Journal of PhySiCS A: @;ﬂ;;;fm-;[;;";; &3 PURPOSELED
Mathematical and

Theoretical
PAPER « OPEN ACCESS You may also like
. "y . . . . - Random walk on a random surface:

Vortex lattices and critical fields in anisotropic implications of non-perturbative concepts
and dynamical emergence of Galilean
symmetry

Su percond UCtO rS N V Antonov, N M Gulitskiy, P | Kakin et
al.

To cite this article: Martin Speight and Thomas Winyard 2025 J. Phys. A: Math. Theor. 58 095203 - Complex symmetric. self-dual, and Ginibre

random matrices: analytical results for
three classes of bulk and edge statistics
Gernot Akemann, Noah Aygiin, Mario
Kieburg et al.

View the article online for updates and enhancements. - Integrable and superinteqrable quantum

mechanical systems with position
dependent masses invariant with respect
to one parametric Lie groups: 2. Systems
with dilatation and shift symmetries

A G Nikitin

This content was downloaded from IP address 81.102.248.232 on 16/10/2025 at 12:56


https://doi.org/10.1088/1751-8121/adb7a7
/article/10.1088/1751-8121/adbc51
/article/10.1088/1751-8121/adbc51
/article/10.1088/1751-8121/adbc51
/article/10.1088/1751-8121/adbc51
/article/10.1088/1751-8121/adbd9d
/article/10.1088/1751-8121/adbd9d
/article/10.1088/1751-8121/adbd9d
/article/10.1088/1751-8121/adb6de
/article/10.1088/1751-8121/adb6de
/article/10.1088/1751-8121/adb6de
/article/10.1088/1751-8121/adb6de
/article/10.1088/1751-8121/adb6de

OPEN ACCESS

I0OP Publishing

Journal of Physics A: Mathematical and Theoretical

J. Phys. A: Math. Theor. 58 (2025) 095203 (31pp) https://doi.org/10.1088/1751-8121/adb7a7

Vortex

lattices and critical fields in

anisotropic superconductors

Martin Speight' © and Thomas Winyard>*
1 School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
2 Maxwell Institute of Mathematical Sciences and School of Mathematics,

University of Edinburgh, Edinburgh EH9 3FD, United Kingdom

E-mail: twinyard @ed.ac.uk and j.m.speight@leeds.ac.uk

Received 15 July 2024; revised 15 January 2025

Accepted for publication 18 February 2025 @
Published 5 March 2025

CrossMark
Abstract

A method is developed to compute minimal energy vortex lattices in a gen-
eral Ginzburg-Landau model of a superconductor subjected to an applied
magnetic field. The model may have any number of components and may be
spatially anisotropic. The novelty of this method is that it makes no assump-
tions about the orientation of the vortex lines or the period vectors of the
lattice’s unit cell: these are all determined dynamically. Methods to compute
the first and second critical magnetic fields, H,, and H,,, in this class of models
are also developed. These methods are applied to a simple anisotropic single-
component model, and to an anisotropic two-component model of strong
current theoretical interest (a so-called s + id model). It is found, in both cases,
that at low applied field the vortex lines can tilt very significantly away from the
direction of the applied field (by as much as 40° for the single-component and
30° for the s + id model). The optimal lattice in the s 4 id model is qualitatively
very different from the conventional triangular Abrikosov lattice, exhibiting a
phase transition from a system of Skyrmion chains when the external field is
orthogonal to the basal plane to a deformed Abrikosov lattice when applied in
the basal plane.
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1. Introduction

Topological solitons often appear in nature in periodic structures called lattices. Due to the
nonlinear nature of the governing PDEs these periodic solutions must be found numerically.
It is often assumed that the soliton lattice has a particularly nice symmetry group, e.g. the tri-
angular Abrikosov lattice [1], but even in spatially homogeneous and isotropic models, soliton
lattices often turn out to have much less than maximal symmetry [2—4]. In condensed matter
contexts, the underlying system is often strongly anisotropic, so there is even less justification
in assuming that the optimal soliton lattice will have high symmetry. We present a numer-
ical method that allows a general lattice to be found, minimizing the energy functional with
respect to the geometry of a unit cell as well as the fields defined in the cell. While this approach
is general for any model supporting topological solitons, we will focus on the example of the
Ginzburg-Landau model of vortices in superconductors under an applied magnetic field, where
the extra parameter introduced by the applied field provides some extra challenges.

