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A B S T R A C T

Environmental concerns are promoting the shift towards electric vehicles (EVs) from internal combustion-based 
vehicles. Lithium ion (Li-ion) batteries are currently the dominant power source option for modern electric 
vehicles (EVs); however, their operating temperatures need to remain within an allowable safety range in order 
to preserve battery lifetime and avoid thermal runaway. Accordingly, high-performance battery thermal man
agement systems (BTMSs) are needed for safe and efficient battery operation. These challenges are addressed 
here using a novel machine learning (ML)-enabled multi-objective optimization (MOO) approach for BTMS based 
on serpentine minichannel cold plates with intersecting V-shaped minichannels (SMCCP-IVSMC). The SMCCP- 
IVSMC configuration is optimised here for the first time, subject to four competing objectives, namely the bat
tery maximum temperature (Tmax), water pumping power (Pw), battery temperature standard deviation (Tσ), and 
the mass of the cold plate (MCP). Reducing MCP has not been considered previously; however, it plays a vital role 
in improving both the energy consumption and manufacturing costs of cooling systems. A thermal model based 
on empirical heat generation with a conjugate heat transfer model in the cold plates is developed and validated 
comprehensively. Surrogate modeling based on both Radial Basis Functions (RBFs) and Gaussian Process 
Regression (GPR) shows the latter is the most effective. This is used to explore the trade-offs between the 
competing objectives (Tmax, Pw, Tσ, and MCP). A novel hybrid optimization approach is developed, integrating 
GPR, Generalized Differential Evaluation (GDE3) and Technique for Order Preference by Similarity to an Ideal 
Solution (TOPSIS) methods to determine the best compromise solutions (BCSs) among the set of Pareto optimal 
solutions. The optimisation results identify numerous options for improving performance significantly, beyond 
the current benchmark design. In addition to reductions in the maximum temperature, operating costs can be 
minimised by reducing water pumping power by over 68.7 %, and manufacturing costs minimised by reducing 
the mass of the cold plate heat exchangers by over 22.8 %. The top-ranked BCS using equally weighted TOPSIS 
has also been identified, which enables all four objectives to be reduced simultaneously.

1. Introduction

Combustion engine-powered vehicles are one of the most important 
contributors to greenhouse gas emissions (GHGs) [1]. They use only 
about 20 % of fuel energy for vehicle movement, whereas EVs transform 
85 %–90 % of their stored energy into vehicle kinetic energy [2]. 
Accordingly, vehicle manufacturing is shifting towards more 

sustainable, quieter, and environmentally friendly alternatives. It is 
generally agreed that using electric vehicles (EVs) is essential for 
achieving the net-zero emission goals [3].

Li-ion batteries are broadly used in EVs due to their longevity, low 
self-discharge rate, and high power density [4]. However, they can 
suffer from important practical limitations, one of which is a rapid rise in 
temperature beyond the acceptable operating range that reduces the 
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battery performance, shortens its useful lifetime, and can lead to local
ised deterioration in the battery pack [5]. Another is the uneven tem
perature distribution that can cause a short circuit in the battery [6]. 
Prolonged operating temperatures of 50 ◦C or above accelerate its aging 
and eventually lead to a decline in its usable capacity [7]. To ensure 
continuous optimal performance, the optimal working temperature 
range should be 20 ◦C to 40 ◦C [8], and the temperature differences from 
module to module and cell to cell should generally be within 5 ◦C [6]. 
Accordingly, effective battery thermal management systems (BTMSs) 
are necessary to ensure the battery modules operate safely and 
effectively.

There is a wide range of thermal management technologies applied 
to a diverse range of applications, such as in buildings [9,10], electronics 
[11], data centres [12,13], EVs [14–16], fuel cells [17,18], solar panels 
[19–21], aerospace [22], etc. These include liquid cooling [23–26], air 
cooling [27–29], heat pipe cooling [30,31], phase change materials 
(PCMs) [32–35], and a variety of hybrid cooling systems [36–39]. Air- 
cooled systems are simple and cheap, but they have low thermal effi
ciency, making them unsuitable for long-distance or high-powered EVs 
[40]. Passive cooling systems like PCMs and heat pipes can be used to 
regulate the battery’s temperature using latent heat and offer several 
advantages, such as good temperature uniformity, low operating costs, 
and no extra power consumption [41]. However, they are less effective 
at temperature regulation [40]. PCMs’ thermal conductivities are 
limited, and heat transfer deteriorates after they have completely melted 
[42]. The volume of these materials changes throughout the re- 
solidification process after melting and becomes difficult to manage 
[43]. The main issue with heat pipe cooling systems is their safety; a 
short circuit can occur due to fluid leakage on the battery cells, causing 
vehicle failure and possibly death [44]. Furthermore, these systems need 
secondary heat exchangers to cool their condensers, necessitating 
further research before they can successfully cool electric vehicle bat
teries. Hybrid systems combine the advantages of the individual cooling 
systems mentioned above by integrating more than one of these systems 
to overcome their limitations. However, these also have drawbacks due 
to their increased weight, large volume, and high energy consumption 
[45]. Among these cooling systems, liquid cooling can be very effective 
due to its large thermal conductivity and specific heat capacity, and 
more compact structure [46]. Its heat dissipation performance is roughly 
three times better than air-cooled battery modules [47]. Accordingly, 
Liquid cooling, using water or coolant, is currently the predominant 
cooling method used by automotive manufacturers to manage battery 
packs effectively and has therefore become an important research topic 
[48–50].

Liquid-cooled BTMS generally rely on two different mechanisms: 
direct contact (immersive) or indirect contact of liquid with the battery 
cells [51]. Direct contact liquid cooling is highly effective at transferring 
heat from battery cells to the coolant and can also be less expensive and 
simpler than indirect contact cooling [52]. However, indirect contact 
liquid BTMS is more widely used in commercial EVs, including the Tesla 
Model 3, BYD e5 450, Dihao EV 450, and Chevrolet Volt [53] due to 
concerns related to safety and the risk of coolant leakage [52,54]. In
direct contact liquid BTMSs have many configurations, such as tubes, 
jackets, and cold plates, with various mini-channel designs that transfer 
the cooling fluid. Cold plates have recently become the most popular 
configuration due to their advantages in terms of low risk of leakage, 
easy maintenance, seasonal cooling and heating abilities, and scalability 
for larger surfaces [55].

The performance of cold plates depends critically on the configura
tion and arrangement of their mini-channel design. Several cold plate 
channel configurations have been investigated recently, including those 
with straight [23,56], U-bend [57,58], serpentine [59,60], pumpkin 
[61], bionic fishbone [62], honeycomb [63], and butterfly [64] chan
nels. Serpentine channel designs have received the most attention due to 
their wide-ranging practical applications [59] and their ability to peri
odically disrupt and redevelop thermal and hydraulic boundary layers, 

improving heat transfer significantly [65]. Monika and Datta [66] 
conducted a comparative study of six different types of cold plate de
signs with identical channel volumes: serpentine, straight, U-bend, spi
ral, pumpkin-shaped, and hexagonal structural channels. Their results 
indicate that although the pumpkin model has a smaller pressure drop, 
the serpentine and hexagonal shapes significantly enhance temperature 
uniformity. Wang et al. [67] evaluated the thermal performance of a 
liquid cooling BTMS with serpentine micro-channels and found that the 
best design to lower the maximum and average temperatures of the 
battery module was to alternately arrange the water inlets and outlets on 
one side of the cooling plates. A variable cross-section double 
serpentine-channel cold plate (VCDSCP) was recently proposed by Pu 
et al. [59]. The results indicate that at higher discharge rates, the 
VCDSCP design lowers the maximum temperature by 0.54 K and the 
maximum temperature difference by 0.62 K compared to the conven
tional serpentine-channel cold plate. The results also showed that the 
VCDSCP design resulted in a maximum pressure drop (Δp) decrease of 
80.8 % and an increase of 25.5 % in the performance evaluation crite
rion (PEC) at a coolant flow rate of 0.2 g/s.

The thermal and hydraulic performances of minichannels in thermal 
management applications have been enhanced using many devices that 
increase turbulence, introduce secondary flows, increase fluid mixing, 
and disrupt the thermal and hydraulic boundary layers, including 
gyroids, cavities, ribs, and vortex generators. Saghir and Yahya [68] 
proposed a solid gyroid structure within the cold plate and discovered 
that besides creating a more uniform temperature distribution, the 
Nusselt number increased by 85 % compared to the conventional 
channel configuration. Kaewchoothong et al. [69] indicated that the 
heat transfer performance of the wavy-winglet rib design increased heat 
transfer between 10 %–32 % depending on rib designs, albeit with a 
larger pressure drop. Zhu et al. [50] examined a unique liquid-cooled 
plate with a discrete, inclined, and alternating arrangement of ribs 
and grooves to enhance thermal performance. Compared to a conven
tional straight-channel design, the innovative cold plate obtained a 
0.74 ◦C lower maximum battery temperature and a 0.18 ◦C lower tem
perature standard deviation, with a pressure drop of 55.37 Pa higher 
than the conventional one. Sakkera et al. [70] assessed innovative de
signs of serpentine channel heat sinks that have rectangular ribs with 
both rectangular (RRRG) and triangular grooves (RRTG), and they found 
that the average Nusselt number increase for RRRG and RRTG is 46 % 
and 36 %, respectively, compared to a traditional smooth channel heat 
sink. Nevertheless, RRRG and RRTG have average pressure drops that 
are 56 % and 35 % higher, respectively, than those of smooth channel 
heat sinks. Xu et al. [71] investigated the effects of adding three distinct 
vortex generators - triangle, trapezoid, and semicircle - to the liquid 
cooling straight mini-channel of cold plates on the battery’s heat dissi
pation capacity and temperature uniformity. They found that, while 
providing the same heat dissipation efficiency, the semi-circular vortex 
generators had a lower pressure drop than the trapezoidal and triangular 
vortex generators, by 15.9 % and 20.5 %, respectively.

