biology and Biochemistry, 124, pp.90-100.

500 Jiang, Y., Zhang, B., Xu, X., Huang, Y., Wu, X., Wang, W. and Li, J., 2024. Different responses of soil microbial 501 respiration to nitrogen addition between surface and deep soil in a temperate steppe in Inner Mongolia. 502 Plant and Soil, pp.1-15. 503 Johnson, H.M. and Stets, E.G., 2020. Nitrate in streams during winter low-flow conditions as an indicator of 504 legacy nitrate. Water Resources Research, 56(11), p.e2019WR026996. 505 Joseph, G. and Henry, H.A., 2008. Soil nitrogen leaching losses in response to freeze-thaw cycles and pulsed 506 warming in a temperate old field. Soil Biology and Biochemistry, 40(7), pp.1947-1953. 507 Kaštovská, E., Choma, M., Čapek, P., Kaňa, J., Tahovská, K. and Kopáček, J., 2022. Soil warming during winter 508 period enhanced soil N and P availability and leaching in alpine grasslands: A transplant study. PLOS One, 509 17(8), p.e0272143. 510 Kazmi, F.A., Espenberg, M., Pärn, J., Masta, M., Ranniku, R., Thayamkottu, S. and Mander, Ü., 2023. Meltwater 511 of freeze-thaw cycles drives N₂O-governing microbial communities in a drained peatland forest soil. 512 Biology and Fertility of Soils, pp.1-14. 513 Kimura, K. and Okuro, T., 2024. Cyanobacterial Biocrust on Biomineralized Soil Mitigates Freeze-Thaw Effects and Preserves Structure and Ecological Functions. Microbial Ecology, 87(1), pp.1-8. 514 515 Kong, F., Gao, Y., Li, T., Fu, Q., Liu, D., Su, Z., Shen, W., Wang, J., Zhou, W. and Wang, Y., 2023. Effects of 516 freeze-thaw cycles and the soil water content on carbon and nitrogen changes in different soil types of Heilongjiang Province, China. Soil Use and Management, 39(4), pp.1453-1466. 517 518 Kong, Y., Gong, S., Zhu, L., Wu, H., Duan, K., Cheng, W., Khoroshaev, D., Lai, Y. and Xu, X., 2025. Dynamics 519 of Soil N2O and CO2 Emissions in Response to Freeze-Thaw Intensity and Moisture Variations: A 520 Laboratory Experiment. Forests, 16(3), p.380. 521 Kreyling, J., Grant, K., Hammerl, V., Arfin-Khan, M.A., Malyshev, A.V., Peñuelas, J., Pritsch, K., Sardans, J., 522 Schloter, M., Schuerings, J. and Jentsch, A., 2019. Winter warming is ecologically more relevant than 523 summer warming in a cool-temperate grassland. Scientific reports, 9(1), p.14632. 524 Kreyling, J., Schumann, R. and Weigel, R., 2020. Soils from cold and snowy temperate deciduous forests release

Biogeosciences, 17(15), pp.4103-4117.

525

526

more nitrogen and phosphorus after soil freeze-thaw cycles than soils from warmer, snow-poor conditions.

- Kurylyk, B.L., MacQuarrie, K.T. and McKenzie, J.M., 2014. Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools. Earth-Science Reviews, 138, pp.313-334.
- Kuypers, M.M., Marchant, H.K. and Kartal, B., 2018. The microbial nitrogen-cycling network. Nature Reviews Microbiology, 16(5), pp.263-276.
- Lai, Y., Wu, D. and Zhang, M., 2017. Crystallization deformation of a saline soil during freezing and thawing processes. Applied Thermal Engineering, 120, pp.463-473.
- Lí, J.T., Hicks, L.C., Brangarí, A.C., Tájmel, D., Cruz-Paredes, C. and Rousk, J., 2024. Subarctic winter warming
 promotes soil microbial resilience to freeze—thaw cycles and enhances the microbial carbon use efficiency.
 Global Change Biology, 30(1), p.e17040.
- Li, J.T., Xu, H., Hicks, L.C., Brangarí, A.C. and Rousk, J., 2023. Comparing soil microbial responses to dryingrewetting and freezing-thawing events. Soil Biology and Biochemistry, 178, p.108966.
- Li, T., Chen, Y.Z., Han, L.J., Cheng, L.H., Lv, Y.H., Fu, B.J., Feng, X.M. and Wu, X., 2021. Shortened duration and reduced area of frozen soil in the Northern Hemisphere. The Innovation, 2(3).
- Li, Z., Yang, W., Yue, K., Justine, M.F., He, R., Yang, K., Zhuang, L., Wu, F., Tan, B., Zhang, L. and Xu, Z., 2017.

