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ABSTRACT

Environmental concerns are promoting the shift towards electric vehicles (EVs) from internal combustion-based
vehicles. Lithium ion (Li-ion) batteries are currently the dominant power source option for modern electric
vehicles (EVs); however, their operating temperatures need to remain within an allowable safety range in order
to preserve battery lifetime and avoid thermal runaway. Accordingly, high-performance battery thermal man-
agement systems (BTMSs) are needed for safe and efficient battery operation. These challenges are addressed
here using a novel machine learning (ML)-enabled multi-objective optimization (MOO) approach for BTMS based
on serpentine minichannel cold plates with intersecting V-shaped minichannels (SMCCP-IVSMC). The SMCCP-
IVSMC configuration is optimised here for the first time, subject to four competing objectives, namely the bat-
tery maximum temperature (Tpax), Water pumping power (Py,), battery temperature standard deviation (T,), and
the mass of the cold plate (Mcp). Reducing Mcp has not been considered previously; however, it plays a vital role
in improving both the energy consumption and manufacturing costs of cooling systems. A thermal model based
on empirical heat generation with a conjugate heat transfer model in the cold plates is developed and validated
comprehensively. Surrogate modeling based on both Radial Basis Functions (RBFs) and Gaussian Process
Regression (GPR) shows the latter is the most effective. This is used to explore the trade-offs between the
competing objectives (Tmax, Pw, To, and Mcp). A novel hybrid optimization approach is developed, integrating
GPR, Generalized Differential Evaluation (GDE3) and Technique for Order Preference by Similarity to an Ideal
Solution (TOPSIS) methods to determine the best compromise solutions (BCSs) among the set of Pareto optimal
solutions. The optimisation results identify numerous options for improving performance significantly, beyond
the current benchmark design. In addition to reductions in the maximum temperature, operating costs can be
minimised by reducing water pumping power by over 68.7 %, and manufacturing costs minimised by reducing
the mass of the cold plate heat exchangers by over 22.8 %. The top-ranked BCS using equally weighted TOPSIS
has also been identified, which enables all four objectives to be reduced simultaneously.

1. Introduction

sustainable, quieter, and environmentally friendly alternatives. It is
generally agreed that using electric vehicles (EVs) is essential for

Combustion engine-powered vehicles are one of the most important
contributors to greenhouse gas emissions (GHGs) [1]. They use only
about 20 % of fuel energy for vehicle movement, whereas EVs transform
85 %-90 % of their stored energy into vehicle kinetic energy [2].
Accordingly, vehicle manufacturing is shifting towards more

achieving the net-zero emission goals [3].

Li-ion batteries are broadly used in EVs due to their longevity, low
self-discharge rate, and high power density [4]. However, they can
suffer from important practical limitations, one of which is a rapid rise in
temperature beyond the acceptable operating range that reduces the
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battery performance, shortens its useful lifetime, and can lead to local-
ised deterioration in the battery pack [5]. Another is the uneven tem-
perature distribution that can cause a short circuit in the battery [6].
Prolonged operating temperatures of 50 °C or above accelerate its aging
and eventually lead to a decline in its usable capacity [7]. To ensure
continuous optimal performance, the optimal working temperature
range should be 20 °C to 40 °C [8], and the temperature differences from
module to module and cell to cell should generally be within 5 °C [6].
Accordingly, effective battery thermal management systems (BTMSs)
are necessary to ensure the battery modules operate safely and
effectively.

There is a wide range of thermal management technologies applied
to a diverse range of applications, such as in buildings [9,10], electronics
[11], data centres [12,13], EVs [14-16], fuel cells [17,18], solar panels
[19-21], aerospace [22], etc. These include liquid cooling [23-26], air
cooling [27-29], heat pipe cooling [30,31], phase change materials
(PCMs) [32-35], and a variety of hybrid cooling systems [36-39]. Air-
cooled systems are simple and cheap, but they have low thermal effi-
ciency, making them unsuitable for long-distance or high-powered EVs
[40]. Passive cooling systems like PCMs and heat pipes can be used to
regulate the battery’s temperature using latent heat and offer several
advantages, such as good temperature uniformity, low operating costs,
and no extra power consumption [41]. However, they are less effective
at temperature regulation [40]. PCMs’ thermal conductivities are
limited, and heat transfer deteriorates after they have completely melted
[42]. The volume of these materials changes throughout the re-
solidification process after melting and becomes difficult to manage
[43]. The main issue with heat pipe cooling systems is their safety; a
short circuit can occur due to fluid leakage on the battery cells, causing
vehicle failure and possibly death [44]. Furthermore, these systems need
secondary heat exchangers to cool their condensers, necessitating
further research before they can successfully cool electric vehicle bat-
teries. Hybrid systems combine the advantages of the individual cooling
systems mentioned above by integrating more than one of these systems
to overcome their limitations. However, these also have drawbacks due
to their increased weight, large volume, and high energy consumption
[45]. Among these cooling systems, liquid cooling can be very effective
due to its large thermal conductivity and specific heat capacity, and
more compact structure [46]. Its heat dissipation performance is roughly
three times better than air-cooled battery modules [47]. Accordingly,
Liquid cooling, using water or coolant, is currently the predominant
cooling method used by automotive manufacturers to manage battery
packs effectively and has therefore become an important research topic
[48-50].

Liquid-cooled BTMS generally rely on two different mechanisms:
direct contact (immersive) or indirect contact of liquid with the battery
cells [51]. Direct contact liquid cooling is highly effective at transferring
heat from battery cells to the coolant and can also be less expensive and
simpler than indirect contact cooling [52]. However, indirect contact
liquid BTMS is more widely used in commercial EVs, including the Tesla
Model 3, BYD e5 450, Dihao EV 450, and Chevrolet Volt [53] due to
concerns related to safety and the risk of coolant leakage [52,54]. In-
direct contact liquid BTMSs have many configurations, such as tubes,
jackets, and cold plates, with various mini-channel designs that transfer
the cooling fluid. Cold plates have recently become the most popular
configuration due to their advantages in terms of low risk of leakage,
easy maintenance, seasonal cooling and heating abilities, and scalability
for larger surfaces [55].

The performance of cold plates depends critically on the configura-
tion and arrangement of their mini-channel design. Several cold plate
channel configurations have been investigated recently, including those
with straight [23,56], U-bend [57,58], serpentine [59,60], pumpkin
[61], bionic fishbone [62], honeycomb [63], and butterfly [64] chan-
nels. Serpentine channel designs have received the most attention due to
their wide-ranging practical applications [59] and their ability to peri-
odically disrupt and redevelop thermal and hydraulic boundary layers,
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improving heat transfer significantly [65]. Monika and Datta [66]
conducted a comparative study of six different types of cold plate de-
signs with identical channel volumes: serpentine, straight, U-bend, spi-
ral, pumpkin-shaped, and hexagonal structural channels. Their results
indicate that although the pumpkin model has a smaller pressure drop,
the serpentine and hexagonal shapes significantly enhance temperature
uniformity. Wang et al. [67] evaluated the thermal performance of a
liquid cooling BTMS with serpentine micro-channels and found that the
best design to lower the maximum and average temperatures of the
battery module was to alternately arrange the water inlets and outlets on
one side of the cooling plates. A variable cross-section double
serpentine-channel cold plate (VCDSCP) was recently proposed by Pu
et al. [59]. The results indicate that at higher discharge rates, the
VCDSCP design lowers the maximum temperature by 0.54 K and the
maximum temperature difference by 0.62 K compared to the conven-
tional serpentine-channel cold plate. The results also showed that the
VCDSCP design resulted in a maximum pressure drop (Ap) decrease of
80.8 % and an increase of 25.5 % in the performance evaluation crite-
rion (PEC) at a coolant flow rate of 0.2 g/s.

The thermal and hydraulic performances of minichannels in thermal
management applications have been enhanced using many devices that
increase turbulence, introduce secondary flows, increase fluid mixing,
and disrupt the thermal and hydraulic boundary layers, including
gyroids, cavities, ribs, and vortex generators. Saghir and Yahya [68]
proposed a solid gyroid structure within the cold plate and discovered
that besides creating a more uniform temperature distribution, the
Nusselt number increased by 85 % compared to the conventional
channel configuration. Kaewchoothong et al. [69] indicated that the
heat transfer performance of the wavy-winglet rib design increased heat
transfer between 10 %-32 % depending on rib designs, albeit with a
larger pressure drop. Zhu et al. [50] examined a unique liquid-cooled
plate with a discrete, inclined, and alternating arrangement of ribs
and grooves to enhance thermal performance. Compared to a conven-
tional straight-channel design, the innovative cold plate obtained a
0.74 °C lower maximum battery temperature and a 0.18 °C lower tem-
perature standard deviation, with a pressure drop of 55.37 Pa higher
than the conventional one. Sakkera et al. [70] assessed innovative de-
signs of serpentine channel heat sinks that have rectangular ribs with
both rectangular (RRRG) and triangular grooves (RRTG), and they found
that the average Nusselt number increase for RRRG and RRTG is 46 %
and 36 %, respectively, compared to a traditional smooth channel heat
sink. Nevertheless, RRRG and RRTG have average pressure drops that
are 56 % and 35 % higher, respectively, than those of smooth channel
heat sinks. Xu et al. [71] investigated the effects of adding three distinct
vortex generators - triangle, trapezoid, and semicircle - to the liquid
cooling straight mini-channel of cold plates on the battery’s heat dissi-
pation capacity and temperature uniformity. They found that, while
providing the same heat dissipation efficiency, the semi-circular vortex
generators had a lower pressure drop than the trapezoidal and triangular
vortex generators, by 15.9 % and 20.5 %, respectively.

