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Significance

 Our brains use memories of the 
past to make sense of the 
present and predict the future. 
These memories might be of 
specific events or more general 
knowledge about the world. The 
hippocampus is widely implicated 
in signaling mismatches with 
memory-based predictions, but 
whether it uses specific episodic 
memories or generalized 
knowledge remains unclear. 
We show that the hippocampus 
selectively signals mismatches 
with episodic memories, while 
other brain networks respond 
to unexpected situations more 
broadly, regardless of memory 
type. These findings clarify 
the hippocampus’ role as 
a comparator, showing it is 
specialized for evaluating reality 
against episodic memories, and 
offer insight into how the brain 
uses past experiences to 
interpret the present and 
anticipate the future, shaping 
learning and memory.
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Prediction errors drive learning by signaling mismatches between expectations and 
reality, but the neural systems supporting these computations remain debated. The 
hippocampus is implicated in mismatch detection, yet it is not known whether it 
signals mismatches with episodic memories or generalized knowledge. Across three 
functional Magnetic Resonance Imaging (fMRI) experiments, we show that the hip-
pocampus selectively responds to mismatches with episodic memories of specific 
events. In contrast, schematic mismatches engage Semantic Control and Multiple 
Demand Networks, as well as subcortical regions linked to prediction error signa-
ling. Episodic mismatches also recruit the Default Mode Network. These findings 
challenge accounts that propose the hippocampus is a domain- general mismatch 
detector. Instead, the findings support a more specialized role for the hippocampus in 
learning that is underpinned by its well- established importance in processing   episodic 
memories.

hippocampus | prediction | mismatch | episodic memory | schema knowledge

 Humans possess a remarkable ability to predict what will happen in new situations based 
on past experiences ( 1   – 3 ). Detecting a mismatch between our predictions and our 
in-the-moment experience offers a powerful route to rapidly learn new information (e.g., 
refs.  4  and  5 ). The hippocampus plays a central role in mismatch detection (e.g., refs. 
 6         – 11 ). However, it is not known whether the hippocampus computes mismatches between 
current experience and predictions based on general schematic knowledge about the past 
or episodic memories of specific earlier experiences.

 Several proposals suggest that the hippocampus detects novelty by comparing incoming 
information with stored representations. This includes processing associative mismatch 
novelty [e.g., where familiar objects are reconfigured into novel arrangements (e.g., ref. 
 12 )], contextual novelty [where items are unexpected within a given context (e.g., ref. 
 13 )], and schema incongruence [violations of structured knowledge about the world (e.g., 
ref.  14 )]. These proposals are based on the well-established specialization of the hippocam-
pus for processing relations between items and particularly item-context associations 
( 15       – 19 ). Furthermore, the neural circuitry within the hippocampus is particularly suited 
to its hypothesized role as a comparator ( 9 ,  20 ). However, the prior contextual representa-
tions used in this comparator function remain unclear.

 There is strong evidence that the hippocampus supports mismatch processing based on 
specific past experiences to compare to current situations. In humans, it has been shown 
that the hippocampus detects changes in recently learned cue-outcome associations (e.g., 
refs.  21   – 23 ) and sequences of events (e.g., refs.  24   – 26 ). Likewise, in animal studies, the 
hippocampus shows a mismatch signal when changes are made to specific, previously 
encountered environments ( 27   – 29 ). Some computational models propose that the com-
parator function of the hippocampus is limited to processing mismatches with episodic-like 
representations of specific events ( 7 ,  30 ).

 However, often our expectations are based on our generalized understanding of patterns 
and regularities developed across multiple similar experiences ( 31   – 33 ). It has been sug-
gested that the hippocampus may also process mismatches based on these more generalized 
representations ( 34   – 36 ). This argument is based on evidence that the hippocampus learns 
the common elements and temporal regularities across multiple past experiences ( 37   – 39 ), 
can infer relationships between items that have never been directly experienced together 
( 40 ), and is involved in imagining complex future scenarios ( 41 ). Some computational 
models have proposed that the hippocampus plays a key high-level role within a “generative 
model” that makes predictions about the state of the world based on abstract generalized 
knowledge ( 10 ,  42 ). However, it remains unclear whether the hippocampus uses these 
generalized knowledge structures to compare expectations with reality.
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 The critical test of all these theories of hippocampal mismatch 
detection is whether the hippocampus responds to mismatches 
with generalized knowledge or whether its role is limited to pro-
cessing comparisons based on episodic-like memories. We address 
this using three functional Magnetic Resonance Imaging (fMRI) 
experiments, where we manipulated the source of prior knowledge 
(a form of expectation) while participants watched custom-made 
video clips of actors performing sequences of everyday actions 
(e.g., doing the laundry). Inside the scanner, all participants 
watched half of the clips in their “Typical” version (e.g., putting 
clothes into a washing machine) and the other half in their 
“Atypical” version (e.g., putting flowers into the washing 
machine). Depending on participant’s prescan familiarity with 
the clips, actions in the clips mismatched different types of expec-
tations. When participants were unfamiliar with the clips prior 
to scanning, Atypical actions mismatched solely general Schema 
Knowledge (Experiment 1). When participants had prewatched 
all clips in their Typical version, Atypical actions mismatched 
both Schema Knowledge and Episodic Memory of the specific 
clips (Experiment 2). Finally, when participants had prewatched 
all clips in their Atypical version, Typical actions mismatched 
Episodic Memory only (Experiment 3) ( Fig. 1 ).        