 Effects of snow absence on winter soil nitrogen dynamics in a subalpine spruce forest of southwestern

 China. Geoderma, 307, pp.107-113.
- Lin, S. and Hernandez-Ramirez, G., 2022. Increased soil-derived N2O production following a simulated fallfreeze-thaw cycle: effects of fall urea addition, soil moisture, and history of manure applications. Biogeochemistry, 157(3), pp.379-398.
- Liu, C., Wang, Y., Chen, H., Sun, Q., Jiang, Q. and Wang, Z., 2023. High level of winter warming aggravates soil carbon, nitrogen loss and changes greenhouse gas emission characteristics in seasonal freeze-thaw farmland soil. Science of The Total Environment, 905, p.167180.
- Liu, H., Hu, Y., Hao, Y., Yan, X., Wu, L., Wang, C. and Li, X., 2022. Progressive freeze-thaw redistributes water, solute, and CO₂ emissions across soil layers—The role of soil particle size. Catena, 219, p.106614.
- Liu, S., Huang, Q., Ren, D., Xu, X., Xiong, Y. and Huang, G., 2021. Soil evaporation and its impact on salt accumulation in different landscapes under freeze—thaw conditions in an arid seasonal frozen region.

 Vadose Zone Journal, 20(2), p.e20098.

- Liu, Y., Wang, X., Wen, Y., Cai, H., Song, X. and Zhang, Z., 2024. Effects of freeze-thaw cycles on soil greenhouse gas emissions: A systematic review. Environmental Research, p.118386.
- Lu, Z., Du, R., Du, P., Qin, S., Liang, Z., Li, Z., Wang, Y. and Wang, Y., 2015. Influences of land use/cover types
- on nitrous oxide emissions during freeze-thaw periods from waterlogged soils in Inner Mongolia. PLoS
- One, 10(9), p.e0139316.
- Lyu, H., Li, H., Zhang, P., Cheng, C., Zhang, H., Wu, S., Ma, Q. and Su, X., 2023. Response mechanism of
- groundwater dynamics to Freeze-thaw process in seasonally frozen soil areas: A comprehensive analysis
- from site to regional scale. Journal of Hydrology, 625, p.129861.
- Marion, G.M., 1995. Freeze-thaw processes and soil chemistry, Special Report 95-12, US Army Corps of
- Engineers, Cold Regions Research & Engineering Laboratory.
- Matzner, E. and Borken, W., 2008. Do freeze-thaw events enhance C and N losses from soils of different
- ecosystems? A review. European Journal of Soil Science, 59(2), pp.274-284.
- Mellander, P.E., Löfvenius, M.O. and Laudon, H., 2007. Climate change impact on snow and soil temperature in
- boreal Scots pine stands. Climatic Change, 85, pp.179-193.
- Müller, C., Martin, M., Stevens, R.J., Laughlin, R.J., Kammann, C., Ottow, J.C.G. and Jäger, H.J., 2002. Processes
- leading to N2O emissions in grassland soil during freezing and thawing. Soil Biology and Biochemistry,
- 571 34(9), pp.1325-1331.
- Olofsson, F. and Ernfors, M., 2022. Frost killed cover crops induced high emissions of nitrous oxide. Science of
- 573 the Total Environment, 837, p.155634.
- Ollivier, J., Töwe, S., Bannert, A., Hai, B., Kastl, E.M., Meyer, A., Su, M.X., Kleineidam, K. and Schloter, M.,
- 575 2011. Nitrogen turnover in soil and global change. FEMS Microbiology Ecology, 78(1), pp.3-16.
- Osei, A.K., Rezanezhad, F. and Oelbermann, M., 2024. Impact of freeze-thaw cycles on greenhouse gas emissions
- 577 in marginally productive agricultural land under different perennial bioenergy crops. Journal of
- Environmental Management, 357, p.120739.
- Otgonsuren, B., Rosinger, C., Wang, L. and Godbold, D.L., 2020. Winter soils of Mongolian forests have viable
- 580 ectomycorrhizas and soil enzymatic activity. Soil Biology and Biochemistry, 148, p.107914.