A number of studies studied how cold plate performance can be
enhanced by using the secondary flow minichannels between the main
minichannels. Several heat sink studies in the literature demonstrate
that secondary flows in the serpentine microchannel can enhance heat
transfer without increasing the pressure drop because they increase the
surface area for heat transfer and allow the cooling fluid to pass through
them at a lower fluid velocity, see e.g. [72,73]. Far fewer studies have
considered using a serpentine configuration with the secondary flow
paths in the MCCP of the BTMS. Recently, Fan et al. [74] enhanced the
design of a liquid cooled plate with a conventional serpentine channel by
incorporating elliptical grooves and unidirectional secondary channels.
Their simulation results show that, even though the enhanced design has
slightly lower thermal performances, including the maximum temper-
ature and average maximum temperature difference of the battery
modules, compared to the original serpentine cold plate, it has signifi-
cantly reduced the pumping power requirement, and improved the
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cooling efficiency coefficient, which is the ratio of heat dissipation ca-
pacity to power consumption. Furthermore, two numerical studies
enhanced the performance of the liquid-based thermal management
system for prismatic lithium-ion batteries by integrating V-shaped
intersecting minichannels into traditional serpentine channels [75,76].
On the basis of their brief parameter studies this particular MCCP
configuration was found to show very promising thermo-hydraulic
performance, but that systematic optimization would be needed to
minimise the effect of the additional mass on EV performance. Previous
studies have shown that a 10 % reduction in the vehicle’s mass can result
in a 5.5 %-8 % reduction in energy consumption [77]. Reducing the
vehicle’s weight also leads to better acceleration performance and
reduced braking distances [78]. Accordingly, recent studies have
concentrated on and will continue to focus on lightweight BTMSs. For
instance, Dileep et al. [79] proposed lightweight T-shaped cold plate
designs that account for only 20.7 % of the overall module weight. Zhou
et al. [80] proposed three hybrid BTMS designs with different geome-
tries, using phase change materials and honeycomb-shaped cold plates
for the liquid cooling of twelve cylindrical Li-ion batteries. They found
that one of these designs could decrease the BTMS weight from 0.35 kg
to 0.19 kg. Khoshvaght-Aliabadi et al. [81] also proposed three BTMS
designs for cooling cylindrical lithium-ion cells, which include designs
with 1, 3 and 5 cooling units. Their results indicated that while both the
BTMS with three and five cooling units provided closer values of
maximum temperature difference across the battery module—5.4 K and
4.1 K, respectively, compared to the BTMS with one cooling unit at 22.5
K, the BTMS with three cooling units resulted in approximately a 12 %
reduction in the weight index (the weight ratio of the BTMS to the
battery module) compared to the system with five cooling units.
Accordingly, this paper is novel in two key aspects. It is the first to
develop and apply a novel ML-enabled multi-objective optimization
(MOO) approach for the thermal management of SMCCP-IVSMC cold
plate configurations based on TOPSIS approaches and is the first to
attempt to reduce the cold plate mass in addition to the other thermo-
hydraulic performance indicators, including the maximum tempera-
ture, water pumping power and temperature variation over the cold
plate.

The paper is structured as follows: Section 2 describes the numerical
methodology used for the battery thermal management prototype, and
provides an in-depth description of the physical problem, the conjugate
heat transfer model, and its associated governing equations and
boundary conditions. Section 3 focuses on the validation and verifica-
tion of the proposed numerical model and presents grid- and time-step-
sensitivity studies. A comprehensive sensitivity analysis of the input
design variables and their effects on the output objective parameters is
presented in Section 4, and the optimization methodologies are
described in Section 5, including the sampling method, surrogate
models, optimization algorithm, and TOPSIS approaches. Section 6
presents a comprehensive analysis of the simulation and optimization
results. Finally, conclusions are drawn in Section 7.

2. Numerical methodology
2.1. Physical problem

The BTMS developed by Liu et al. [75], is analysed. It is composed of
several 8.0 Ah prismatic LiFePOy4 Li-ion battery cells, each with a size of
124 mm x 79 mm x 17 mm, and serpentine minichannel cold plates
with intersecting V-shaped minichannels (SMCCP-IVSMC) incorporated
between consecutive battery cells. The cell specifications are given in
Table 1 [82]. The anode and cathode materials for the cell are graphite
and lithium iron phosphate (LiFePOy), respectively; the electrolyte
consists of ethylene carbonate, dimethyl carbonate, and ethyl methyl
carbonate (EC/DMC/EMC); and the inner core of the battery is wrapped
by the Al alloy casing.

The SMCCP-IVSMC aims to mitigate the hotspots and ensure greater
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Table 1
Specifications of LiFePO4 battery cell.

Contents Battery cell
Active area dimensions (mm) 17 x 79 x 124
Mass (g) 328

Rated capacity (Ah) 8.0

Normal voltage (V) 3.20

Specific heat (J/kg-K) 1305

Thermal conductivity (W/m.K) 2.6

temperature uniformity. Initial studies have shown that the SMCCP-
IVSMC design can result in a substantially lower pressure drop
compared to the standard SMCCP because the secondary flow mini-
channels result in slower flow than the standard SMCCP. The BTMS is
shown in Fig. 1; Fig. 1a displays the BTMS layout, and Fig. 1b shows the
configuration, boundary conditions and geometrical parameters for half
of the domain of a single battery cell and a SMCCP-IVSMC, where
symmetry has been exploited. During the discharging process of Li-ion
battery cells, Li-ions migrate through the electrolyte from the anode
(negative electrode) to the cathode (positive electrode). At the same
time, electrons move simultaneously via the external circuit to generate
electricity. This process involves several chemical and physical phe-
nomena, including the diffusion of Li-ions (insertion and de-insertion)
within solid electrode particles, the diffusion of Li-ions in the electro-
lytes and the electrochemical reactions that occur at the solid-liquid
electrolyte interface, which generate a substantial amount of heat. The
performance of the BTMS is simulated for the worst-case scenario, where
all battery cells are fully discharged at a rapid C-rate (9C).

2.2. Numerical modeling

A three-dimensional conjugate heat transfer (CHT) model is used to
simulate the interaction between conductive heat transfer in the solid
domains and convection in the fluid. Finite element analysis (FEA) is
employed as a numerical approach inside COMSOL Multiphysics®
(v.6.0) to solve the governing equations subject to the boundary con-
ditions. The continuity and momentum equations of the cooling fluid
(water) within the mini channels are given, respectively, by the
following:

9

P Va(p,eUy) =0 ™
ot

W+V * (py o UwUs) = = Vpy + 4, VU, ®))

where p,,, 1, and p,, are the cooling water’s dynamic density, viscosity,

and pressure, respectively. Uy, is the water velocity vector with the

components u, v, and w in the x-, y-, and z- directions, respectively. V is

the gradient operator and is defined as follows:

90 0 i)

V=—it+—j+—k 3

=T ayJ 5 3)

The energy conservation equations for the water and cold plate are

given, respectively, by the following:

7} T,
% +Ve (prPwUWTw) =Ve (KWVTW) <4> ()]
(P ® Cogp ® Ter)

ot =V e (KpVTep) ()

where G, , Ky, and Ty, are the specific heat capacity, thermal conduc-
tivity, and the temperature of the cooling water, respectively. pcp, Kep,
Cpep and Tcp are the dynamic density, thermal conductivity, specific
heat capacity, and the temperature of the cold plate, respectively.