A number of studies studied how cold plate performance can be 
enhanced by using the secondary flow minichannels between the main 
minichannels. Several heat sink studies in the literature demonstrate 
that secondary flows in the serpentine microchannel can enhance heat 
transfer without increasing the pressure drop because they increase the 
surface area for heat transfer and allow the cooling fluid to pass through 
them at a lower fluid velocity, see e.g. [72,73]. Far fewer studies have 
considered using a serpentine configuration with the secondary flow 
paths in the MCCP of the BTMS. Recently, Fan et al. [74] enhanced the 
design of a liquid cooled plate with a conventional serpentine channel by 
incorporating elliptical grooves and unidirectional secondary channels. 
Their simulation results show that, even though the enhanced design has 
slightly lower thermal performances, including the maximum temper
ature and average maximum temperature difference of the battery 
modules, compared to the original serpentine cold plate, it has signifi
cantly reduced the pumping power requirement, and improved the 
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cooling efficiency coefficient, which is the ratio of heat dissipation ca
pacity to power consumption. Furthermore, two numerical studies 
enhanced the performance of the liquid-based thermal management 
system for prismatic lithium-ion batteries by integrating V-shaped 
intersecting minichannels into traditional serpentine channels [75,76]. 
On the basis of their brief parameter studies this particular MCCP 
configuration was found to show very promising thermo-hydraulic 
performance, but that systematic optimization would be needed to 
minimise the effect of the additional mass on EV performance. Previous 
studies have shown that a 10 % reduction in the vehicle’s mass can result 
in a 5.5 %–8 % reduction in energy consumption [77]. Reducing the 
vehicle’s weight also leads to better acceleration performance and 
reduced braking distances [78]. Accordingly, recent studies have 
concentrated on and will continue to focus on lightweight BTMSs. For 
instance, Dileep et al. [79] proposed lightweight T-shaped cold plate 
designs that account for only 20.7 % of the overall module weight. Zhou 
et al. [80] proposed three hybrid BTMS designs with different geome
tries, using phase change materials and honeycomb-shaped cold plates 
for the liquid cooling of twelve cylindrical Li-ion batteries. They found 
that one of these designs could decrease the BTMS weight from 0.35 kg 
to 0.19 kg. Khoshvaght-Aliabadi et al. [81] also proposed three BTMS 
designs for cooling cylindrical lithium-ion cells, which include designs 
with 1, 3 and 5 cooling units. Their results indicated that while both the 
BTMS with three and five cooling units provided closer values of 
maximum temperature difference across the battery module—5.4 K and 
4.1 K, respectively, compared to the BTMS with one cooling unit at 22.5 
K, the BTMS with three cooling units resulted in approximately a 12 % 
reduction in the weight index (the weight ratio of the BTMS to the 
battery module) compared to the system with five cooling units. 
Accordingly, this paper is novel in two key aspects. It is the first to 
develop and apply a novel ML-enabled multi-objective optimization 
(MOO) approach for the thermal management of SMCCP-IVSMC cold 
plate configurations based on TOPSIS approaches and is the first to 
attempt to reduce the cold plate mass in addition to the other thermo- 
hydraulic performance indicators, including the maximum tempera
ture, water pumping power and temperature variation over the cold 
plate.

The paper is structured as follows: Section 2 describes the numerical 
methodology used for the battery thermal management prototype, and 
provides an in-depth description of the physical problem, the conjugate 
heat transfer model, and its associated governing equations and 
boundary conditions. Section 3 focuses on the validation and verifica
tion of the proposed numerical model and presents grid- and time-step- 
sensitivity studies. A comprehensive sensitivity analysis of the input 
design variables and their effects on the output objective parameters is 
presented in Section 4, and the optimization methodologies are 
described in Section 5, including the sampling method, surrogate 
models, optimization algorithm, and TOPSIS approaches. Section 6
presents a comprehensive analysis of the simulation and optimization 
results. Finally, conclusions are drawn in Section 7.

2. Numerical methodology

2.1. Physical problem

The BTMS developed by Liu et al. [75], is analysed. It is composed of 
several 8.0 Ah prismatic LiFePO4 Li-ion battery cells, each with a size of 
124 mm × 79 mm × 17 mm, and serpentine minichannel cold plates 
with intersecting V-shaped minichannels (SMCCP-IVSMC) incorporated 
between consecutive battery cells. The cell specifications are given in 
Table 1 [82]. The anode and cathode materials for the cell are graphite 
and lithium iron phosphate (LiFePO4), respectively; the electrolyte 
consists of ethylene carbonate, dimethyl carbonate, and ethyl methyl 
carbonate (EC/DMC/EMC); and the inner core of the battery is wrapped 
by the Al alloy casing.

The SMCCP-IVSMC aims to mitigate the hotspots and ensure greater 

temperature uniformity. Initial studies have shown that the SMCCP- 
IVSMC design can result in a substantially lower pressure drop 
compared to the standard SMCCP because the secondary flow mini
channels result in slower flow than the standard SMCCP. The BTMS is 
shown in Fig. 1; Fig. 1a displays the BTMS layout, and Fig. 1b shows the 
configuration, boundary conditions and geometrical parameters for half 
of the domain of a single battery cell and a SMCCP-IVSMC, where 
symmetry has been exploited. During the discharging process of Li-ion 
battery cells, Li-ions migrate through the electrolyte from the anode 
(negative electrode) to the cathode (positive electrode). At the same 
time, electrons move simultaneously via the external circuit to generate 
electricity. This process involves several chemical and physical phe
nomena, including the diffusion of Li-ions (insertion and de-insertion) 
within solid electrode particles, the diffusion of Li-ions in the electro
lytes and the electrochemical reactions that occur at the solid-liquid 
electrolyte interface, which generate a substantial amount of heat. The 
performance of the BTMS is simulated for the worst-case scenario, where 
all battery cells are fully discharged at a rapid C-rate (9C).

2.2. Numerical modeling

A three-dimensional conjugate heat transfer (CHT) model is used to 
simulate the interaction between conductive heat transfer in the solid 
domains and convection in the fluid. Finite element analysis (FEA) is 
employed as a numerical approach inside COMSOL Multiphysics® 
(v.6.0) to solve the governing equations subject to the boundary con
ditions. The continuity and momentum equations of the cooling fluid 
(water) within the mini channels are given, respectively, by the 
following: 

∂ρw

∂t
+∇ • (ρw •Uw) = 0 (1) 

∂(ρw Uw)

∂t
+∇ • (ρw •UwUw) = − ∇pw + μw∇

2Uw (2) 

where ρw, μw and pw are the cooling water’s dynamic density, viscosity, 
and pressure, respectively. Uw is the water velocity vector with the 
components u, v, and w in the x-, y-, and z- directions, respectively. ∇ is 
the gradient operator and is defined as follows: 

∇ =
∂
∂x

i+
∂

∂y
j+

∂
∂z

k (3) 

The energy conservation equations for the water and cold plate are 
given, respectively, by the following: 

∂
(
ρw • Cpw • Tw

)

∂t
+∇ •

(
ρwCpwUwTw

)
= ∇ • (Kw∇Tw)

(

4
)

(4) 

∂
(
ρCP • CpCP • TCP

)

∂t
= ∇ • (KCP∇TCP) (5) 

where Cpw, Kw, and Tw are the specific heat capacity, thermal conduc
tivity, and the temperature of the cooling water, respectively. ρCP, KCP, 
CpCP and TCP are the dynamic density, thermal conductivity, specific 
heat capacity, and the temperature of the cold plate, respectively.

The energy conservation equation for each Li-ion battery cell is as 

Table 1 
Specifications of LiFePO4 battery cell.