581 Ouyang, W., Huang, H., Hao, F. and Guo, B., 2013. Synergistic impacts of land-use change and soil property 582 variation on non-point source nitrogen pollution in a freeze-thaw area. Journal of Hydrology, 495, pp.126-583 134. 584 Park, J.H., Duan, L., Kim, B., Mitchell, M.J. and Shibata, H., 2010. Potential effects of climate change and 585 variability on watershed biogeochemical processes and water quality in Northeast Asia. Environment 586 International, 36(2), pp.212-225. 587 Pastore, M.A., Classen, A.T., English, M.E., Frey, S.D., Knorr, M.A., Rand, K. and Adair, E.C., 2023. Soil 588 microbial legacies influence freeze-thaw responses of soil. Functional Ecology, 37(4), pp.1055-1066. 589 Peng, X., Frauenfeld, O.W., Cao, B., Wang, K., Wang, H., Su, H., Huang, Z., Yue, D. and Zhang, T., 2016. 590 Response of changes in seasonal soil freeze/thaw state to climate change from 1950 to 2010 across China. 591 Journal of Geophysical Research: Earth Surface, 121(11), pp.1984-2000. 592 Peng, B., Sun, J., Liu, J., Dai, W., Sun, L., Pei, G., Gao, D., Wang, C., Jiang, P. and Bai, E., 2019. N₂O emission 593 from a temperate forest soil during the freeze-thaw period: A mesocosm study. Science of the total 594 environment, 648, pp.350-357. Rennenberg, H., Dannenmann, M., Gessler, A., Kreuzwieser, J., Simon, J. and Papen, H., 2009. Nitrogen balance 595 596 in forest soils: nutritional limitation of plants under climate change stresses. Plant Biology, 11, pp.4-23. 597 Rixen, C., Freppaz, M., Stoeckli, V., Huovinen, C., Huovinen, K. and Wipf, S., 2008. Altered snow density and 598 chemistry change soil nitrogen mineralization and plant growth. Arctic, Antarctic, and Alpine Research, 599 40(3), pp.568-575. 600 Sahoo, M., 2022. Winter soil temperature and its effect on soil nitrate status: A support vector regression-based 601 approach on the projected impacts. Catena, 211, 105958. 602 Sanders-DeMott, R., Sorensen, P.O., Reinmann, A.B. and Templer, P.H., 2018. Growing season warming and 603 winter freeze-thaw cycles reduce root nitrogen uptake capacity and increase soil solution nitrogen in a

abundance during a single freeze-thaw event. Biology and Fertility of Soils, 60(4), pp.577-591.

Sennett, L.B., Brin, L.D., Goyer, C., Zebarth, B.J. and Burton, D.L., 2024. Effects of soil water content at freezing,

thaw temperature, and snowmelt infiltration on N2O emissions and denitrifier gene and transcript

northern forest ecosystem. Biogeochemistry, 137, pp.337-349.

