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Prediction errors drive learning by signaling mismatches between expectations and
reality, but the neural systems supporting these computations remain debated. The
hippocampus is implicated in mismatch detection, yet it is not known whether it
signals mismatches with episodic memories or generalized knowledge. Across three
functional Magnetic Resonance Imaging (fMRI) experiments, we show that the hip-
pocampus selectively responds to mismatches with episodic memories of specific
events. In contrast, schematic mismatches engage Semantic Control and Multiple
Demand Networks, as well as subcortical regions linked to prediction error signa-
ling. Episodic mismatches also recruit the Default Mode Network. These findings
challenge accounts that propose the hippocampus is a domain-general mismatch
detector. Instead, the findings support a more specialized role for the hippocampus in
learning that is underpinned by its well-established importance in processing episodic
memories.

hippocampus | prediction | mismatch | episodic memory | schema knowledge

Humans possess a remarkable ability to predict what will happen in new situations based
on past experiences (1-3). Detecting a mismatch between our predictions and our
in-the-moment experience offers a powerful route to rapidly learn new information (e.g.,
refs. 4 and 5). The hippocampus plays a central role in mismatch detection (e.g., refs.
6-11). However, it is not known whether the hippocampus computes mismatches between
current experience and predictions based on general schematic knowledge about the past
or episodic memories of specific earlier experiences.

Several proposals suggest that the hippocampus detects novelty by comparing incoming
information with stored representations. This includes processing associative mismatch
novelty [e.g., where familiar objects are reconfigured into novel arrangements (e.g., ref.
12)], contextual novelty [where items are unexpected within a given context (e.g., ref.
13)], and schema incongruence [violations of structured knowledge about the world (e.g.,
ref. 14)]. These proposals are based on the well-established specialization of the hippocam-
pus for processing relations between items and particularly item-context associations
(15-19). Furthermore, the neural circuitry within the hippocampus is particularly suited
to its hypothesized role as a comparator (9, 20). However, the prior contextual representa-
tions used in this comparator function remain unclear.

There is strong evidence that the hippocampus supports mismatch processing based on
specific past experiences to compare to current situations. In humans, it has been shown
that the hippocampus detects changes in recently learned cue-outcome associations (e.g.,
refs. 21-23) and sequences of events (e.g., refs. 24-26). Likewise, in animal studies, the
hippocampus shows a mismatch signal when changes are made to specific, previously
encountered environments (27-29). Some computational models propose that the com-
parator function of the hippocampus is limited to processing mismatches with episodic-like
representations of specific events (7, 30).

However, often our expectations are based on our generalized understanding of patterns
and regularities developed across multiple similar experiences (31-33). It has been sug-
gested that the hippocampus may also process mismatches based on these more generalized
representations (34-36). This argument is based on evidence that the hippocampus learns
the common elements and temporal regularities across multiple past experiences (37-39),
can infer relationships between items that have never been directly experienced together
(40), and is involved in imagining complex future scenarios (41). Some computational
models have proposed that the hippocampus plays a key high-level role within a “generative
model” that makes predictions about the state of the world based on abstract generalized
knowledge (10, 42). However, it remains unclear whether the hippocampus uses these
generalized knowledge structures to compare expectations with reality.
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Significance

Our brains use memories of the
past to make sense of the
present and predict the future.
These memories might be of
specific events or more general
knowledge about the world. The
hippocampus is widely implicated
in signaling mismatches with
memory-based predictions, but
whether it uses specific episodic
memories or generalized
knowledge remains unclear.

We show that the hippocampus
selectively signals mismatches
with episodic memories, while
other brain networks respond
to unexpected situations more
broadly, regardless of memory
type. These findings clarify

the hippocampus’ role as

a comparator, showing it is
specialized for evaluating reality
against episodic memories, and
offer insight into how the brain
uses past experiences to
interpret the present and
anticipate the future, shaping
learning and memory.
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The critical test of all these theories of hippocampal mismatch
detection is whether the hippocampus responds to mismatches
with generalized knowledge or whether its role is limited to pro-
cessing comparisons based on episodic-like memories. We address
this using three functional Magnetic Resonance Imaging (fMRI)
experiments, where we manipulated the source of prior knowledge
(a form of expectation) while participants watched custom-made
video clips of actors performing sequences of everyday actions
(e.g., doing the laundry). Inside the scanner, all participants
watched half of the clips in their “Typical” version (e.g., putting
clothes into a washing machine) and the other half in their
“Atypical” version (e.g., putting flowers into the washing
machine). Depending on participant’s prescan familiarity with
the clips, actions in the clips mismatched different types of expec-
tations. When participants were unfamiliar with the clips prior
to scanning, Atypical actions mismatched solely general Schema
Knowledge (Experiment 1). When participants had prewatched
all clips in their Typical version, Atypical actions mismatched
both Schema Knowledge and Episodic Memory of the specific
clips (Experiment 2). Finally, when participants had prewatched
all clips in their Atypical version, Typical actions mismatched
Episodic Memory only (Experiment 3) (Fig. 1).

In addition to our primary hippocampal analyses, to more
comprehensively characterize the neural systems involved in pro-
cessing unexpected events, we conducted exploratory whole-brain
analyses as well as region of interests (ROI) analyses in the Default
Mode Network (DMN), Semantic Control Network (SCN), and
Multiple Demand Network (MDN). These networks were
selected based on their differing roles in processing ongoing expe-
riences. The DMN has been implicated in using past episodic
information to support the interpretation of situations as they

unfold across time (e.g., refs. 43 and 44). The SCN supports

retrieval and integration of semantic knowledge in contextually
appropriate ways, particularly when incoming information is
unexpected or ambiguous (45). Meanwhile, the MDN is known
to provide domain-general attentional resources in response to
surprising or difficult-to-interpret stimuli (46). By examining
responses across these regions, we aimed to better understand the
broader network dynamics that support the processing of differ-
ent types of unexpected events.

