

This is a repository copy of Land-use change causes rapid carbon losses in Congo Basin peatlands across climate scenarios, whereas the effects of climate change alone are uncertain.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/id/eprint/233102/

Version: Accepted Version

Article:

Young, D. orcid.org/0000-0002-6519-5473, Baird, A., Morris, P. et al. (21 more authors) (Accepted: 2025) Land-use change causes rapid carbon losses in Congo Basin peatlands across climate scenarios, whereas the effects of climate change alone are uncertain. Philosophical Transactions of the Royal Society B: Biological Sciences. ISSN: 0962-8436 (In Press)

https://doi.org/10.1098/rtsb.2024.0486

This is an author produced version of an article accepted for publication in Philosophical Transactions of the Royal Society B: Biological Sciences, made available under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

- 1 Land-use change causes rapid carbon losses in Congo Basin
- 2 peatlands across climate scenarios, whereas the effects of
- 3 climate change alone are uncertain.

5 Philosophical Transactions B

- 6 Dylan M. Young. School of Geography, University of Leeds, Leeds, LS2 9JT, UK
- 7 Andy J. Baird. School of Geography, University of Leeds, Leeds, LS2 9JT, UK
- 8 Paul J. Morris. School of Geography, University of Leeds, Leeds, LS2 9JT, UK
- 9 Eleanor Burke. Met Office Hadley Centre, Exeter, EX1 3PB, UK
- 10 Chris Smith. Department of Water & Climate, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- 11 Jorge Ramirez. Department of Geography, University of Exeter, Exeter, EX4 4QE, UK
- 12 Greta C. Dargie. School of Geography, University of Leeds, Leeds, LS2 9JT, UK
- 13 Arnoud Boom. School of Geography, Geology & the Environment, University of Leicester,
- 14 Leicester, LE1 7RH, UK
- Richard Betts. Global Systems Institute, University of Exeter, Exeter, EX4 4QE, UK; Met Office
- 16 Hadley Centre, Exeter, EX1 3PB, UK
- 17 Yannick E. Bocko. Faculté des Sciences et Techniques, Université Marien Ngouabi, BP : 69
- 18 Brazzaville, Republic of the Congo
- 19 Peter Cook. Global Systems Institute, University of Exeter, Exeter, EX4 4QE, UK
- 20 Dafydd E. Crabtree. UK Center for Ecology & Hydrology, Bangor, UK
- 21 Bart Crezee. School of Geography, University of Leeds, Leeds, UK
- 22 Yannick Garcin. CNRS, IRD, INRAE, CEREGE, Aix Marseille University, Aix-en-Provence, France
- 23 Selena Georgiou. School of GeoSciences, University of Edinburgh, Edinburgh, UK.
- 24 Nicholas T. Girkin. School of Water, Energy and Environment, Cranfield University, UK
- 25 Pauline Gulliver. NEIF Radiocarbon Laboratory, Scottish Universities Environmental Research
- 26 Centre, University of Glasgow, Glasgow, UK
- 27 Donna Hawthorne. School of Geography and Sustainable Development, University of St
- 28 Andrews, St Andrews UK
- 29 Ian T. Lawson. School of Geography and Sustainable Development, University of St Andrews, St
- 30 Andrews, UK
- 31 Susan E. Page School of Geography, Geology & the Environment, University of Leicester,
- 32 Leicester, UK

- 33 Enno Schefuß. MARUM—Center for Marine Environmental Sciences, University of Bremen,
- 34 Bremen, Germany
- 35 Matteo Sciumbata. Section Systems Ecology, Amsterdam Institute for Life and Environment (A-
- 36 LIFE), Vrije Universiteit, Amsterdam, The Netherlands
- 37 Sofie Sjögersten. School of Biosciences, University of Nottingham, UK
- 38 Suspense A. Ifo. École Normale Supérieure, Université Marien Ngouabi, Brazzaville, Republic of
- 39 the Congo
- 40 Simon L. Lewis. School of Geography, University of Leeds, Leeds, UK; Department of Geography,
- 41 University College London, UK

Abstract

One of Earth's most extensive tropical peatland complexes is in the central Congo Basin. Past climatic drying caused the widespread loss of a large proportion of the peat carbon stock, indicating its vulnerability to climate change. However, the additional effect caused by the interaction of climate change with land-use change – particularly drainage – on peat carbon stores has not been assessed. Here we simulate the effects of climate and land-use change on Congo Basin peatlands. Our model is driven by an ensemble of 10 climate models to assess changes in peat carbon stocks at global warming levels 1.5, 2, 3, and 4°C. We find that the fate of the peatland carbon store is highly uncertain when we simulate climate change alone (warming level 3°C gives a median change in peat thickness of 0.04 m; range of ~-5.0 m to +0.3 m). By contrast, simulations that couple land-use change with 21st century climate change are unequivocal: the Congo Basin peatlands will become significant emitters of carbon. When the warming level is 3°C, the change in peat thickness of a drained peatland is projected to be -2.6 m; range of ~-5.0 m to -2.1m. Our results emphasize the need to protect Congo Basin peatlands from widespread land-use change.

1. Introduction

Carbon-rich peat has accumulated in tropical swamp forests since well before the Last Glacial Maximum (1,2). Tropical peatlands have previously cooled global climate over multi-millennial timescales by drawing carbon down slowly but persistently from the atmosphere (3). However, they can also lose carbon rapidly, through decomposition and fire, when water tables fall below the peat surface for an extended period due to land-use change (4) or climatic drying (5). These impacts have already been observed in the large-scale emission of peat carbon from the tropical peatlands of SE Asia (6,7).

One of the world's largest tropical peatland complex is in the central Congo Basin (8,9) (Figure 1a). The complex spans 167,600 km² and stores ~29 Pg of carbon in both interfluvial (rain-fed) and river-influenced peatlands (10). Net carbon gain or loss in these peatlands depend primarily on peat surface wetness (11). Although litter production in Congo Basin swamp forests appears to be insensitive to surface wetness (11), the rate of peat decomposition and its products (including the greenhouse gasses carbon dioxide (CO₂) and methane) depend on water-table position. The peat carbon pool, comprising leaves, wood and roots, contains a large proportion of recalcitrant material that decays very slowly when waterlogged, mainly producing methane

emissions that are relatively short-lived in the atmosphere, but much more quickly when
exposed to oxic conditions above the water table(12–14) generating significant amounts of CO₂
(15)

In the Congo Basin, interfluvial (rain-fed) peatlands account for ~9.3 Pg of the total peat complex carbon stock (10), occupying a characteristic hydrogeomorphic setting. They form in broad, shallow basins that commonly stretch for tens of km between major rivers (10,16). Thus, peat surface wetness in this peatland type likely depends primarily on the difference between water inputs from rainfall and losses through evapotranspiration. The huge lateral extent of interfluvial peatlands, and the low hydraulic gradients between the shallowly domed centre and its margins, mean that subsurface drainage is likely to be a negligible component of the water budget at the scale of the entire peat dome (see Section S1 in 11 for detail). The peatlands receive less rainfall than other tropical peatlands, with mean annual rainfall of only ~1,700 mm, compared with ~3,000 mm and ~2,900 mm in Amazonian and SE Asian tropical peatlands respectively (17). The dependence of interfluvial peatlands upon rainfall, coupled with the relatively dry climate appears to leave them particularly vulnerable to climatic drying (5).