Contents Battery cell

Active area dimensions (mm) 17 × 79 × 124
Mass (g) 328
Rated capacity (Ah) 8.0
Normal voltage (V) 3.20
Specific heat (J/kg⋅K) 1305
Thermal conductivity (W/m.K) 2.6
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follows: 

ρbCpb
∂T
∂t

= ∇ • (Kb∇T)+ q̇ (6) 

where ρb, Cpb, and Kb are the dynamic density, specific heat capacity, 
and thermal conductivity of the battery cell, respectively. q̇ is the heat 
generation rate of each battery cell. The heat generation rates within Li- 
ion batteries need to be determined accurately to provide high-fidelity 
heat transfer models of Li-ion-based BTMSs. Numerous earlier studies 
have used the major simplifying, yet physically unrealistic, assumption 
that the heat generation rate is steady [83]. The use of time-dependent 
models of the heat generation rate is much more realistic. These can be 
determined using theoretical modeling, such as the Newman pseudo- 
two-dimensional (P2D) model [84], the Newman, Tiedemann, Gu, and 
Kim (NTGK) model [85,86], and the equivalent circuit model (ECM) 
[87–89]. The P2D model is frequently employed for physics-based 
electrochemical-thermal modeling, considering the mobility of lithium 
ions through the solid electrode particles as well as the reaction kinetics 
at the electrode-electrolyte interfaces [90]. However, this model is both 

complex and computationally expensive and depends on a large number 
of often uncertain parameters [23]. The NTGK, a semi-empirical model 
developed by Kwon et al. [86], is set up by curve fitting the experimental 
data and has been proved by several studies to be effective for predicting 
the fast heat evolution of Li-ion batteries [91]. From the thermal man
agement perspective in high-performance EVs, the ECM can accurately 
represent the non-linear thermo-electrical behaviour of Li-ion batteries 
[92]. ECMs have provided an effective balance between complexity and 
precision, and their physical variables are not only readily interpretable 
but also comprehensible [90]. This study uses a time-dependent heat 
generation rate that was previously established by Sheng et al. [82] 
using the ECM based on two main experiment methods, i.e., the hybrid 
pulse power characterization (HPPC) method and the potentiometric 
method. This heat generation rate expression has been used successfully 
in a number of BTMS studies to simulate the heat generation that occurs 
within Li-ion batteries during the discharge process 
[23,75,76,82,93–97]. Accordingly, the following time-dependent heat 
generation rate expression from Sheng et al. [82], is employed at 9C: 

Fig. 1. Schematics of the BTMS based on SMCCP-IVSMC: (a) battery module; (b) half of the domain of a single battery unit and a SMCCP-IVSMC (units: mm).
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q̇ = 319.6 − 2719.0 SOC+15148.5 SOC2 − 43018.3 SOC3

+63645.5 SOC4 − 46817.9 SOC5 +13527.5 SOC6 (7) 

where the heat generation rate is estimated from the above equation in 
(kW/m3) and SOC, the cell state of charge, is given by: 

SOC = 1 − I • t/C (8) 

where I and C are the discharge current and nominal capacity of the 
battery cell, respectively, and t is the discharge time.

The thermo-physical properties of the materials used in the BTMS 
simulation are summarized in Table 2 [75].

The generalized-α numerical approach is used as the time-stepping 
method for the time-dependent solver when solving the CHT model 
for BTMS-based SMCCP-IVSMC design with a (2 s) time step. The rele
vant boundary conditions and assumptions that are used in the numer
ical solutions are listed in Table 3.

The performance of the BTMS is evaluated using the battery’s 
maximum temperature (Tmax), temperature standard deviation of the 
battery cells (Tσ), the water pumping power (Pw), and the mass of the 
material for each cold plate (MCP). These are selected for the following 
reasons: (i) reducing the battery’s maximum temperature is essential to 
constrain it within the allowable operating temperatures, which would 
otherwise accelerate the aging process, shorten battery lifetime, or even 
cause thermal runaway [98]. (ii) Reducing the temperature standard 
deviation ensures a more uniform temperature distribution, which re
duces the risk of aging of the local electrode materials around thermal 
hotspots and accelerated battery failure [99,100]. (iii) Reducing the 
pumping power increases the driving range of EVs. (iv) The weight of 
the battery pack also has a significant impact on both driving range and 
EV efficiency (a lighter battery pack consumes less energy, leading to a 
longer driving range) [101]. Although liquid cooled BTMS provide 
effective cooling, they are considered a heavyweight thermal manage
ment option [43,102]. Accordingly, the present research also considers 
minimizing the mass of the cold plate material to reduce both the energy 
consumption and material cost. The above four performance metrics are 
given, respectively, by: 

Tmax = Max(T) (9) 

Tσ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∫

A(T − Tav)
2 dA

∫

A dA

√

(10) 

Pw = Δp× Q̇ (11) 

MCP = ρCP • VCP (12) 

where the A is the battery cells area. Tav represents the average tem
perature of the battery cells, and is given by: 

Tav =

∫

AT dA
∫

A dA
(13) 

Δp is the pressure drop of the water in the mini channels (Pa). Q̇ is 
the volumetric flow rate in (m3/s), (Q̇ = Ach × Uin), and Ach is the cross- 
sectional area at the inlet of the minichannel (m2). VCP is the volume of 

each cold plate and is given by: 

VCP = HCP • WCP • tCP − tch •
(

(nch • Wch • Lch)+ (nch − 1) • π

•
r2

2 − r1
2

2
+2 • Wch • (WCP − (Lch + r2 +Ws2) )+Ww • (nch − 1)

• nint • Wint

)

(14) 

where HCP, WCP, and tCP are the height, width, and thickness of the cold 
plate (m), respectively. tch is the depth of the minichannels (m). nch and 
nint represent respectively the number of minichannels and V-shaped 
intersecting minichannels (nch = 14, nint = 7). Wch and Wint are the 
width of the minichannels and V-shaped intersecting minichannels, 
respectively (m). Ww represents the width of the minichannel wall (m), 
Ww = (HCP − nch • Wch − 2 • Ws1)/(nch − 1). Ws1, and Ws2 are the 
outside wall thicknesses, respectively (m), see Fig. 1. The symbols r1 and 
r2, respectively, represent the inner and outer radius of the bent mini
channel (m), r1 = Ww/2, r2 = Wch + Ww/2. Lch is the length of the 
straight minichannel (m), Lch = WCP − 2 • Ws2 − 2 • r2. Fig. 2 illustrates 
a schematic sketch of a single V-shaped intersecting minichannel to 
clarify the design parameters for the SMCCP-IVSMC design, where θ is 
the V-shape intersecting angle (◦) and the distance δ is given by: 

δ =

(
0.5 Ww − Rcosθ

sinθ

)

(15) 

3. Numerical validation and verification

A grid sensitivity test is carried out on the BTMS based on SMCCP- 

Table 2 
Thermo-physical properties of the materials used in BTMS simulation of SMCCP- 
IVSMC design.

Materials Density 
(ρ) 
kg/m3

Thermal 
conductivity (K) 
W/m⋅K

Heat capacity 
(Cp) 
J/kg⋅K

Dynamic 
viscosity (μ) 
Pa.s

Cooling 
water

998 0.6 4200 0.001003

Cold plate 2719 202.4 871 –
Battery 1969.6 2.6 1305 –

Table 3 
The boundary conditions for BTMS based on SMCCP-IVSMC design.

Locations Fluid conditions Thermal conditions

Inlet Laminar flow 
Inlet flow velocity 
(Uin = 0.3 m/s)

Temperature (T) = Tin = 30◦C

Outlet The pressure outlet 
boundary condition. 
p = po = 0

In the normal direction, the 
temperature gradient is zero. 
Outflow − n.q = 0

Interface surface No–slip condition. 
Uw = 0 − KCP

∂TCP

∂n

⃒
⃒
⃒
⃒

Γ

= − Kw
∂Tw

∂n

⃒
⃒
⃒
⃒

Γ 

TCP,Γ = Tw,Γ

Incompressible flow ∂ρw
∂t

+ ρw∇ •Uw = 0 

ρw = constant

–

Gravity force Gravitational effect is 
negligible. 
ρw • g = 0 
g is the gravitational 
acceleration field.

–

Free convection 
boundary 
conditions

Uw = 0 The convective heat transfer 
rate (Qa) 
Qa = haAa(Ts − Ta), where ha, 
Aa, Ts and Ta represent the 
convective heat transfer 
coefficient, surface area 
exposed to the ambient air, 
surface temperature exposed to 
air, and ambient air 
temperature, respectively. 
ha = 5 W/m2⋅K; Ta = 30◦C

Battery cells Uw = 0 Heat generation in battery cells 
(q̇) 
See Eq. (7)

Radiation heat 
transfer.

Uw = 0 The radiation heat transfer 
(Qrad) is neglected. 
Qrad = 0

Symmetrical plane 
of the battery pack

Just half of both the battery and the cold plate domains are 
considered, and the above and lower surfaces of the two 
halves are set as symmetry (Fig. 1b).

A. Mahmood et al.                                                                                                                                                                                                                              Journal of Energy Storage 140 (2025) 118995 

5 



IVSMC illustrated in Fig. 1. Simulations are carried out in COMSOL 
Multiphysics® software (v.6.0) using free-tetrahedral grids with a 
number of elements ranging from 0.82 × 10⁶ to 4.05 × 10⁶ for a high 
discharge rate of 9C and an inlet flow velocity of 0.3 m/s. The software 
has been used to iteratively solve the partial differential equations 
(PDEs) of heat transfer and fluid flow using the finite element method 
(FEM) via an iterative solver. The finite element meshes consisted of 
numerous interconnected small elements with boundary edges that 
connected at endpoints called nodes. The 3D free tetrahedral mesh is the 
default mesh in COMSOL and is normally selected for its suitability for 
irregular geometries, including curved surfaces or the presence of small 
objects [103]. Because some BTMS domains have thin or irregular 
shapes, like V-shape regions, and due to the computational cost, all 3D 
computational domains of BTMS are discretised using various sizes of an 
unstructured free tetrahedral mesh with the help of the COMSOL pre
processor. High-quality meshes are essential for the efficiency and ac
curacy of the solution process in computational fluid dynamics (CFD) 
numerical simulation, whereas poor-quality meshes can significantly 
impact the stability and convergence of a finite element solver, as well as 
the accuracy of the PDE solution [104]. The mesh quality is a dimen
sionless factor that ranges from 0 to 1, where 1 represents high-quality 
meshes and 0 represents poor-quality meshes. The mesh quality (Qmesh) 
for the tetrahedral element is computed using COMSOL Multiphysics for 
the laminar flow regime as follows [72]: 

Qmesh =
72

̅̅̅
3

√
V

(
h2

1 + h2
2 + h2

3 + h2
4 + h2

5 + h2
6
)1.5 (16) 

where V represents the volume and h1, h2, h3, h4, h5, and h6 denote the 
edge lengths of the element; Qmesh should exceed 0.1 to achieve an 
acceptable aspect ratio, edge ratio, and volume ratio, thus preventing 
stretched or distorted elements. The necessary steps for solving the nu
merical model in COMSOL Multiphysics software are presented as a 
flowchart in Fig. 3.