The response of the interior or bulk of a superconductor when subjected to a constant
external magnetic field H has been a key question in physics since it was considered by Peierls
and London [5, 6]. It was observed that as the field strength |H| increased, materials would
transition from a superconducting state where the magnetic field was completely expelled,
coined the MeiB3ner state, to a normal metal where the magnetic field penetrated evenly across
the material. To model this transition the effective Ginzburg-Landau (GL) model was pro-
posed, coupling a spatially dependent complex order parameter ¢ to the local magnetic field
B in the interior of the superconductor. This effective model was later directly derived from
microscopic models at low temperature [7]. The model was shown [1, 8] to exhibit three dis-
tinct states separated by two critical values of external field strength H,, and H,,:

e For |H| < H,, we get the MeiBiner state or homogeneous superconducting state (MS), where
¥(x) =u, B=0and u € C is a constant.

e For H., < |H| < H., we get the mixed (or vortex) state (VS) where ¢ and B are inhomogen-
eous but total magnetic flux through the superconductor is quantized.

e For |H| > H,, we get the homogeneous normal state (NS) where ¢)(x) =0, B=H and the
material acts as a normal metal.

Itis the mixed state that we will focus on in this paper. The values of H,, and H,., are determined
by the parameters of the model and it is possible to fix these so that H,, < H,, and there is no
mixed state. Such a superconductor is said to be of type I, while those with H., > H,, are of
type II.

If we consider a cross-section perpendicular to H, then the mixed or vortex state exhibits
topological solitons in the form of vortices. These vortices are the cross-section of magnetic
flux tubes aligned with the direction of H and are topologically preserved. In a type II supercon-
ductor vortices appear in a triangular lattice [1, 9] coined the Abrikosov lattice. These discrete
objects each contribute 27 to the total internal magnetic field and as |H| increases in strength
the density of the lattice increases.

The above discussion means that type II superconductors initially expel magnetic field in
the MeiBner state. Then as |H| increases the magnetic field penetrates parallel to the applied
field at discrete points (vortices). The distribution of these discrete points becomes denser until
they start to merge. Finally the magnetic response becomes homogeneous and the material acts
as a normal metal. This process can be seen in figure 1.
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Figure 1. The magnetisation M = |H| — (|B|) (difference between strength of applied
field and spatial average of the magnetic field) of a standard single-component Ginzburg-
Landau model, where the vortex state (VS) is a standard triangular Abrikosov lattice,
separating the MeiBner state (MS) from the normal state (NS). This graph was found
using the method outlined in section 3, for an isotropic single component superconductor
with potential term given by (2.2) with k = 3.

The above picture, well understood for decades, derives from the simplest realization of GL
theory, in which the system is assumed to be spatially isotropic. In reality, the crystal struc-
ture of superconducting materials often introduces significant anisotropies into the Ginzburg-
Landau model and, in this case, there is no reason to expect that a symmetric vortex lattice,
such as the Abrikosov lattice, will accurately describe the mixed state. As we will see, even the
assumption that the vortex flux tubes are parallel to the applied magnetic field is, in general,
ill founded. In this paper we will present a systematic numerical approach to find the optimal
vortex lattice in this case. The novelty of this method is that it makes no assumptions a pri-
ori about the orientation of the vortex lines, or the geometry of the lattice’s unit cell. These
properties are allowed to vary and are determined dynamically by demanding that the lattice
should minimize the system’s total Gibbs free energy per unit volume.

Non-symmetric vortex lattices are of particular interest in unconventional superconductors
[10, 11], where electrons form Cooper pairs through multiple mechanisms. This modifies the
GL model to have multiple, often coupled, order parameters. The couplings between the gradi-
ents of these order parameters give vortex solutions, and thus their lattices, interesting new
properties [12, 13]. Examples of such materials include UTe; [14, 15], MgB, [16], UPt; [17]
and iron based superconductors [18]. Our new method was motivated by, and hence naturally
lends itself to, probing the lattices of these unconventional materials.