The combined magnitude of the central Congo Basin's peat carbon store and its sensitivity to surface wetness means that it is important to understand how future climates and possible land-use change are likely to affect its stability. The effect of future climate change can be explored using ecosystem models driven with data from Earth system models (ESMs) – models that couple land, ocean and atmosphere with biogeochemical cycles – such as those used in the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (18). The most recent group of ESMs from the Coupled Model Intercomparison Project (CMIP6) (19) are widely used for this purpose. The ESMs are in turn driven by human climate forcing scenarios set out by the Shared Socioeconomic Pathways (SSPs) (20). For the Congo Basin, the CMIP6 models predict a wide range of future climates that include both wetter and drier conditions as well as changes in surface air temperature.

Compared with *terra firme* forests in the Congo Basin, and with many peatlands in other parts of the tropics (21,22), the Central Congo Basin peatlands are in a relatively intact state, with very little recorded deforestation or intentional drainage. However, large-scale drainage of peatlands elsewhere in the tropics has caused severe environmental damage, particularly in SE Asia (7,23,24). Drainage for road building, oil exploration and conversion to oil palm and wood pulp

plantations (25) steepens local hydraulic gradients, leading to greatly increased subsurface water loss, drying of the peat surface, and ultimately to large losses of peat carbon through aerobic decomposition and wildfire. Currently no large-scale land-use changes are planned in the Congo Basin peat swamp forests. However, oil exploration blocks have been approved (26,27) and oil palm concessions have previously been granted (17) with the prospect of further expansion remaining an ongoing concern (28,29). Concessions for industrial logging, mining, and oil palm are estimated to include ~7.4 Pg C (26%) of peat carbon stock (10, Extended Data Fig. 10). Any future implementation of schemes like those seen in SE Asia peatlands would likely have severe consequences for the stability of Congolese peat carbon store and would compound the effect of any climatic drying (17).

Here we use an ecosystem model, DigiBog_Congo (11), to explore the impact of a range of climate-change projections on peat carbon accumulation between 1950 and 2100 in an intact interfluvial peatland previously studied by others (5,8,16,30). Our analysis is based on the four global warming levels (hereafter, warming levels) of 1.5°C, 2°C, 3°C and 4°C above early-industrial (1850–1900) levels. We use rainfall, potential evapotranspiration and air temperature data from 10 of the CMIP6 climate models (19), each within SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, to drive our DigiBog_Congo simulations. We also combine the climate-change scenarios with land-use change, specifically the digging of drainage ditches and replacement of native vegetation with oil palm plantation, to simulate its additional consequences for peat carbon stocks.

2. Methods

2.1 A model of peat accumulation in the Congo Basin

DigiBog_Congo was developed as a model of interfluvial (rain-fed) peatlands in the Congo Basin and has successfully simulated long-term trends in peatland net carbon balance over 20,000 years (11). The model was structured and primarily parameterised using two years of empirical data (litterfall, decomposition, and water-table depth) collected from two sites within an interfluvial peatland. Here we use the model in 1-, 2- and 3-D spatial configurations (Figure 1): in all cases the peatland is represented as columns of peat. In 1-D there is a single square-sectioned column representing the centre of the interfluvial shallow-domed peatland, whereas in 2- or 3-D multiple contiguous columns are used to represent part of a peatland so that we can

simulate subsurface water flow between ditches or canals (31,32) (Figure 1).

134

158

159

160

161

162

163

135 Columns of peat are made up of layers. A simulation starts with a single layer in each column: a 136 new layer is added to each column during each year of a simulation. In the model, columns of 137 peat gain mass from the annual addition of litter from hardwood and palm plant functional types 138 (PFTs). At the surface, an aboveground litter layer is added that comprises leaf and wood 139 fractions from each PFT. A third fraction, roots, is added to previously accumulated layers below 140 the surface of the peat column. Columns lose mass because of peat decay. Each litter fraction is 141 subdivided into two pools of material – labile and recalcitrant – that can decay at different rates 142 depending on whether the layer (or part of it) is above or below the water table. Peat decay also 143 depends on air temperature and the decay parameters for each pool of material (Supplementary 144 Material, Table S1). Therefore, a column accumulates (gains height) or loses peat (thins) 145 depending on the difference between litter inputs and losses from the decay of all layers. These 146 processes allow peat accumulation to vary vertically within (1-D) and horizontally between 147 columns (2- or 3-D). The model calculates just peat decay; it does not partition decay into 148 soluble and gaseous products. This partitioning can be important when considering radiative 149 forcing because the global warming potential of the carbon gases CO2 and methane, for 150 example, are very different. 151 In all configurations, water is added as positive net rainfall (precipitation - evapotranspiration > 152 0) or removed as negative net rainfall (precipitation – evapotranspiration < 0) from the simulated 153 peat. In previous versions of DigiBog, the peatland is recharged with an input time series of net 154 rainfall. In the version of the model used here, we now input separate time series for rainfall and 155 potential evapotranspiration (PET) and calculate net rainfall as rainfall minus AET (actual 156 evapotranspiration), with AET depending on PET and the water-table depth in each peat column 157

peat. In previous versions of DigiBog, the peatland is recharged with an input time series of net rainfall. In the version of the model used here, we now input separate time series for rainfall and potential evapotranspiration (PET) and calculate net rainfall as rainfall minus AET (actual evapotranspiration), with AET depending on PET and the water-table depth in each peat column (33). As the water table becomes deeper, AET decreases according to Equation 1, where WTD is the water-table depth in cm (positive values are below the peat surface), extinct is the extinction depth in cm where AET = 0, and n is a parameter controlling the shape of the curve. This function does not affect the results presented in (11) or the simulations shown here when water tables are shallow or reside above the ground surface. However, it is needed for situations where the water table is very deep as can be the case with ditch drainage. The parameters used in our simulations are in the Supplementary Material (Tables S1-S3).

$$AET = PET \cdot \begin{cases} 1 & \text{if } WTD \le 0 \\ 1 - \left(\frac{WTD}{extinct}\right)^n & \text{if } 0 < WTD < extinct} \\ 0 & \text{if } WTD \ge extinct} \end{cases}$$
 (Eq. 1)

The 1-D model also loses water because of overland flow (depending on the depth of surface water and height of the peatland). Where steeper hydraulic gradients are created near bounding ditches or other structures, subsurface flow and losses become an important component of the peatland's water budget (34,35) and need to be simulated. A key property of peat that affects subsurface flow is saturated hydraulic conductivity (K_{sat}) (36–38). In the 2- and 3-D simulations of land-use change, K_{sat} depends on the amount of decay the peat within a layer has undergone (39). K_{sat} is therefore a dynamic property of peat that can vary within and between columns. In all 2- and 3-D implementations of DigiBog, subsurface flow between two columns is calculated according to the K_{sat} of the columns and the water-table gradient between them (See 31,32). The rise or fall of the water table in response to water flow depends on drainable porosity, which in our model remains constant. Thus, the height of water within a column can vary over time.

We used currently unpublished observations of K_{sat} from Congo Basin peatlands to parameterise the function in our model, which gave a range of K_{sat} of 0.1 cm s⁻¹ for freshly added plant litter to

2.2 Climate projections

~9 x 10⁻⁵ cm s⁻¹ for highly decomposed peat.

We simulated changes in peat thickness from 1950 to 2100 using a cohort of 10 CMIP6 Earth System Models (ESMs) under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios. To assess warming impacts, we identified when each ESM reached warming levels of 1.5°C, 2°C, 3°C, and 4°C above pre-industrial (1850-1900) levels. Due to inter-model differences in climate sensitivity and forcing (40–42), ESMs reached these thresholds at different times. Therefore, models that did not reach higher warming levels were excluded from those analyses. Figures 2 and 3 reflect these scenario- and model-specific timeframes.