 In addition to our primary hippocampal analyses, to more 
comprehensively characterize the neural systems involved in pro-
cessing unexpected events, we conducted exploratory whole-brain 
analyses as well as region of interests (ROI) analyses in the Default 
Mode Network (DMN), Semantic Control Network (SCN), and 
Multiple Demand Network (MDN). These networks were 
selected based on their differing roles in processing ongoing expe-
riences. The DMN has been implicated in using past episodic 
information to support the interpretation of situations as they 
unfold across time (e.g., refs.  43  and  44 ). The SCN supports 

retrieval and integration of semantic knowledge in contextually 
appropriate ways, particularly when incoming information is 
unexpected or ambiguous ( 45 ). Meanwhile, the MDN is known 
to provide domain-general attentional resources in response to 
surprising or difficult-to-interpret stimuli ( 46 ). By examining 
responses across these regions, we aimed to better understand the 
broader network dynamics that support the processing of differ-
ent types of unexpected events.

 We also included the ventral tegmental area and substantia nigra 
(VTA/SN) as an exploratory ROI based on their established role 
in processing prediction errors and their functional connections 
with the hippocampus. The hippocampus is thought to signal 
unexpected events to midbrain dopaminergic regions, which then 
modulate memory encoding ( 9 ). These midbrain structures are 
known to signal motivational salience and update expectations 
when predictive relationships are violated.

 Overall, we found strong evidence that the hippocampus is 
limited to using episodic memory-based representations for its 
comparator mechanism. Responses to schematic knowledge-based 
mismatches were found in regions outside of the hippocampus, 
including cortical control networks and subcortical regions impli-
cated in prediction error processing. 

Results

The Effect of Expectation Violation on Memory. After scanning, 
participants were asked to recall the sequence of actions depicted 
in each video clip that they watched inside the scanner. We 
analyzed memory for the target actions specifically, showing 
high recall accuracy across all experiments (Fig. 2A). It is notable 
that participants’ accuracy significantly increased across the 
three experiments [β = 1.23; 95% CI = [1.09 1.37]; Z = 16.85;  

Fig. 1.   Experimental paradigm. (A) Still frames showing example moments from the two alternative versions of the “laundry” video clip (watch the clips here: https://
e01.eventmemory.org/ExampleVid_paper.html). The two versions showed a nearly identical sequence of actions, except for the target action that was either Typical 
or Atypical. (B) Before scanning, participants either did not watch any clips (Experiment 1), watched the Typical version of each clip (Experiment 2), or watched the 
Atypical version of each clip (Experiment 3). Across three experiments, all participants watched half of the clips in the Typical and the other in the Atypical version 
during fMRI. By manipulating prescan familiarity with the clips, target actions in each experiment violated different types of expectations. After scanning, participants 
were asked to describe what happened in all video clips watched inside the scanner, focusing on the actions the actors performed, cued by the first frame of each clip.D
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P < 0.001; Correct Recall ~ Experiment + (1 | Participant) + (1 | 
Video Clip)], likely reflecting participants’ increased familiarity with 
the videos in Experiments 2 and 3 due to the additional prescanning 
phases in these experiments. Interestingly, despite these differences 
in familiarity, the within- experiment logistic mixed- effects models 
[Correct Recall ~ Condition + (1 | Participant) + (1 | Video Clip)] 
showed no significant differences in recall accuracy between Typical 
vs. Atypical actions in any experiment (Experiment 1: β = 0.12; 
95% CI = [−0.57 0.81]; Z = 0.33; P = 0.739; Experiment 2:  
β = −0.59; 95% CI = [−1.23 0.06]; Z = −1.79; P = 0.074; Experiment 3:  
β = 0.42; 95% CI = [−0.31 1.15]; Z = 1.14; P = 0.254).

 Next, we ran further exploratory analyses to test whether partici-
pants were more likely to misremember  the target actions, depending 
on whether the action violated expectations ( Fig. 2B  ). Actions were 
counted misremembered if the correct action was mentioned, but the 
object was unspecified or replaced with another object. Participants 
made considerably more errors when recalling the Atypical compared 
to the Typical actions in Experiments 1 and 2 (Experiment 1:  
β = 1.51; 95% CI = [0.77 2.25]; Z = 3.99; P  < 0.001; Experiment 
2: β = 2.48; 95% CI = [1.61 3.34]; Z = 5.64; P  < 0.001). There 
was only a marginally significant difference in the proportion of 
memory errors between conditions in Experiment 3 [β = −0.81; 
95% CI = [1.61 3.34]; Z = −1.91; P  = 0.057; (Memory Error 
Score ~ Condition + (1 | Participant) + (1 | Video Clip))]. 
Interestingly, the effect in Experiment 3 was in the reverse direc-
tion to the effects in Experiments 1 and 2; participants were 
numerically more likely to misremember the Typical actions, hav-
ing prewatched versions of the videos showing the Atypical actions. 

Overall, across all experiments, participants were more likely to 
misremember unexpected target actions, either by replacing the 
object involved (e.g., “she put fruits into the washing machine”) or 
recalling the action without specifying the object (e.g., “she put 
something strange into the washing machine”).

 In summary, participants remembered the target actions well, 
and the actions were remembered differently depending on their 
expectedness. Importantly, there was no difference in correctly 
recalling actions that violated or met contextual expectations. 
However, participants were more likely to make errors when recall-
ing unexpected actions.  

The Effect of Different Types of Expectation Violation on 
Hippocampal Activity. Our main analyses focused on the 
hippocampus; the analyses and hypotheses of Experiments 1 (https://
osf.io/7g82x) and 3 (https://osf.io/zbnt9) were preregistered; the 
analyses and hypotheses of Experiment 2 were not preregistered, but 
the analyses were identical to the other experiments. We aimed to 
test whether hippocampal activity is modulated by the expectedness 
of target actions under different types of prior expectations. We used 
a General Linear Model (GLM) to isolate transient activity evoked 
by the Typical and Atypical target actions. Hippocampal activity 
was quantified by averaging beta weights from all voxels within a 
bilateral hippocampal mask for each condition in each experiment, 
allowing us to directly compare responses to Atypical and Typical 
actions. The results are shown in Fig. 3.