The paper will first present the most general anisotropic Ginzburg-Landau model, then
describe a general method for finding the optimal vortex lattice for a given external field
H in this general context. After checking that our method replicates the standard results of
Abrikosov under the assumption of spatial isotropy, we will then discuss how H,, changes
under anisotropy and how to calculate H,, and H,,. Finally, we will apply the method to two
examples, an anisotropic single component model and a multicomponent s + id model.
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2. General anisotropic GL model

The most general anisotropic multi-component Ginzburg-Landau (GL) model has the Gibbs
free energy functional,

| — 1
G[wa,A]:/Q{ZQ;WDiwaDng—i—2|B—H2+F1,(wa)}, @2.1)

where D = d — iA is the covariant derivative associated with the U(1) gauge field or 1-form A.
The local magnetic field is then given by the gauge invariant 2-form B = dA. As we are inter-
ested in modelling an infinite superconductor, our space is initially 2 = R3. We will present
the method in generality for an n-component model, where the n complex fields or order para-
meters are written ¥, = p, e, p, € R>¢ and ¢, € [0,27) represent the different supercon-
ducting bands. Note that Greek indices « € [1,n] will always enumerate components of the n
order parameters and Latin indices i = 1,2,3 indicate spatial components, while summation
over repeated indices is implied for both.

F, collects together the potential terms, which due to gauge invariance, depend only on
the condensate magnitudes p, and the phase differences between the condensates ¢, 1=
Yo — g. We will also always assume that F,, is bounded below. The energy functional we are
using is the Gibbs free energy and thus includes the parameter H, interpreted as the externally
applied magnetic field which is a constant 2-form. So the energy functional penalizes deviation
of the local magnetic field B from the applied field H.

The anisotropy of the model is given by the constant anisotropy matrices Q“?, which must

satisfy the minimal condition Q?ﬁ = Ql?a to ensure that the energy is real. The form of these

matrices can, in principle, be derived from the Fermi surfaces of the material under consider-
ation. Explicit examples will be given later. We also require that the energy density defined
by the anisotropy matrices is positive definite. A convenient way to formulate both the reality
and positivity conditions is to collect the complex numbers Q;ﬁ into a single 3n x 3n matrix
Q(a,i)(8,) Whose row and column indices range over the set {1,2,...,n} x {1,2,3}. Then Q
must be Hermitian and positive definite.

The standard isotropic Ginzburg-Landau model can be obtained by simply setting Q;‘ﬁ =
dap 0. If we then choose n = 1 and set the potential to be,

Fy (¢) =a|w|2+§\w|‘& 2.2)

then we have the original (single component) GL model. Note that this potential only admits
superconducting (|¢| > 0) solutions for v < 0. We will choose to normalize the fields from
here on such that the minima of F,, occur for |1|* = 1, hence we introduce a single parameter
% (the Ginzburg-Landau parameter) such that —a = 3 = k?/2. Then k < 1/ V/2 gives a type [
model (no vortex lattice) while x > 1/ /2 produces a type II model (Abrikosov lattice).

We are interested in stationary configurations that take the form of local minima of G. These
satisfy the (bulk) Ginzburg-Landau equations which are obtained by variation of G with respect
to the fields (¢,A),

. OF
07’ D;Dyps = Zﬁ, 2.3)

0; (0A;i — 0iAj) =i, 24
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where the total supercurrent is defined as,
J; i=Im (Q;%az)jwﬁ) . (2.5)

It is important to note that the parameter H does not appear in the bulk equations of motion.
This is not surprising as the only non-constant energy term it appears in is —(H,dA);> which
is a topological invariant (it is constant under all variations of A of compact support since H is
coclosed). So H does not affect whether configurations are solutions of the bulk equations of
motion. It does affect whether such a solution has minimal energy.

The Ginzburg-Landau equations above always admit two trivial solutions; (NS) the homo-
geneous normal state (Y5, B) = (0, H), and (MS) the homogeneous MeiBner state (¢)*5, B) =
(4q,0), where u,, is a constant determined by the form of F,,. Note that we assume that F), is
normalised with respect to the normal state so that G[/™ AM] = 0. We will also define,

ﬁp(wa):FP(wa)_Fp(ua)7 (2.6)

which is normalised with respect to the MeiBner state so that G[¢S, AMS] = 0 where,

Glv.Al= Gl =5 [ 1P = [ Fy (o). @)

For |H| = 0 the Meif3ner state is the minimal energy solution, while for |H| — oo the normal
state is the minimal energy solution. As described in the introduction we are interested in the
transition between the MS and NS state where inhomogeneous solutions have minimal energy
in the form of topological solitons called vortices.