Nine of the 10 models were selected to approximately reproduce the spread of long-term global temperature increase that takes place following a doubling of atmospheric CO₂ concentration (known as the equilibrium climate sensitivity – ECS) assessed in the IPCC Sixth Assessment Report (very likely range 2–5°C) (43,44). We also sought to maintain a degree of independence by selecting models that did not share too many system components (45). A similar approach was

191 taken by (46) who selected 12 models. However, three of the models used in (46) did not provide 192 the output data needed to calculate potential evapotranspiration and could not, therefore, be 193 used in our study. To create our 10-model ensemble, we added the Earth system model UKESM-194 1.0-LL. Although known as a "hot model" (ECS > 5°C) that may overestimate climate impacts 195 (47), (48) argue that excluding such models from impact analyses is not justified because 196 important regional impacts that policymakers need to be aware of are not correlated with ECS. 197 For each of the CMIP6 models and the SSP5-8.5 scenario we derived the relationship between 198 global mean surface temperature change and the change in the local air temperature, 199 precipitation and potential evapotranspiration for the Congo Basin. This is commonly called 200 pattern scaling and assumes that the change in the local meteorology is linear with global mean 201 temperature change (49). This relationship was created independently for each month of the 202 year. The regional changes were superimposed on the local climatology and temporally 203 downscaled using the weather generator of (50) to create simulated hourly meteorological time 204 series. We used these outputs to create monthly time series for rainfall and potential 205 evapotranspiration (we use annual air temperature inputs in DigiBog_Congo) for our simulations. 206 Intra-annual noise was added following the method outlined in the supplementary material 207 (Section S4). 208 CO₂ concentrations were obtained from (51) for 1950-2014, and for 2015-2100 we used the CO₂ 209 concentrations from the underlying SSP scenario (52) in each model. This provides some time 210 diversity in the driving data that we use since each model reaches the warming levels at different 211 times in the future (Supplementary Material, Table S4).

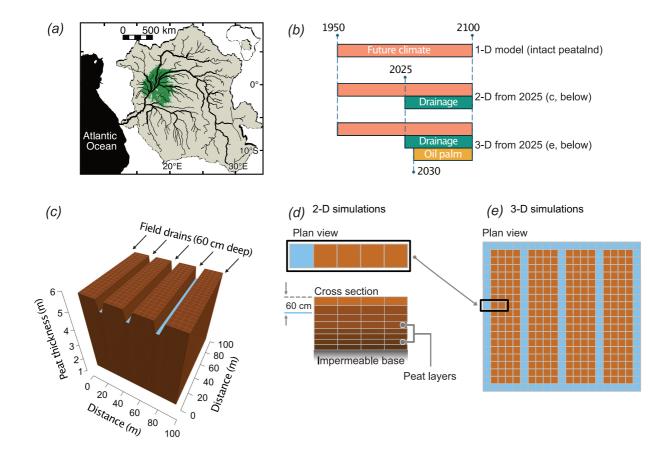
2.3 Simulations and model parameters

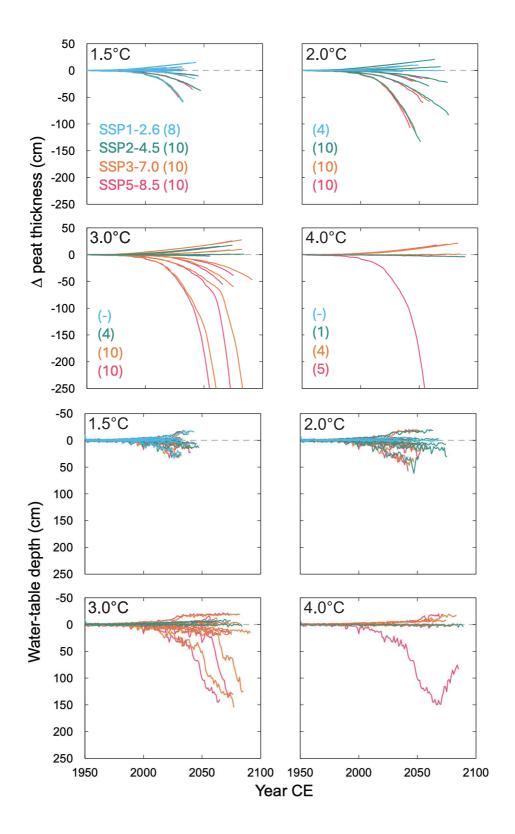
212

213 We used the parameters reported in (11) to reproduce a 1-D spin-up of the virtual peatland from 214 19,600 to 0 cal. yr BP (1950 CE). To simulate future changes in peat accumulation from 1950 to 215 2100, we ran our spun-up peatland forward in time. The parameters for the simulations reported 216 here are given in the Supplementary Material (Tables S1-S3). These tables specify those 217 parameters that are well constrained by observations and those that were obtained by sensitivity 218 testing. The results reported in Section 3 show the range of uncertainty due to climate model projections. They do not include uncertainty caused by the configuration or parameterisation of 219 220 our peatland model, which we currently cannot quantify. We discuss the implications of these 221 choices in Section 4.3.

We ran three sets of simulations (Figure 1b). We first simulated in 1-D the effect of climate change alone for each member of our model ensemble in each SSP (40 simulations). As in Young et al. (2023), the 1-D simulations represent the centre of the intact peatland dome and it is not necessary to simulate subsurface flow (11). Next, we simulated the effect of drainage and climate change. Land-use change on tropical peatlands usually includes drainage (4), where a peatland is divided into a grid of fields bounded by ditches (Figure 1), which makes it essential to simulate subsurface flow (see Section 2.1). We chose to simulate this lateral subsurface water movement in 2-D. In this scenario, a simulation of one field is a simulation of all the others; hence, it is not necessary to simulate a whole peatland. For the 2-D simulations, we simulated a transect between parallel ditches from the central point of the transect to the ditch at the edge; for this we used a 2 m x 20 m series of columns Figure 1b,d). We set the ditch water level to a constant value of 60 cm below the ground surface (53,54); this setting also allows water to flow from the ditch into adjacent peat if the within-peat water table falls below that of the ditch. The 2-D simulations were from 2025 to 2100 CE for each SSP (40 simulations).

Thirdly, we simulated an oil palm plantation field in 3-D starting from 2030. For these simulations, our model was set up as a 100 m x 100 m field divided into four areas separated by ditch drains with constant water levels of 60 cm below the ground surface. Each of the four smaller parcels measured 90 m x 20 m (Figure 1b,c,e). Although we could have also simulated the effect of oil palm on peat thickness as a 2-D transect, we chose to run our model in 3-D for visualisation purposes. For this group of model runs we simulated SSP2-4.5 and SSP3-7.0 (20 model runs). We chose SSP2-4.5 (described by the IPCC as "Middle of the Road") because it is the pathway that most closely resembles the policies of today's societies (55), which suggests that global mean surface temperature will be >2.5°C above the pre-industrial average by 2100. SSP3-7.0 represents our high emissions scenario, known as "A Rocky Road", meaning it will be difficult for societies to mitigate and adapt to climate change as Earth's surface temperature approaches +4°C above the pre-industrial level by 2100.