We also included the ventral tegmental area and substantia nigra
(VTA/SN) as an exploratory ROI based on their established role
in processing prediction errors and their functional connections
with the hippocampus. The hippocampus is thought to signal
unexpected events to midbrain dopaminergic regions, which then
modulate memory encoding (9). These midbrain structures are
known to signal motivational salience and update expectations
when predictive relationships are violated.

Overall, we found strong evidence that the hippocampus is
limited to using episodic memory-based representations for its
comparator mechanism. Responses to schematic knowledge-based
mismatches were found in regions outside of the hippocampus,
including cortical control networks and subcortical regions impli-
cated in prediction error processing.

Results

The Effect of Expectation Violation on Memory. After scanning,
participants were asked to recall the sequence of actions depicted
in each video clip that they watched inside the scanner. We
analyzed memory for the target actions specifically, showing
high recall accuracy across all experiments (Fig. 24). It is notable
that participants’ accuracy significantly increased across the

three experiments [p = 1.23; 95% CI = [1.09 1.37]; Z = 16.85;
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Fig. 1. Experimental paradigm. (4) Still frames showing example moments from the two alternative versions of the “laundry” video clip (watch the clips here: https://
e01.eventmemory.org/ExampleVid_paper.html). The two versions showed a nearly identical sequence of actions, except for the target action that was either Typical
or Atypical. (B) Before scanning, participants either did not watch any clips (Experiment 1), watched the Typical version of each clip (Experiment 2), or watched the
Atypical version of each clip (Experiment 3). Across three experiments, all participants watched half of the clips in the Typical and the other in the Atypical version
during fMRI. By manipulating prescan familiarity with the clips, target actions in each experiment violated different types of expectations. After scanning, participants
were asked to describe what happened in all video clips watched inside the scanner, focusing on the actions the actors performed, cued by the first frame of each clip.

https://doi.org/10.1073/pnas.2503535122

pnas.org


https://e01.eventmemory.org/ExampleVid_paper.html
https://e01.eventmemory.org/ExampleVid_paper.html

Downloaded from https://www.pnas.org by 185.78.9.231 on October 15, 2025 from IP address 185.78.9.231.

A Proportion of Proportion of
remembered actions misremembered actions
= 1.0 n.s. 0.5 Fokk
= 0.8 0.4
g o6t 0.3
S oa| ° 0.2
o
X 0.2 01
0.0 0.0 $
o~ 1.0 % ns. o 0.5 *kk
= 0.8 0.4
£ 0.6 0.3
5 04 0.2
o :
0.0 0.0 —— -
10 = _NS. o 0.5 pi=.057
) i
- 0.8 0.4
g 0.6 0.3
'g 0.4 0.2
(o
5 0.2 0.1
m L 3
0.0 0.0 HOH mmfum

[—1 Typical Action
[ Atypical Action

Fig. 2. Memory was influenced by the expectedness of actions. (A) Bar
charts showing the average proportion of remembered target actions in the
Typical and Atypical conditions in each experiment. Error Bars represent 95%
Cl. Strip plots show each participant's average proportion of remembered
target actions for each condition. There were no differences in the average
proportion of correctly recalled target actions between conditions. (B) Bar
charts showing the proportion of erroneously recalled target actions in each
condition. People made more errors when recalling actions that violated their
expectations. Error Bars represent 95% Cl. ***P < 0.001, n.s. P> 0.05.

P < 0.001; Correct Recall ~ Experiment + (1 | Participant) + (1 |
Video Clip)], likely reflecting participants’ increased familiarity with
the videos in Experiments 2 and 3 due to the additional prescanning
phases in these experiments. Interestingly, despite these differences
in familiarity, the within-experiment logistic mixed-effects models
[Correct Recall ~ Condition + (1 | Participant) + (1 | Video Clip)]
showed no significant differences in recall accuracy between Typical
vs. Atypical actions in any experiment (Experiment 1: p = 0.12;
95% CI = [-0.57 0.81]; Z = 0.33; P = 0.739; Experiment 2:
p=-0.5995% CI = [-1.23 0.06]; Z = ~1.79; P = 0.074; Experiment 3:
B =0.42;95% CI = [-0.31 1.15]; Z = 1.14; P = 0.254).

Next, we ran further exploratory analyses to test whether partici-
pants were more likely to misremember the target actions, depending
on whether the action violated expectations (Fig. 2B). Actions were
counted misremembered if the correct action was mentioned, but the
object was unspecified or replaced with another object. Participants
made considerably more errors when recalling the Atypical compared
to the Typical actions in Experiments 1 and 2 (Experiment I:
B=1.51;95% CI=[0.77 2.25]; Z = 3.99; P < 0.001; Experiment
2: P =2.48;95% CI = [1.61 3.34]; Z = 5.64; P < 0.001). There
was only a marginally significant difference in the proportion of
memory errors between conditions in Experiment 3 [p = -0.81;
95% CI = [1.61 3.34]; Z = -1.91; P = 0.057; (Memory Error
Score ~ Condition + (1 | Participant) + (1 | Video Clip))].
Interestingly, the effect in Experiment 3 was in the reverse direc-
tion to the effects in Experiments 1 and 2; participants were
numerically more likely to misremember the Typical actions, hav-
ing prewatched versions of the videos showing the Atypical actions.

PNAS 2025 Vol.122 No.34 2503535122

Overall, across all experiments, participants were more likely to
misremember unexpected target actions, either by replacing the
object involved (e.g., “she put fruits into the washing machine”) or
recalling the action without specifying the object (e.g., “she put
something strange into the washing machine”).