These inhomogeneous solutions have only been found numerically and take the form of vor-
tex strings that are translation invariant along the string. Note that the energy functional (2.1),
while anisotropic, is translation invariant, so by the Principle of Symmetric Criticality, it is
consistent to seek solutions which are invariant under translations in any given fixed direction.
So, choose and fix some vector v3 and assume that 1), and A are invariant under translation
in the direction of v3. Then the energy functional G is infinite, but defines a finite energy per
unit length (G), a functional on fields v, A; defined on P, the plane orthogonal to v3. To have
finite energy the fields should satisfy the following boundary condition on P,

Po — Uy, Do —0, B—H, (2.8)

as X — oo, where X = (X1, X;) are Cartesian coordinates on P. Hence ¢>° := limy|_, o, ¢(X)
takes values on a circle of radius |u| = |(u1,uz, . .., u,)| in C", the U(1) gauge orbit of a vacuum
value u. So we have a continuous map .. : S._ — S} where S!_ is the circle at spatial infinity
in P and S! is the orbit of u, and the degree, or winding number, of this map is an integer-valued
topological invariant of the fields, N (topological because it cannot change under any smooth
deformation of the fields preserving finite energy). The integer N will also correspond to the
number of vortices in the system. Then by the boundary condition D, — 0 and Stokes’s

theorem,
/Bg =27N, /31 = /Bz =0, 2.9)
P P P

where B3 is the magnetic field out of the plane. Hence, the magnetic flux through P is quantized.
It is important to reiterate that NV is topologically conserved in our model, as it is impossible

5
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Figure 2. The matrix L maps between the fields used in simulation (t,,A) defined on
a square torus of unit area T2 and the physical fields (1)«,A) defined over the physical
lattice unit cell 7%.

to continuously deform a configuration in one homotopy class into a different class. However,
in a true physical system, materials have finite boundaries where vortices can be created and
destroyed. We will not consider this process and focus on the bulk of the superconductor.

It has been claimed that single component anisotropic models can be reduced to isotropic
form by a suitable rescaling of spatial coordinates [19], but this is mistaken on account of
the differing transformation properties of the gradient and magnetic terms in the free energy.
Nevertheless, approximate reduction to an isotropic model is a popular and influential tech-
nique in the literature [20], particularly for the computation of critical applied fields [21]. As
we will see, while the scaling approach of Blatter et al is reliable for describing states in which
the dynamical and applied fields are aligned, it can fail badly outside this context. So the scal-
ing approach predicts H,., well, but fails to correctly predict H,,.

By contrast, it is well understood that for multicomponent systems (n > 1) anisotropies
cause the length scales of the system to couple, leading to qualitatively different solutions [22,
23], caused by non-monotonic inter-vortex interactions.

3. Finding lattices

Given a choice of the parameter H such that |[H| > H,, we seek the minimal energy vortex
lattice. This is the global minimizer of the energy per volume G/|€2| among fields that are
translation invariant in a given direction and doubly periodic orthogonal to this direction up
to gauge. Importantly, we must minimize G/|Q| not just over the fields for a fixed choice
of translation direction and orthogonal period lattice, but also with respect to the choice of
direction and lattice. In particular, in an anisotropic model, we are not justified in assuming
that the direction of translation symmetry is parallel to H: we must allow it to vary.

To this end we choose an oriented basis [v1,v,,v3] for R3, giving the coordinates X; such
that,

x=LX=Xvi + Xovy + X3v3, 3.1

where L is the matrix whose columns are the chosen basis. We define a unit cell {2 as the paral-
lelepiped spanned by [vy,Vv,, v3], with cell coordinates X; and volume || = detL (see figure 2).
We will impose translation symmetry in the direction v3 and, without loss of generality, assume
that v - v3 = v, - v3 = 0 (any configuration translation invariant along v; and doubly periodic

6
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in a plane P’ not orthogonal to v3 is also doubly periodic in the plane P orthogonal to v3). It is
convenient to take

Vi XV

V3 = (32)