The energy conservation equation for each Li-ion battery cell is as
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(a)

Bty Cold Plate

A { T, =30°C
"lh, = sW/m? K

Symmetry

U, =0.3m/s
Tin =30°C

(b)
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Fig. 1. Schematics of the BTMS based on SMCCP-IVSMC: (a) battery module; (b) half of the domain of a single battery unit and a SMCCP-IVSMC (units: mm).

follows:

oT .
prpr =Ve (KbVT) + q (6)

where py, G, and Ky, are the dynamic density, specific heat capacity,
and thermal conductivity of the battery cell, respectively. q is the heat
generation rate of each battery cell. The heat generation rates within Li-
ion batteries need to be determined accurately to provide high-fidelity
heat transfer models of Li-ion-based BTMSs. Numerous earlier studies
have used the major simplifying, yet physically unrealistic, assumption
that the heat generation rate is steady [83]. The use of time-dependent
models of the heat generation rate is much more realistic. These can be
determined using theoretical modeling, such as the Newman pseudo-
two-dimensional (P2D) model [84], the Newman, Tiedemann, Gu, and
Kim (NTGK) model [85,86], and the equivalent circuit model (ECM)
[87-89]. The P2D model is frequently employed for physics-based
electrochemical-thermal modeling, considering the mobility of lithium
ions through the solid electrode particles as well as the reaction kinetics
at the electrode-electrolyte interfaces [90]. However, this model is both

complex and computationally expensive and depends on a large number
of often uncertain parameters [23]. The NTGK, a semi-empirical model
developed by Kwon et al. [86], is set up by curve fitting the experimental
data and has been proved by several studies to be effective for predicting
the fast heat evolution of Li-ion batteries [91]. From the thermal man-
agement perspective in high-performance EVs, the ECM can accurately
represent the non-linear thermo-electrical behaviour of Li-ion batteries
[92]. ECMs have provided an effective balance between complexity and
precision, and their physical variables are not only readily interpretable
but also comprehensible [90]. This study uses a time-dependent heat
generation rate that was previously established by Sheng et al. [82]
using the ECM based on two main experiment methods, i.e., the hybrid
pulse power characterization (HPPC) method and the potentiometric
method. This heat generation rate expression has been used successfully
in a number of BTMS studies to simulate the heat generation that occurs
within  Li-ion  batteries during the discharge  process
[23,75,76,82,93-97]. Accordingly, the following time-dependent heat
generation rate expression from Sheng et al. [82], is employed at 9C:
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G = 319.6 —2719.0 SOC +15148.5 SOG? — 43018.3 SOC®

@)

+63645.5 SOC* — 46817.9 SOC® +13527.5 SOC®
where the heat generation rate is estimated from the above equation in
(kW/m?) and SOC, the cell state of charge, is given by:

SOC=1-1Iet/C (8

where I and C are the discharge current and nominal capacity of the
battery cell, respectively, and t is the discharge time.

The thermo-physical properties of the materials used in the BTMS
simulation are summarized in Table 2 [75].

The generalized-a numerical approach is used as the time-stepping
method for the time-dependent solver when solving the CHT model
for BTMS-based SMCCP-IVSMC design with a (2 s) time step. The rele-
vant boundary conditions and assumptions that are used in the numer-
ical solutions are listed in Table 3.

The performance of the BTMS is evaluated using the battery’s
maximum temperature (Tp.x), temperature standard deviation of the
battery cells (T;), the water pumping power (P,), and the mass of the
material for each cold plate (Mcp). These are selected for the following
reasons: (i) reducing the battery’s maximum temperature is essential to
constrain it within the allowable operating temperatures, which would
otherwise accelerate the aging process, shorten battery lifetime, or even
cause thermal runaway [98]. (ii) Reducing the temperature standard
deviation ensures a more uniform temperature distribution, which re-
duces the risk of aging of the local electrode materials around thermal
hotspots and accelerated battery failure [99,100]. (iii) Reducing the
pumping power increases the driving range of EVs. (iv) The weight of
the battery pack also has a significant impact on both driving range and
EV efficiency (a lighter battery pack consumes less energy, leading to a
longer driving range) [101]. Although liquid cooled BTMS provide
effective cooling, they are considered a heavyweight thermal manage-
ment option [43,102]. Accordingly, the present research also considers
minimizing the mass of the cold plate material to reduce both the energy
consumption and material cost. The above four performance metrics are
given, respectively, by:

Tinax = Max(T) 9
T—T,)*dA
po AT .
A
P,=ApxQ 11
Mcp =pcp @ Ver 12)

where the A is the battery cells area. T,y represents the average tem-
perature of the battery cells, and is given by:

_ J,TdA

Tav -
Jada

13

Ap is the pressure drop of the water in the mini channels (Pa). Q is
the volumetric flow rate in (m3/s), (Q = Aw x Uy), and Ag, is the cross-
sectional area at the inlet of the minichannel (m?). V¢ is the volume of

Table 2
Thermo-physical properties of the materials used in BTMS simulation of SMCCP-
IVSMC design.

Materials Density Thermal Heat capacity =~ Dynamic
(D] conductivity (K) (Cp) viscosity (p)
kg/m3 W/m-K J/kgK Pas
Cooling 998 0.6 4200 0.001003
water
Cold plate 2719 202.4 871 -
Battery 1969.6 2.6 1305 -
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Table 3
The boundary conditions for BTMS based on SMCCP-IVSMC design.

Locations Fluid conditions Thermal conditions

Inlet Laminar flow Temperature (T) = T, = 30°C
Inlet flow velocity
(Uin = 0.3 m/s)

Outlet The pressure outlet In the normal direction, the

boundary condition. temperature gradient is zero.

P=p, =0 Outflow —n.q =0
Interface surface No-slip condition. K oTep| K Bﬂ
Uy =0 P on | T T on |,
Terr = Twr
Incompressible flow dg_:, Ve Uy =0 _

p = constant
Gravitational effect is -
negligible.
pyeg=0

g is the gravitational
acceleration field.
Uy =0

Gravity force

The convective heat transfer
rate (Q,)

Qq = heAq(Ts — T,), where h,,
A,, T and T, represent the
convective heat transfer
coefficient, surface area
exposed to the ambient air,
surface temperature exposed to
air, and ambient air
temperature, respectively.

h, =5W/m?K; T, = 30°C
Heat generation in battery cells
@

See Eq. (7)

The radiation heat transfer
(Qraq) is neglected.

Qraa =0

Just half of both the battery and the cold plate domains are
considered, and the above and lower surfaces of the two
halves are set as symmetry (Fig. 1b).

Free convection
boundary
conditions

Battery cells
Radiation heat
transfer.

Symmetrical plane
of the battery pack

each cold plate and is given by:

Vep =Hcp @ Wep @ tep —tep @ ((nch oWy oLy)+ (ny—1)em

r2 — 12
o%-&-Z-Wch-(ch—(Lch+r2+W52))+Wwo(nch—l)

® Mip; ® VVint)
14

where Hcp, Wep, and tcp are the height, width, and thickness of the cold
plate (m), respectively. t., is the depth of the minichannels (m). ng, and
nj; represent respectively the number of minichannels and V-shaped
intersecting minichannels (n,, = 14, nje = 7). W, and Wy, are the
width of the minichannels and V-shaped intersecting minichannels,
respectively (m). Wy, represents the width of the minichannel wall (m),
Wy = (Hep —Dep @ Wen, — 20 Wg)/(ney — 1). Wg, and Wy, are the
outside wall thicknesses, respectively (m), see Fig. 1. The symbols r; and
12, respectively, represent the inner and outer radius of the bent mini-
channel (m), r; = Wy /2, r2 = Wep, + Wy /2. Ly, is the length of the
straight minichannel (m), Ly, = Wep — 2 ¢ Wy — 2 e 15. Fig. 2 illustrates
a schematic sketch of a single V-shaped intersecting minichannel to
clarify the design parameters for the SMCCP-IVSMC design, where 0 is
the V-shape intersecting angle (°) and the distance & is given by:

P (0.5 w,, — RcosH)

15
sind as

3. Numerical validation and verification

A grid sensitivity test is carried out on the BTMS based on SMCCP-
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~N

Water

Fig. 2. Schematic diagram of the geometry of a single V-shape intersecting minichannel.

IVSMC illustrated in Fig. 1. Simulations are carried out in COMSOL
Multiphysics® software (v.6.0) using free-tetrahedral grids with a
number of elements ranging from 0.82 x 10° to 4.05 x 10° for a high
discharge rate of 9C and an inlet flow velocity of 0.3 m/s. The software
has been used to iteratively solve the partial differential equations
(PDEs) of heat transfer and fluid flow using the finite element method
(FEM) via an iterative solver. The finite element meshes consisted of
numerous interconnected small elements with boundary edges that
connected at endpoints called nodes. The 3D free tetrahedral mesh is the
default mesh in COMSOL and is normally selected for its suitability for
irregular geometries, including curved surfaces or the presence of small
objects [103]. Because some BTMS domains have thin or irregular
shapes, like V-shape regions, and due to the computational cost, all 3D
computational domains of BTMS are discretised using various sizes of an
unstructured free tetrahedral mesh with the help of the COMSOL pre-
processor. High-quality meshes are essential for the efficiency and ac-
curacy of the solution process in computational fluid dynamics (CFD)
numerical simulation, whereas poor-quality meshes can significantly
impact the stability and convergence of a finite element solver, as well as
the accuracy of the PDE solution [104]. The mesh quality is a dimen-
sionless factor that ranges from 0 to 1, where 1 represents high-quality
meshes and 0 represents poor-quality meshes. The mesh quality (Qynesn)
for the tetrahedral element is computed using COMSOL Multiphysics for
the laminar flow regime as follows [72]:

723V
(W +h2+h+h2+h2+h2)""

Qmesh = (1 6)

where V represents the volume and h;, hy, hs, ha, hs, and hg denote the
edge lengths of the element; Qs should exceed 0.1 to achieve an
acceptable aspect ratio, edge ratio, and volume ratio, thus preventing
stretched or distorted elements. The necessary steps for solving the nu-
merical model in COMSOL Multiphysics software are presented as a
flowchart in Fig. 3.