 In Experiment 1, our preregistered hypothesis was that hippocam-
pal activity would be modulated by schema-based expectation viola-
tions. Specifically, we predicted that activity would be higher in 
response to Atypical compared to Typical actions in line with its 
proposed role as a general-purpose mismatch detector. However, a 
paired t  test revealed that there was no effect of schema-based mis-
matches in the hippocampus (t(35)  = 0.57; with a mean difference of 
0.14; 95% CI = [−0.36 0.65]; P  = 0.567; and a negligible effect size 
of d = 0.12, 95% CI = [–0.30 0.54]), against our preregistered 
hypothesis. Bayesian analysis provided moderate evidence for the null 
hypothesis (BF01  = 4.78), further suggesting that hippocampal activity 
was not modulated by target action expectedness in this experiment. 
To examine whether adding specific episodic memory-based expec-
tations while watching the same clips would elicit mismatch signals 
in the hippocampus, we conducted Experiment 2.

 In Experiment 2, hippocampal activity was greater to Atypical 
compared to Typical actions (t(32)  = −4.59; with a mean difference 
of –1.28, 95% CI = [−1.84 −0.71]; P  < 0.001; and a large effect 
size of d  = –1.06, 95% CI = [–1.64 –0.48]; BF10  = 378.25). This 
reveals that being able to compare specific episodic memories to 
reality is important for eliciting a mismatch response in the hip-
pocampus. However, the increased hippocampal response in 
Experiment 2 may reflect an additive effect of schema-based and 
episodic memory-based mismatches, leaving it unclear whether 
episodic memory violations alone would elicit increased activity.

 To address this concern, we conducted Experiment 3, which 
tested solely episodic memory-based violations. Here, participants 
prewatched all the Atypical versions of the videos. Consequently, 
during scanning, the Typical versions of the videos were unex-
pected on the basis of episodic memory alone. Based on the results 
of Experiment 2, our preregistered hypothesis was that hippocampal 
activity would show greater response to the Typical compared to 
Atypical actions. In this experiment, hippocampal activity was sig-
nificantly higher for Typical compared to Atypical actions (t(29)  = 5;  
with a mean difference of 1.13; 95% CI = [0.67 1.60]; P  < 0.001; 
and a large effect size of d  = 0.95, 95% CI = [0.49 1.40]; BF10  = 
910.34), in line with the preregistered hypothesis. Overall, pro-
viding compelling evidence that the hippocampus responds to 

Fig. 2.   Memory was influenced by the expectedness of actions. (A) Bar 
charts showing the average proportion of remembered target actions in the 
Typical and Atypical conditions in each experiment. Error Bars represent 95% 
CI. Strip plots show each participant’s average proportion of remembered 
target actions for each condition. There were no differences in the average 
proportion of correctly recalled target actions between conditions. (B) Bar 
charts showing the proportion of erroneously recalled target actions in each 
condition. People made more errors when recalling actions that violated their 
expectations. Error Bars represent 95% CI. ***P < 0.001, n.s. P > 0.05.
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mismatches even when they are driven solely by episodic memory, 
thus ruling out the influence of schema-based expectations.

 In supplementary analyses, we further tested whether the hip-
pocampal response differed as a function of expectation type, 
conducting a direct comparison of the mismatch effect across 
Experiments 1 and 2 (SI Appendix, Supplementary Results  ). This 
analysis revealed a significant interaction between experiment and 
condition, confirming that the hippocampus responded more 
strongly to violations of specific episodic expectations than to 
violations of general schematic knowledge. We also report more 
fine-grained analyses on the effect of mismatches in hippocampal 
subregions (head, body, and tail) (SI Appendix, Fig. S2 and Results, 
Hippocampal Subregions  ) and subfields (CA1, subiculum, and a 
combined CA3/CA4/dentate gyrus region) (SI Appendix, Fig. S3 
and Results, Hippocampal Subfields  ). These analyses all found con-
sistent effects throughout the hippocampus.  

The Effect of Different Types of Expectation Violation Outside 
of the Hippocampus. We conducted exploratory whole- brain 
analyses to investigate the mismatch responses outside of the 
hippocampus in all three experiments. First, we ran separate 
GLMs for the three experiments, modeling the response to 
the Atypical and Typical target actions. Group- level contrasts 
between the Atypical and Typical target actions are shown in 
Fig. 4A. We additionally carried out post hoc exploratory ROI 
analyses investigating whether the effects of expectation violation 
differed across three brain networks—the SCN, the MDN, and 
the DMN. Within each experiment, we conducted a repeated 
measures ANOVA between the target action conditions and 
Networks on the average parameter estimates associated with the 
target actions from all voxels comprising each network (Fig. 4B). 
A final exploratory ROI analysis focused on the ventral tegmental 
area (VTA)/SN.

 First, in Experiment 1, Atypical compared to Typical actions 
engaged regions generally implicated in attentional engagement, 
semantic and predictive processing ( 47 ,  48 ). Mismatch signals 

were also present in the caudate nucleus ( 49 ), the amygdala ( 50 ), 
and the thalamus ( 51 ), consistent with previous work on expec-
tation violations. Typical compared to Atypical actions engaged 
regions (such as Posterior Medial and Medial Prefrontal Cortex) 
implicated in encoding schema-consistent information, compre-
hending narratives, and mentalizing ( 52   – 54 ). This finding is in 
accordance with suggestions of the SLIMM model [schema-linked 
interactions between medial prefrontal and medial temporal 
regions ( 14 )] that the medial prefrontal cortex has an important 
role in detecting the match between current events and existing 
contextual associations.