‘V] X V2|2

so that the frame is automatically positively oriented, and the unit cell has volume 1.
As functions of the coordinates (X1,X>,X3), all fields are independent of X3. In order to

allow non-zero magnetic flux per unit area through P (the plane orthogonal to v3) we allow

them to be periodic only up to gauge with respect to the lattice spanned by {v,v,}. In fact, it

suffices to impose

Vo (X1 +1,X2) = 1 (X1,X;) €27 M2 (3.3)
Yo (X1,X2 +1) = 10 (X1,X2), (3.4)
Al(Xl—l—l X,) = Al(Xl,Xz), 3.5)
Ay (X1 + 1,X5) = Ay (X1,X2) + 27N, (3.6)
Az (X1 + 1,Xp) = A3 (X1,X,), (3.7

AX1, X +1) =A(X),X2) (3.8)

where A = A;dX; +A,dX; + A3dXs. Hence, all gauge invariant quantities p, @3, Ji; and B
are doubly periodic as required. Note that we have fixed some of our gauge freedom with this
choice of boundary conditions. It is also important to note that one must include all components
of the gauge field A when the model is anisotropic (including A3(X;,X>)), something often
neglected in earlier studies of the GL equations. Stokes’s Theorem and the above boundary
conditions imply that

/ B3 dX] dX2:27TN, Bl dX] dXQZ/ Bz Xm dX2:07 (39)
(0,12

[0,1)? [0,1]?
where
B = BdX; AdX3 4+ B,dX; A dX; + B3dX; A dX;, (3.10)
with
0A; 0A; 0A, 0A
Bi=—, Bb=——, By=———. 3.11
YTox, TP oxy TP ox, ox, (3-11)

As we will see, the magnetic field considered as a vector field rather than a 2-form is simply
B¢ = Bv| + Byv, + B3vs. This is not entirely obvious, as the basis is not orthonormal, so
both the Hodge isomorphism from two-forms to one-forms, and the isomorphism from one-
forms to vector fields are nontrivial. Clearly N determines the number of magnetic flux quanta
per unit cell.

We can now rewrite the Gibbs free energy in (2.1) using the new coordinate system over a
single unit cell,

1 (a7
G/{sziQijB lDkaan,¢ﬁ+ |B H| +Fp(1/}>}VOIQ, (3.12)
Q

where M = L~! and volg = detLdX; A dX, A dX; = dX; AdX> A dX3. We will now simplify
the above expression using some of the assumptions we have made.

7
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Let us first expand the magnetic term,

1

1 1
f/ \B—H|2V019:7/B/\*B—/B/\*H+*|H|2|Q|. (3.13)
2 Jq 2 Jq Q 2

We write the Euclidean metric in the cell coordinate system as g = F;;dX;dX; where F = LTL.
We require the action of % on 2-forms in our coordinates, so define,

*(dX] /\dX2):O(3l’Xm‘, *(dXz/\dX3) :Oé],‘dX,', *(ng /\dX]) :Oézl‘dX,‘. (314)

The induced inner product on 1-forms is (dX;,dX;) = (F _‘)ij and, by definition, for any 2-

form p and 1-form A we have (xu, A) volg = p A A. Hence, taking ;o = dX; A dX, and A = dX;
we get,

oz (F7'). = dp. (3.15)

i

Rearranging this and repeating the process with 1t = dX, A dX3 and p = dX3 A dX; we see that,

o = Fy, (3.16)
whence

*B = BiF;dX;, (3.17)
SO

B A xB = B;BjF;;dX; AdX; ANdX3. (3.18)
Further g(B"*¢,0/0X;) = *B(0/0X;) = BjFj; = g(B;0/0X;,0/0X;), so

BY** :Bjaaxj = Biv| + Byv, + B3vs. (3.19)

For the second term in (3.13) we use Stokes’s theorem,
/B/\*H:/d(A/\*H), (3.20)
Q Q
:/ AN xH. (3.21)
a9

It will be useful to define I:I]dX, :=*H = H;dx; = H;L;dX;. We then consider each of the
square faces that compose 92 at X; =0 or 1,

/ BN xH = (A2H3 —A3I:12) dX, ANdX; — / (AQI:I3 —A3I:12> dX, ANdX;
Q X =1 X,1=0

—|—/ (A3I~i1 —A1ﬁ3) dX; AdX; —/ (Agif[ —A1[:I3) dX; A dX;
Xr=1 X,=0

+/ (A]Hz _AZI:I]) dX; AdX, —/ (A1H2 —Azl:ll) dX; NdX,, (3.22)
X3:1 X3=0

= [, (20150, 200,55, X9) s (3.23)
0,1
= 27TNH,' L,‘3, (324)
where we have made use of the boundary conditions on A above.