Figure 1. Model set-up. (a) Location of Congo Basin peatland complex. (b) Simulated timelines for the three types of future peatland impacts reported here and the associated climate inputs and land uses. (c) Cartoon of 100 m x 100 m block of peat for 3-D simulations divided into four parcels each measuring 20 m x 90 m with ditch drains in between parcels. (d) 2-D simulations, which uses a transect of peat (brown squares) from the centre of one of the field parcels to a ditch (blue square) at the block margin. The ditch water level is maintained at 60 cm below the peat surface. Subsurface flow occurs in the direction of the central point of the parcel to the bounding ditch, outlined in black in (e). The cross section shows peat columns made up of layers. (e) Parcels of peat forming the 3-D block shown in (c): colour of squares are the same as (d). The ditch water levels are again set 60 cm below the peat surface. Water within the peat can flow between abutting peat columns and the bounding ditches. Map shown in (a) is from (5).

In these simulations we did not add any biomass from native tree types, and we assumed oil palm would produce more biomass than the native vegetation (~12 Mg ha⁻¹ yr⁻¹, (11)), with plant litter inputs of 40 Mg ha⁻¹ yr⁻¹ (56,57). We assumed 20 Mg ha⁻¹ of biomass was removed each year as harvest, the rest being added to the above- and belowground peatland in the same way as the native palm (supplementary material, Tables S1 and S2). Our simulated oil palm also decays

using the same parameters as native palm. We conservatively assumed that oil palm would reach maximum production in year one rather than several years (about five) after planting, effectively overestimating the plant litter inputs from oil palm and thereby offsetting some peat carbon losses. In practice, oil palm is replaced every 25 to 30 years, each crop taking time to reach maximum production (56,58). However, we assumed that a single crop would last for 70 years at maximum productivity thereby increasing litter input to the peatland in comparison with the same period with native palm inputs. As with our drainage simulation, ditches were simulated using a ditch water level maintained at 60 cm below ground level (Figure 1).

3. Results

For the results of climate change only (1-D simulations) and climate change with drainage (2-D simulations) we report the change in peat thickness of each simulation up to and including the year when each warming level is reached (Figures 2 and 3). We also calculated the overall net carbon balance (NCB) for each warming level (peat bulk density of 0.17 g cm⁻³ and carbon content of peat of 0.5). Because the year each climate model reaches a warming level can be different (supplementary material, Table S4) the results shown in Figures 2 and 3 end at different times. For the oil palm simulations under SSP2-4.5 and SSP3-7.0, we first report the median change in peat thickness and NCB up to 2100 for each pathway (Figure 4 shows the results for SSP2-4.5). To summarise the effect of land-use change, we then report the mean change in peat thickness of all simulations under SSP2-4.5 and SSP3-7.0 (the average of the two pathways) at each warming level (Figure 5).

Figure 2. Modelled effects of future climate on change of peat thickness relative to the 1950 simulation (top four panels) and corresponding water-table depth (bottom four panels). Each panel shows the simulations of each SSP for four warming levels. Each line is a DigiBog_Congo simulation driven by the climate projections from a single CMIP6 model; the colours correspond to the SSP (shown in the panel legend of warming level 1.5°C). Numbers in parentheses show

292 the total number of model runs (out of ten) that reach the respective warming level for each SSP.

Only model runs that reach the warming level are shown in the panels.

3.1 Simulated effect of climate change on peat accumulation

295 Change in peat thickness under individual simulations of 21st Century climate change is highly

uncertain (Figure 2). However, the median change in simulated peat thickness (where negative

values are a reduction in peat thickness) from 1950 (peat thickness of 590 cm) is always

indistinguishable from no change. For warming level 1.5°C it is -0.5 cm (range -58.8 to 14.7 cm),

for warming level 2°C it is -0.1 cm (range -132.6 to 20.5 cm), for warming level 3°C it is +0.4 cm (-

503.9 to 27.6 cm), and for warming level 4°C it is +1.0 cm (-570.8 to 21.6 cm). The median NCB

for warming levels 1.5°C, 2°C, 3°C, and 4°C , are -5.2, -1.2, +2.9, and +6.1 g m^{-2} yr⁻¹ respectively.

Irrespective of the emission pathway, four of the 10 CMIP6 models predicted an increase in peat

thickness at warming level 1.5°C, five predicted an increase at warming level 2°C and warming

level 3°C, and three of the five of the CMIP6 models to reach warming level 4°C predicted an

increase in peat thickness. When emission pathways are considered, four of the ten models

show an increase peat thickness for SSP1-2.6 (at warming levels 1.5°C and 2°C). Five models

show an increase in peat thickness for SSP2-4.5 (at warming levels 1.5°C, 2°C and 3°C). Five

models show an increase in peat thickness for SSP3.70 and SSP5-8.5 (at warming levels 1.5°C,

309 2°C, 3°C, and 4°C).

293

294

296

297

298

299

300

301

302

303

304

305

306

307

308

310

311

312

313

314

315

317

318

320

321

3.2 Simulated effect of climate and land-use change on peat thickness

The result of peat drainage is unequivocal (Figure 3). Simulations of ditch drainage using the 2-D

version of DigiBog_Congo (driven by all climate models reaching 1.5°C, 2°C, 3°C and 4°C of

warming in all SSPs) rapidly lost peat. The loss of peat increased substantially with increased

warming. The median change in peat thickness from 1950 (590 cm) was -46.5 cm (range -154.0

cm to 5.2 cm) for warming level 1.5°C, -126.6 cm (range -330.3 to -26.9 cm) for warming level

316 2°C, -246.1 cm (range -419.0 to -130.6 cm) for warming level 3°C, and -264.9 cm (range -504.9 to

-206.2 cm) for warming level 4°C. The median NCBs for warming levels 1.5°C, 2°C, 3°C, and 4°C,

are -469, -1087, -1730, and -1835 g m⁻² yr⁻¹ respectively.

319 Our 3-D simulations of oil palm production, including ditch drainage, for SSP2-4.5 and SSP3-7.0

showed a median change in peat thickness of -397.5 cm (range -407.6 to -391.4 cm) and -408.4

cm (range -417.6 to -403.2 cm) by 2100 respectively. The median NCB for both pathways over the

same period is -2252.5 and -2314.2 g m⁻² yr⁻¹ respectively. Figure 4 shows the change in peat surface for four years (2030, 2050, 2075, 2099) of the SSP2-4.5 simulation. As time progresses the peat surface next to the ditches (light brown) thins quicker than the surface at the centre of the blocks (dark brown) producing a slightly domed shape. The mean change in peat thickness across both SSP2-4.5 and SSP3-7.0 (the average of these two pathways) is -57.8 cm for warming level +1.5°C, -148.7 cm for warming level +2°C, -251.7 cm for warming level +3°C, and -315.3 cm for warming level +4°C.