 The network-level analysis revealed significant main effects for 
Condition (F(1,35)  = 13.70; P  < 0.001; eta2[g] = 0.11) and Network 
(F(2,70)  = 35.60; P  < 0.001; eta2[g] = 0.19), and a significant 
Condition*Network interaction (F(1.65,57.7)  = 14.07; P  < 0.001; 
eta2[g] = 0.06). Pairwise comparisons showed that the average 
response to Atypical compared to Typical actions was significantly 
higher in the SCN (t(35)  = 5.64; P  < 0.001) and MDN (t(35)  = 4.11; 
 P  < 0.001). Schema-based expectation violation did not signifi-
cantly modulate activity in the DMN overall (t(35)  = 0.30;  
 P  = 0.763).

 There was a significant increase in VTA/SN activity for the 
Atypical actions, consistent with this region responding to pre-
diction errors ( 9 ,  55 ,  56 ). A paired t  test comparing Atypical  
(M = 0.71, SD = 1.53) and Typical (M = −0.30; SD = 1.22) actions 
revealed an effect of condition (t(35)  = 2.90, P  = 0.006, 95% CI = 
[−1.72 −0.30]).

 In Experiment 2, a strikingly similar map of regions was acti-
vated more by Atypical than Typical actions ( Fig. 4 ). Once again, 
subcortical effects were present in the caudate nucleus, thalamus, 
and amygdala. The Network ANOVA revealed significant main 
effects for Condition (F(1,32)  = 57.76; P  < 0.001; eta2[g] = 0.30) 
and Network (F(2,64)  = 24.87; P  < 0.001; eta2[g] = 0.14), and a 
significant Condition*Network interaction (F(1.29,41.26)  = 11.19;  
 P  < 0.001; eta2[g] = 0.06). Pairwise comparisons showed that the 
average response to Atypical target actions was again significantly 

Fig. 3.   Hippocampal mismatch response is limited to signaling episodic memory–based expectation violation. In Experiment 1, expectations are based only 
on schematic knowledge, in Experiment 2, expectations are based on both episodic memory and schematic knowledge, and in Experiment 3, expectations are 
based only on episodic memory. (A) Bar charts showing the average response to Typical and Atypical target actions in the bilateral hippocampus in the three 
experiments (strip plots show individual participants’ averaged parameter estimates for the target actions estimated from a GLM). Error bars represent 95% CIs. 
(B) Time course of average BOLD signal in the bilateral hippocampal ROI to Typical and Atypical target actions in each experiment. ***P < 0.001; n.s. P > 0.50.
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higher in regions of the SCN (t(33)  = 10.1; P  < 0.001) and MDN 
(t(33)  = 4.95; P  < 0.001). Now with the addition of context-specific 
memory-based predictions, regions of the DMN were also overall 
more engaged by Atypical than Typical actions (t(33)  = 3.52;  
 P  = 0.001).

 In the VTA/SN, there was again greater activity for the Atypical 
(M = 1.08; SD = 1.05) compared to Typical (M −0.36; SD = 1.22) 
actions. A paired t  test revealed a highly significant difference (t(32)  
= 5.97, P  < 0.001, 95% CI = [−1.93 −0.95]).

 Notably, an exploratory whole-brain analysis comparing regions 
more responsive to Experiment 2 mismatches (episodic and sche-
matic violations) than Experiment 1 mismatches (only schematic 
violations) revealed a significant effect in the right hippocampus, 
supporting the relative selectivity of the hippocampal mismatch 
effect observed in the ROI analysis for episodic memory 
(SI Appendix, Fig. S1 and Results, Whole-Brain Interaction  ).

 The commonality across Atypical actions in Experiments 1 and 
2 was that they were surprising with respect to long-term semantic 
knowledge about the situations depicted in the videos. Therefore, 
common regions activated in both tasks (in particular regions of the 
SCN) might reflect violation of predictions based on general knowl-
edge rather than an overarching role in all types of context-violation. 
Whether these regions would be activated also by context-specific, 
episodic memory-based violations was tested in Experiment 3.

 In Experiment 3, the two sources of expectations—schematic 
knowledge and episodic memory—are in opposition to each other. 
Here, unlike the previous experiments, there were no regions more 
activated by Atypical than Typical actions. This suggests that famil-
iarization with the Atypical videos rapidly diminished the fMRI 
response to actions that might be considered inherently surprising 
based on schematic knowledge. However, several regions that had 

been engaged by unexpected events in Experiments 1 and 2 (par-
ticularly in the dorsomedial and inferior frontal cortex) were now 
more engaged by Typical than Atypical actions. This reflects the 
regions responding to events that were unexpected based on mem-
ory for the specific videos. The only subcortical structures to also 
show this effect were the right amygdala and a small region of the 
right ventral striatum. The Network-related ANOVA revealed 
significant main effects for Condition (F(1,29)  = 19.5; P  < 0.001; 
eta2[g] = 0.11) and Network (F(1.33,38.59 ) = 6.87; P  = 0.007; eta2[g] 
= 0.07), and a significant Condition*Network interaction (F(2,58)  
= 6.56; P  = 0.003; eta2[g] = 0.03). Pairwise comparisons showed 
that the average response to Atypical target actions was signifi-
cantly higher in the SCN (t(29)  = 3.56; P  = 0.001), suggesting that 
these regions likely have a rather general role in processing sur-
prising actions, regardless of the source of expectations. 
Additionally, the Typical actions also engaged the DMN more 
than did Atypical actions that matched memory for the specific 
context (t(29)  = 4.72; P  < 0.001). Finally, expectation violation did 
not significantly influence activity in the MDN overall in this 
Experiment 3 (t(29)  = 1.29; P  = 0.207). Inspection of the effect in 
the MDN across all three experiments suggests that in Experiment 
3, activity was higher for both the Atypical and Typical actions 
(compared with Typical actions in Experiments 1 and 2). This is 
likely due to both types of actions being salient within the clips 
and capturing participants’ attention.

 In the VTA/SN, a paired t  test comparing Typical (M = 0.24; 
SD = 1.85) and Atypical (M = −0.21; SD = 1.21) actions did not 
reveal a statistically significant difference, t(29)  = 1.38, P  = 0.178, 
95% CI = [−0.22 1.12].