In summary, participants remembered the target actions well,
and the actions were remembered differently depending on their
expectedness. Importantly, there was no difference in correctly
recalling actions that violated or met contextual expectations.
However, participants were more likely to make errors when recall-
ing unexpected actions.

The Effect of Different Types of Expectation Violation on
Hippocampal Activity. Our main analyses focused on the
hippocampus; the analyses and hypotheses of Experiments 1 (hteps://
ost.io/7g82x) and 3 (https://ost.io/zbnt9) were preregistered; the
analyses and hypotheses of Experiment 2 were not preregistered, but
the analyses were identical to the other experiments. We aimed to
test whether hippocampal activity is modulated by the expectedness
of target actions under different types of prior expectations. We used
a General Linear Model (GLM) to isolate transient activity evoked
by the Typical and Atypical target actions. Hippocampal activity
was quantified by averaging beta weights from all voxels within a
bilateral hippocampal mask for each condition in each experiment,
allowing us to directly compare responses to Atypical and Typical
actions. The results are shown in Fig. 3.

In Experiment 1, our preregistered hypothesis was that hippocam-
pal activity would be modulated by schema-based expectation viola-
tions. Specifically, we predicted that activity would be higher in
response to Atypical compared to Typical actions in line with its
proposed role as a general-purpose mismatch detector. However, a
paired ¢ test revealed that there was no effect of schema-based mis-
matches in the hippocampus (t;35) = 0.57; with a mean difference of
0.14; 95% CI = [-0.36 0.65]; P = 0.567; and a negligible effect size
of d = 0.12, 95% CI = [-0.30 0.54]), against our preregistered
hypothesis. Bayesian analysis provided moderate evidence for the null
hypothesis (BF, = 4.78), further suggesting that hippocampal activity
was not modulated by target action expectedness in this experiment.
To examine whether adding specific episodic memory-based expec-
tations while watching the same clips would elicit mismatch signals
in the hippocampus, we conducted Experiment 2.

In Experiment 2, hippocampal activity was greater to Atypical
compared to Typical actions (t3, = -4.59; with a mean difference
of -1.28,95% CI = [-1.84 -0.71]; P < 0.001; and a large effect
size of d = —-1.06, 95% CI = [-1.64 —-0.48]; BF,, = 378.25). This
reveals that being able to compare specific episodic memories to
reality is important for eliciting a mismatch response in the hip-
pocampus. However, the increased hippocampal response in
Experiment 2 may reflect an additive effect of schema-based and
episodic memory-based mismatches, leaving it unclear whether
episodic memory violations alone would elicit increased activity.

To address this concern, we conducted Experiment 3, which
tested solely episodic memory-based violations. Here, participants
prewatched all the Atypical versions of the videos. Consequently,
during scanning, the Typical versions of the videos were unex-
pected on the basis of episodic memory alone. Based on the results
of Experiment 2, our preregistered hypothesis was that hippocampal
activity would show greater response to the Typical compared to
Atypical actions. In this experiment, hippocampal activity was sig-
nificantly higher for Typical compared to Atypical actions (t 9 = 5;
with a mean difference of 1.13; 95% CI = [0.67 1.60]; < 0.001;
and a large effect size of 4 = 0.95, 95% CI = [0.49 1.40]; BF,, =
910.34), in line with the preregistered hypothesis. Overall, pro-
viding compelling evidence that the hippocampus responds to
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Fig. 3. Hippocampal mismatch response is limited to signaling episodic memory-based expectation violation. In Experiment 1, expectations are based only
on schematic knowledge, in Experiment 2, expectations are based on both episodic memory and schematic knowledge, and in Experiment 3, expectations are
based only on episodic memory. (A) Bar charts showing the average response to Typical and Atypical target actions in the bilateral hippocampus in the three
experiments (strip plots show individual participants’ averaged parameter estimates for the target actions estimated from a GLM). Error bars represent 95% Cls.
(B) Time course of average BOLD signal in the bilateral hippocampal ROI to Typical and Atypical target actions in each experiment. ***P < 0.001; n.s. P> 0.50.

mismatches even when they are driven solely by episodic memory,
thus ruling out the influence of schema-based expectations.

In supplementary analyses, we further tested whether the hip-
pocampal response differed as a function of expectation type,
conducting a direct comparison of the mismatch effect across
Experiments 1 and 2 (SI Appendix, Supplementary Resulss). This
analysis revealed a significant interaction between experiment and
condition, confirming that the hippocampus responded more
strongly to violations of specific episodic expectations than to
violations of general schematic knowledge. We also report more
fine-grained analyses on the effect of mismatches in hippocampal
subregions (head, body, and tail) (S Appendix, Fig. S2 and Results,
Hippocampal Subregions) and subfields (CA1, subiculum, and a
combined CA3/CA4/dentate gyrus region) (S Appendix, Fig. S3
and Results, Hippocampal Subfields). These analyses all found con-
sistent effects throughout the hippocampus.

The Effect of Different Types of Expectation Violation Outside
of the Hippocampus. We conducted exploratory whole-brain
analyses to investigate the mismatch responses outside of the
hippocampus in all three experiments. First, we ran separate
GLMs for the three experiments, modeling the response to
the Atypical and Typical target actions. Group-level contrasts
between the Atypical and Typical target actions are shown in
Fig. 4A. We additionally carried out post hoc exploratory ROI
analyses investigating whether the effects of expectation violation
differed across three brain networks—the SCN, the MDN, and
the DMN. Within each experiment, we conducted a repeated
measures ANOVA between the target action conditions and
Networks on the average parameter estimates associated with the
target actions from all voxels comprising each network (Fig. 4B).
A final exploratory ROT analysis focused on the ventral tegmental
area (VTA)/SN.