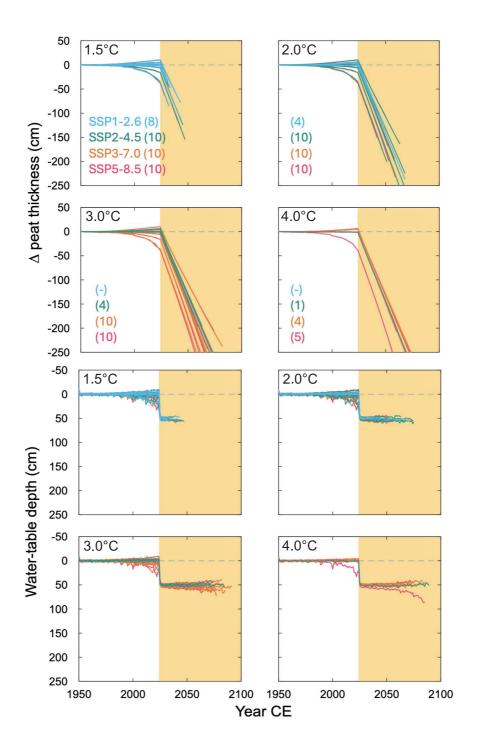
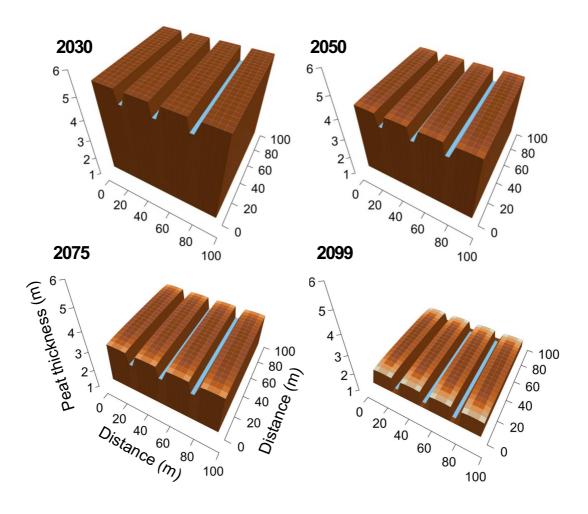



Figure 3. Effect of simulated drainage (from 2025, pale background shading) and climate change on change in peat thickness relative to the 1950 simulation (top four panels) and water-table depth (bottom four panels). Each panel shows the simulations in each SSP for four warming levels. Each line is a DigiBog_Congo simulation driven by the climate projections from a single CMIP6 model; the colours correspond to the SSP (shown in the panel legend of warming level 1.5°C). Numbers in parentheses show the total number of model runs (out of ten) that reach the respective warming level for each SSP. Only model runs that reach the warming level are shown. Ditch water levels were maintained at 60 cm below the peat surface for the simulation.

Figure 4. Simulated change in peat surface of a block of peat under oil palm from 2030 to the end of 2099 under SSP2-4.5. The surface is the mean surface from 10 simulations driven by the climate models in our CMIP6 ensemble. Lighter brown colours indicate a change in peat thickness relative to the central columns of each block (shown in dark brown) – i.e., lighter columns are thinner. Simulations ran from 2025 to the end of 2099. The peat block was drained from 2025 to the end of 2029 before oil palm was simulated. Each block is drained on all four

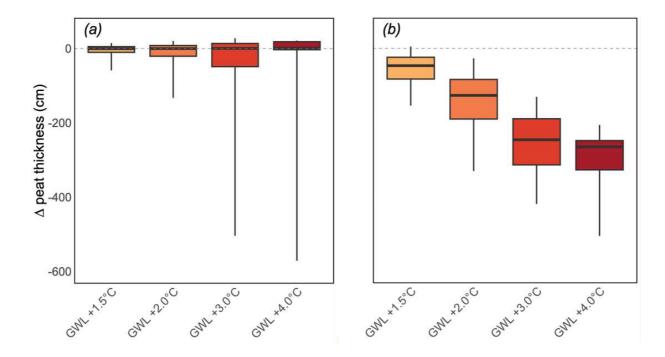
sides. Water levels in ditches are maintained at 60 cm below the peat surface throughout the simulation.

4. Discussion

345

346

347


373

374

4.1 Effect of global warming on peatlands protected from land-use change 348 349 Our palaeo simulations (~20,000 BP to 0 BP) of the same location as used here (11) showed that 350 Congo Basin peatlands are highly sensitive to surface wetness. Therefore, we expect drier 351 futures to increase peat losses. We also expect the opposite in wet conditions: peat thickness 352 increases when the annual average water table is above or close to the peat surface and plant 353 inputs outweigh peat decay. The results reported here match these broad expectations, but 354 simulated losses of peat take place over a very short timescale (decades) compared with a 355 previous dry phase that extended over millennia (5,11,30). 356 Overall, our results show the effect of future climate change alone is highly uncertain. The 357 median result for all pathways is close to no change in peat thickness, and therefore no change 358 in NCB. Some simulations driven by climate models that predict an increase in rainfall show 359 gains in peat thickness of up to ~0.3 m, whilst others driven with drier climates show large losses 360 of peat (>5 m) as Earth's climate warms (Figures 2 and 5a). These losses can account for most of the peat accumulated prior to 1950. Since DigiBog_Congo is deterministic, these uncertainties 361 362 are driven by the different rainfall regimes predicted by the climate models we use for producing 363 the driving data, making it imperative to improve the understanding of future rainfall in the Congo 364 Basin. 365 Of the climate-only simulations where there is a reduction in peat thickness, losses increase as 366 the mean global surface temperature rises (shown as warming levels; Figure 5a), suggesting that 367 under a drying future in equatorial Africa, peat decay will outweigh increases in plant 368 productivity due to rises in atmospheric CO₂ concentration. Conversely, simulated peat tends to 369 thicken during wetter, warmer futures. This is because although increases in temperature drive 370 increases in peat decomposition, the peat surface is largely saturated, and decay takes place 371 slowly under anoxic conditions. Our simulations of the palaeoclimate are validated with 372 observations from peat cores and from field experiments (11) and strongly suggest that

reductions in the Congo Basin peat carbon stock will occur much more slowly, if at all, if the

peatland water table is close to or above the peat surface for prolonged periods of time.

Figure 5. Comparison of the effect of (a) climate change on peat thickness with (b), the combined effect of climate change and drainage on peat thickness for four warming levels. Box plots show the median and interquartile range (whiskers represent the full range of results). Data for each box and whiskers are from the CMIP6 model ensemble used to simulate the effect of SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 on peat accumulation.

Our results indicate that combining land use with 21st Century climate change will cause a rapid, catastrophic loss of peat (Figures 3 and 5b). Congo Basin interfluvial (rain-fed) peatlands store ~9.3 PgC in peat (10). Assuming the proportional change in peat thickness can be applied uniformly across this store, the median change in carbon stocks of our simulations of climate change combined with ditch drainage for warming levels 1.5°C, 2°C, 3°C, and 4°C are -1.1 (-11.8%), -3.1 (-33.3 %), -6.1 (-65.6%) and -6.5 PgC (-69.9%) respectively. From the perspective of Earth's current warming pathway (SSP2-4.5) (55), our results suggest a first order estimate of the impact of land use could cause the loss of ~6.2 PgC by 2100.

Whilst our simulations are a simplification of the natural system, their results are likely to be conservative. We chose to maintain a ditch-water level of 60 cm below the peat surface throughout the land use part of the simulations (Figure 3). This assumes water is available to keep ditches topped up to this level during dry periods, when it is common for tropical peatland ditches to dry out partially or completely during the dry season(s). In effect, our simulations

assume subirrigation of the peat in dry seasons, which reduces losses caused by high rates of oxic decay.

We assumed maximum oil palm production began immediately after plantation creation (2030), although actual production takes several years to peak and declines toward rotation end (56).

We also assumed a single crop rather than the likely two or more rotations within this timeframe.

These assumptions result in conservative peat loss estimates.

Whilst modified peatlands have been shown to be vulnerable to fire (59,60), we do not explore its effect in our simulations. Fire in converted SE Asian peatlands has caused huge losses of peat carbon and caused thousands of deaths from air pollution (61–63). Peatland fires in the Congo Basin should be expected where drainage occurs, but even discounting the additional loss of peat from fire and the negative impacts of air pollution on human health, the effects of land use change on Congo Basin peatlands will cause rapid peat losses (Figure 5b) that will contribute to an increase in the rate of global mean surface temperature rise.