The effects of grid density on the maximum temperature as a func
tion of time are shown in Fig. 4- it can be seen that the results are 
virtually indistinguishable. Further quantitative details are given in 
Table 4, where the PRE of the results of each grid with respect to those 
on the finest grid is determined using Eq. (17): 

PRE (%) =

⃒
⃒
⃒
⃒
Yi − Y4.05×10⁶

Y4.05×10⁶

⃒
⃒
⃒
⃒ (17) 

where Y is the numerical results of the evaluated values of the physical 
parameters (in this case Tmax and Pw) for a given number of elements (i).

Four timestep values (1.0 s, 2.0 s, 3.0 s, and 4.0 s) were used to assess 
the effect of the timestep – no significant variations can be discerned (see 
Fig. 5). Balancing the precision and computational cost, the current 
study used a free-tetrahedral grid with 2.36 × 10⁶ elements with 

Fig. 2. Schematic diagram of the geometry of a single V-shape intersecting minichannel.

Fig. 3. Flowchart representing the necessary steps for solving the numerical model in COMSOL.
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corresponding mesh quality of 0.66, and a 2.0 s timestep.
A CFD model for BTMS based on SMCCP-IVSMC was constructed in 

COMSOL Multiphysics® (v.6.0) using a free-tetrahedral grid with 2.36 ×

10⁶ elements and a time-steps of (2.0 s) to validate the 3D fluid flow and 
heat transfer model developed here against the numerical simulations in 
ANSYS Fluent by Liu et al. [75] (case 4) when 8.0 Ah prismatic LiFePO4 
Li-ion batteries are fully discharged at a high discharge rate (9C). The 
obtained results were evaluated with respect to the maximum temper
ature of the battery and the water pumping power throughout a range of 
water inlet velocities from 0.1 to 0.5 m/s. Fig. 6 demonstrates that the 
results obtained here are in excellent agreement with those of Liu et al. 
[75], with a mean absolute percentage error (MAPE) of 0.02 % and 1.26 
%, respectively. The MAPE is given by eq. (18) [23]: 

MAPE =
1
N

∑N

i=1

|Calculated value − Actual value|
Actual value

× 100% (18) 

where N represents the total number of evaluated points.

To further prove the reliability of the battery heat generation rate 
and the numerical model simulated in this study, Fig. 7 compares the 
numerical predictions of the present work with the numerical results and 
experimental findings reported in, Liu et al. [76] and Sheng et al. [82] 
respectively, during the discharge process Fig. 7. Comparison between 
the numerical of the present work, Liu et al. [76] and Sheng et al. [82] 
works for battery temperature during the discharge process at different 
high C-rates. There is very good agreement with both the previous sets of 
numerical and experimental results. As shown in the Fig. 7, the battery 
temperature gradually increases as the discharge rate rises from 3C to 
9C. Accordingly, the maximum C-rate of 9C is chosen for further analysis 
in this work, because it reflects the worst-case scenario with the highest 
thermal load.

To further verify the accuracy of the present conjugate heat transfer 
and CFD model, the experimentally measured thermo-hydraulic per
formance, specifically the Nusselt number and apparent friction factor of 
a minichannel heat sink [105], is compared with the simulation results 
obtained using the present numerical approach, as shown in Fig. 8. It can 
be observed that the model predictions for the Nusselt number (Nu) and 
apparent friction factor (f) are in good agreement with the experimental 
data across various Reynolds numbers, which confirms the reliability 
and accuracy of the numerical approach employed in the present work.

4. Sensitivity analysis

The parameters having the greatest influence on the performance 
metrics are determined using sensitivity factors [106] in the form of: 

Si =
(fmax (xi) − fmin (xi) )

∑n
j=1

(
fmax

(
xj
)
− fmin

(
xj
) ) (19) 

where fmax (xi), and fmin (xi) represent the maximum and minimum 
values of a single objective function (Tmax, Tσ, Pw, or MCP) when varying 
only one design variable xi (such a Wch, Wint, θ, R, or Ws2) over its full 
range. The term 

∑n
j=1

(
fmax

(
xj
)
− fmin

(
xj
) )

is the sum of all differences 
between the maximum and minimum values of a single performance 
metric for all design variables. This sensitivity analysis is a simple and 
widely used approach to determine the impact of each input factor on 
the performance of the BTMS [106–112]. The sensitivity factors for all 
the design variables are displayed in Fig. 9, showing the relative impact 
of each design variable on the BTMS objective functions. The results of 
the sensitivity analysis demonstrated that Wch has the most significant 
impact on Tmax, Tσ, Pw, and MCP, with sensitivity factors of 55.73 %, 
76.24 %, 32.05 %, and 52.11 %, respectively. This is followed in 
descending order of significance by the V-shaped intersecting mini
channels (Wint) and the V-shape intersecting angle (θ) comes next, with 
both the radius (R) and outside wall thickness (Ws2) having only minor 
impacts. Accordingly, only the first three design variables (Wch, Wint, 
and θ) are considered in the design optimization study.

5. Optimization methodologies

The validated battery thermal management model is used within a 
surrogate-enabled optimization of the cold plate’s cooling system. The 
aim is to identify effective compromises between the various objectives 
for the design variables Wch, Wint, and θ in the ranges 2.0 ≤ Wch ≤ 5.0, 
1.0 ≤ Wint ≤ 5.0, and 30◦

≤ θ ≤ 60◦ , respectively. Optimal Latin hy
percube sampling (OLHS) is used to generate 100 Design of Experiment 
(DoE) points that are uniformly distributed and efficiently cover the 
design space. Then, the high-fidelity BTM simulation model is used to 
compute Tmax, Tσ, and Pw, at each DoE point, while the mass MCP is 
determined via Eq. (12). Surrogate modeling is carried out using both 
Radial Basis Functions (RBFs) and Gaussian Process Regression (GPR) as 
a comparison. The former is used widely due to its simplicity and effi
ciency [113,114]. For example, a Gaussian RBFs- surrogate model 

Fig. 4. Grid sensitivity of the battery maximum temperature throughout the 
discharge cycle.

Table 4 
Grid sensitivity results.

Number of elements Tmax (
◦C) RPE(Tmax)% Pw (mW) RPE(Pw) %

0.82×106 35.96 0.221 0.71479 5.86
1.56×106 36.02 0.055 0.67862 0.51
2.36×106 36.04 0.000 0.67720 0.30
2.91×106 36.03 0.027 0.67707 0.28
4.05×106 36.04 0.000 0.67517 0.00

Fig. 5. Impact of timestep on the battery maximum temperature predictions 
throughout the discharge cycle.
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Fig. 6. A comparison between the present work’s numerical results and those obtained by Liu et al. [75] for the maximum temperature of the battery and the water 
pumping power.

Fig. 7. Comparison between the numerical of the present work, Liu et al. [76] and Sheng et al. [82] works for battery temperature during the discharge process at 
different high C-rates.
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approximation ̂fJ (x) for every objective function fj at each design point 
(xi =

[
x(i,1) , x(i,2) , x(i,3)

]
) in the design space is computed by [115]: 

f̂ J (x) =
∑n

i=1
λi∅(‖x − xi‖),∅ = exp

(
− β • ‖x − xi‖

2
)

(20) 

Here, J is an acronym for objective functions (e.g. Tmax, Tσ, and Pw) 
and n is the number of DoE points. λi is the vector of weights and β is the 
hyperparameter that controls the shape of the Gaussian RBF function. K- 
Fold Cross Validation (CV) with k = 10 is used to optimize the hyper
parameter β in relation to the Root Mean Square Error (RMSE): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(fi − f̂ i)

2

√
√
√
√ (21) 

where N is the total number of observed data points and fi, and ̂f i are the 
actual observed and predicted values for the objective function, 
respectively. GPR is a very popular ML approach due to its inherent 
capabilities to account for uncertainties in the surrogate modeling pro
cess [116]. The GPR model approximates the function f(x) via two 
functions which represent the mean μ(x) and variance Z(x) [117] and 
can be expressed as follows: 

F(x) = μ(x)+Z(x),where Z(x) ∼ N
(
0, σ2) (22) 

The squared-exponential kernel, often known as the RBF kernel, is 
used in the present work to construct the correlation between the 
random variables (e.g. Z

(
x(i)

)
, Z

(
x(j)

)
), based on the distance between 

their relevant points in the design space (x(i) and x(j)). The RBF kernel is 
chosen due to its capability for modeling complex nonlinear relation
ships, flexibility and popularity [118,119]. It is given by [120]: 

Σij = σ2exp

⎛

⎜
⎝ −

∑nd

l=1

(
x(i)

l − x(j)
l

)2

2αl2

⎞

⎟
⎠ (23) 

where nd is the number of the input design variables (nd = 3 in the 
present work) and αl represents the length-scale parameter in the nd −

th coordinate direction. GPR-based surrogate modeling has been carried 
out using the Python GPy (v1.10.0) library. Further details on the ML- 
based GPR approach can be found in Martins and Ning [117].