The effects of grid density on the maximum temperature as a func-
tion of time are shown in Fig. 4- it can be seen that the results are
virtually indistinguishable. Further quantitative details are given in
Table 4, where the PRE of the results of each grid with respect to those
on the finest grid is determined using Eq. (17):

Yi — Y4,05><106

PRE (%) = a7)

Y4 05x100

where Y is the numerical results of the evaluated values of the physical
parameters (in this case Tmax and Py,) for a given number of elements (i).

Four timestep values (1.0s, 2.0 s, 3.0 s, and 4.0 s) were used to assess
the effect of the timestep — no significant variations can be discerned (see
Fig. 5). Balancing the precision and computational cost, the current
study used a free-tetrahedral grid with 2.36 x 10° elements with

Assign Material

Start > Create 3D x N
COMSOL Geometry cPropertles (Batteries,

old Plates and Coolant)

Identify physics modules
- Heat Transfer in Solids and Fluids
- Laminar Flow
- Nonisothermal Flow Coupling

Configure Solver

- Fully Coupled Time Dependent Solver
- Set Time Range (0,400) and Steps (2s)

- Tolerance: Physics Controlled

- Time-Stepping Method (Generalized-a)

)

and Iterations

Run the Simulation and
Monitor Convergence —>

v

Define Boundary
Conditions

Preprocess
Mesh

Post-Processing and Validation
- Mesh Verification
- Validation Against Experimental and
Numerical Results.
- Results and Data Export

Fig. 3. Flowchart representing the necessary steps for solving the numerical model in COMSOL.
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Fig. 4. Grid sensitivity of the battery maximum temperature throughout the
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Table 4
Grid sensitivity results.

Number of elements Tmax ("C) RPE(Tmax )% Py, (mW) RPE(Py) %
0.82x10° 35.96 0.221 0.71479 5.86
1.56x10° 36.02 0.055 0.67862 0.51
2.36x10° 36.04 0.000 0.67720 0.30
2.91x10° 36.03 0.027 0.67707 0.28
4.05x10° 36.04 0.000 0.67517 0.00
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Fig. 5. Impact of timestep on the battery maximum temperature predictions
throughout the discharge cycle.

corresponding mesh quality of 0.66, and a 2.0 s timestep.

A CFD model for BTMS based on SMCCP-IVSMC was constructed in
COMSOL Multiphysics® (v.6.0) using a free-tetrahedral grid with 2.36 x
10° elements and a time-steps of (2.0 s) to validate the 3D fluid flow and
heat transfer model developed here against the numerical simulations in
ANSYS Fluent by Liu et al. [75] (case 4) when 8.0 Ah prismatic LiFePO4
Li-ion batteries are fully discharged at a high discharge rate (9C). The
obtained results were evaluated with respect to the maximum temper-
ature of the battery and the water pumping power throughout a range of
water inlet velocities from 0.1 to 0.5 m/s. Fig. 6 demonstrates that the
results obtained here are in excellent agreement with those of Liu et al.
[75], with a mean absolute percentage error (MAPE) of 0.02 % and 1.26
%, respectively. The MAPE is given by eq. (18) [23]:

MAPE = x 100% (18)

=4

1 i |Calculated value — Actual value|
— Actual value

where N represents the total number of evaluated points.
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To further prove the reliability of the battery heat generation rate
and the numerical model simulated in this study, Fig. 7 compares the
numerical predictions of the present work with the numerical results and
experimental findings reported in, Liu et al. [76] and Sheng et al. [82]
respectively, during the discharge process Fig. 7. Comparison between
the numerical of the present work, Liu et al. [76] and Sheng et al. [82]
works for battery temperature during the discharge process at different
high C-rates. There is very good agreement with both the previous sets of
numerical and experimental results. As shown in the Fig. 7, the battery
temperature gradually increases as the discharge rate rises from 3C to
9C. Accordingly, the maximum C-rate of 9C is chosen for further analysis
in this work, because it reflects the worst-case scenario with the highest
thermal load.

To further verify the accuracy of the present conjugate heat transfer
and CFD model, the experimentally measured thermo-hydraulic per-
formance, specifically the Nusselt number and apparent friction factor of
a minichannel heat sink [105], is compared with the simulation results
obtained using the present numerical approach, as shown in Fig. 8. It can
be observed that the model predictions for the Nusselt number (Nu) and
apparent friction factor (f) are in good agreement with the experimental
data across various Reynolds numbers, which confirms the reliability
and accuracy of the numerical approach employed in the present work.

4. Sensitivity analysis

The parameters having the greatest influence on the performance
metrics are determined using sensitivity factors [106] in the form of:

(fmax (xi) _fmin (xi) )

Si= Z;[:l (fmﬂX (x}) —fmin (xj) )

19)

where fiax (%i), and fnin (Xi) represent the maximum and minimum
values of a single objective function (Tmax, Ts, Pw, Or Mcp) when varying
only one design variable x; (such a Wg,, Win, 6, R, or W) over its full
range. The term Z?:l (fmax (%) — fmin (¥;) ) is the sum of all differences
between the maximum and minimum values of a single performance
metric for all design variables. This sensitivity analysis is a simple and
widely used approach to determine the impact of each input factor on
the performance of the BTMS [106-112]. The sensitivity factors for all
the design variables are displayed in Fig. 9, showing the relative impact
of each design variable on the BTMS objective functions. The results of
the sensitivity analysis demonstrated that W, has the most significant
impact on Tpax, Ts, Pw, and Mcp, with sensitivity factors of 55.73 %,
76.24 %, 32.05 %, and 52.11 %, respectively. This is followed in
descending order of significance by the V-shaped intersecting mini-
channels (Wiy) and the V-shape intersecting angle (6) comes next, with
both the radius (R) and outside wall thickness (W) having only minor
impacts. Accordingly, only the first three design variables (W, Wigt,
and 0) are considered in the design optimization study.

5. Optimization methodologies

The validated battery thermal management model is used within a
surrogate-enabled optimization of the cold plate’s cooling system. The
aim is to identify effective compromises between the various objectives
for the design variables Wy, Wiy, and 6 in the ranges 2.0 < W, < 5.0,
1.0 < Wi,y 5.0, and 30" <0 < 60", respectively. Optimal Latin hy-
percube sampling (OLHS) is used to generate 100 Design of Experiment
(DoE) points that are uniformly distributed and efficiently cover the
design space. Then, the high-fidelity BTM simulation model is used to
compute Tpax, T, and Py, at each DoE point, while the mass Mcp is
determined via Eq. (12). Surrogate modeling is carried out using both
Radial Basis Functions (RBFs) and Gaussian Process Regression (GPR) as
a comparison. The former is used widely due to its simplicity and effi-
ciency [113,114]. For example, a Gaussian RBFs- surrogate model
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approximation 1, (x) for every objective function fj at each design point
(i = [X41)-X(i2) X3 ) in the design space is computed by [115]:

Fr00 =Y u@(lx—x),@ = exp( o |x—x*) 20)

Here, J is an acronym for objective functions (e.g. Tpax, Ts, and Py)
and n is the number of DoE points. A; is the vector of weights and p is the
hyperparameter that controls the shape of the Gaussian RBF function. K-
Fold Cross Validation (CV) with k = 10 is used to optimize the hyper-
parameter B in relation to the Root Mean Square Error (RMSE):

RMSE = 21

where N is the total number of observed data points and f;, and E are the
actual observed and predicted values for the objective function,
respectively. GPR is a very popular ML approach due to its inherent
capabilities to account for uncertainties in the surrogate modeling pro-
cess [116]. The GPR model approximates the function f(x) via two
functions which represent the mean p(x) and variance Z(x) [117] and
can be expressed as follows:

F(x) = u(x) + Z(x), where Z(x) ~ ./"(0,6%) (22)

The squared-exponential kernel, often known as the RBF kernel, is
used in the present work to construct the correlation between the
random variables (e.g. Z(xV), Z(x?)), based on the distance between
their relevant points in the design space (x) and xV). The RBF kernel is
chosen due to its capability for modeling complex nonlinear relation-
ships, flexibility and popularity [118,119]. It is given by [120]:

o )
Ty =cexp| — Y b5t (23)

where ng is the number of the input design variables (ng = 3 in the
present work) and o represents the length-scale parameter in the ng —
th coordinate direction. GPR-based surrogate modeling has been carried
out using the Python GPy (v1.10.0) library. Further details on the ML-
based GPR approach can be found in Martins and Ning [117].