604

605

606

608 Shibata, H., 2016. Impact of winter climate change on nitrogen biogeochemistry in forest ecosystems: a synthesis 609 from Japanese case studies. Ecological indicators, 65, pp.4-9. Shibata, H., Hasegawa, Y., Watanabe, T. and Fukuzawa, K., 2013. Impact of snowpack decrease on net nitrogen 610 611 mineralization and nitrification in forest soil of northern Japan. Biogeochemistry, 116, pp.69-82. 612 Smith, J., Wagner-Riddle, C. and Dunfield, K., 2010. Season and management related changes in the diversity of 613 nitrifying and denitrifying bacteria over winter and spring. Applied Soil Ecology, 44(2), pp.138-146. Soong, J. L., Phillips, C. L., Ledna, C., Koven, C. D., and Torn, M. S., 2020. CMIP5 models predict rapid and 614 615 deep soil warming over the 21st century. Journal of Geophysical Research: Biogeosciences, 125(2), p.e. 616 2019JG005266. 617 Sorensen, P.O., Beller, H.R., Bill, M., Bouskill, N.J., Hubbard, S.S., Karaoz, U., Polussa, A., Steltzer, H., Wang, 618 S., Williams, K.H. and Wu, Y., 2020. The snowmelt niche differentiates three microbial life strategies that 619 influence soil nitrogen availability during and after winter. Frontiers in Microbiology, 11, p.871. 620 Sorensen, P.O., Finzi, A.C., Giasson, M.A., Reinmann, A.B., Sanders-DeMott, R. and Templer, P.H., 2018. Winter 621 soil freeze-thaw cycles lead to reductions in soil microbial biomass and activity not compensated for by 622 soil warming. Soil Biology and Biochemistry, 116, pp.39-47. 623 Souriol, B.F. and Henry, H.A., 2024. Short-versus long-term effects of nitrogen addition and warming on soil 624 nitrogen mineralization and leaching in a grass-dominated old field. Oecologia, pp.1-10. 625 Starke, R., Kermer, R., Ullmann-Zeunert, L., Baldwin, I.T., Seifert, J., Bastida, F., von Bergen, M. and Jehmlich, 626 N., 2016. Bacteria dominate the short-term assimilation of plant-derived N in soil. Soil Biology and 627 Biochemistry, 96, pp.30-38. 628 Tang, F.H., Riley, W.J. and Maggi, F., 2019. Hourly and daily rainfall intensification causes opposing effects on 629 C and N emissions, storage, and leaching in dry and wet grasslands. Biogeochemistry, 144(2), pp.197-214. 630 Tang, S., Yuan, P., Tawaraya, K., Tokida, T., Fukuoka, M., Yoshimoto, M., Sakai, H., Hasegawa, T., Xu, X. and 631 Cheng, W., 2022. Winter nocturnal warming affects the freeze-thaw frequency, soil aggregate distribution, 632 and the contents and decomposability of C and N in paddy fields. Science of The Total Environment, 802, 633 p.149870. 634 Taylor, B.R. and Parkinson, D., 1988. Does repeated freezing and thawing accelerate decay of leaf litter?. Soil 635 Biology and Biochemistry, 20(5), pp.657-665.