 To summarize, we show that unexpected actions, regardless of 
the source of expectation violation, are processed in regions 

Fig. 4.   The effect of expectation across the whole brain and in three cortical networks. (A) T- maps of the contrast between Atypical and Typical target actions 
in each experiment. Whole- brain t- maps are cluster corrected at FWE P < 0.05 at voxel height defining threshold of P < 0.001 and color- coded to indicate the 
intensity of activation. The color bar indicates the t- statistic associated with each voxel. (B) Bar charts show the average response to Typical and Atypical target 
actions in the SCN, MDN, and DMN in the three experiments (strip plots show individual participants’ averaged parameter estimates for the target actions 
estimated from a GLM). Error bars represent 95% CIs. (C) Spatial maps of the network ROIs.D
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associated with generating contextually relevant inferences and 
resolving conflict. At the network level, Atypical, unexpected, target 
actions that violated general schema-based predictions engaged 
cognitive control networks more than did Typical, expected, actions. 
This is consistent with the role of SCN and MDN in resolving 
unexpected information by guiding contextually appropriate 
knowledge retrieval ( 45 ) and allocating attentional resources to 
interpret ambiguous situations ( 57 ,  58 ), respectively, suggesting 
that our manipulation of schema incongruence of the Atypical 
target actions was successful. Unexpected actions in all experiments 
were attention grabbing, as suggested by the increased activity in 
the MDN regions, important for allocating attention to salient, 
goal-relevant information. Those actions that also violated episodic 
memory-based expectations, engaged regions of the DMN, which 
is consistent with the DMN’s role in comparing internally generated 
inferences (e.g., episodic memories) with incoming information 
( 59 ). Interestingly, subcortical regions associated with prediction 
error processing were engaged by violations of schema-based expec-
tations, or the combination of schema- and episodic memory-based 
expectations, but not when expectations were purely based on epi-
sodic memory. It is therefore noteworthy that the VTA/SN showed 
a different pattern of activation across the three experiments 
 compared to the hippocampus.   

Discussion

 We performed three separate fMRI experiments to test the role of 
the hippocampus as a mismatch detector. We found that the hip-
pocampus processes mismatches between specific episodic mem-
ories and in-the-moment experience. Critically, we show that 
violations of prior contextual representations based on more gen-
eralized schematic knowledge do not engage the hippocampus. 
These findings impose hard constraints on the information used 
by the hippocampus to detect mismatches. They provide direct 
support to theoretical models of hippocampal function that identify 
a limited role to processing episodic memory mismatches ( 7 ,  30 ).  
Conversely, models that have argued for a more general role for 
the hippocampus in comparing broader contextual representations 
of prior experiences to ongoing reality must be reevaluated in the 
light of the present results (see refs.  14  and  36 ).

 Our study showed that Atypical sequences of actions violating 
long-term schematic knowledge of everyday situations did not dif-
ferentially engage the hippocampus compared to Typical sequences 
matching schema knowledge (Experiment 1). Conversely, when 
participants formed episodic memories for the Typical sequences 
prior to scanning, viewing Atypical sequences in the scanner caused 
a transient hippocampal response (Experiment 2). This indicates 
that episodic memory-based expectations are needed to trigger hip-
pocampal mismatch responses. Nevertheless, it remained a possi-
bility that the additive effect of a mismatch between episodic 
memories and general knowledge about the situations shown 
exceeded a threshold for “surprise” and triggered a hippocampal 
response. Experiment 3 addressed this possibility, as participants 
prewatched all the Atypical versions of the videos before scanning. 
In this experiment, the contextually appropriate Typical versions of 
the videos caused an increased hippocampal response, since these 
videos mismatched episodic memories from the prewatch phase. 
Our findings provide strong empirical support for a family of com-
putational models proposing a role for the hippocampus in com-
paring incoming information with episodic memories that are 
stored within the hippocampus ( 11 ,  60   – 62 ).

 Our findings address a key gap in the literature since evidence 
in support of the hippocampus as a mismatch detector is based 
overwhelmingly on highly specific, recently learned, information. 

On the basis of such evidence, the hippocampus has been argued 
to have a rather general role in processing any information that 
mismatches expectations based on a context, or even on general-
ized statistical regularities learned about the world ( 10 ,  13 ,  14 , 
 42 ). Our results strongly constrain the role of the hippocampus 
as a mismatch detector to situations where expectations are based 
on specific episodic-like representations of the event. Nevertheless, 
as discussed next, we do not argue that the hippocampus can only 
make comparisons between the current situation and a memory 
for an identical experience in the past—indeed such a rigid func-
tion would serve little adaptive value in most situations.

 It is well established that the hippocampus is able to support 
flexible representations that capture the associative structure of a 
situation or environment and can be used to make inferences 
about situations that have never been experienced ( 63       – 67 ). How 
do we square the flexibility of hippocampal representations with 
our results? We suggest that the hippocampus only compares pre-
dictions to novel experiences that are part of a learned “cognitive 
map,” which may represent a physical space or a more abstract 
conceptual space ( 68 ). For example, a map-like representation will 
encode the relative locations of objects within a particular space, 
enabling it to detect expectation violations even if exploring the 
space from an entirely novel perspective ( 69 ,  70 ). However, when 
inferences must be drawn from structured mental models 
abstracted away from a specific cognitive map, mismatches will 
be detected independent of the hippocampus.