8
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If we now recombine the above terms we can write the Gibbs free energy per unit volume
to which we seek global minimizers,

G 1 1 1
(G) = l = EM,U.P,(,,,,.MU + 5t (LBL") —2NwH; Lz + 5|H|2 + / F, (1), (3.25)
[0,11?
where we have introduced,
Paj=Re | | 05" Dy PaDx; s dX1 dXa, (3.26)
0,1
B; = / B, B;dX, dX;. (3.27)
[0,1)?

Having written (G) in terms of the cell basis, one can then use any standard numerical
scheme to minimise it with respect to the fields (1/,A) subject to a fixed unit cell L € SL(3,R).
However, we also need to determine a numerical scheme to minimise (G) with respect to
L € SL(3,R) for a fixed field configuration. As L only appears in the first 3 terms of (3.25)
(recall M = L~") we need only consider those terms. Recall we have assumed, without loss of
generality, that

L:(v1 vy W) (3.28)

|V1 X V2|2

for some linearly independent pair v;,v, € R?, so that £ has unit volume and the plane P
spanned by vy, v, is orthogonal to v3. Minimising (G) subject to these constraints is equivalent
to minimising (G) on the codimension 3 algebraic variety C C GL(3,R) C R’ on which,

detL =1, (3.29)
LjLiz =0, (3.30)
LyLiz =0. (3.31)

Note that the first condition is cubic, so is not (as in the two-dimensional analogue of this
problem) the level set of a quadratic form [3, 24]. For this reason we have been unable to
minimize (G) over C explicitly and have resorted to numerics. Note also that (3.28) gives an
explicit parametrization of C in terms of the local coordinates (vy,v;).

The numerical goal is now, given a fixed configuration (¢4, A), to minimize (G) in (3.25)
over C. Let L(t) be a curve in C through L = L(0) with L(0) = ¢. Then,

M(t)L(t) = L, (3.32)
M (0)L(0)+M (0)L(0) =0, (3.33)
M(0) = —M(0)eM(0), (3.34)
leading to,
d
a <G> (L (I)) = Eik (7MqI,Pqp71jM1iMkj + Liijk — 2N H; 5k3) . (3.35)
t=0

Hence, the gradient of (G) : C — R at L € C tangent to C is,
(grad <G>)ik = PC (—quPqujM[,‘Mkj + L,'J'Bjk — 2N7TH,' 5k3) s (336)

9
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where P¢ denotes orthogonal projection tangent to C C R?. The projector Pc : R? — T;C is
straightforward to construct numerically via a Gramm-Schmidt algorithm, starting from the
basis of coordinate basis vectors for 7, C defined by the parametrization (3.28).

Once we have the projector we can minimize (G) to a given tolerance g, with respect to
the unit cell L (for a fixed field configuration (1),,,A)) via a simple gradient descent algorithm.
We evolve L as,

L— L—dt(grad (G)) (3.37)

repeating until the absolute values of all components of grad (G) are smaller than g.

We now turn to finding the fields that minimize (G) subject to a fixed L. Note that any
standard numerical method for finding minima of energy functionals for field theories would
work here, for example gradient flow. In addition, as L is fixed, finding the minimum of (G)
is equivalent to finding the minimum of G over the unit cell.

We discretize the cross-section of the unit cell on a regular two-dimensional grid of Ny X N,
lattice sites with spacing 4 > 0. We then approximate the 1st and 2nd order spatial derivat-
ives using central 4th order finite difference operators, which yields a discrete approxima-
tion (G);, : S — R to the functional in (3.25), where the discretized configuration space is the
manifold § = (C" x R3)N1 >N =2 Rr+3)MN2 We then seek local minima of (G),, subject to
the boundary conditions given in (3.3)—(3.8). We evolve the system using a gradient descent
method, namely the arrested Newton flow algorithm (described in detail in [25]), solving for
the motion of a particle in S under the potential (G) ;.

¢ = —grad (G) 4 (P), (3.38)

starting at the initial configuration ®(0) and (0) = 0 (here ® denotes our collective discret-
ized fields, a point in S). Evolving this algorithm will cause the configuration to relax towards
a local minimum. At each time step t — ¢+ ¢, we check to see if the direction of the force
on the particle opposes its velocity. If ®(7) - grad(G) gis (®(2)) > 0, then we set ¢, = 0 and
restart the flow. The flow is terminated once every component of grad (G) ;;, (¢) is zero within
a given tolerance.