- Teepe, R., Brumme, R. and Beese, F., 2001. Nitrous oxide emissions from soil during freezing and thawing periods. Soil Biology and Biochemistry, 33(9), pp.1269-1275.
- Urakawa, R., Shibata, H., Kuroiwa, M., Inagaki, Y., Tateno, R., Hishi, T., Fukuzawa, K., Hirai, K., Toda, H.,
 Oyanagi, N. and Nakata, M., 2014. Effects of freeze—thaw cycles resulting from winter climate change on
 soil nitrogen cycling in ten temperate forest ecosystems throughout the Japanese archipelago. Soil Biology
 and Biochemistry, 74, pp.82-94.
- Viglietti, D., Freppaz, M., Filippa, G. and Zanini, E., 2014. Soil C and N response to changes in winter precipitation in a subalpine forest ecosystem, NW Italy. Hydrological Processes, 28(21), pp.5309-5321.
- Wang, E., Cruse, R.M., Chen, X. and Daigh, A., 2012. Effects of moisture condition and freeze/thaw cycles on surface soil aggregate size distribution and stability. Canadian Journal of Soil Science, 92(3), pp.529-536.
- Wang, K., Wang, P., Zhang, R. and Lin, Z., 2020. Characterizing the exudation of water and pollutants from soil
 into streams during soil-thawing period. Journal of Hydrology, 590, p.125436.
- Wang, M., Zhu, Y., Zhao, T., Cui, L., Mao, W., Ye, M., Wu, J. and Yang, J., 2022. Chemical characteristics of salt
 migration in frozen soils during the freezing-thawing period. Journal of Hydrology, 606, p.127403.
- Wang, R.Z. and Hu, X., 2024. Seasonal freeze–thaw processes impact microbial communities of soil aggregates associated with soil pores on the Qinghai–Tibet Plateau. Ecological Processes, 13(1), p.40.
- Wang, L., Li, T., Liu, H., Zhang, Z., Yang, A. and Li, H., 2024. Combined Effect of Freeze–Thaw Cycles and Biochar Addition on Soil Nitrogen Leaching Characteristics in Seasonally Frozen Farmland in Northeast China. Agronomy, 14(1), p.153.

656

657

658

659

- Weigel, R., Henry, H.A., Beil, I., Gebauer, G., Jurasinski, G., Klisz, M., Van Der Maaten, E., Muffler, L. and Kreyling, J., 2021. Ecosystem processes show uniform sensitivity to winter soil temperature change across a gradient from central to cold marginal stands of a major temperate forest tree. Ecosystems, 24(6), pp.1545-1560.
- Williams, C.M., Henry, H.A. and Sinclair, B.J., 2015. Cold truths: how winter drives responses of terrestrial organisms to climate change. Biological Reviews, 90(1), pp.214-235.
- Wipf, S., Stoeckli, V. and Bebi, P., 2009. Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Climatic change, 94(1), pp.105-121.

- Wu, D., Lai, Y. and Zhang, M., 2015a. Heat and mass transfer effects of ice growth mechanisms in a fully saturated soil. International Journal of Heat and Mass Transfer, 86, pp.699-709.
- Wu, M., Tan, X., Huang, J., Wu, J. and Jansson, P.E., 2015b. Solute and water effects on soil freezing characteristics based on laboratory experiments. Cold Regions Science and Technology, 115, pp.22-29.
- Wu, Q., 2020. Season-dependent effect of snow depth on soil microbial biomass and enzyme activity in a temperate forest in Northeast China. Catena, 195, p.104760.
- Wu, T., Li, H. and Lyu, H., 2023. Effect of freeze–thaw process on heat transfer and water migration between soil
 water and groundwater. Journal of Hydrology, 617, p.128987.
- Xu, X., Duan, C., Wu, H., Li, T. and Cheng, W., 2016. Effect of intensity and duration of freezing on soil microbial
 biomass, extractable C and N pools, and N₂O and CO₂ emissions from forest soils in cold temperate region.
 Science China Earth Sciences, 59, pp.156-169.
- Xu, X., 2022. Effect of freeze-thaw disturbance on soil C and N dynamics and GHG fluxes of East Asia forests:
 Review and future perspectives. *Soil Science and Plant Nutrition*, 68(1), pp.15-26.
- Yang, X., Henry, H.A., Zhong, S., Meng, B., Wang, C., Gao, Y. and Sun, W., 2020. Towards a mechanistic understanding of soil nitrogen availability responses to summer vs. winter drought in a semiarid grassland.

 Science of the Total Environment, 741, p.140272.
- Yang, X., Hou, R., Fu, Q., Li, T., Wang, J., Su, Z., Shen, W., Zhou, W. and Wang, Y., 2023. Effect of freeze-thaw cycles and biochar coupling on the soil water-soil environment, nitrogen adsorption and N2O emissions in seasonally frozen regions. Science of The Total Environment, 893, p.164845.