The multi-objective problems were solved using a popular multi-
objective evolutionary algorithm, namely the 3rd version of the differ-
ential evolution (DE) algorithm, generalized differential evolution
(GDE3) [121]. This modifies the selection method of the basic DE to
solve optimization problems with several objectives and constraints
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[122]. The procedural steps of the GDE3 algorithm are clearly depicted
in the flowchart given in Fig. 10. Additional information on the GDE3
algorithm can be found in Kukkonen and Lampinen [122].

Finally, the Technique for Order Preference by Similarity to an Ideal
Solution (TOPSIS) approach, based on equally weighted and entropy-
weighted methods, has been employed to find the best compromise
solution (BCS) among the set of Pareto optimal solutions. Recently,
TOPSIS has been extensively used and has proven to be a flexible and
effective technique for multi-criteria decision-making analysis
[123,124]. The main idea behind the TOPSIS method is that the best
compromise solution is closest to the ideal point and farthest from the
non-ideal point; when combined with the entropy-weight method to
assign weights to each objective [125]. The main mathematical
formulae of the entropy-weighted TOPSIS technique for finding the best
compromise solutions (BCSs) are expressed as following steps
[124,125]:

Step 1: Normalise the Pareto matrix obtained from the multi-
objective optimisation. This normalisation process is as follows:

Yy — min ()’ij)

v, - max(yij) — min(yi->7 2
masl) v
max(yij) - min(y,—,—)7 ’

i is+

where y; represents the elements of the Pareto matrix, which has n
objective functions and m solutions. The (+) indicators refer to the
objective functions that should be maximised, while the (—) indicators
refer to the objective functions that should be minimised.

Step 2: The indicators are standardised as follows due to differences
between the indicator units:

(25)

Step 3: The entropy for each objective is computed as follows:

1 & .
E= “In(m) ;Pijln(Pij), (j=1,2,-,n)(If Py ~ Ouse P; In(P;) =0)
(26)
Step 4: The entropy weight for each objective is computed as follows:
w—— "B @7
(1-5)

M:

-
I
—

Step 5: The ideal and non-ideal points are identified, respectively, as
follows:

Y = <mfc1qu,mainz, main,.> (28)
1 1 1

Yy = <m,inYn,m,inYiz, m,inYm> (29)
1 1 1

Step 6: The distances of Pareto solutions to ideal and non-ideal points
for the entropy-weighted TOPSIS are calculated as follows, respectively:

Df = [> w (v —vy)? 30
=1
Dy = /[> w (Y —Yy)? (31)

I
—

Note that the w? will not be included in egs. (30) and (31) if the
general TOPSIS method is used, since all objectives are considered to
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Fig. 9. Sensitive analysis of Tmax, Ts, Pw, and Mcp.

have equal weight.

Step 7: The evaluation factors (also called closeness coefficients) for

each Pareto solution are computed as follows:
Dy

“b;+D; ¢2

i

when the closeness coefficient (C;) is much closer to one, it indicates that
its corresponding Pareto optimal solution is the most effective
compromise solution, being nearer to the ideal point and farther from
the non-ideal point.

Step 8: The best compromise solutions for two, three, and four ob-
jectives optimisation are respectively calculated as follows:

10

i

BCS3 = max C; (34)
i

BCS,; = max C; (35)

Fig. 11 shows the flowchart of the multi-objective optimization
process, illustrating the integration of ML and GDE3 algorithm with the
TOPSIS approaches to identify BCSs.
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11



A. Mahmood et al.

: Multi-objective
Optimization

Initial

1
1
: Design of
: SMCCP-IVSMC
i

Journal of Energy Storage 140 (2025) 118995

1

Identification of optimisation :
objective functions (f) and :
design variables (x 1

H

Sensitivity Analysis

Yes

Six,f) >
1(threshold)

=7%

Modeling

ML-based Surrogate

Low sensitivity
(Keep x; constant)

DoE: Using OLHS to generate 100

sample points in the design space
v 2

Calculate the objective function at each
DoE point using COMSOL simulations

a;, 0) u

Training and tuning the
hyperparameters (e.g.

10-Fold CV

Evaluate model
accuracy using RMSE

AL D

Training and tuning
the hyperparameter

(B) using 10-Fold CV

Evaluate model
accuracy using RMSE

GDE3

algorithm

Select the

model with the
lowest RMSE

Generate Pareto optimal solution sets for 2,

3, and 4 objective optimisation problems

—>| Normalize Pareto matrix (YH)_I
v

| Standardize each objective (Py) |
v
Calculate the ideal and
non-ideal points (Y*, Y™)

1

1

1

1

1

1

1

1

1

i

17 I

Validate the optimisation results Entropy-weighted Equally weighted :
using COMSOL simulations TOPSIS TOPSIS :
v Calculate Compute D; and | |

Find the BCSs using the Equally weighted }_ entropy E; D; without w; 1
TOPSIS, and Entropy-weighted TOPSIS v v :
Compute entropy- Calculate the :

m based weights w; closeness :

v coefficient (C;) |

BCS,, Calculate the Fr— v -

BCSS, and closeness <€ D;. ] D'_ BCSz, Bc33' 1

BCS, coefficient and BCS, | |

!

Fig. 11. Multi-objective optimization process integration ML with GDE3 and TOPSIS for finding BCSs.

Table 5
Benchmark design of the BTMS.

Acronym Benchmark design
Design variables W (mm) 3.50

Wit (mm) 2.00

0 (") 45.00
Objective functions Tmax (C) 35.96

Py, (mW) 0.68

Ts(K) 1.034

Mcp (8) 54.12

12

6. Results and discussion
6.1. Benchmark design performance

To systematically demonstrate and evaluate the effectiveness of the
multi-objective optimisation carried out in this work, it is essential to
establish a baseline benchmark design performance. The BTMS bench-
mark design has been chosen based on previous simulation results
conducted by Liu et al. [75], whereby the battery’s maximum temper-
ature and pumping power were extracted from Fig. 6 (case 4) in their
study at an inlet flow velocity of 0.3 m/s. The other related performance
metrics of the benchmark design, including the mass of each cold plate
and the battery’s temperature standard deviation, have been computed
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in the present work based on their original design. This BTMS bench-
mark design details are shown in Table 5.

6.2. Machine learning (ML) hyperparameters calibration

Fine-tuning the hyperparameters of ML approaches is essential in
optimizing the learning process, to avoid overfitting, and generate ac-
curate predictions of the objective function. Fig. 12a, b, and c display the
RMSE tuning curves for the p parameter in Gaussian RBF regression
using 10-Fold cross-validation. The values of the f§ corresponding to the
lowest RMSEs are 1.227, 1.619 and 0.492 for the Tpax, Ts, and Py, RBF
models, respectively.

The maximum likelihood approach [117] is used to calibrate the
hyperparameters of the Tpax, Ts, and P,y GPR models by maximizing the
probability of observing the data f. These are shown in Table 6.

Table 7 displays the RMSE for each calibrated ML model obtained
throughout the K-fold CV for each objective function. A comparison
between the two methods is shown in Fig. 13a and Fig. 13b for Py,.
Generally, the surrogate models from both ML methods are similar to
one another. The GPR method performs better for all objectives and will
be used in all subsequent results.

6.3. Single-objective optimization

The single-objective optimizations are straightforward since the
global minima are located on the edges of the design space. Table 8 lists
the global minima for each objective function along with the corre-
sponding design variables used in the GPR models. Table 8 also displays
the values of the other objective functions when they are calculated
using optimum points obtained through single objective optimization.
Note that when Tp,ax is minimised, Py, and Mcp are relatively large, and
when P,, is minimised, the values of all other objectives Tyax, Ts and Mcp
have extremely high values. This indicates that it will be beneficial to
perform multi-objective optimizations to explore the available com-
promises between the objectives.
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Table 6
Main configuration parameters for GPR ML models.

Model No. of restarts optimizer Length scale (a) Length scale range
Tmax 10 3 (0.1, 10)
Ts 10 3 (0.1, 10)
Py 10 3 (0.1, 10)

Table 7

K-fold CV RMSE for each ML model.
ML model RMSE

RBF GPR

Tmax (°C) 0.2071 0.0281
Ts (K) 0.0199 0.0051
P, (mW) 0.0547 0.0114

6.4. Multi-objective design optimization

Two-dimensional Pareto fronts are constructed using the GPR sur-
rogate models to demonstrate the available trade-offs between Tpax, To,
Py, and Mcp. The GDE3 algorithm employed here is available in the
pymoode Python package (v0.2.6). The parameters used for setting the
GDES3 algorithm are given in Table 9.