 An intriguing question for future research is whether the hip-
pocampus only signals mismatches when comparing incoming 
information with a specific episodic memory, or if it also signals 
mismatches when expectations can be very precisely predicted 
based on generalized knowledge. For example, while our experi-
ences of restaurants can be highly variable and lead to rather broad 
expectation of what might happen in a new situation, our experi-
ences of going through airport security might be very similar and 
lead to very specific expectations of what will occur (similar to 
expectations that can be made based on a specific episodic memory 
for a past experience). In the airport security example, the hip-
pocampus might signal expectation mismatches even if these expec-
tations are based on generalized knowledge and not with reference 
to any specific prior event. Alternatively, the hippocampus might 
only signal a mismatch if a specific episodic memory is being used 
to generate expectations about a new situation (e.g., my memory 
of passing through security at John F. Kennedy International 
Airport guides my expectations of what will happen at the security 
gates at Schiphol airport).

 An alternative explanation to the prediction-mismatch account 
is that the hippocampal response we see reflects novelty processing 
more generally. In Experiments 2 and 3, the hippocampus responds 
to parts of the videos that have never been seen before. This could 
potentially reflect processing of information for which there is no 
preexisting representation (rather than a comparison with predic-
tions). However, novelty detection is typically argued to involve a 
global match process between the input and all stored representa-
tions—irrespective of whether these representations are episodic 
or schematic—and therefore responses should scale with the overall 
degree of stimulus novelty ( 6 ,  71 ). Our findings are inconsistent 
with this; the hippocampal response in Experiment 2 was similar 
to Experiment 3, despite the fact that in Experiment 2 the actions 
were novel from the perspective of schematic knowledge, and in 
Experiment 3, they were not. Thus, the overall amount of novelty 
does not appear to be the key driver of the hippocampal response, 
but whether or not there is a deviation from a specific episodic 
memory-based representation—more in line with an associative 
mismatch detection account. Furthermore, our findings also argue D
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against a broader role for the hippocampus in all forms of 
“ contextual” novelty, as has been proposed (e.g., ref.  13 ).

 The hippocampal BOLD response in Experiments 2 and 3 
might have a number of causes. First, it might reflect the initial 
increase in activity of hippocampal neurons that signal the mis-
match with expectations to other brain regions ( 11 ,  72 ). 
Alternatively, the detection of a mismatch in the hippocampus 
might lead to the activation of dopaminergic neurons in the VTA 
which in turn project back to the hippocampus in order to mod-
ulate learning mechanisms within the hippocampus ( 9 ,  73 ). For 
example, dopaminergic projections to the hippocampus promote 
long-term potentiation via activation of D1 receptors ( 74 ), which 
in turn has been argued to result in local increases in BOLD 
activity ( 75 ). However, this explanation is weakened by the fact 
that activity in the VTA/SN was driven by violations of schematic 
knowledge-based expectations, whereas the hippocampus was 
engaged by episodic memory-based expectation violations. 
Another possibility is that mismatches trigger release of acetylcho-
line within the hippocampus which can modulate CA1 synaptic 
plasticity ( 7 ,  76 ). Interestingly, acetylcholine can also directly 
affect the BOLD signal via its action as a vasodilator ( 77 ). Future 
research will unpick the cellular mechanisms that underpin the 
hippocampal mismatch response in our study.

 Our results also shed light on the role of various cortical net-
works in processing unexpected actions. The SCN was strongly 
engaged when the actions were unexpected based on both sche-
matic knowledge and the combination of schematic knowledge 
and episodic memory. In Experiment 3, when these sources of 
expectation were pitched against each other, it was the violation 
of episodic memories that resulted in significantly higher activity 
within the SCN. This network plays a role in generating inferences 
that are appropriate to a particular situational context ( 45 ). Our 
findings suggest that parts of the network additionally process 
context-specific expectations based on recently experienced infor-
mation and not only long-term semantic knowledge (see also refs. 
 78  and  79 ). This is consistent with previous findings that regions 
of the SCN control context-appropriate retrieval in both episodic 
and semantic memory ( 80 ). The DMN showed a very similar 
pattern of activation to the hippocampus, suggesting a comple-
mentary role in comparing specific episodic memories with cur-
rent experience. It is possible that hippocampal retrieval of the 
action watched before scanning triggered reinstatement of its 
content throughout the DMN (e.g., refs.  81  and  82 ). We propose 
that participants may have retrieved the predicted action when 
viewing an unexpected action, whereas this was unnecessary when 
observed actions aligned with prior expectations. This is consistent 
with predictions from a recent computational model, which sug-
gests that episodic memory retrieval preferentially occurs when 
there is uncertainty about what will happen next ( 83 ).

 Finally, it is notable that unexpected events were remembered 
differently to expected events. In Experiments 1 and 2, partici-
pants were good at recalling that something  surprising had hap-
pened but could not necessarily remember what it was (see also 
ref.  84  for similar findings). This revealed itself in an increase in 
the number of misremembered events, which either reflected par-
ticipants recalling an incorrect action or stating that the action 
was something strange. Interestingly, correct recall of the target 
actions was equivalent for both the expected and unexpected vid-
eos. This is likely to reflect two opposing effects: Surprising actions 
were inherently more memorable but harder to recall due to their 
lack of contextual relevance, while typical actions benefited from 
strong contextual cues (see also ref.  85 ). A previous study used a 
subset of the same video stimuli as ours, and a recognition para-
digm ( 86 ). Here, the expected and unexpected actions were 

equivalently cued during the recognition test, and under this 
 situation, the unexpected target actions were remembered better.

 In conclusion, our findings demonstrate that the hippocampus 
computes mismatches between ongoing experiences and stored 
episodic memories but not generalized schematic knowledge. The 
results support theoretical models which have argued for such a 
limited role for the hippocampus as a comparator, but where direct 
experimental evidence has been lacking. Conversely, our findings 
constrain theories that have proposed a wider role for the hip-
pocampus as a more general mismatch detector. Future work must 
clarify the degree to which hippocampal representations of struc-
tured information enable the generation of predictions in similar, 
yet novel, situations.  