The multi-objective problems were solved using a popular multi- 
objective evolutionary algorithm, namely the 3rd version of the differ
ential evolution (DE) algorithm, generalized differential evolution 
(GDE3) [121]. This modifies the selection method of the basic DE to 
solve optimization problems with several objectives and constraints 

[122]. The procedural steps of the GDE3 algorithm are clearly depicted 
in the flowchart given in Fig. 10. Additional information on the GDE3 
algorithm can be found in Kukkonen and Lampinen [122].

Finally, the Technique for Order Preference by Similarity to an Ideal 
Solution (TOPSIS) approach, based on equally weighted and entropy- 
weighted methods, has been employed to find the best compromise 
solution (BCS) among the set of Pareto optimal solutions. Recently, 
TOPSIS has been extensively used and has proven to be a flexible and 
effective technique for multi-criteria decision-making analysis 
[123,124]. The main idea behind the TOPSIS method is that the best 
compromise solution is closest to the ideal point and farthest from the 
non-ideal point; when combined with the entropy-weight method to 
assign weights to each objective [125]. The main mathematical 
formulae of the entropy-weighted TOPSIS technique for finding the best 
compromise solutions (BCSs) are expressed as following steps 
[124,125]:

Step 1: Normalise the Pareto matrix obtained from the multi- 
objective optimisation. This normalisation process is as follows: 

Yij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

yij − min
(

yij

)

max
(

yij

)
− min

(
yij

), yij is+

max
(

yij

)
− yij

max
(

yij

)
− min

(
yij

), yij is−

(24) 

where yij represents the elements of the Pareto matrix, which has n 
objective functions and m solutions. The (+) indicators refer to the 
objective functions that should be maximised, while the (− ) indicators 
refer to the objective functions that should be minimised.

Step 2: The indicators are standardised as follows due to differences 
between the indicator units: 

Pij =
Yij

∑m

i=1
Yij

(25) 

Step 3: The entropy for each objective is computed as follows: 

Ej = −
1

ln(m)

∑m

i=1
Pijln

(
Pij
)
, ( j = 1,2,⋯, n)

(
If Pij ≈ 0use Pij ln

(
Pij
)
= 0

)

(26) 

Step 4: The entropy weight for each objective is computed as follows: 

wj =
1 − Ej

∑n

j=1

(
1 − Ej

) (27) 

Step 5: The ideal and non-ideal points are identified, respectively, as 
follows: 

Y+ =

(

max
i

Yi1,max
i

Yi2,⋯, max
i

Yin

)

(28) 

Y− =

(

min
i

Yi1,min
i

Yi2,⋯, min
i

Yin

)

(29) 

Step 6: The distances of Pareto solutions to ideal and non-ideal points 
for the entropy-weighted TOPSIS are calculated as follows, respectively: 

D+
i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

i=1
w2

j
(
Y+ − Yij

)2

√

(30) 

D−
i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

i=1
w2

j
(
Y− − Yij

)2

√

(31) 

Note that the w2 will not be included in eqs. (30) and (31) if the 
general TOPSIS method is used, since all objectives are considered to 

Fig. 8. Validation of the present simulation model with experimental results 
reported by Tikadar et al. [105] for the Nusselt number and apparent fric
tion factor.

A. Mahmood et al.                                                                                                                                                                                                                              Journal of Energy Storage 140 (2025) 118995 

9 



have equal weight.
Step 7: The evaluation factors (also called closeness coefficients) for 

each Pareto solution are computed as follows: 

Ci =
D−

i
D+

i + D−
i

(32) 

when the closeness coefficient (Ci) is much closer to one, it indicates that 
its corresponding Pareto optimal solution is the most effective 
compromise solution, being nearer to the ideal point and farther from 
the non-ideal point.

Step 8: The best compromise solutions for two, three, and four ob
jectives optimisation are respectively calculated as follows: 

BCS2 = max
i

Ci (33) 

BCS3 = max
i

Ci (34) 

BCS4 = max
i

Ci (35) 

Fig. 11 shows the flowchart of the multi-objective optimization 
process, illustrating the integration of ML and GDE3 algorithm with the 
TOPSIS approaches to identify BCSs.

Fig. 9. Sensitive analysis of Tmax, Tσ, Pw, and MCP.
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Fig. 10. Step-by-step computational flowchart of the GDE3 algorithm.
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6. Results and discussion

6.1. Benchmark design performance

To systematically demonstrate and evaluate the effectiveness of the 
multi-objective optimisation carried out in this work, it is essential to 
establish a baseline benchmark design performance. The BTMS bench
mark design has been chosen based on previous simulation results 
conducted by Liu et al. [75], whereby the battery’s maximum temper
ature and pumping power were extracted from Fig. 6 (case 4) in their 
study at an inlet flow velocity of 0.3 m/s. The other related performance 
metrics of the benchmark design, including the mass of each cold plate 
and the battery’s temperature standard deviation, have been computed 

Fig. 11. Multi-objective optimization process integration ML with GDE3 and TOPSIS for finding BCSs.

Table 5 
Benchmark design of the BTMS.

Acronym Benchmark design

Design variables Wch (mm) 3.50
Wint (mm) 2.00
θ (◦) 45.00

Objective functions Tmax (
◦C) 35.96

Pw (mW) 0.68
Tσ(K) 1.034
MCP (g) 54.12

A. Mahmood et al.                                                                                                                                                                                                                              Journal of Energy Storage 140 (2025) 118995 

12 



in the present work based on their original design. This BTMS bench
mark design details are shown in Table 5.

6.2. Machine learning (ML) hyperparameters calibration

Fine-tuning the hyperparameters of ML approaches is essential in 
optimizing the learning process, to avoid overfitting, and generate ac
curate predictions of the objective function. Fig. 12a, b, and c display the 
RMSE tuning curves for the β parameter in Gaussian RBF regression 
using 10-Fold cross-validation. The values of the β corresponding to the 
lowest RMSEs are 1.227, 1.619 and 0.492 for the Tmax, Tσ, and Pw RBF 
models, respectively.

The maximum likelihood approach [117] is used to calibrate the 
hyperparameters of the Tmax, Tσ, and Pw GPR models by maximizing the 
probability of observing the data f. These are shown in Table 6.

Table 7 displays the RMSE for each calibrated ML model obtained 
throughout the K-fold CV for each objective function. A comparison 
between the two methods is shown in Fig. 13a and Fig. 13b for Pw. 
Generally, the surrogate models from both ML methods are similar to 
one another. The GPR method performs better for all objectives and will 
be used in all subsequent results.

6.3. Single-objective optimization

The single-objective optimizations are straightforward since the 
global minima are located on the edges of the design space. Table 8 lists 
the global minima for each objective function along with the corre
sponding design variables used in the GPR models. Table 8 also displays 
the values of the other objective functions when they are calculated 
using optimum points obtained through single objective optimization. 
Note that when Tmax is minimised, Pw and MCP are relatively large, and 
when Pw is minimised, the values of all other objectives Tmax, Tσ and MCP 
have extremely high values. This indicates that it will be beneficial to 
perform multi-objective optimizations to explore the available com
promises between the objectives.

6.4. Multi-objective design optimization

Two-dimensional Pareto fronts are constructed using the GPR sur
rogate models to demonstrate the available trade-offs between Tmax, Tσ, 
Pw, and MCP. The GDE3 algorithm employed here is available in the 
pymoode Python package (v0.2.6). The parameters used for setting the 
GDE3 algorithm are given in Table 9.

Referring to Fig. 14a to Fig. 14f, the Pareto Fronts and design of 
experiment points are displayed between the objective function pairs: 
Pw against Tmax, MCP against Tmax, MCP against Pw, Pw against Tσ, MCP 
against Tσ, and Tmax against Tσ, respectively. These plots illustrate the 
relationship between two conflicting objectives, through non-dominated 
points, where an increase in one objective causes a decrease in the other. 
A number of significant variations are identified. For instance, in 
Fig. 14a, decreasing Tmax from 39 ◦C to 35 ◦C results in Pw increasing 
from around 0.25 mW to 2.2 mW. However, the increase in Tmax from 
around 35.0 ◦C to 36.5 ◦C in Fig. 14b causes MCP to decrease from 
around 50.0 g to 41.5 g. Similarly, in Fig. 14c, an increase in Pw from 
0.25 mW to 0.55 mW enables MCP to be decreased from approximately 
51.5 g to 42 g. The decreasing Tσ from about 1.5 K to 0.9 K in Fig. 14d 

Fig. 12. The RMSE calibration curves for the β hyperparameter: (a) Tmax, (b) Tσ, and (c) Pw.

Table 6 
Main configuration parameters for GPR ML models.