4.3 Model performance.

As reported in (11), our model skilfully simulates the past NCB of the site reported here (including the effects of increased decay caused by an extended droughty period), suggesting the mechanisms of peat accumulation and loss are represented in sufficient detail. In that paper, we note that, whilst we were able to constrain many key model parameters using field observations (such as litter input and peat decay), empirical evidence is not available for all of them (also see Table S1). We did not alter any parameter we had field measurements for. To understand the impact of our parameter choices, we tested the sensitivity of our model by comparing simulated age-depth curves with one from a peat core taken nearby (See Section 4.2 in 11).

We further assessed the performance of our model using the future annual average water-table depth (Figures 2 and 3) from our simulations of climate change alone. Water-table depths of several metres below observed values would cause excessive peat decay within a short period and could not be justified. We find that water-table depths for the simulations to warming level 1.5°C compare well with observed values (64) (Figure 2), and that simulated annual average water tables do not exceed 154 cm (Figure 2; warming level 3°C). Water-table depths of ~150 cm were observed at a site in the Republic of the Congo near the Sangha River in October 2024 (Greta Dargie, pers. comm.) The deepest monthly value is for the mri_esm2_0 model within

SSP3-7.0 and is comparable with observations from other tropical peatlands during extended dry periods or drainage (65,66).

Nevertheless, it is important to recognise that our results do not include the range of uncertainties caused by parameter selection or how certain processes are incorporated into our model, which are currently unknown. Efforts to improve our understanding of Congo Basin peatlands began relatively recently (5,8,10,16,30,64,67,68). The limited data to constrain some of our model parameters or processes not only reflects our current state of knowledge but also highlights where future laboratory experiments and field campaigns should be targeted. Despite these knowledge gaps, our simulations provide important insights into the different impact of climate change and the combined impact of climate and land-use change on Congo Basin peat stocks.

Under most combinations of our 10-climate model ensemble and SSP scenarios, our

5. Conclusion

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

simulations suggest relatively small changes in future peat accumulation in the currently intact rain-fed interfluvial peatlands of the central Congo Basin. Earth's mean surface air temperature is currently following the pathway described by SSP2-4.5, which implies 2.5 to 3°C of warming above the pre-industrial average by 2100. Whilst our results indicate the effect of this warming is uncertain, some of our simulations, driven by wetter climate model projections for the region, indicate small increases in peat thickness, while those driven by drier climate model projections indicate significant peat losses. This underscores the urgent need for investment in understanding rainfall in the Congo Basin to ascertain if the region is more likely to become wetter or drier. However, under any future climate scenario large-scale land-use change that causes peatland water tables to remain below the surface for prolonged periods of time – such as drainage for agricultural conversion, oil drilling, pulp wood production or road building – will result in large, rapid losses of peat carbon, causing a positive feedback to global warming. The interactive effect of climate change and large-scale land-use change on peat accumulation is likely to have disastrous and irreversible consequences for Congolese peat carbon stocks and CO₂ emissions. As such, protecting the central Congo Basin's peatlands from large-scale drainage and other

modifications should be of the highest priority for regional and international policymakers.

456 References

- 1. Cole LES, Åkesson CM, Hapsari KA, Hawthorne D, Roucoux KH, Girkin NT, et al. Tropical peatlands in the anthropocene: Lessons from the past. Anthropocene. 2022 Mar;37:100324.
- Ruwaimana M, Anshari GZ, Silva LCR, Gavin DG. The oldest extant tropical peatland in the
 world: a major carbon reservoir for at least 47 000 years. Environ Res Lett. 2020 Nov
 1;15(11):114027.
- 462 3. Keddy PA, Fraser LH, Solomeshch AI, Junk WJ, Campbell DR, Arroyo MTK, et al. Wet and
 463 Wonderful: The World's Largest Wetlands Are Conservation Priorities. BioScience. 2009
 464 Jan;59(1):39–51.
- 465 4. Page S, Mishra S, Agus F, Anshari G, Dargie G, Evers S, et al. Anthropogenic impacts on lowland tropical peatland biogeochemistry. Nat Rev Earth Environ. 2022 May 17;3(7):426–43.
- 467 5. Garcin Y, Schefuß E, Dargie GC, Hawthorne D, Lawson IT, Sebag D, et al. Hydroclimatic
 468 vulnerability of peat carbon in the central Congo Basin. Nature [Internet]. 2022 Nov 2 [cited
 469 2022 Nov 3]; Available from: https://www.nature.com/articles/s41586-022-05389-3
- 470 6. Hoyt AM, Chaussard E, Seppalainen SS, Harvey CF. Widespread subsidence and carbon emissions across Southeast Asian peatlands. Nat Geosci. 2020 Jun;13(6):435–40.
- 472 7. Gaveau DLA, Salim MA, Hergoualc'h K, Locatelli B, Sloan S, Wooster M, et al. Major
 473 atmospheric emissions from peat fires in Southeast Asia during non-drought years: evidence
 474 from the 2013 Sumatran fires. Scientific reports. 2014;4, 6112.
- 475 8. Dargie GC, Lewis SL, Lawson IT, Mitchard ETA, Page SE, Bocko YE, et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature. 2017 Feb;542(7639):86–90.
- 478 9. Hastie A, Householder JE, Honorio Coronado EN, Hidalgo Pizango CG, Herrera R, Lähteenoja
 479 O, et al. A new data-driven map predicts substantial undocumented peatland areas in
 480 Amazonia. Environ Res Lett. 2024 Sep 1;19(9):094019.
- 10. Crezee B, Dargie GC, Ewango CEN, Mitchard ETA, Emba B. O, Kanyama T. J, et al. Mapping
 peat thickness and carbon stocks of the central Congo Basin using field data. Nat Geosci.
 2022 Aug;15(8):639–44.
- 484 11. Young DM, Baird AJ, Morris PJ, Dargie GC, Mampouya Wenina YE, Mbemba M, et al.
 485 Simulating carbon accumulation and loss in the central Congo peatlands. Global Change
 486 Biology. 2023 Oct 10;gcb.16966.
- Hoyos-Santillan J, Lomax BH, Large D, Turner BL, Boom A, Lopez OR, et al. Getting to the root of the problem: litter decomposition and peat formation in lowland Neotropical peatlands.
 Biogeochemistry. 2015 Nov;126(1–2):115–29.
- 13. Hodgkins SB, Richardson CJ, Dommain R, Wang H, Glaser PH, Verbeke B, et al. Tropical
 peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nat
 Commun. 2018 Sep 7;9(1):3640.