First, in Experiment 1, Atypical compared to Typical actions
engaged regions generally implicated in attentional engagement,
semantic and predictive processing (47, 48). Mismatch signals

https://doi.org/10.1073/pnas.2503535122

were also present in the caudate nucleus (49), the amygdala (50),
and the thalamus (51), consistent with previous work on expec-
tation violations. Typical compared to Atypical actions engaged
regions (such as Posterior Medial and Medial Prefrontal Cortex)
implicated in encoding schema-consistent information, compre-
hending narratives, and mentalizing (52-54). This finding is in
accordance with suggestions of the SLIMM model [schema-linked
interactions between medial prefrontal and medial temporal
regions (14)] that the medial prefrontal cortex has an important
role in detecting the match between current events and existing
contextual associations.

The network-level analysis revealed significant main effects for
Condition (F, 35 = 13.70; P< 0.001; eta2[g] = 0.11) and Network
(Fi70) = 35.60; P < 0.001; eta2[g] = 0.19), and a significant
Condition*Network interaction (F, ¢55,7 = 14.07; P < 0.001;
eta2[g] = 0.06). Pairwise comparisons showed that the average
response to Atypical compared to Typical actions was significantly
higher in the SCN (t;35) = 5.64; < 0.001) and MDN (t(35) = 4.11;
P < 0.001). Schema-based expectation violation did not signifi-
cantly modulate activity in the DMN overall (tzs5 = 0.30;
P =0.763).

There was a significant increase in VTA/SN activity for the
Atypical actions, consistent with this region responding to pre-
diction errors (9, 55, 56). A paired ¢ test comparing Atypical
(M =0.71,SD = 1.53) and Typical (M = -0.30; SD = 1.22) actions
revealed an effect of condition (t35, = 2.90, P = 0.006, 95% CI =
[-1.72 -0.30]).

In Experiment 2, a strikingly similar map of regions was acti-
vated more by Atypical than Typical actions (Fig. 4). Once again,
subcortical effects were present in the caudate nucleus, thalamus,
and amygdala. The Network ANOVA revealed significant main
effects for Condition (F; 3, = 57.76; P < 0.001; eta2[g] = 0.30)
and Network (F, o) = 24.87; P < 0.001; eta2[g] = 0.14), and a
significant Condition*Network interaction (F(; 59 46 = 11.19;
P <0.001; eta2[g] = 0.06). Pairwise comparisons showed that the
average response to Atypical target actions was again significantly

pnas.org
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higher in regions of the SCN (¢33 = 10.1; 2 < 0.001) and MDN
(t33 = 4.95; P < 0.001). Now with the addition of context-specific
memory-based predictions, regions of the DMN were also overall
more engaged by Atypical than Typical actions (t33 = 3.52;
P =0.001).

In the VTA/SN, there was again greater activity for the Atypical
(M =1.08; SD = 1.05) compared to Typical (M -0.36; SD = 1.22)
actions. A paired 7 test revealed a highly significant difference (t 3,
=5.97, P<0.001, 95% CI = [-1.93 -0.95]).

Notably, an exploratory whole-brain analysis comparing regions
more responsive to Experiment 2 mismatches (episodic and sche-
matic violations) than Experiment 1 mismatches (only schematic
violations) revealed a significant effect in the right hippocampus,
supporting the relative selectivity of the hippocampal mismatch
effect observed in the ROI analysis for episodic memory
(SI Appendix, Fig. S1 and Results, Whole-Brain Interaction).

The commonality across Atypical actions in Experiments 1 and
2 was that they were surprising with respect to long-term semantic
knowledge about the situations depicted in the videos. Therefore,
common regions activated in both tasks (in particular regions of the
SCN) might reflect violation of predictions based on general knowl-
edge rather than an overarching role in all types of context-violation.
Whether these regions would be activated also by context-specific,
episodic memory-based violations was tested in Experiment 3.

In Experiment 3, the two sources of expectations—schematic
knowledge and episodic memory—are in opposition to each other.
Here, unlike the previous experiments, there were no regions more
activated by Atypical than Typical actions. This suggests that famil-
iarization with the Atypical videos rapidly diminished the fMRI
response to actions that might be considered inherently surprising
based on schematic knowledge. However, several regions that had
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been engaged by unexpected events in Experiments 1 and 2 (par-
ticularly in the dorsomedial and inferior frontal cortex) were now
more engaged by Typical than Atypical actions. This reflects the
regions responding to events that were unexpected based on mem-
ory for the specific videos. The only subcortical structures to also
show this effect were the right amygdala and a small region of the
right ventral striatum. The Network-related ANOVA revealed
significant main effects for Condition (F 59 = 19.5; P < 0.001;
eta2[g] = 0.11) and Network (F; 33 35 59) = 6.87; P=0.007; eta2[g]
= 0.07), and a significant Condition*Network interaction (F, 55
=6.56; P =0.003; eta2[g] = 0.03). Pairwise comparisons showed
that the average response to Atypical target actions was signifi-
cantly higher in the SCN (t,9) = 3.56; P = 0.001), suggesting that
these regions likely have a rather general role in processing sur-
prising actions, regardless of the source of expectations.
Additionally, the Typical actions also engaged the DMN more
than did Atypical actions that matched memory for the specific
context (t(,g) = 4.72; P< 0.001). Finally, expectation violation did
not significantly influence activity in the MDN overall in this
Experiment 3 (t(5) = 1.29; P = 0.207). Inspection of the effect in
the MDN across all three experiments suggests that in Experiment
3, activity was higher for both the Atypical and Typical actions
(compared with Typical actions in Experiments 1 and 2). This is
likely due to both types of actions being salient within the clips
and capturing participants’ attention.