Referring to Fig. 14a to Fig. 14f, the Pareto Fronts and design of
experiment points are displayed between the objective function pairs:
P,y against Tmax, Mcp against Tmax, Mcp against Py, Py, against T, Mcp
against Ty, and Tpax against Tg, respectively. These plots illustrate the
relationship between two conflicting objectives, through non-dominated
points, where an increase in one objective causes a decrease in the other.
A number of significant variations are identified. For instance, in
Fig. 14a, decreasing Tmax from 39 ‘C to 35 “C results in P,, increasing
from around 0.25 mW to 2.2 mW. However, the increase in Tyax from
around 35.0 "C to 36.5 "C in Fig. 14b causes Mcp to decrease from
around 50.0 g to 41.5 g. Similarly, in Fig. 14c, an increase in Py, from
0.25 mW to 0.55 mW enables Mcp to be decreased from approximately
51.5 g to 42 g. The decreasing T, from about 1.5 K to 0.9 K in Fig. 14d
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Fig. 12. The RMSE calibration curves for the § hyperparameter: (a) Tmax, (b) Ts, and (c) Py.
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Table 8
Single objective optimization using the GPR model.
Objective function Global minima Wen (mm) Wipe (mm) 0(°) Tmax("C) Ts (K) P, (mW) Mcp (8)
Tmax(°C) 34.97 5.00 1.00 39.67 34.97 0.9175 2.1070 49.476
T, (K) 0.8914 5.00 1.00 53.35 35.01 0.8914 1.9519 49.476
Py (mW) 0.2134 2.00 3.46 60.00 38.92 1.4992 0.2134 55.863
Mcp (8) 41.787 5.00 5.00 54.56 36.40 1.0101 0.5319 41.787
The accuracy of the Pareto Fronts generated by the GDE3 method is
Tab_le 9 . confirmed by comparing some of the optimal Pareto points with their
Setting parameters for the GDE3 algorithm. . L . o
corresponding CFD predictions. Table 10 compares the objective func-
Setting parameter Value tion values for the chosen Pareto points from Fig. 14a with the corre-
Variant “DE/rand/1/bin” sponding CFD results. In general, the agreement is generally very good,
Size of the population in each generation 50 although the errors in Py, do grow as Py, increases.
Maximum number of generations 200 Fig. 15 shows a 2D surface representation of the Pareto surface for
Scale factor or mutation parameter (F) 0.0, 1.0 Tmax and Mcp. The colour gradient corresponds to the pumping power.
Crossover parameter (Cr) 0.7 max cp 8 p pumping p ’

would result in Py, increasing from around 0.25 mW to 2.0 mW.
However, in Fig. 14e, Mcp drops from roughly 50.0 g to 41.5 g as a result
of the increase in T, from around 0.87 K to 1.00 K. However, the Pareto
front of Tpax against T, in Fig. 14f indicates that the minima of
maximum temperature and temperature standard deviation are strongly
related to one another.

14

ranging from 0.210 mW (dark blue) to 2.720 mW (red). This visuali-
zation highlights how changes in the temperature and mass influence
pumping power: regions with lower pumping power are represented in
blue, indicating more energy-efficient designs. The plot reveals distinct
trade-offs: increasing the cold plate mass or the maximum temperature
generally leads to lower pumping power, suggesting that achieving en-
ergy efficiency may require either heavier designs or higher operating
temperatures. The colour transitions also emphasise the nonlinear
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Fig. 14. Pareto Fronts obtained using the GPR ML approach: (a) Py, against Tyax; (b) Mcp against Tpay; () Mcp against Py; (d) Py, against Tg; (€) Mcp against Tg; ()
Tmax against T.
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Table 10
Verification of the objective function values for some optimal Pareto points from Fig. 14a with their corresponding CFD results.

Design variables (mm) Tmax(°C) Py, (mW) Error %

W (mm) Wi (mm) 0(°) Pareto CFD Pareto CFD Tmax Py
5.000 1.058 57.034 35.029 35.109 1.888 1.923 0.228 1.820
4.970 2.330 30.032 35.354 35.411 0.9905 1.011 0.161 2.028
3.718 4.253 34.441 36.767 36.790 0.4432 0.440 0.063 0.727
2.150 3.308 38.685 38.049 38.098 0.2719 0.284 0.129 4.261
2.001 3.541 59.477 38.905 38.850 0.2181 0.243 0.142 10.247

Pumping power Pw (mW)
4 2.720
60
T 2.406
58
56 2.093

"

g

L

($))
N
1

1

Cold plate mass (g
(¢}
o

1.779

1.465

1.151

0.8375

0.5238

0.2100

35.0 355 36.0 36.5 37.0 37.5 38.0 385 39.0
Maximum temperature Tmax (°C)

Fig. 15. Pareto surface distribution to analyse the trade-offs between Ty, Pw, and Mcp.

nature of the relationships among the objectives, highlighting regions
where small changes in one parameter can lead to significant variations
in the other two. Additionally, the concentration of red near the lower
mass values and lower Ty, values suggests these regions are more
sensitive to variations, making them critical for further exploration or
optimization. The graph also enables to implicitly identify feasible and
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Fig. 16. Pareto surface distribution to analyse the trade-offs between T, Py,
and Mcp.
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infeasible design spaces, enabling designers to focus on those areas that
balance efficiency and performance without exceeding practical
constraints.

The Pareto surface in Fig. 16 shows a 2D surface representation of the
trade-offs between T,, Mcp, and Py,. It shows that increasing the cold
plate mass or the battery’s temperature standard deviation generally
results in lower pumping power, indicating that attaining energy effi-
ciency may demand either heavier designs or accepting an uneven
temperature distribution. The colour transitions also point out the
nonlinear relationships between these objectives, which show regions
where slight changes in one objective can result in substantial variations
in the other two. Furthermore, the red region next to the lower T, and
relatively low Mcp indicates that performance in this region is particu-
larly sensitive to variations, making it worthy of further exploration and
optimization.

The accuracy of the Pareto optimal surface in Fig. 15 is demonstrated
by comparing some of its optimal points with their corresponding CFD
results in Table 11, which also shows the compromises available be-
tween the competing objectives. For instance, choosing design 1 instead
of 12 in Table 11 significantly lowers the battery maximum temperature
from 39.24 °C to 35.05 °C, albeit with an order of magnitude increase in
pumping power, from 0.23 mW to 2.62 mW, which adversely affects the
EV’s driving range. This is also associated with a slightly reduced cold
plate mass, from 50.46 g to 49.33 g, which is advantageous for both the
driving range and manufacturing costs. Choosing design 7 instead of
design 12 significantly reduces the mass by around 17.2 %, from 50.46 g
to 41.79 g, but more than doubles the pumping power from 0.23 mW to
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Table 11
Validation of the objective functions for some Pareto points from Fig. 15 with their corresponding CFD results.
Design Design variables Tmax(°C) P,, (mW) Mcp (8) error %
Wen Wint 0 Pareto CFD Pareto CFD Pareto analytical Tmax Py Mcp
(mm) (mm) )
1 5.00 1.077 30.00 35.048 35.074 2.6240 2.5393 49.329 49.329 0.073 3.337 0.00
2 5.00 1.27 30.00 35.064 35.109 2.2303 2.0485 48.943 48.943 0.127 8.873 0.00
3 4.99 2.01 30.00 35.231 35.220 1.2327 1.1937 47.527 47.527 0.032 3.267 0.00
4 4.87 2.43 30.00 35.406 35.449 0.9257 0.9588 47.220 47.220 0.122 3.451 0.00
5 4.99 3.47 30.27 35.911 36.135 0.6027 0.6317 44.725 44.725 0.621 4.585 0.00
6 4.99 3.98 30.00 36.114 36.264 0.5678 0.5819 43.739 43.739 0.413 2.416 0.00
7 5.00 5.00 42.37 36.526 36.462 0.5338 0.5305 41.788 41.788 0.176 0.636 0.00
8 3.12 2.75 49.17 36.816 36.804 0.4338 0.4352 53.619 53.619 0.032 0.327 0.00
9 3.08 4.97 49.64 37.500 37.529 0.3295 0.3374 47.242 47.242 0.076 2.355 0.00
10 2.00 1.85 59.99 38.105 38.114 0.2856 0.3088 61.521 61.521 0.023 7.518 0.00
11 2.03 3.83 40.98 38.550 38.561 0.2453 0.2503 54.409 54.409 0.028 1.966 0.00
12 2.00 5.00 59.99 39.243 39.295 0.2315 0.2322 50.455 50.455 0.131 0.273 0.00

0.53 mW, both of which influence the EV driving range. The battery
maximum temperature also reduces significantly from 39.24 °C to
36.53 °C, improving battery safety. Lastly, choosing design 1 instead of
design 7 lowers Tpax from 36.53 °C to 35.05 °C, which is helpful for
battery safety. However, both the pumping power and the mass of the
material for each cold plate increase considerably (from 0.53 mW to
2.62 mW and 41.79 g to 49.33 g, respectively), increasing the operating
and manufacturing costs significantly.