We now have an algorithm to find the optimal vortex lattice, given H with H,, < |H| < H,,,
an initial unit cell Ly and an initial field configuration (¢,,A) that satisfies the boundary
conditions with topological degree N given in (3.3)—(3.8).

4. Spatially isotropic systems
It is important that our method replicates the standard results of Abrikosov in the case of an

isotropic single component type II superconductor. Namely, we consider n=1 and Q;; = ¢;;
such that

Py = 0iPu, Pu= Re/ . Dy, ¢Dx,p dX1dX;. 4.1
0,3

Hence,
1 T 1 T 1 2
(G)(L)= St (MM'P) + St (LFL") —2NmH; Li3 + E|H| + [ V. “4.2)

10
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For general rotation R € SO(3), (RL)~' = MR, so

1 1 1
(G)(RL) = Sur (MR'RM'P) + St (RLFL'R") — 2N H; Ry L3 + E|H\2 + / vV, (43)
= C(L)— 2NnH;RyLys = C(L) — 2N7H - (Rv3), (4.4)

where C(L) denotes terms independent of R. Hence, the minimum of (G) over the SO(3) orbit
of a given matrix L occurs when (RL);; = kH; for some k >0, when we rotate the cell so
that the translation symmetry direction is aligned with H. Hence, the minimal energy lattice
configuration must have vortex lines parallel to the applied field H. Note, that this argument
holds for an isotropic model with any number of components (n > 1) as then Q;’ﬁ = 0iiqap
where ¢ is a hermitian matrix. The above argument then proceeds unchanged but with,

Py = Re/ GapDx,VaDx s dX; dXs. 4.5)
(0,37

Now that we know that the vortex line will align with the external field, if we consider all
the energy terms dependent on Aj it is no longer coupled and the choice A3 =0 minimizes
them. This means that B; = B, = 0 and hence the internal magnetic field is always parallel to
H, or B(x) = b(x)H; where b(x) € R.

We have applied the numerical scheme described above to a single component isotropic
model, with F, given in (2.2) in the type II regime (x > 1/1/2), with H = (0,0,H) and v;, v,
in the x; — x, plane. We find that the energetically optimal lattice is triangular, as expected, that
is |vi| = |v2| and the angle between them is 60°, and N =2. Hence, our scheme reproduced
the Abrikosov vortex lattice in this simple case.

5. Finding H,,

The critical value H,, represents the smallest strength of external field |H| such that there exists
a vortex state with lower Gibbs free energy G than the Meifiner state (¢, = u,, B=0). It is
important to note that, in an anisotropic model, H,, depends on the direction of H. Moreover,
when constructing the minimal energy vortex state for a given H, we should not assume that the
vortex is translation invariant in the H direction: just as in the computation of optimal lattices,
in general there may be vortices with lower energy that have v3 non-parallel to H.

For a given external field H and degree N, we construct the minimal energy degree N vor-
tex as follows. We choose a unit vector v3 and an orthonormal basis {v,v,} for the plane P
orthogonal to vs, then assign to any collection of fields (¢,A) translation invariant in the v3
direction and decaying to u with winding N on the boundary of P, its Gibbs free energy per
unit length, normalized so that the Meifiner state has energy 0, that is,

G[w,A]:/P{;(DQ/J)TQDQ/H—;|B|2+Fp(z/})}—27rNH~V3. (5.1

It is important to realize that this quantity depends on v3 not only through the explicit depend-
ence of the final term, but also through the dependence of the Q matrices on the orientation
of P. For fixed [v,v;,v3] we minimize G with respect to the fields (by arrested Newton Flow,
for example). This produces a function G,,,,-n :SO(3) — R, mapping the frame [v{, vz, v3] to
the Gibbs free energy of the minimal N-vortex aligned with the v; axis, which we minim-
ize by gradient flow. (In fact, G,,;, descends to a function on $2 = SO(3)/SO(2), since the

1
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energy actually only depends on vs, but by treating it as a function on SO(3), we may repur-
pose the gradient flow algorithm used to find optimal lattices to solve this problem too: we
simply project the flow to the submanifold of C on which {v;,v,} are orthonormal.) So, for a
fixed H and N, we have a minimal N-vortex with Gibbs free energy G(H,N). For |H| small,
G(H,N) > 0, while for |H| sufficiently large G(H,N) < 0. The degree N lower critical field for
a given applied field direction / = H/|H| is the smallest Ho for which G(HoH,N) = 0. Let us

denote this H) (H). The lower critical field for the direction H is then

H., (H) = inf HY, (H) . (5.2)

In practice, we compute HY (H) for a small selection of degrees (typically N = 1 and 2 only),
and assume H,, is the minimum of these.