In the VTA/SN, a paired # test comparing Typical (M = 0.24;
SD = 1.85) and Atypical (M = -0.21; SD = 1.21) actions did not
reveal a statistically significant difference, t(,p) = 1.38, P = 0.178,
95% CI = [-0.22 1.12].

To summarize, we show that unexpected actions, regardless of
the source of expectation violation, are processed in regions
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Fig. 4. The effect of expectation across the whole brain and in three cortical networks. (A) T-maps of the contrast between Atypical and Typical target actions
in each experiment. Whole-brain t-maps are cluster corrected at FWE P < 0.05 at voxel height defining threshold of P < 0.001 and color-coded to indicate the
intensity of activation. The color bar indicates the t-statistic associated with each voxel. (B) Bar charts show the average response to Typical and Atypical target
actions in the SCN, MDN, and DMN in the three experiments (strip plots show individual participants’ averaged parameter estimates for the target actions
estimated from a GLM). Error bars represent 95% Cls. (C) Spatial maps of the network ROls.
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associated with generating contextually relevant inferences and
resolving conflict. At the network level, Atypical, unexpected, target
actions that violated general schema-based predictions engaged
cognitive control networks more than did Typical, expected, actions.
This is consistent with the role of SCN and MDN in resolving
unexpected information by guiding contextually appropriate
knowledge retrieval (45) and allocating attentional resources to
interpret ambiguous situations (57, 58), respectively, suggesting
that our manipulation of schema incongruence of the Atypical
target actions was successful. Unexpected actions in all experiments
were attention grabbing, as suggested by the increased activity in
the MDN regions, important for allocating attention to salient,
goal-relevant information. Those actions that also violated episodic
memory-based expectations, engaged regions of the DMN, which
is consistent with the DMN’s role in comparing internally generated
inferences (e.g., episodic memories) with incoming information
(59). Interestingly, subcortical regions associated with prediction
error processing were engaged by violations of schema-based expec-
tations, or the combination of schema- and episodic memory-based
expectations, but not when expectations were purely based on epi-
sodic memory. It is therefore noteworthy that the VTA/SN showed
a different pattern of activation across the three experiments
compared to the hippocampus.

Discussion

We performed three separate fMRI experiments to test the role of
the hippocampus as a mismatch detector. We found that the hip-
pocampus processes mismatches between specific episodic mem-
ories and in-the-moment experience. Critically, we show that
violations of prior contextual representations based on more gen-
eralized schematic knowledge do not engage the hippocampus.
These findings impose hard constraints on the information used
by the hippocampus to detect mismatches. They provide direct
support to theoretical models of hippocampal function that identify
a limited role to processing episodic memory mismatches (7, 30).
Conversely, models that have argued for a more general role for
the hippocampus in comparing broader contextual representations
of prior experiences to ongoing reality must be reevaluated in the
light of the present results (see refs. 14 and 36).

Our study showed that Atypical sequences of actions violating
long-term schematic knowledge of everyday situations did not dif-
ferentially engage the hippocampus compared to Typical sequences
matching schema knowledge (Experiment 1). Conversely, when
participants formed episodic memories for the Typical sequences
prior to scanning, viewing Atypical sequences in the scanner caused
a transient hippocampal response (Experiment 2). This indicates
that episodic memory-based expectations are needed to trigger hip-
pocampal mismatch responses. Nevertheless, it remained a possi-
bility that the additive effect of a mismatch between episodic
memories and general knowledge about the situations shown
exceeded a threshold for “surprise” and triggered a hippocampal
response. Experiment 3 addressed this possibility, as participants
prewatched all the Atypical versions of the videos before scanning.
In this experiment, the contextually appropriate Typical versions of
the videos caused an increased hippocampal response, since these
videos mismatched episodic memories from the prewatch phase.
Our findings provide strong empirical support for a family of com-
putational models proposing a role for the hippocampus in com-
paring incoming information with episodic memories that are
stored within the hippocampus (11, 60-62).

Our findings address a key gap in the literature since evidence
in support of the hippocampus as a mismatch detector is based
overwhelmingly on highly specific, recently learned, information.

https://doi.org/10.1073/pnas.2503535122

On the basis of such evidence, the hippocampus has been argued
to have a rather general role in processing any information that
mismatches expectations based on a context, or even on general-
ized statistical regularities learned about the world (10, 13, 14,
42). Our results strongly constrain the role of the hippocampus
as a mismatch detector to situations where expectations are based
on specific episodic-like representations of the event. Nevertheless,
as discussed next, we do not argue that the hippocampus can only
make comparisons between the current situation and a memory
for an identical experience in the past—indeed such a rigid func-
tion would serve little adaptive value in most situations.

It is well established that the hippocampus is able to support
flexible representations that capture the associative structure of a
situation or environment and can be used to make inferences
about situations that have never been experienced (63—67). How
do we square the flexibility of hippocampal representations with
our results? We suggest that the hippocampus only compares pre-
dictions to novel experiences that are part of a learned “cognitive
map,” which may represent a physical space or a more abstract
conceptual space (68). For example, a map-like representation will
encode the relative locations of objects within a particular space,
enabling it to detect expectation violations even if exploring the
space from an entirely novel perspective (69, 70). However, when
inferences must be drawn from structured mental models
abstracted away from a specific cognitive map, mismatches will
be detected independent of the hippocampus.