Model No. of restarts optimizer Length scale (α) Length scale range

Tmax 10 3 (0.1, 10)
Tσ 10 3 (0.1, 10)
Pw 10 3 (0.1, 10)

Table 7 
K-fold CV RMSE for each ML model.

ML model RMSE

RBF GPR

Tmax (◦C) 0.2071 0.0281
Tσ (K) 0.0199 0.0051
Pw (mW) 0.0547 0.0114
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would result in Pw increasing from around 0.25 mW to 2.0 mW. 
However, in Fig. 14e, MCP drops from roughly 50.0 g to 41.5 g as a result 
of the increase in Tσ from around 0.87 K to 1.00 K. However, the Pareto 
front of Tmax against Tσ in Fig. 14f indicates that the minima of 
maximum temperature and temperature standard deviation are strongly 
related to one another.

The accuracy of the Pareto Fronts generated by the GDE3 method is 
confirmed by comparing some of the optimal Pareto points with their 
corresponding CFD predictions. Table 10 compares the objective func
tion values for the chosen Pareto points from Fig. 14a with the corre
sponding CFD results. In general, the agreement is generally very good, 
although the errors in Pw do grow as Pw increases.

Fig. 15 shows a 2D surface representation of the Pareto surface for 
Tmax and MCP. The colour gradient corresponds to the pumping power, 
ranging from 0.210 mW (dark blue) to 2.720 mW (red). This visuali
zation highlights how changes in the temperature and mass influence 
pumping power: regions with lower pumping power are represented in 
blue, indicating more energy-efficient designs. The plot reveals distinct 
trade-offs: increasing the cold plate mass or the maximum temperature 
generally leads to lower pumping power, suggesting that achieving en
ergy efficiency may require either heavier designs or higher operating 
temperatures. The colour transitions also emphasise the nonlinear 

Fig. 13. Surrogate models of the Pw using the RBF and GP approaches; the third design variable, θ, is fixed at 45◦: (a) RBF regression, and (b) GPR.

Table 8 
Single objective optimization using the GPR model.

Objective function Global minima Wch (mm) Wint (mm) θ (◦) Tmax(
◦C) Tσ (K) Pw (mW) MCP (g)

Tmax(
◦C) 34.97 5.00 1.00 39.67 34.97 0.9175 2.1070 49.476

Tσ (K) 0.8914 5.00 1.00 53.35 35.01 0.8914 1.9519 49.476
Pw (mW) 0.2134 2.00 3.46 60.00 38.92 1.4992 0.2134 55.863
MCP (g) 41.787 5.00 5.00 54.56 36.40 1.0101 0.5319 41.787

Table 9 
Setting parameters for the GDE3 algorithm.

Setting parameter Value

Variant “DE/rand/1/bin”
Size of the population in each generation 50
Maximum number of generations 200
Scale factor or mutation parameter (F) (0.0, 1.0)
Crossover parameter (Cr) 0.7
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Fig. 14. Pareto Fronts obtained using the GPR ML approach: (a) Pw against Tmax; (b) MCP against Tmax; (c) MCP against Pw; (d) Pw against Tσ; (e) MCP against Tσ; (f) 
Tmax against Tσ.

A. Mahmood et al.                                                                                                                                                                                                                              Journal of Energy Storage 140 (2025) 118995 

15 



nature of the relationships among the objectives, highlighting regions 
where small changes in one parameter can lead to significant variations 
in the other two. Additionally, the concentration of red near the lower 
mass values and lower Tmax values suggests these regions are more 
sensitive to variations, making them critical for further exploration or 
optimization. The graph also enables to implicitly identify feasible and 

infeasible design spaces, enabling designers to focus on those areas that 
balance efficiency and performance without exceeding practical 
constraints.

The Pareto surface in Fig. 16 shows a 2D surface representation of the 
trade-offs between Tσ, MCP, and Pw. It shows that increasing the cold 
plate mass or the battery’s temperature standard deviation generally 
results in lower pumping power, indicating that attaining energy effi
ciency may demand either heavier designs or accepting an uneven 
temperature distribution. The colour transitions also point out the 
nonlinear relationships between these objectives, which show regions 
where slight changes in one objective can result in substantial variations 
in the other two. Furthermore, the red region next to the lower Tσ and 
relatively low MCP indicates that performance in this region is particu
larly sensitive to variations, making it worthy of further exploration and 
optimization.

The accuracy of the Pareto optimal surface in Fig. 15 is demonstrated 
by comparing some of its optimal points with their corresponding CFD 
results in Table 11, which also shows the compromises available be
tween the competing objectives. For instance, choosing design 1 instead 
of 12 in Table 11 significantly lowers the battery maximum temperature 
from 39.24 ◦C to 35.05 ◦C, albeit with an order of magnitude increase in 
pumping power, from 0.23 mW to 2.62 mW, which adversely affects the 
EV’s driving range. This is also associated with a slightly reduced cold 
plate mass, from 50.46 g to 49.33 g, which is advantageous for both the 
driving range and manufacturing costs. Choosing design 7 instead of 
design 12 significantly reduces the mass by around 17.2 %, from 50.46 g 
to 41.79 g, but more than doubles the pumping power from 0.23 mW to 

Table 10 
Verification of the objective function values for some optimal Pareto points from Fig. 14a with their corresponding CFD results.

Design variables (mm) Tmax(
◦C) Pw (mW) Error %

Wch (mm) Wint (mm) θ (◦) Pareto CFD Pareto CFD Tmax Pw

5.000 1.058 57.034 35.029 35.109 1.888 1.923 0.228 1.820
4.970 2.330 30.032 35.354 35.411 0.9905 1.011 0.161 2.028
3.718 4.253 34.441 36.767 36.790 0.4432 0.440 0.063 0.727
2.150 3.308 38.685 38.049 38.098 0.2719 0.284 0.129 4.261
2.001 3.541 59.477 38.905 38.850 0.2181 0.243 0.142 10.247

Fig. 15. Pareto surface distribution to analyse the trade-offs between Tmax, Pw, and MCP.

Fig. 16. Pareto surface distribution to analyse the trade-offs between Tσ, Pw, 
and MCP.
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0.53 mW, both of which influence the EV driving range. The battery 
maximum temperature also reduces significantly from 39.24 ◦C to 
36.53 ◦C, improving battery safety. Lastly, choosing design 1 instead of 
design 7 lowers Tmax from 36.53 ◦C to 35.05 ◦C, which is helpful for 
battery safety. However, both the pumping power and the mass of the 
material for each cold plate increase considerably (from 0.53 mW to 
2.62 mW and 41.79 g to 49.33 g, respectively), increasing the operating 
and manufacturing costs significantly.

6.5. TOPSIS optimization results

The equally-weighted and entropy-weighted TOPSIS techniques 
have been employed to identify the best compromise solutions from the 
optimal Pareto sets, helping designers and decision-makers to make 
well-informed and precise choices. Accordingly, these techniques have 
been applied to several multi-objective optimisation cases involving 
two, three, and four objective functions. Tables 12–14 show the best 
compromise solutions (BCSs) with the highest closeness coefficients (Ci) 
for two-, three-, and four-objective problems, using the equally- 
weighted TOPSIS method, which treats all objectives as equally 
weighted, and the entropy-weighted TOPSIS method, which assigns 
different weights to the objectives. These tables list the highest closeness 
coefficients for various combinations of the objective functions that 
provide the most balanced optimal solution among a set of competing 
trade-offs.

The closeness coefficients corresponding to each of the optimal 
Pareto sets for the four-objective optimisation case (Tmax, Pw, Tσ, and 

MCP), calculated using both the general TOPSIS method and the entropy- 
weighted TOPSIS method, are listed in the Appendix, Tables Table A.1
and Table A.2, respectively. These two tables rank the Pareto-optimal 
solutions for the 4-objective case in descending order of Ci, starting 
from the highest to the lowest, using the two TOPSIS methods.

Four optimum candidate designs and two solutions represent the top 
rankings of BCSs obtained from the two TOPSIS methods, which are 
chosen and compared with the BTMS benchmark design in Table 15. 
Compared to the benchmark design, the candidate optimisation results 
indicate that the battery’s maximum temperature can be reduced from 
35.96 ◦C to 34.98 ◦C by 2.7 %, the pumping power can be substantially 
lowered from 0.68 mW to 0.213 mW by 68.7 %, the battery’s temper
ature standard deviation can be effectively reduced from 1.034 K to 
0.891 K by 13.8 %, and the mass of each cold plate can be beneficially 
lowered from 54.12 g to 41.79 g by 22.8 %. The effectiveness of the 
optimization approach is further demonstrated by the identification of 
design 5 (the top-ranked BCS using equally weighted TOPSIS), which 
enables all four competing objectives to be reduced simultaneously.

7. Conclusions

There is a pressing need to extract the maximum performance from 
Li-ion EV batteries to maximise driving range and safety and minimise 
operating and manufacturing costs. To this end, a novel machine 
learning-enabled multi-objective optimization methodology for cold 
plates with intersecting V-shaped mini-channels for Li-ion BTMS has 
been developed, where the conjugate heat transfer model has been 

Table 11 
Validation of the objective functions for some Pareto points from Fig. 15 with their corresponding CFD results.