683

- Yin, B., Li, J., Zhang, Q., Zhang, S., Liu, Z., Zhou, X., Wu, N. and Zhang, Y., 2024. Snow depth has greater influence on moss biocrusts' soil multifunctionality than the number of freeze-thaw cycles. Applied Soil Ecology, 199, p.105420.
- Zhang, B., Chen, Q., Wen, J., Ding, X. and Agathokleous, E., 2022a. Straw addition decreased the resistance of bacterial community composition to freeze—thaw disturbances in a clay loam soil due to changes in physiological and functional traits. Geoderma, 424, p.116007.
- Zhang, B., Yu, L., Wang, J., Tang, H., Qu, Z. and Zhu, T., 2022b. Effects of warming and nitrogen input on soil

 N2O emission from Qinghai-Tibetan Plateau: a synthesis. Agricultural and Forest Meteorology, 326,
 p.109167.

- 691 Zhang, J., Hong, J., Wei, D. and Wang, X., 2022c. Severe freezing increases soil respiration during the thawing 692 period: A meta-analysis. European Journal of Soil Science, 73(1), p.e13161. Zhang, X., Wu, Y., Zhai, E. and Ye, P., 2021. Coupling analysis of the heat-water dynamics and frozen depth in a 693 694 seasonally frozen zone. Journal of Hydrology, 593, p.125603. 695 Zhang, Y., Li, X.Y., Hu, G., Deng, Y., Zhang, X., Shi, F. and Zuo, F., 2024. Effects of the freeze-thaw process on 696 sources and pathways of subsurface flow in an alpine hillslope on the northeastern Qinghai-Tibet Plateau. 697 Journal of Hydrology, p.131291. 698 Zhao, Q., Chang, D., Wang, K. and Huang, J., 2017. Patterns of nitrogen export from a seasonal freezing 699 agricultural watershed during the thawing period. Science of the total environment, 599, pp.442-450. 700 Zhao, R., Hui, R., Liu, L., Xie, M. and An, L., 2018. Effects of snowfall depth on soil physical-chemical properties 701 and soil microbial biomass in moss-dominated crusts in the Gurbantunggut Desert, Northern China. Catena, 702 169, pp.175-182. 703 Zhao, Y.D. and Hu, X., 2023. Seasonal freeze-thaw processes regulate and buffer the distribution of microbial 704 communities in soil horizons. Catena, 231, p.107348. 705 Zhu, X., Zhang, W., Chen, H. and Mo, J., 2015. Impacts of nitrogen deposition on soil nitrogen cycle in forest 706 ecosystems: A review. Acta Ecologica Sinica, 35(3), pp.35-43. 707 Zong, N., Geng, S., Duan, C., Shi, P., Chai, X. and Zhang, X., 2018. The effects of warming and nitrogen addition 708 on ecosystem respiration in a Tibetan alpine meadow: The significance of winter warming. Ecology and 709 Evolution, 8(20), pp.10113-10125. 710 Acknowledgements 711 The authors thank the Horizon Europe Guarantee award – UKRI for the funding to carry out this research. This manuscript is a part of M. Sahoo's postdoctoral research supervised by 712 Prof. D. Baù and Prof. S. Thornton. 713 714 **Funding** This study was funded by Horizon Europe Guarantee award – UKRI (Project reference -715 EP/Y015843/1; Year - 2023). 716
 - **Authors' contributions**

718	Conceptualization, writing, reviewing, and editing: M. Sahoo, D. Baù, and S. Thornton;
719	Supervision: D. Baù and S. Thornton.
720	Competing interests
721	The authors declare that they have no known competing interests that could influence the
722	work reported in this paper.
723	Ethical approval - Not applicable
724	Consent to participate – Not applicable
725	Consent to publish - Not applicable
726	Availability of data and materials - Not applicable
727	