An intriguing question for future research is whether the hip-
pocampus only signals mismatches when comparing incoming
information with a specific episodic memory, or if it also signals
mismatches when expectations can be very precisely predicted
based on generalized knowledge. For example, while our experi-
ences of restaurants can be highly variable and lead to rather broad
expectation of what might happen in a new situation, our experi-
ences of going through airport security might be very similar and
lead to very specific expectations of what will occur (similar to
expectations that can be made based on a specific episodic memory
for a past experience). In the airport security example, the hip-
pocampus might signal expectation mismatches even if these expec-
tations are based on generalized knowledge and not with reference
to any specific prior event. Alternatively, the hippocampus might
only signal a mismatch if a specific episodic memory is being used
to generate expectations about a new situation (e.g., my memory
of passing through security at John E Kennedy International
Airport guides my expectations of what will happen at the security
gates at Schiphol airport).

An alternative explanation to the prediction-mismatch account
is that the hippocampal response we see reflects novelty processing
more generally. In Experiments 2 and 3, the hippocampus responds
to parts of the videos that have never been seen before. This could
potentially reflect processing of information for which there is no
preexisting representation (rather than a comparison with predic-
tions). However, novelty detection is typically argued to involve a
global match process between the input and all stored representa-
tions—irrespective of whether these representations are episodic
or schematic—and therefore responses should scale with the overall
degree of stimulus novelty (6, 71). Our findings are inconsistent
with this; the hippocampal response in Experiment 2 was similar
to Experiment 3, despite the fact that in Experiment 2 the actions
were novel from the perspective of schematic knowledge, and in
Experiment 3, they were not. Thus, the overall amount of novelty
does not appear to be the key driver of the hippocampal response,
but whether or not there is a deviation from a specific episodic
memory-based representation—more in line with an associative
mismatch detection account. Furthermore, our findings also argue
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against a broader role for the hippocampus in all forms of
“contextual” novelty, as has been proposed (e.g., ref. 13).

The hippocampal BOLD response in Experiments 2 and 3
might have a number of causes. First, it might reflect the initial
increase in activity of hippocampal neurons that signal the mis-
match with expectations to other brain regions (11, 72).
Alternatively, the detection of a mismatch in the hippocampus
might lead to the activation of dopaminergic neurons in the VTA
which in turn project back to the hippocampus in order to mod-
ulate learning mechanisms within the hippocampus (9, 73). For
example, dopaminergic projections to the hippocampus promote
long-term potentiation via activation of D1 receptors (74), which
in turn has been argued to result in local increases in BOLD
activity (75). However, this explanation is weakened by the fact
that activity in the VTA/SN was driven by violations of schematic
knowledge-based expectations, whereas the hippocampus was
engaged by episodic memory-based expectation violations.
Another possibility is that mismatches trigger release of acetylcho-
line within the hippocampus which can modulate CA1 synaptic
plasticity (7, 76). Interestingly, acetylcholine can also directly
affect the BOLD signal via its action as a vasodilator (77). Future
research will unpick the cellular mechanisms that underpin the
hippocampal mismatch response in our study.

Our results also shed light on the role of various cortical net-
works in processing unexpected actions. The SCN was strongly
engaged when the actions were unexpected based on both sche-
matic knowledge and the combination of schematic knowledge
and episodic memory. In Experiment 3, when these sources of
expectation were pitched against each other, it was the violation
of episodic memories that resulted in significantly higher activity
within the SCN. This network plays a role in generating inferences
that are appropriate to a particular situational context (45). Our
findings suggest that parts of the network additionally process
context-specific expectations based on recently experienced infor-
mation and not only long-term semantic knowledge (see also refs.
78 and 79). This is consistent with previous findings that regions
of the SCN control context-appropriate retrieval in both episodic
and semantic memory (80). The DMN showed a very similar
pattern of activation to the hippocampus, suggesting a comple-
mentary role in comparing specific episodic memories with cur-
rent experience. It is possible that hippocampal retrieval of the
action watched before scanning triggered reinstatement of its
content throughout the DMN (e.g., refs. 81 and 82). We propose
that participants may have retrieved the predicted action when
viewing an unexpected action, whereas this was unnecessary when
observed actions aligned with prior expectations. This is consistent
with predictions from a recent computational model, which sug-
gests that episodic memory retrieval preferentially occurs when
there is uncertainty about what will happen next (83).

Finally, it is notable that unexpected events were remembered
differently to expected events. In Experiments 1 and 2, partici-
pants were good at recalling that something surprising had hap-
pened but could not necessarily remember what it was (see also
ref. 84 for similar findings). This revealed itself in an increase in
the number of misremembered events, which either reflected par-
ticipants recalling an incorrect action or stating that the action
was something strange. Interestingly, correct recall of the target
actions was equivalent for both the expected and unexpected vid-
eos. This is likely to reflect two opposing effects: Surprising actions
were inherently more memorable but harder to recall due to their
lack of contextual relevance, while typical actions benefited from
strong contextual cues (see also ref. 85). A previous study used a
subset of the same video stimuli as ours, and a recognition para-
digm (86). Here, the expected and unexpected actions were
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equivalently cued during the recognition test, and under this
situation, the unexpected target actions were remembered better.

In conclusion, our findings demonstrate that the hippocampus
computes mismatches between ongoing experiences and stored
episodic memories but not generalized schematic knowledge. The
results support theoretical models which have argued for such a
limited role for the hippocampus as a comparator, but where direct
experimental evidence has been lacking. Conversely, our findings
constrain theories that have proposed a wider role for the hip-
pocampus as a more general mismatch detector. Future work must
clarify the degree to which hippocampal representations of struc-
tured information enable the generation of predictions in similar,
yet novel, situations.