Methods

Participants. There were three separate groups of healthy adult participants 
recruited for the three experiments. An a priori power analysis for the hippocampal 
contrast of Atypical vs. Typical actions suggested that 30 participants were required 
to detect a Cohen’s d effect size of 0.4, at a level of α = 0.05 and with a power of 
0.7. A Cohen’s d effect size of 0.4 is consistent with the effect of the modulation 
of hippocampal response to surprising events by prediction strength reported 
by Long, Lee and Kuhl (23). For Experiment 1 37 participants were recruited 
(29 female, 8 male, range = 18 to 30 y old). One participant was excluded from 
any further fMRI data analysis due to issues with MRI data acquisition. In total, 
there were 36 participants included in the final dataset in Experiment  1 (29 
female, 7 male, mean age = 21.6 y old, SD = 3.3 y). For Experiment 2, 37 partici-
pants were recruited (25 female, 12 male, range = 18 to 32 y old). Two participants 
were excluded from further fMRI analysis due to poor MRI data quality (excess 
signal dropout), and two due to not following the instructions. In total, there were 
33 participants included in the final dataset in Experiment 2 (22 female, 11 male, 
mean age = 22 y old, SD = 3.4 y). For Experiment 3, 30 participants were recruited 
(25 female, 5 male, mean age = 21 y old, SD = 2.8 y, range = 18 to 29 y old). All 
participants had normal or corrected- to- normal vision, were right- handed, fluent 
English speakers. No participants were taking prescribed medication for a mental 
health condition. Participants were recruited via campus flyers and advertisements 
posted on the School of Psychology’s online participant recruitment system (Sona 
Systems). Informed consent was provided by all participants before the experi-
ment, and they were given monetary compensation for participating (£10/h). All 
three experiments were approved by the Brighton and Sussex Medical School 
Research Governance and Ethics Committee.

Stimuli. Custom- made stop- motion video clips were used in all experiments. 
Thirty- four scenarios were used, and each scenario had two alternative versions 
resulting in 34 pairs of clips in total. The clips within each pair were identical to 
each other, except for one action (which we will refer to as the Target Action), which 
was either Typical (contextually fitting) in one version, and Atypical (incongruent 
with the context) in the other. Scenes including the Target Action were on average 
30 s. For more information, refer to SI Appendix, Stimuli.

Procedure. Across the three experiments, we manipulated the typicality of 
sequences of actions shown within the video clips inside the scanner as well 
as participants’ familiarity with the video clips prior to scanning. The procedure 
contained three consecutive sessions—prescanning, scanning, and postscanning.
Prescanning session. Before entering the fMRI scanner, participants familiarity 
with the specific clips was controlled. In Experiment 1, participants did not watch 
any video clips before entering the scanner; they were only briefed about the 
structure of the task that they will carry out inside the scanner. In Experiment 2, 
participants were familiarized with the Typical version of each video clip prior to 
scanning. In Experiment 3, participants were familiarized with the Atypical version 
of each clip prior to scanning. The familiarization included participants watching 
the clips in a randomized order. Then recalling each clip in as much detail as 
possible, in a randomized order, especially focusing on the sequence of actions 
carried out by the actors. Participants were cued with an image of the first frame 
of each clip and asked to say out loud what they remembered happening in the 
clips. After recalling all clips, participants watched them once again to refresh their 
memory. The prescanning session took 66 min to complete on average in both D
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Experiments 2 and 3. At the end of this video familiarization phase, participants 
were told that inside the scanner, they will see some clips identical to the ones 
they had just watched and some clips that will contain a change.
Scanning session. Inside the scanner, participants in all three experiments 
watched 34 unique clips in total—half of the clips in the Typical condition and half 
in the Atypical condition. Across participants, we counterbalanced which videos 
were seen in the Atypical and which clips were seen in the Typical condition. Each 
clip was seen only once during the scanning session and presentation order was 
randomized. In all three experiments, the scanning session lasted about an hour 
and followed this general trial structure: fixation- video- fixation- questionfixation- 

odd/even number judging task. For more information on the scanner task, refer 
to SI Appendix, Scanning Task Supplementary Information.
Postscanning session. In all three experiments, participants were asked after 
scanning to recall what happened in the video clips they watched inside the 
scanner. Their recall was audio recorded. Participants were cued with a picture of 
the first frame of the scenes containing the Target Actions and were asked to recall 
out loud what happened in the video clip, particularly focusing on the sequence 
of actions the actor was performing. The recall task was self- paced, participants 
were given the opportunity to take a short break between recalling each clip. For 
more information on the postscanner task, refer to SI Appendix, Postscanning 
Task Supplementary Information.

fMRI Acquisition. All images were acquired in the Clinical Imaging Sciences 
Centre at the University of Sussex on a 3- T Siemens Prisma scanner with a 
32- channel head coil. To minimize head movement, soft cushions were inserted 
into the head coil. Functional images were acquired with a gradient- echo EPI 
sequence with multiband acceleration factor of 3 with the following parameters (TR 
1,520 ms, TE 28 ms, 75° flip angle, field of view = 208 mm × 208 mm, 72 slices 
with slice thickness of 2 mm and isotropic 2 mm voxels). Two SpinEcho fieldmap 
runs with reversed phase- encode blips in both anterior to posterior and posterior 
to anterior were acquired with the same parameters as the functional images. 
Separate field maps were acquired for each functional run. A high resolution T1- 

weighted image was acquired with 3- D MPRAGE sequence (in Experiments 1 and 
2: TR 2,530 ms, TE 1.63 ms, 7° flip angle, field of view = 240 mm × 256 mm with 
slice thickness of 1 mm and 1 mm isotropic voxels; in Experiment 3: TR 2,300 ms, 
TE 2.19 ms, 9° flip angle, field of view = 256 mm × 256 mm with slice thickness of 
1 mm and 1 mm isotropic voxels). Preprocessing steps of structural and functional 
data are reported in SI Appendix, fMRI Preprocessing.

fMRI Data Analysis. In Experiment 1, the design matrix of the GLM included 
five regressors. The focus of our main analyses was on transient changes in activ-
ity evoked by key moments in the task. For this reason, we included regressors for 
1) the onset of the video clips; 2) the scene changes; 3) Atypical target actions; 4) 
Typical target actions; and 5) the full duration of the comprehension questions 
and following fixation cross. Note that video clips in Experiment 1 included two 
scenes per clip, because we also investigated BOLD activity changes at scene 
changes in this experiment. However, we do not report these results here. See 
more information about the clips in SI Appendix, Stimuli. The first four regressors 
had zero duration (delta functions). The onset of each target action (Atypical or 
Typical) corresponded to the most surprising timepoint of the Atypical version of 
each pair of clips. For more information on how the most surprising timepoints 
were chosen, refer to SI Appendix, Analyses, GLM Supplementary Information.