Design Design variables Tmax(
◦C) Pw (mW) MCP (g) error %

Wch 

(mm)

Wint 

(mm)

θ 
(
◦
)

Pareto CFD Pareto CFD Pareto analytical Tmax Pw MCP

1 5.00 1.077 30.00 35.048 35.074 2.6240 2.5393 49.329 49.329 0.073 3.337 0.00
2 5.00 1.27 30.00 35.064 35.109 2.2303 2.0485 48.943 48.943 0.127 8.873 0.00
3 4.99 2.01 30.00 35.231 35.220 1.2327 1.1937 47.527 47.527 0.032 3.267 0.00
4 4.87 2.43 30.00 35.406 35.449 0.9257 0.9588 47.220 47.220 0.122 3.451 0.00
5 4.99 3.47 30.27 35.911 36.135 0.6027 0.6317 44.725 44.725 0.621 4.585 0.00
6 4.99 3.98 30.00 36.114 36.264 0.5678 0.5819 43.739 43.739 0.413 2.416 0.00
7 5.00 5.00 42.37 36.526 36.462 0.5338 0.5305 41.788 41.788 0.176 0.636 0.00
8 3.12 2.75 49.17 36.816 36.804 0.4338 0.4352 53.619 53.619 0.032 0.327 0.00
9 3.08 4.97 49.64 37.500 37.529 0.3295 0.3374 47.242 47.242 0.076 2.355 0.00
10 2.00 1.85 59.99 38.105 38.114 0.2856 0.3088 61.521 61.521 0.023 7.518 0.00
11 2.03 3.83 40.98 38.550 38.561 0.2453 0.2503 54.409 54.409 0.028 1.966 0.00
12 2.00 5.00 59.99 39.243 39.295 0.2315 0.2322 50.455 50.455 0.131 0.273 0.00

Table 12 
BCSs and weights for two-objective optimization using the two different weighted TOPSIS methods.

TOPSIS method 2-objectives optimization Design variables BCS Ci Objective weights

Wch (mm) Wint (mm) θ (◦) Objective 1 Objective 2 w1 w2

Equally weighted Pw vs. Tmax 5.00 3.18 30.00 Pw (mW) Tmax(
◦C) 0.7895 0.500 0.500

0.6496 35.72
Entropy-weighted 5.00 3.03 30.00 0.6856 35.66 0.7944 0.453 0.547
Equally weighted MCP vs. Tmax 5.00 2.58 30.00 MCP (g) Tmax(

◦C) 0.5388 0.500 0.500
46.43 35.45

Entropy-weighted 5.00 2.28 30.00 47.02 35.32 0.5536 0.479 0.521
Equally weighted MCP vs. Pw 3.26 5.00 54.14 MCP (g) Pw (mW) 0.5531 0.500 0.500

46.65 0.3432
Entropy-weighted 3.19 5.00 54.06 46.83 0.3374 0.5555 0.492 0.508
Equally weighted Pw vs. Tσ 5.00 3.81 46.77 Pw (mW) Tσ (K) 0.8166 0.500 0.500

0.5777 0.985
Entropy-weighted 5.00 3.81 46.77 0.5777 0.985 0.8226 0.445 0.555
Equally weighted MCP vs. Tσ 5.00 2.25 30.00 MCP (g) Tσ (K) 0.5084 0.500 0.500

47.08 0.923
Entropy-weighted 4.99 1.00 53.36 49.47 0.891 0.5684 0.432 0.568
Equally weighted Tmax vs. Tσ 5.00 1.00 55.54 Tmax(

◦C) Tσ (K) 0.8211 0.500 0.500
34.98 0.894

Entropy-weighted 5.00 1.00 55.54 34.98 0.894 0.8452 0.400 0.600
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validated comprehensively against previous relevant numerical and 
experimental studies. This paper is novel in two key aspects. It is the first 
to develop and apply a novel ML-enabled multi-objective optimization 
(MOO) approach based on TOPSIS approaches for the thermal man
agement of SMCCP-IVSMC cold plate configurations. Secondly, it is the 
first to reduce the cold plate mass in addition to the other thermo- 
hydraulic performance indicators, including the maximum tempera
ture, water pumping power and temperature variations over the cold 
plate.

A sensitivity analysis carried out to identify the most critical design 
parameters, that have the biggest impact on the practical performance 
objectives, revealed that the width of the minichannels has the largest 
impact on the battery maximum temperature, battery temperature 
standard deviation, water pumping power, and the mass of the cold 
plate, with the width of the V-shaped minichannels and the V-shape 
intersecting angle being the next most influential parameters. Accurate 
surrogate models of the maximum battery temperature and battery 
temperature standard deviation, which determine battery longevity and 
safety, and the water pumping power and the mass of the cold plate 
materials, which affect the operating and manufacturing costs, respec
tively, can be constructed by combining Optimal Latin Hypercube 
sampling with Gaussian Process Regression surrogate modeling. These 
can be combined within a generalized differential evolution (GDE3) 
algorithm and TOPSIS approaches to create a powerful multi-objective 
optimisation methodology to enable designers to explore the available 
compromises between the various objectives.

A series of Pareto curves and surfaces are presented which demon
strate vividly that there are many significant opportunities for 

optimizing the design of Li-ion cold plates by careful optimisation of the 
geometry of secondary channels. The optimisation results have identi
fied a number of options for improving performance significantly, based 
on designers’ preferences, beyond the current benchmark design. In 
addition to relatively modest reductions in the maximum temperature of 
1 ◦C, operating costs can be minimised by reducing water pumping 
power by over 68.7 %, and material costs minimised by reducing the 
mass of the cold plate heat exchangers by over 22.8 %. Reductions in 
mass will also contribute to reducing energy consumption and improved 
acceleration performance and reduced braking distances. The top- 
ranked BCS using equally weighted TOPSIS has also been identified, 
which enables all four objectives to be reduced simultaneously. More 
generally, it is shown that the objectives are highly inter-dependent and 
any practical design will involve compromises between the objectives. 
The methodology developed here is a powerful new tool for enabling 
designers to meet their design objectives.

Future work could proceed in three fruitful directions. The first 
would be to carry out experimental investigations of the cold plate 
configurations examined here to provide further useful benchmark data 
for numerical validation. The second would be to analyse battery 
degradation and aging to assess how the optimised BTMS configuration 
in this study impacts long-term battery health, using the methodologies 
adopted by References [126,127]. The final future research direction 
would be to assess the impact of using other BTMS technologies, such as 
PCMs and hybrid cooling systems, and compare the overall efficiency 
and weight of these cooling systems with the performances achieved 
here.

Table 13 
BCSs and weights for three-objective optimization using the two different weighted TOPSIS methods.

TOPSIS method 3-objectives optimization Design variables BCS Ci Objective weights

Wch 
(mm)

Wint 
(mm)

θ 
(
◦
)

Objective 1 Objective 2 Objective 3 w1 w2 w3

Equally weighted MCP, Tmax, and Pw 5.00 3.51 30.00 MCP (g) Tmax(
◦C) Pw (mW) 0.8255 1/3 1/3 1/3

44.65 35.88 0.5976
Entropy-weighted 5.00 2.76 30.00 46.09 35.53 0.7773 0.8346 0.262 0.503 0.235
Equally weighted MCP, Tσ, and Pw 5.00 5.00 54.19 MCP (g) Tσ(K) Pw (mW) 0.8580 1/3 1/3 1/3

41.78 1.009 0.5315
Entropy-weighted 5.00 5.00 54.19 41.78 1.009 0.5315 0.8610 0.345 0.379 0.275

Table 14 
BCSs and weights for four-objective optimization using the two different weighted TOPSIS methods.

TOPSIS 
method

4-objectives 
optimization

Design variables BCS Ci Objective weights

Wch 
(mm)

Wint 
(mm)

θ 
(
◦
)

Objective 
1

Objective 
2

Objective 
3

Objective 
4

w1 w2 w3 w4

Equally 
weighted

Tmax, Tσ, Pw, and MCP 5.00 3.46 30.00 Tmax(
◦C) Tσ (K) Pw (mW) MCP (g) 0.8373 0.250 0.250 0.250 0.250

35.86 0.973 0.604 44.76
Entropy- 

weighted
5.00 2.64 30.00 35.47 0.937 0.827 46.33 0.8688 0.381 0.314 0.156 0.149

Table 15 
Candidate optimum designs of the BTMS.

Acronym Bound Benchmark 
design

Optimum 
candidate 
design (1)

Optimum 
candidate 
design (2)

Optimum 
candidate 
design (3)

Optimum 
candidate 
design (4)

BCS equally 
weighted 
TOPSIS design 
(5)

BCS entropy- 
weighted 
TOPSIS design 
(6)

Design 
variables

Wch (mm) 2–5 3.50 5.00 2.00 5.00 5.00 5.00 5.00
Wint (mm) 1–5 2.00 1.00 3.46 1.00 5.00 3.46 2.64
θ (◦) 30–60 45.00 39.57 60.00 53.10 30.00 30.00 30.00

Objective 
functions

Tmax(
◦C) Minimization 35.96 34.98 38.93 35.02 36.49 35.86 35.47

Pw (mW) Minimization 0.68 2.111 0.213 1.953 0.534 0.604 0.827
Tσ(K) Minimization 1.034 0.918 1.499 0.891 1.022 0.973 0.937
MCP (g) Minimization 54.12 49.48 55.87 49.48 41.79 44.76 46.33
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Appendix A

Table A.1 
BCSs and closeness coefficients for four-objective optimisation using the general TOPSI method with equally weighted objectives, each with a weight of 0.25.