Methods

Participants. There were three separate groups of healthy adult participants
recruited for the three experiments. An a priori power analysis for the hippocampal
contrast of Atypical vs. Typical actions suggested that 30 participants were required
to detecta Cohen’s d effect size of 0.4, at a level of o = 0.05 and with a power of
0.7.A Cohen's d effect size of 0.4 is consistent with the effect of the modulation
of hippocampal response to surprising events by prediction strength reported
by Long, Lee and Kuhl (23). For Experiment 1 37 participants were recruited
(29 female, 8 male, range = 18 to 30 y old). One participant was excluded from
any further fMRI data analysis due to issues with MRI data acquisition. In total,
there were 36 participants included in the final dataset in Experiment 1 (29
female, 7 male, mean age = 21.6 y old, SD = 3.3y). For Experiment 2, 37 partici-
pants were recruited (25 female, 12 male, range = 18 to 32 y old). Two participants
were excluded from further fMRI analysis due to poor MRI data quality (excess
signal dropout), and two due to not following the instructions. In total, there were
33 participants included in the final dataset in Experiment 2 (22 female, 11 male,
mean age = 22y old, SD = 3.4 y). For Experiment 3, 30 participants were recruited
(25female, 5 male, mean age = 21y old, SD = 2.8y, range = 18 t0 29 y old). All
participants had normal or corrected-to-normal vision, were right-handed, fluent
English speakers. No participants were taking prescribed medication fora mental
health condition. Participants were recruited via campus flyers and advertisements
posted on the School of Psychology's online participant recruitment system (Sona
Systems). Informed consent was provided by all participants before the experi-
ment, and they were given monetary compensation for participating (£10/h). All
three experiments were approved by the Brighton and Sussex Medical School
Research Governance and Ethics Committee.

stimuli. Custom-made stop-motion video clips were used in all experiments.
Thirty-four scenarios were used, and each scenario had two alternative versions
resulting in 34 pairs of clips in total. The clips within each pair were identical to
each other, except for one action (which we will refer to as the Target Action), which
was either Typical (contextually fitting) in one version, and Atypical (incongruent
with the context) in the other. Scenes including the Target Action were on average
30's. For more information, refer to S/ Appendix, Stimuli.

Procedure. Across the three experiments, we manipulated the typicality of
sequences of actions shown within the video clips inside the scanner as well
as participants' familiarity with the video clips prior to scanning. The procedure
contained three consecutive sessions—prescanning, scanning, and postscanning.
Prescanning session. Before entering the fMRI scanner, participants familiarity
with the specific clips was controlled. In Experiment 1, participants did not watch
any video clips before entering the scanner; they were only briefed about the
structure of the task that they will carry out inside the scanner. In Experiment 2,
participants were familiarized with the Typical version of each video clip prior to
scanning. In Experiment 3, participants were familiarized with the Atypical version
of each clip prior to scanning. The familiarization included participants watching
the clips in a randomized order. Then recalling each clip in as much detail as
possible, in a randomized order, especially focusing on the sequence of actions
carried out by the actors. Participants were cued with an image of the first frame
of each clip and asked to say out loud what they remembered happening in the
clips. After recalling all clips, participants watched them once again to refresh their
memory. The prescanning session took 66 min to complete on average in both
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Experiments 2 and 3. At the end of this video familiarization phase, participants
were told that inside the scanner, they will see some clips identical to the ones
they had just watched and some clips that will contain a change.

Scanning session. Inside the scanner, participants in all three experiments
watched 34 unique clips in total-half of the clips in the Typical condition and half
in the Atypical condition. Across participants, we counterbalanced which videos
were seen in the Atypical and which clips were seen in the Typical condition. Each
clip was seen only once during the scanning session and presentation order was
randomized. In all three experiments, the scanning session lasted about an hour
and followed this general trial structure: fixation-video-fixation-questionfixation-
odd/even number judging task. For more information on the scanner task, refer
to S/ Appendix, Scanning Task Supplementary Information.

Postscanning session. In all three experiments, participants were asked after
scanning to recall what happened in the video clips they watched inside the
scanner. Their recall was audio recorded. Participants were cued with a picture of
the firstframe of the scenes containing the Target Actions and were asked to recall
out loud what happened in the video clip, particularly focusing on the sequence
of actions the actor was performing. The recall task was self-paced, participants
were given the opportunity to take a short break between recalling each clip. For
more information on the postscanner task, refer to S/ Appendix, Postscanning
Task Supplementary Information.

fMRI Acquisition. All images were acquired in the Clinical Imaging Sciences
Centre at the University of Sussex on a 3-T Siemens Prisma scanner with a
32-channel head coil. To minimize head movement, soft cushions were inserted
into the head coil. Functional images were acquired with a gradient-echo EPI
sequence with multiband acceleration factor of 3 with the following parameters (TR
1,520 ms, TE 28 ms, 75° flip angle, field of view = 208 mm x 208 mm, 72 slices
with slice thickness of 2 mm and isotropic 2 mm voxels). Two SpinEcho fieldmap
runs with reversed phase-encode blips in both anterior to posterior and posterior
to anterior were acquired with the same parameters as the functional images.
Separate field maps were acquired for each functional run. A high resolution T1-
weighted image was acquired with 3-D MPRAGE sequence (in Experiments 1and
2:TR2,530 ms, TE 1.63 ms, 7° flip angle, field of view = 240 mm x 256 mm with
slice thickness of 1 mm and 1 mm isotropic voxels; in Experiment 3: TR 2,300 ms,
TE2.19 ms, 9°flipangle, field of view = 256 mm x 256 mm with slice thickness of
Tmmand 1 mmisotropic voxels). Preprocessing steps of structural and functional
data are reported in S/ Appendix, fMRI Preprocessing.