6.5. TOPSIS optimization results

The equally-weighted and entropy-weighted TOPSIS techniques
have been employed to identify the best compromise solutions from the
optimal Pareto sets, helping designers and decision-makers to make
well-informed and precise choices. Accordingly, these techniques have
been applied to several multi-objective optimisation cases involving
two, three, and four objective functions. Tables 12-14 show the best
compromise solutions (BCSs) with the highest closeness coefficients (C;)
for two-, three-, and four-objective problems, using the equally-
weighted TOPSIS method, which treats all objectives as equally
weighted, and the entropy-weighted TOPSIS method, which assigns
different weights to the objectives. These tables list the highest closeness
coefficients for various combinations of the objective functions that
provide the most balanced optimal solution among a set of competing
trade-offs.

The closeness coefficients corresponding to each of the optimal
Pareto sets for the four-objective optimisation case (Tpax, Pw, Ts, and

Table 12

Mcp), calculated using both the general TOPSIS method and the entropy-
weighted TOPSIS method, are listed in the Appendix, Tables Table A.1
and Table A.2, respectively. These two tables rank the Pareto-optimal
solutions for the 4-objective case in descending order of C;, starting
from the highest to the lowest, using the two TOPSIS methods.

Four optimum candidate designs and two solutions represent the top
rankings of BCSs obtained from the two TOPSIS methods, which are
chosen and compared with the BTMS benchmark design in Table 15.
Compared to the benchmark design, the candidate optimisation results
indicate that the battery’s maximum temperature can be reduced from
35.96 °C to 34.98 °C by 2.7 %, the pumping power can be substantially
lowered from 0.68 mW to 0.213 mW by 68.7 %, the battery’s temper-
ature standard deviation can be effectively reduced from 1.034 K to
0.891 K by 13.8 %, and the mass of each cold plate can be beneficially
lowered from 54.12 g to 41.79 g by 22.8 %. The effectiveness of the
optimization approach is further demonstrated by the identification of
design 5 (the top-ranked BCS using equally weighted TOPSIS), which
enables all four competing objectives to be reduced simultaneously.

7. Conclusions

There is a pressing need to extract the maximum performance from
Li-ion EV batteries to maximise driving range and safety and minimise
operating and manufacturing costs. To this end, a novel machine
learning-enabled multi-objective optimization methodology for cold
plates with intersecting V-shaped mini-channels for Li-ion BTMS has
been developed, where the conjugate heat transfer model has been

BCSs and weights for two-objective optimization using the two different weighted TOPSIS methods.

TOPSIS method 2-objectives optimization Design variables BCS G Objective weights
We, (mm) Wipe (mm) 0 (%) Objective 1 Objective 2 wi wa

Equally weighted Py vs. Trax 5.00 3.18 30.00 P, (mW) Tmax(°C) 0.7895 0.500 0.500
0.6496 35.72

Entropy-weighted 5.00 3.03 30.00 0.6856 35.66 0.7944 0.453 0.547

Equally weighted Mcp vS. Trmax 5.00 2.58 30.00 Mecp (g) Trmax(°C) 0.5388 0.500 0.500
46.43 35.45

Entropy-weighted 5.00 2.28 30.00 47.02 35.32 0.5536 0.479 0.521

Equally weighted Mcp vs. Py 3.26 5.00 54.14 Mcp (8) Py, (mW) 0.5531 0.500 0.500
46.65 0.3432

Entropy-weighted 3.19 5.00 54.06 46.83 0.3374 0.5555 0.492 0.508

Equally weighted Py vs. Ty 5.00 3.81 46.77 P,, (mW) Ts (K) 0.8166 0.500 0.500
0.5777 0.985

Entropy-weighted 5.00 3.81 46.77 0.5777 0.985 0.8226 0.445 0.555

Equally weighted Mcp vs. Ts 5.00 2.25 30.00 Mcp (8) Ts (K) 0.5084 0.500 0.500
47.08 0.923

Entropy-weighted 4.99 1.00 53.36 49.47 0.891 0.5684 0.432 0.568

Equally weighted Tmax Vs. Te 5.00 1.00 55.54 Tmax("C) Ts (K) 0.8211 0.500 0.500
34.98 0.894

Entropy-weighted 5.00 1.00 55.54 34.98 0.894 0.8452 0.400 0.600
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BCSs and weights for three-objective optimization using the two different weighted TOPSIS methods.

TOPSIS method 3-objectives optimization Design variables BCS G Objective weights
Wen Wint 0 Objective 1 Objective 2 Objective 3 wp W ws
(mm) (mm) )
Equally weighted Mcp, Tmax, and Py, 5.00 3.51 30.00 Mcp (8) Tmax(°C) P, (mW) 0.8255 1/3 1/3 1/3
44.65 35.88 0.5976
Entropy-weighted 5.00 2.76 30.00 46.09 35.53 0.7773 0.8346 0.262 0.503 0.235
Equally weighted Mcp, Ts, and Py, 5.00 5.00 54.19 Mcp (8) Ts(K) P, (mW) 0.8580 1/3 1/3 1/3
41.78 1.009 0.5315
Entropy-weighted 5.00 5.00 54.19 41.78 1.009 0.5315 0.8610 0.345 0.379 0.275
Table 14
BCSs and weights for four-objective optimization using the two different weighted TOPSIS methods.
TOPSIS 4-objectives Design variables BCS G; Objective weights
thod timizati
metho optimization W Wint 0 Objective Objective Objective Objective Wi Wo W3 Wy
(mm) (mm) (°) 1 2 3 4
Equally Tmax> T, Pw, and Mcp 5.00 3.46 30.00 Tmax("C) Ts (K) Py, (mW) Mcp (8) 0.8373 0.250 0.250 0.250 0.250
weighted 35.86 0.973 0.604 44.76
Entropy- 5.00 2.64 30.00 35.47 0.937 0.827 46.33 0.8688 0.381 0.314 0.156 0.149
weighted
Table 15
Candidate optimum designs of the BTMS.
Acronym Bound Benchmark Optimum Optimum Optimum Optimum BCS equally BCS entropy-
design candidate candidate candidate candidate weighted weighted
design (1) design (2) design (3) design (4) TOPSIS design TOPSIS design
(©) 6)
Design W (mm) 25 3.50 5.00 2.00 5.00 5.00 5.00 5.00
variables Wint (mm) 1-5 2.00 1.00 3.46 1.00 5.00 3.46 2.64
0(°) 30-60 45.00 39.57 60.00 53.10 30.00 30.00 30.00
Objective Trmax(°C) Minimization 35.96 34.98 38.93 35.02 36.49 35.86 35.47
functions P, (mW) Minimization 0.68 2.111 0.213 1.953 0.534 0.604 0.827
Ts (K) Minimization 1.034 0.918 1.499 0.891 1.022 0.973 0.937
Mcp (8) Minimization 54.12 49.48 55.87 49.48 41.79 44.76 46.33

validated comprehensively against previous relevant numerical and
experimental studies. This paper is novel in two key aspects. It is the first
to develop and apply a novel ML-enabled multi-objective optimization
(MOO) approach based on TOPSIS approaches for the thermal man-
agement of SMCCP-IVSMC cold plate configurations. Secondly, it is the
first to reduce the cold plate mass in addition to the other thermo-
hydraulic performance indicators, including the maximum tempera-
ture, water pumping power and temperature variations over the cold
plate.

A sensitivity analysis carried out to identify the most critical design
parameters, that have the biggest impact on the practical performance
objectives, revealed that the width of the minichannels has the largest
impact on the battery maximum temperature, battery temperature
standard deviation, water pumping power, and the mass of the cold
plate, with the width of the V-shaped minichannels and the V-shape
intersecting angle being the next most influential parameters. Accurate
surrogate models of the maximum battery temperature and battery
temperature standard deviation, which determine battery longevity and
safety, and the water pumping power and the mass of the cold plate
materials, which affect the operating and manufacturing costs, respec-
tively, can be constructed by combining Optimal Latin Hypercube
sampling with Gaussian Process Regression surrogate modeling. These
can be combined within a generalized differential evolution (GDE3)
algorithm and TOPSIS approaches to create a powerful multi-objective
optimisation methodology to enable designers to explore the available
compromises between the various objectives.

A series of Pareto curves and surfaces are presented which demon-
strate vividly that there are many significant opportunities for
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optimizing the design of Li-ion cold plates by careful optimisation of the
geometry of secondary channels. The optimisation results have identi-
fied a number of options for improving performance significantly, based
on designers’ preferences, beyond the current benchmark design. In
addition to relatively modest reductions in the maximum temperature of
1 °C, operating costs can be minimised by reducing water pumping
power by over 68.7 %, and material costs minimised by reducing the
mass of the cold plate heat exchangers by over 22.8 %. Reductions in
mass will also contribute to reducing energy consumption and improved
acceleration performance and reduced braking distances. The top-
ranked BCS using equally weighted TOPSIS has also been identified,
which enables all four objectives to be reduced simultaneously. More
generally, it is shown that the objectives are highly inter-dependent and
any practical design will involve compromises between the objectives.
The methodology developed here is a powerful new tool for enabling
designers to meet their design objectives.