Design variables BCS Ci

Wch(mm) Wint(mm) θ(◦) Tmax(
◦C) Tσ (K) Pw (mW) MCP (g)

5.00 3.46 30.00 35.86 0.973 0.6038 44.76 0.8373
5.00 3.09 30.00 35.68 0.956 0.6720 45.46 0.8363
5.00 3.63 30.00 35.95 0.981 0.5859 44.43 0.8343
5.00 2.64 30.00 35.47 0.937 0.8270 46.33 0.8191
5.00 3.92 51.35 36.30 0.990 0.5712 43.87 0.8102
5.00 2.73 39.57 35.78 0.953 0.7767 46.14 0.8095
5.00 4.82 52.41 36.42 1.006 0.5407 42.13 0.8087
4.89 3.70 36.63 36.23 0.995 0.5766 44.68 0.8061
5.00 5.00 30.00 36.49 1.022 0.5347 41.79 0.7993
4.92 2.29 30.00 35.34 0.930 1.0127 47.31 0.7866
5.00 1.96 53.10 35.50 0.924 0.9940 47.63 0.7789
4.33 4.28 59.55 36.68 1.051 0.4789 45.25 0.7518
4.33 3.80 59.55 36.59 1.041 0.4887 46.34 0.7495
5.00 1.64 43.61 35.28 0.917 1.2954 48.24 0.7417
3.90 4.68 51.36 36.87 1.093 0.4216 45.63 0.7220
4.99 1.64 30.00 35.13 0.913 1.6450 48.28 0.7036
4.89 1.30 51.36 35.21 0.908 1.5298 49.41 0.7014
3.30 4.09 32.24 36.94 1.128 0.4175 49.11 0.6622
3.30 4.48 32.24 37.11 1.142 0.3937 48.01 0.6622
5.00 1.00 53.10 35.02 0.891 1.9531 49.48 0.6609
5.00 1.00 39.57 34.98 0.918 2.1111 49.48 0.6415
4.99 1.30 30.00 35.07 0.913 2.1936 48.93 0.6372
3.17 3.65 49.90 37.17 1.157 0.3743 50.82 0.6185
5.00 1.19 30.00 35.06 0.914 2.4009 49.12 0.6152
2.90 5.00 36.64 37.55 1.214 0.3390 47.72 0.6151
5.00 1.14 30.00 35.05 0.915 2.4928 49.21 0.6059
2.97 4.98 59.19 37.77 1.245 0.3186 47.57 0.5950
3.11 3.58 59.81 37.41 1.182 0.3477 51.24 0.5925
5.00 1.04 30.00 35.05 0.916 2.6981 49.40 0.5860
5.00 1.01 30.00 35.05 0.917 2.7669 49.46 0.5798
2.97 3.58 59.81 37.57 1.211 0.3301 51.77 0.5692
2.91 2.24 48.39 36.76 1.142 0.4675 56.07 0.5680
2.60 3.58 46.79 37.71 1.266 0.3180 53.17 0.5291
2.35 4.91 30.00 38.17 1.351 0.2756 49.67 0.5221
2.60 3.32 60.00 37.95 1.295 0.2912 53.99 0.5024
2.38 5.00 60.00 38.63 1.427 0.2623 49.28 0.4866
2.34 3.58 46.79 38.06 1.333 0.2891 54.13 0.4854
2.37 4.32 59.28 38.51 1.390 0.2735 51.58 0.4778
2.37 3.35 60.00 38.29 1.366 0.2600 54.81 0.4627
2.26 3.28 60.00 38.42 1.396 0.2491 55.47 0.4454
2.00 4.47 50.94 38.91 1.470 0.2442 52.31 0.4404
2.00 5.00 58.92 39.10 1.528 0.2364 50.45 0.4400
2.20 1.96 59.78 37.83 1.344 0.3153 60.24 0.4363
2.00 5.00 60.00 39.24 1.564 0.2315 50.45 0.4303
2.00 4.97 60.00 39.24 1.563 0.2329 50.57 0.4294
2.13 3.57 59.79 38.72 1.450 0.2310 54.97 0.4291

(continued on next page)
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Table A.1 (continued )

Design variables BCS Ci

Wch(mm) Wint(mm) θ(◦) Tmax(
◦C) Tσ (K) Pw (mW) MCP (g)

2.00 4.00 59.69 39.07 1.516 0.2298 53.97 0.4144
2.00 3.46 60.00 38.93 1.499 0.2134 55.87 0.4079
2.00 3.08 60.00 38.77 1.479 0.2219 57.21 0.4056
2.00 2.86 60.00 38.67 1.467 0.2323 57.98 0.4046

Table A.2 
BCSs, and closeness coefficients for four-objective optimization using the entropy-weighted TOPSIS method, with objective weights of 0.381 for Tmax, 0.314 for Tσ, 
0.156 for Pw, and 0.149 for MCP.

Design variables BCS Ci

Wch(mm) Wint(mm) θ(◦) Tmax(
◦C) Tσ (K) Pw(mW) MCP (g)

5.00 2.64 30.00 35.47 0.937 0.8270 46.33 0.8688
4.92 2.29 30.00 35.34 0.930 1.0127 47.31 0.8641
5.00 3.09 30.00 35.68 0.956 0.6720 45.46 0.8510
5.00 1.96 53.10 35.50 0.924 0.9940 47.63 0.8502
5.00 1.64 43.61 35.28 0.917 1.2954 48.24 0.8443
5.00 2.73 39.57 35.78 0.953 0.7767 46.14 0.8316
5.00 3.46 30.00 35.86 0.973 0.6038 44.76 0.8269
4.99 1.64 30.00 35.13 0.913 1.6450 48.28 0.8265
4.89 1.30 51.36 35.21 0.908 1.5298 49.41 0.8247
5.00 3.63 30.00 35.95 0.981 0.5859 44.43 0.8139
5.00 1.00 53.10 35.02 0.891 1.9531 49.48 0.8030
5.00 1.00 39.57 34.98 0.918 2.1111 49.48 0.7898
4.99 1.30 30.00 35.07 0.913 2.1936 48.93 0.7851
5.00 1.19 30.00 35.06 0.914 2.4009 49.12 0.7702
4.89 3.70 36.63 36.23 0.995 0.5766 44.68 0.7699
5.00 3.92 51.35 36.30 0.990 0.5712 43.87 0.7641
5.00 1.14 30.00 35.05 0.915 2.4928 49.21 0.7636
5.00 1.04 30.00 35.05 0.916 2.6981 49.40 0.7491
5.00 4.82 52.41 36.42 1.006 0.5407 42.13 0.7465
5.00 1.01 30.00 35.05 0.917 2.7669 49.46 0.7443
5.00 5.00 30.00 36.49 1.022 0.5347 41.79 0.7317
4.33 3.80 59.55 36.59 1.041 0.4887 46.34 0.7006
4.33 4.28 59.55 36.68 1.051 0.4789 45.25 0.6872
3.90 4.68 51.36 36.87 1.093 0.4216 45.63 0.6453
3.30 4.09 32.24 36.94 1.128 0.4175 49.11 0.6080
2.91 2.24 48.39 36.76 1.142 0.4675 56.07 0.5899
3.30 4.48 32.24 37.11 1.142 0.3937 48.01 0.5867
3.17 3.65 49.90 37.17 1.157 0.3743 50.82 0.5626
3.11 3.58 59.81 37.41 1.182 0.3477 51.24 0.5225
2.90 5.00 36.64 37.55 1.214 0.3390 47.72 0.5055
2.97 3.58 59.81 37.57 1.211 0.3301 51.77 0.4906
2.97 4.98 59.19 37.77 1.245 0.3186 47.57 0.4705
2.60 3.58 46.79 37.71 1.266 0.3180 53.17 0.4456
2.60 3.32 60.00 37.95 1.295 0.2912 53.99 0.4073
2.35 4.91 30.00 38.17 1.351 0.2756 49.67 0.3804
2.34 3.58 46.79 38.06 1.333 0.2891 54.13 0.3800
2.20 1.96 59.78 37.83 1.344 0.3153 60.24 0.3785
2.37 3.35 60.00 38.29 1.366 0.2600 54.81 0.3452
2.37 4.32 59.28 38.51 1.390 0.2735 51.58 0.3304
2.26 3.28 60.00 38.42 1.396 0.2491 55.47 0.3220
2.38 5.00 60.00 38.63 1.427 0.2623 49.28 0.3200
2.13 3.57 59.79 38.72 1.450 0.2310 54.97 0.2865
2.00 4.47 50.94 38.91 1.470 0.2442 52.31 0.2793
2.00 2.86 60.00 38.67 1.467 0.2323 57.98 0.2765
2.00 3.08 60.00 38.77 1.479 0.2219 57.21 0.2697
2.00 5.00 58.92 39.10 1.528 0.2364 50.45 0.2673
2.00 3.46 60.00 38.93 1.499 0.2134 55.87 0.2611
2.00 5.00 60.00 39.24 1.564 0.2315 50.45 0.2582
2.00 4.97 60.00 39.24 1.563 0.2329 50.57 0.2578
2.00 4.00 59.69 39.07 1.516 0.2298 53.97 0.2568
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