- 493 14. Wright EL, Black CR, Cheesman AW, Turner BL, Sjögersten S. Impact of simulated changes in
- 494 water table depth on ex situ decomposition of leaf litter from a neotropical peatland.
- 495 Wetlands. 2013 Apr;33(2):217-26.
- 496 15. Kalhori A, Wille C, Gottschalk P, Li Z, Hashemi J, Kemper K, et al. Temporally dynamic carbon
- 497 dioxide and methane emission factors for rewetted peatlands. Commun Earth Environ. 2024
- 498 Feb 1;5(1):62.
- 499 16. Davenport IJ, McNicol I, Mitchard ETA, Dargie G, Suspense I, Milongo B, et al. First evidence
- of peat domes in the Congo Basin using LiDAR from a fixed-wing drone. Remote Sensing.
- 501 2020 Jul 9;12(14):2196.
- 17. Dargie GC, Lawson IT, Rayden TJ, Miles L, Mitchard ETA, Page SE, et al. Congo Basin
- 503 peatlands: threats and conservation priorities. Mitig Adapt Strateg Glob Change. 2019 Apr
- 504 1;24(4):669–86.
- 18. IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to
- the Fith Assessment Report of the Intergovernmental Panel on Climate Change. IPCC,
- 507 Geneva; 2014 p. 151.
- 19. Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, et al. Overview of the Coupled
- Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization.
- 510 Geosci Model Dev. 2016 May 26;9(5):1937–58.
- 511 20. O'Neill BC, Tebaldi C, Van Vuuren DP, Eyring V, Friedlingstein P, Hurtt G, et al. The Scenario
- Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci Model Dev. 2016 Sep
- 513 28;9(9):3461–82.
- 21. Mishra S, Page SE, Cobb AR, Lee JSH, Jovani-Sancho AJ, Sjögersten S, et al. Degradation of
- 515 Southeast Asian tropical peatlands and integrated strategies for their better management
- and restoration. Journal of Applied Ecology. 2021 Jul;58(7):1370–87.
- 517 22. United Nations Environment Programme. Global Peatlands Assessment: The State of the
- 518 World's Peatlands Evidence for Action toward the Conservation, Restoration, and
- 519 Sustainable Management of Peatlands [Internet]. United Nations Environment Programme;
- 520 2022 [cited 2025 Apr 30]. Available from: https://wedocs.unep.org/20.500.11822/41222
- 521 23. Cooper HV, Evers S, Aplin P, Crout N, Dahalan MPB, Sjogersten S. Greenhouse gas emissions
- resulting from conversion of peat swamp forest to oil palm plantation. Nat Commun. 2020
- 523 Jan 21;11(1):407.
- 524 24. Miettinen J, Hooijer A, Vernimmen R, Liew SC, Page SE. From carbon sink to carbon source:
- extensive peat oxidation in insular Southeast Asia since 1990. Environ Res Lett.
- 526 2017;12(2):024014.
- 527 25. Miettinen J, Shi C, Liew SC. Land cover distribution in the peatlands of Peninsular Malaysia,
- 528 Sumatra and Borneo in 2015 with changes since 1990. Global Ecology and Conservation.
- 529 2016 Apr;6:67–78.

- 530 26. New mapping analysis exposes expanded oil plans in the DRC, endangering ecosystems and
- communities [Internet]. 2025. Available from: https://earth-insight.org/press-release/drc-oil-
- 532 expansion-plans-2025/
- 533 27. Klein AL. DRC Offers 52 New Oil Blocks to Boost Exploration [Internet]. 2025 [cited 2025 Jul
- 4]. Available from: https://energycapitalpower.com/drc-offers-52-new-oil-blocks-to-boost-
- 535 exploration/
- 536 28. E.M. O, D.J. S, P. L, F. M, L.M. I, R.L. N, et al. Sustainable development of the palm oil sector in
- the Congo Basin: The need for a regional strategy involving smallholders and informal
- markets [Internet]. Center for International Forestry Research (CIFOR); 2019 [cited 2025 Jul
- 4]. Available from: https://www.cifor.org/online-library/browse/view-
- 540 publication/publication/7279.html
- 29. De Augustinis F, Kiriko JK. DRC's Plans To Dramatically Increase Palm Oil Production
- [Internet]. 2025 [cited 2025 Jul 4]. Available from: https://pulitzercenter.org/stories/drcs-
- 543 plans-dramatically-increase-palm-oil-production
- 30. Hawthorne D, Lawson IT, Dargie GC, Bocko YE, Ifo SA, Garcin Y, et al. Genesis and
- development of an interfluvial peatland in the central Congo Basin since the Late
- Pleistocene. Quaternary Science Reviews. 2023 Apr;305:107992.
- 31. Baird AJ, Morris PJ, Belyea LR. The DigiBog peatland development model 1: rationale,
- conceptual model, and hydrological basis. Ecohydrol. 2012 May 1;5(3):242–55.
- 32. Young DM, Baird AJ, Morris PJ, Holden J. Simulating the long-term impacts of drainage and
- restoration on the ecohydrology of peatlands. Water Resources Research. 2017
- 551 Aug;53(8):6510-22.
- 33. Shokri N, Salvucci GD. Evaporation from Porous Media in the Presence of a Water Table.
- 553 Vadose Zone Journal. 2011 Nov;10(4):1309–18.
- 34. Baird AJ, Low R, Young D, Swindles GT, Lopez OR, Page S. High permeability explains the
- 555 vulnerability of the carbon store in drained tropical peatlands. Geophys Res Lett. 2017 Feb
- 556 16;44(3):1333–9.
- 35. Cobb AR, Dommain R, Tan F, Hwee En Heng N, Harvey CF. Carbon storage capacity of
- tropical peatlands in natural and artificial drainage networks. Environ Res Lett. 2020 Nov
- 559 1;15(11):114009.
- 36. Waddington JM, Morris PJ, Kettridge N, Granath G, Thompson DK, Moore PA. Hydrological
- feedbacks in northern peatlands. Ecohydrol. 2015 Jan 1;8(1):113–27.
- 37. Morris PJ, Davies ML, Baird AJ, Balliston N, Bourgault M, Clymo RS, et al. Saturated Hydraulic
- 563 Conductivity in Northern Peats Inferred From Other Measurements. Water Resources
- 564 Research. 2022 Nov;58(11):e2022WR033181.
- 38. Baird AJ, Eades PA, Surridge BWJ. The hydraulic structure of a raised bog and its implications
- for ecohydrological modelling of bog development. Ecohydrology. 2008;1:289–98.

- 39. Morris PJ, Baird AJ, Young DM, Swindles GT. Untangling climate signals from autogenic
- 568 changes in long-term peatland development. Geophys Res Lett. 2015 Dec
- 569 28;42(24):2015GL066824.
- 40. Tebaldi C, Debeire K, Eyring V, Fischer E, Fyfe J, Friedlingstein P, et al. Climate model
- 571 projections from the Scenario Model Intercomparison Project (Scenario MIP) of CMIP6. Earth
- 572 Syst Dynam. 2021 Mar 1;12(1):253–93.
- 573 41. Smith CJ, Kramer RJ, Myhre G, Alterskjær K, Collins W, Sima A, et al. Effective radiative
- forcing and adjustments in CMIP6 models. Atmos Chem Phys. 2020 Aug 17;20(16):9591–
- 575 618.
- 576 42. Chai Y, Miao C, Gentine P, Mudryk L, Thackeray CW, Berghuijs WR, et al. Constrained Earth
- 577 system models show a stronger reduction in future Northern Hemisphere snowmelt water.
- Nat Clim Chang [Internet]. 2025; Available from: https://www.nature.com/articles/s41558-
- 579 025-02308-y
- 43. Forster P, Storelymo T, Armour K, Collins W, Dufresne J, Frame D, et al. The Earth's Energy
- Budget, Climate Feedbacks and Climate Sensitivity [Internet]. 2021. Available from:
- 582 10.1017/9781009157896.009.
- 583 44. Rugenstein M, Bloch-Johnson J, Gregory J, Andrews T, Mauritsen T, Li C, et al. Equilibrium
- Climate Sensitivity Estimated by Equilibrating Climate Models. Geophysical Research
- 585 Letters. 2020 Feb 28;47(4):e2019GL083898.
- 45. Brunner L, Pendergrass AG, Lehner F, Merrifield AL, Lorenz R, Knutti R. Reduced global
- warming from CMIP6 projections when weighting models by performance and
- independence. Earth Syst Dynam. 2020 Nov 13;11(4):995–1012.
- 46. Fewster RE, Morris PJ, Ivanovic RF, Swindles GT, Peregon AM, Smith CJ. Imminent loss of
- 590 climate space for permafrost peatlands in Europe and Western Siberia. Nat Clim Chang.
- 591 2022 Apr; 12(4): 373–9.
- 592 47. Hausfather Z, Marvel K, Schmidt GA, Nielsen-Gammon JW, Zelinka M. Climate simulations:
- recognize the 'hot model' problem. Nature. 2022 May 5;605(7908):26–9.
- 48. Swaminathan R, Schewe J, Walton J, Zimmermann K, Jones C, Betts RA, et al. Regional
- 595 Impacts Poorly Constrained by Climate Sensitivity. Earth's Future. 2024
- 596 Dec;12(12):e2024EF004901.
- 49. Mathison CT, Burke E, Kovacs E, Munday G, Huntingford C, Jones C, et al. A rapid application
- 598 emissions-to-impacts tool for scenario assessment: Probabilistic Regional Impacts from
- Model patterns and Emissions (PRIME). 2025; Available from:
- 600 https://gmd.copernicus.org/articles/18/1785/2025/
- 50. Huntingford C, Booth BBB, Sitch S, Gedney N, Lowe JA, Liddicoat SK, et al. IMOGEN: an
- intermediate complexity model to evaluate terrestrial impacts of a changing climate. Geosci
- 603 Model Dev. 2010 Nov 29;3(2):679–87.
- 51. Ritchie H, Roser M. CO2 Emissions. Our World in Data [Internet]. 2020; Available from:
- 605 https://ourworldindata.org/co2-emissions