For Experiments 2 and 3, the design matrix of the GLM included four regressors. 
The regressors included the 1) video clips onsets, 2) Atypical and 3) Typical target 
actions, and the 4) comprehension question with the intertrial fixation crosses. 
All four regressors were modeled identically to Experiment 1. The only difference 
between the two GLMs was the absence of a scene change regressor in Experiments 
2 and 3 (hence the absence of scene changes in the video clips in Experiments 2 and 
3). The odd/even number judging task, the rest of the movie timepoints, and the 
fixation cross at the beginning of each trial were unmodeled, acting as the baseline. 
In all first- level models, we included six motion parameters, framewise displacement, 
White Matter Signal, and Cerebrospinal Fluid Signal as regressors of no interest to 
account for any residual noise and motion effects after motion realignment.

Statistical Thresholding. For whole- brain analyses, group- level testing was 
done using a one- sample t test on the functional maps generated by the first- 
level analysis. Whole- brain maps were cluster corrected at FWE P < 0.05 at voxel 
height defining threshold of P < 0.001.

Region of Interest Analyses. ROI masks are reported in SI Appendix, Region 
of Interests. In all ROI analyses, after estimating the first- level whole- brain GLMs 
for each participant (see GLM above), we used FSLUTILS’ fslmeants program to 
average the beta weights associated with the Atypical and Typical target actions 
from all voxels within the ROI. For the hippocampal and VTA/SN ROI analysis, we 
performed planned two- tailed paired t test comparing BOLD differences between 
Typical and Atypical actions in each experiment. For the hippocampal analysis, we 
also report complimentary Bayes Factors using two- tailed standard Cauchy prior 
with scale 0.707. To compare BOLD response to target actions across the Network 
ROIs, we conducted a repeated measures ANOVA within each experiment, with 
within subject factors: Condition (Typical and Atypical target actions) and Network 
(Semantic Control, Multiple Demand, and DMN). ANOVAs were conducted with 
the ez package available in R (87). In case the ANOVAs showed significant results, 
post hoc two- tailed paired t tests were conducted between conditions/networks, 
with Bonferroni correction applied to account for multiple comparisons.

Behavioral Data Analysis. Participants’ recall of all the video clips they watched 
inside the scanner was analyzed using logistic mixed effect models estimated 
with the lme4 (88) package available in R. Data analysis focused only on recall of 
the Target Actions (Typical or Atypical). For information on how recall was scored, 
refer to SI Appendix, Analyses, Behavioral Data Analysis, Recall Scoring. For fur-
ther information on data exclusions in the recall analysis, refer to SI Appendix, 
Analyses, Behavioral Data Analysis, Recall Analysis Exclusions.
Remembered/forgotten target action analysis. Our main interest was to test 
whether there is a difference in recalling the Target Actions correctly depending 
on whether the target was in the Typical or Atypical condition. Therefore, we gave a 
binary memory score of correct recall (1) or forgotten/incorrect (0) for each trial. We 
entered the binary memory score as the dependent variable and included a predictor 
indexing whether the target action was in the Typical (0) or Atypical (1) condition and 
random intercepts for participants and video clips [Recall Score ~ Condition + (1 | 
Participant) + (1 | Video Clip)]. To compare overall memory accuracy across experi-
ments, we entered the binary memory score as the dependent variable and included 
a predictor indexing the Experiment (1,2,3) and random intercepts for participants 
and video clips [Recall Score ~ Experiment + (1 | Participant) + (1 | Video Clip)].
Memory error analysis. We further investigated whether trials that were scored 
“forgotten” were simply due to the participant omitting the target action entirely 
from their recall or having an imperfect recall of the target action. A score of 1 
was entered into the analysis for those forgotten/incorrect trials where the correct 
action was mentioned but the object was left out, replaced with the word “some-
thing” or replaced with another object. The rest of forgotten (omitted) trials and the 
remembered trials were entered into the analysis with a score of 0 (no error). We 
entered the binary error score as the dependent variable and included a predictor 
indexing whether the target action was in the Typical (0) or Atypical (1) condition 
and random intercepts for participants and video clips [Memory Error Score ~ 
Condition + (1 | Participant) + (1 | Video Clip)]. This analysis was not preregistered.

Data, Materials, and Software Availability. Video clips, all code and materi-
als; Group level contrasts between Atypical and Typical actions data have been 
deposited in [OSF; neurovault.org] [https://osf.io/p6z2g/ (89); https://identi-
fiers.org/neurovault.collection:19061 (90)]. Some study data available. Our 
dataset consists of fMRI data from three experiments involving approximately 
100 participants, with each participant undergoing around 1 h of scanning. This 
includes five functional runs (approximately 6 min each) and a high- resolution 
anatomical scan. The total dataset size is estimated to be approximately 370 
GB. Due to the substantial size of the imaging data, sharing the entire data-
set publicly is logistically challenging. Raw data will be made available upon 
request, summary nifti files of group level analysis are available on NeuroVault. 
All other data are included in the manuscript and/or SI Appendix.
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