fMRI Data Analysis. In Experiment 1, the design matrix of the GLM included
five regressors. The focus of our main analyses was on transient changes in activ-
ity evoked by key moments in the task. For this reason, we included regressors for
1)the onset of the video clips; 2) the scene changes; 3) Atypical target actions; 4)
Typical target actions; and 5) the full duration of the comprehension questions
and following fixation cross. Note that video clips in Experiment 1included two
scenes per clip, because we also investigated BOLD activity changes at scene
changes in this experiment. However, we do not report these results here. See
more information about the clips in S/ Appendix, Stimuli. The first four regressors
had zero duration (delta functions). The onset of each target action (Atypical or
Typical) corresponded to the most surprising timepoint of the Atypical version of
each pair of clips. For more information on how the most surprising timepoints
were chosen, refer to S/ Appendix, Analyses, GLM Supplementary Information.
For Experiments 2 and 3, the design matrix of the GLM included four regressors.
The regressors included the 1) video clips onsets, 2) Atypical and 3) Typical target
actions, and the 4) comprehension question with the intertrial fixation crosses.
All four regressors were modeled identically to Experiment 1. The only difference
between the two GLMs was the absence of a scene change regressor in Experiments
2 and 3 (hence the absence of scene changes in the video clips in Experiments 2 and
3). The odd/even number judging task, the rest of the movie timepoints, and the
fixation cross at the beginning of each trial were unmodeled, acting as the baseline.
Inall first-level models, we included six motion parameters, framewise displacement,
White Matter Signal, and Cerebrospinal Fluid Signal as regressors of no interest to
account for any residual noise and motion effects after motion realignment.

Statistical Thresholding. For whole-brain analyses, group-level testing was
done using a one-sample t test on the functional maps generated by the first-
level analysis. Whole-brain maps were cluster corrected at FWE P < 0.05 at voxel
height defining threshold of P < 0.001.
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Region of Interest Analyses. ROl masks are reported in S/ Appendix, Region
of Interests. In all ROl analyses, after estimating the first-level whole-brain GLMs
for each participant (see GLM above), we used FSLUTILS' fsimeants program to
average the beta weights associated with the Atypical and Typical target actions
from all voxels within the ROI. For the hippocampal and VTA/SN ROl analysis, we
performed planned two-tailed paired t test comparing BOLD differences between
Typical and Atypical actions in each experiment. For the hippocampal analysis, we
also report complimentary Bayes Factors using two-tailed standard Cauchy prior
with scale 0.707.To compare BOLD response to target actions across the Network
ROIs, we conducted a repeated measures ANOVA within each experiment, with
within subject factors: Condition (Typical and Atypical target actions) and Network
(Semantic Control, Multiple Demand, and DMN). ANOVAs were conducted with
the ez package available in R (87). In case the ANOVAs showed significant results,
post hoc two-tailed paired t tests were conducted between conditions/networks,
with Bonferroni correction applied to account for multiple comparisons.

Behavioral Data Analysis. Participants' recall of all the video clips they watched
inside the scanner was analyzed using logistic mixed effect models estimated
with the Ime4 (88) package available in R. Data analysis focused only on recall of
the Target Actions (Typical or Atypical). For information on how recall was scored,
refer to SI Appendix, Analyses, Behavioral Data Analysis, Recall Scoring. For fur-
ther information on data exclusions in the recall analysis, refer to S/ Appendix,
Analyses, Behavioral Data Analysis, Recall Analysis Exclusions.
Remembered/forgotten target action analysis. Our main interest was to test
whether there is a difference in recalling the Target Actions correctly depending
on whether the target was in the Typical or Atypical condition. Therefore, we gave a
binary memory score of correct recall (1) or forgotten/incorrect (0) for each trial. We
entered the binary memory score as the dependent variable and included a predictor
indexing whether the target action was in the Typical (0) or Atypical (1) condition and
random intercepts for participants and video clips [Recall Score ~ Condition + (1 |
Participant) + (1 | Video Clip)]. To compare overall memory accuracy across experi-
ments, we entered the binary memory score as the dependent variable and included
a predictor indexing the Experiment (1,2,3) and random intercepts for participants
and video clips [Recall Score ~ Experiment + (1 | Participant) + (1| Video Clip)].
Memory error analysis. We further investigated whether trials that were scored
"forgotten” were simply due to the participant omitting the target action entirely
from their recall or having an imperfect recall of the target action. A score of 1
was entered into the analysis for those forgotten/incorrect trials where the correct
action was mentioned but the object was left out, replaced with the word “some-
thing” or replaced with another object. The rest of forgotten (omitted) trials and the
remembered trials were entered into the analysis with a score of 0 (no error). We
entered the binary error score as the dependent variable and included a predictor
indexing whether the target action was in the Typical (0) or Atypical (1) condition
and random intercepts for participants and video clips [Memory Error Score ~
Condition + (1| Participant) + (1 | Video Clip)]. This analysis was not preregistered.

Data, Materials, and Software Availability. Video clips, all code and materi-
als; Group level contrasts between Atypical and Typical actions data have been
deposited in [OSF; neurovault.org] [https://osf.io/p6z2g/ (89); https://identi-
fiers.org/neurovault.collection:19061 (90)]. Some study data available. Our
dataset consists of fMRI data from three experiments involving approximately
100 participants, with each participant undergoing around 1 h of scanning. This
includes five functional runs (approximately 6 min each) and a high-resolution
anatomical scan. The total dataset size is estimated to be approximately 370
GB. Due to the substantial size of the imaging data, sharing the entire data-
set publicly is logistically challenging. Raw data will be made available upon
request, summary nifti files of group level analysis are available on NeuroVault.
All other data are included in the manuscript and/or S Appendix.
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