- 52. Meinshausen M, Nicholls ZRJ, Lewis J, Gidden MJ, Vogel E, Freund M, et al. The shared socioeconomic pathway (SSP) greenhouse gas concentrations and their extensions to 2500.
- 608 Geosci Model Dev. 2020 Aug 13;13(8):3571–605.
- 609 53. Huam PLK, Limm SS, Parish F, Suharto R. SUMMARY: RSPO MANUAL ON BEST
- 610 MANAGEMENT PRACTICES (BMPs) FOR EXISTING OIL PALM CULTIVATION ON PEAT
- [Internet]. RSPO; 2013 Oct [cited 2025 Jul 8]. Available from:
- 612 https://ledsgp.org/app/uploads/2016/01/Summary-of-RSPO-Manual-on-BMP-for-Existing-
- 613 Oil-Palm-Cultivation-on-Peat.pdf
- 614 54. Hooijer A, Vernimmen R, Mulyadi D, Triantomo V, Hamdani, Lampela M, et al. Benefits of
- 615 tropical peatland rewetting for subsidence reduction and forest regrowth: results from a
- large-scale restoration trial. Sci Rep [Internet]. 2024 May 10 [cited 2025 Jul 8];14(1). Available
- from: https://www.nature.com/articles/s41598-024-60462-3
- 55. Bevacqua E, Schleussner CF, Zscheischler J. A year above 1.5 °C signals that Earth is most
- probably within the 20-year period that will reach the Paris Agreement limit. Nat Clim Chang.
- 620 2025 Mar;15(3):262-5.
- 56. Hoffmann MP, Castaneda Vera A, Van Wijk MT, Giller KE, Oberthür T, Donough C, et al.
- 622 Simulating potential growth and yield of oil palm (Elaeis guineensis) with PALMSIM: Model
- description, evaluation and application. Agricultural Systems. 2014 Nov;131:1–10.
- 57. Wakhid N, Hirano T. Soil CO2 emissions and net primary production of an oil palm plantation established on tropical peat. Mires Peat. 2021 May 12;27(13):1–11.
- 58. Wakhid N, Hirano T, Dariah A, Agus F. Net primary production of oil palm plantations on tropical peat. Mires Peat. 2022 Feb 28;28(02):1–12.
- 59. Turetsky MR, Benscoter B, Page S, Rein G, van der Werf GR, Watts A. Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience. 2015 Jan;8(1):11–4.
- 630 60. Page SE, Siegert F, Rieley JO, Boehm HDV, Jaya A, Limin S. The amount of carbon released 631 from peat and forest fires in Indonesia during 1997. Nature. 2002 Nov 1;420(6911):61–5.
- 632 61. Prosperi P, Bloise M, Tubiello FN, Conchedda G, Rossi S, Boschetti L, et al. New estimates of
- greenhouse gas emissions from biomass burning and peat fires using MODIS Collection 6
- burned areas. Climatic Change. 2020 Aug;161(3):415–32.
- 635 62. Girkin NT, Cooper HV, Ledger MJ, O'Reilly P, Thornton SA, Åkesson CM, et al. Tropical
- 636 peatlands in the Anthropocene: The present and the future. Anthropocene. 2022
- 637 Dec;40:100354.
- 638 63. Grosvenor MJ, Ardiyani V, Wooster MJ, Gillott S, Green DC, Lestari P, et al. Catastrophic
- 639 impact of extreme 2019 Indonesian peatland fires on urban air quality and health. Commun
- 640 Earth Environ. 2024 Nov 2;5(1):649.
- 641 64. Georgiou S, Mitchard ETA, Crezee B, Dargie GC, Young DM, Jovani-Sancho AJ, et al. Mapping
- Water Levels across a Region of the Cuvette Centrale Peatland Complex. Remote Sensing.
- 643 2023 Jun 13;15(12):3099.

65. Putra SS, Holden J, Baird AJ. The effects of ditch dams on water-level dynamics in tropical 644 645 peatlands. Hydrological Processes. 2021 May;35(5):e14174. 646 66. Sundari S, Hirano T, Yamada H, Kusin K, Limin S. Effect of groundwater level on soil 647 respiration in tropical peat swamp forests. J Agric Meteorol. 2012;68(2):121–34. 648 67. Bocko YE, Panzou GJL, Dargie GC, Mampouya YEW, Mbemba M, Loumeto JJ, et al. Allometric 649 equation for Raphia laurentii De Wild, the commonest palm in the central Congo peatlands. 650 Van Stan JT, editor. PLoS ONE. 2023 Apr 14;18(4):e0273591. 651 68. Sciumbata M. Measuring fine root production in tropical peatlands: assessing ingrowth cores 652 and minirhizotrons in the Central Congo Basin [MSc]. Vrije Universiteit Amsterdam; 2022. 653 Acknowledgements 654 655 This work was funded by CongoPeat—a NERC large grant (NE/R016860/1) to S.L.L., I.T.L., S.E.P., 656 A.B., A.J.B., P.J.M., P.G. and S.S. Dylan .M. Young was supported by Montpelier Foundation. 657 Eleanor Burke was supported by the Joint UK BEIS/Defra Met Office Hadley Centre Climate 658 Programme (GA01101). We thank George Biddulph, Sarah Chadburn, Corneille E. N. Ewango, 659 Mackline Mbemba, Lera Miles, Ed Mitchard, A. Jonay Jovani-Sancho, Y. Emmanuel Mampouya 660 Wenina, the wider CongoPeat network. We also wish to thank Richard Rigby for discussions 661 about Fortran code. Data, code and materials 662 The model code for the simulation reported here is available from: 663 664 https://doi.org/10.5281/zenodo.15319266 Declaration of AI use 665 666 We used Claude by Anthropic for two purposes: 1) to find snippets of R code for the processing 667 of outputs from DigiBog_Congo; and 2) for suggestions on how to transfer part of DMY's original 668 model code into the new DigiBog_io_module.f90 (see the Zenodo repository). The new module 669 improves the stopping and starting of simulations within a single model run.

Competing interests

670

We have no competing interests to declare regarding this article.