Future work could proceed in three fruitful directions. The first
would be to carry out experimental investigations of the cold plate
configurations examined here to provide further useful benchmark data
for numerical validation. The second would be to analyse battery
degradation and aging to assess how the optimised BTMS configuration
in this study impacts long-term battery health, using the methodologies
adopted by References [126,127]. The final future research direction
would be to assess the impact of using other BTMS technologies, such as
PCMs and hybrid cooling systems, and compare the overall efficiency
and weight of these cooling systems with the performances achieved
here.
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BCSs and closeness coefficients for four-objective optimisation using the general TOPSI method with equally weighted objectives, each with a weight of 0.25.

Design variables BCS G;
Wen (mm) Wine(mm) o) Tmax("C) T, (K) Py (mW) Mcp (8)
5.00 3.46 30.00 35.86 0.973 0.6038 44.76 0.8373
5.00 3.09 30.00 35.68 0.956 0.6720 45.46 0.8363
5.00 3.63 30.00 35.95 0.981 0.5859 44.43 0.8343
5.00 2.64 30.00 35.47 0.937 0.8270 46.33 0.8191
5.00 3.92 51.35 36.30 0.990 0.5712 43.87 0.8102
5.00 2.73 39.57 35.78 0.953 0.7767 46.14 0.8095
5.00 4.82 52.41 36.42 1.006 0.5407 42.13 0.8087
4.89 3.70 36.63 36.23 0.995 0.5766 44.68 0.8061
5.00 5.00 30.00 36.49 1.022 0.5347 41.79 0.7993
4.92 2.29 30.00 35.34 0.930 1.0127 47.31 0.7866
5.00 1.96 53.10 35.50 0.924 0.9940 47.63 0.7789
4.33 4.28 59.55 36.68 1.051 0.4789 45.25 0.7518
4.33 3.80 59.55 36.59 1.041 0.4887 46.34 0.7495
5.00 1.64 43.61 35.28 0.917 1.2954 48.24 0.7417
3.90 4.68 51.36 36.87 1.093 0.4216 45.63 0.7220
4.99 1.64 30.00 35.13 0.913 1.6450 48.28 0.7036
4.89 1.30 51.36 35.21 0.908 1.5298 49.41 0.7014
3.30 4.09 32.24 36.94 1.128 0.4175 49.11 0.6622
3.30 4.48 32.24 37.11 1.142 0.3937 48.01 0.6622
5.00 1.00 53.10 35.02 0.891 1.9531 49.48 0.6609
5.00 1.00 39.57 34.98 0.918 2.1111 49.48 0.6415
4.99 1.30 30.00 35.07 0.913 2.1936 48.93 0.6372
3.17 3.65 49.90 37.17 1.157 0.3743 50.82 0.6185
5.00 1.19 30.00 35.06 0.914 2.4009 49.12 0.6152
2.90 5.00 36.64 37.55 1.214 0.3390 47.72 0.6151
5.00 1.14 30.00 35.05 0.915 2.4928 49.21 0.6059
2.97 4.98 59.19 37.77 1.245 0.3186 47.57 0.5950
3.11 3.58 59.81 37.41 1.182 0.3477 51.24 0.5925
5.00 1.04 30.00 35.05 0.916 2.6981 49.40 0.5860
5.00 1.01 30.00 35.05 0.917 2.7669 49.46 0.5798
2.97 3.58 59.81 37.57 1.211 0.3301 51.77 0.5692
291 2.24 48.39 36.76 1.142 0.4675 56.07 0.5680
2.60 3.58 46.79 37.71 1.266 0.3180 53.17 0.5291
2.35 4.91 30.00 38.17 1.351 0.2756 49.67 0.5221
2.60 3.32 60.00 37.95 1.295 0.2912 53.99 0.5024
2.38 5.00 60.00 38.63 1.427 0.2623 49.28 0.4866
2.34 3.58 46.79 38.06 1.333 0.2891 54.13 0.4854
2.37 4.32 59.28 38.51 1.390 0.2735 51.58 0.4778
2.37 3.35 60.00 38.29 1.366 0.2600 54.81 0.4627
2.26 3.28 60.00 38.42 1.396 0.2491 55.47 0.4454
2.00 4.47 50.94 38.91 1.470 0.2442 52.31 0.4404
2.00 5.00 58.92 39.10 1.528 0.2364 50.45 0.4400
2.20 1.96 59.78 37.83 1.344 0.3153 60.24 0.4363
2.00 5.00 60.00 39.24 1.564 0.2315 50.45 0.4303
2.00 4.97 60.00 39.24 1.563 0.2329 50.57 0.4294
2.13 3.57 59.79 38.72 1.450 0.2310 54.97 0.4291

(continued on next page)
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Table A.1 (continued)

Design variables BCS G;
Wen (mm) Wine(mm) 0(%) Tmax("C) Ts (K) Py (mW) Mcp (8)
2.00 4.00 59.69 39.07 1.516 0.2298 53.97 0.4144
2.00 3.46 60.00 38.93 1.499 0.2134 55.87 0.4079
2.00 3.08 60.00 38.77 1.479 0.2219 57.21 0.4056
2.00 2.86 60.00 38.67 1.467 0.2323 57.98 0.4046
Table A.2

BCSs, and closeness coefficients for four-objective optimization using the entropy-weighted TOPSIS method, with objective weights of 0.381 for Tmax, 0.314 for T,
0.156 for Py, and 0.149 for Mcp.

Design variables BCS G;
Wen (mm) Wint(mm) 0(°) Tmax(°C) Ts (K) Py (mW) Mcp (8)
5.00 2.64 30.00 35.47 0.937 0.8270 46.33 0.8688
4.92 2.29 30.00 35.34 0.930 1.0127 47.31 0.8641
5.00 3.09 30.00 35.68 0.956 0.6720 45.46 0.8510
5.00 1.96 53.10 35.50 0.924 0.9940 47.63 0.8502
5.00 1.64 43.61 35.28 0.917 1.2954 48.24 0.8443
5.00 2.73 39.57 35.78 0.953 0.7767 46.14 0.8316
5.00 3.46 30.00 35.86 0.973 0.6038 44.76 0.8269
4.99 1.64 30.00 35.13 0.913 1.6450 48.28 0.8265
4.89 1.30 51.36 35.21 0.908 1.5298 49.41 0.8247
5.00 3.63 30.00 35.95 0.981 0.5859 44.43 0.8139
5.00 1.00 53.10 35.02 0.891 1.9531 49.48 0.8030
5.00 1.00 39.57 34.98 0.918 2.1111 49.48 0.7898
4.99 1.30 30.00 35.07 0.913 2.1936 48.93 0.7851
5.00 1.19 30.00 35.06 0.914 2.4009 49.12 0.7702
4.89 3.70 36.63 36.23 0.995 0.5766 44.68 0.7699
5.00 3.92 51.35 36.30 0.990 0.5712 43.87 0.7641
5.00 1.14 30.00 35.05 0.915 2.4928 49.21 0.7636
5.00 1.04 30.00 35.05 0.916 2.6981 49.40 0.7491
5.00 4.82 52.41 36.42 1.006 0.5407 42.13 0.7465
5.00 1.01 30.00 35.05 0.917 2.7669 49.46 0.7443
5.00 5.00 30.00 36.49 1.022 0.5347 41.79 0.7317
4.33 3.80 59.55 36.59 1.041 0.4887 46.34 0.7006
4.33 4.28 59.55 36.68 1.051 0.4789 45.25 0.6872
3.90 4.68 51.36 36.87 1.093 0.4216 45.63 0.6453
3.30 4.09 32.24 36.94 1.128 0.4175 49.11 0.6080
2.91 2.24 48.39 36.76 1.142 0.4675 56.07 0.5899
3.30 4.48 32.24 37.11 1.142 0.3937 48.01 0.5867
3.17 3.65 49.90 37.17 1.157 0.3743 50.82 0.5626
3.11 3.58 59.81 37.41 1.182 0.3477 51.24 0.5225
2.90 5.00 36.64 37.55 1.214 0.3390 47.72 0.5055
2.97 3.58 59.81 37.57 1.211 0.3301 51.77 0.4906
2.97 4.98 59.19 37.77 1.245 0.3186 47.57 0.4705
2.60 3.58 46.79 37.71 1.266 0.3180 53.17 0.4456
2.60 3.32 60.00 37.95 1.295 0.2912 53.99 0.4073
2.35 4.91 30.00 38.17 1.351 0.2756 49.67 0.3804
2.34 3.58 46.79 38.06 1.333 0.2891 54.13 0.3800
2.20 1.96 59.78 37.83 1.344 0.3153 60.24 0.3785
2.37 3.35 60.00 38.29 1.366 0.2600 54.81 0.3452
2.37 4.32 59.28 38.51 1.390 0.2735 51.58 0.3304
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