Associated to H,, (H) there is an optimal degree N vortex solution, translation invariant in
some direction v3 (I:I ). It is important to realize that, in general, there is no reason why v3 should
equal H: the optimal vortex at the threshold for flux penetration may have vortex lines (and
magnetic flux) which are not aligned with the applied magnetic field, if the underlying system
is anisotropic. We will see that this observation holds even in the case of single component
models.

6. Finding H,,

It is clear that, for any constant applied field H, the normal state ) =0, B = H is a solution of
the field equations (2.4), and hence a critical point of G. It is not necessarily a stable critical
point of G (a local minimum) however. To test stability of the normal state, we consider the
second variation of G.

Let v,, A, be a smooth variation of the fields with 19 =0 and dAy = H (so we are varying
about the normal state). Let & := 9y |;—0 and 1 := 9,A,|,—, the infinitesimal generators of the
variation. The normal state is linearly stable if d>G|[v/,A;]/d#*|,—o > 0 for all such variations.
A routine calculation yields

d2
— G[wr,A,]:/Q{—Q;BDiDng +Maﬁeﬂ}+/ |dn[* (6.1)
dt =0 Q O
where
’F
Mg = 2(9”’ , (6.2)
877[1(181/’[3 P =0

whence it is clear that the normal state is linearly stable if and only if the self-adjoint linear
operator

(0c) =—-0;"DiDjzs +Mases 6.3)

has non-negative spectrum. This section presents a general numerical method to address this
linear stability criterion, and hence extract H,,, the upper critical field of the system.

First we choose and fix a unit vector H and consider applied fields in this direction, so
H=|H |H We then rotate our coordinate system so that the 3rd coordinate points along the H

12
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direction. This amounts to choosing R € SO(3) with 3rd column H and defining new coordin-
ates (X1,X>,X3) such that x = RX. This transforms the Q matrices

0% s Q*F = RTQ*PR. (6.4)
In this coordinate system, the gauge field producing B = |H|dX3 may be chosen to be

14
2

A =1 (= X0dX, + X1dX) . (6.5)

It is convenient to rescale the coordinates,

@X,» (6.6)

Y=y 5

so that the covariant derivatives are

_E, 0 U )
D, = 3 9;, 9 = v, +iY,, 9= ar, iYy, 9;5= . 6.7)

The operator whose spectrum we seek is now
Oe ——@Qaﬂ@% + Mape (6.8)
T T Gy ZiZEs+ Magep. :

Note that all the |H| dependence of this operator is now explicit. Denote by )\ the lowest
eigenvalue of 0. Assuming the system’s temperature is below T, the matrix M has at least one
negative eigenvalue, while the operator — Q .@ 2; is manifestly positive. Hence, for |H| =
Ao < 0 (and the normal state is unstable), wh11e for |H| sufficiently large, Ao > 0 (and the
normal state is stable). H,, is, by definition, the value of |H| at which the sign of )\ changes.
It remains to compute the least eigenvalue of O. We first note that [6, I, ®i25) =0, so we
may seek simultaneous eigenstates of O and I, ® iZ5. Hence, we may assume our eigenstate
takes the form

e =¢(Y),Y5) e (6.9)

for some k € R. All previous studies of H,, that we are aware of assume that the ground state
has k = 0. It transpires, however, that in general this assumption is not valid: one can certainly
construct systems whose ground state has k # 0, as we will see shortly, so we will not make
this assumption here. To proceed further, we define operators

- %(.@,»Jri%), af = é(% —i%), vi=dla, (6.10)
and note that these satisfy the harmonic oscillator algebra
[u,aw =af, [v,a] = —a, [cuaT] =1, (6.11)

so a,a' are ‘ladder’ operators for the ‘number’ operator v. Eliminating 2, %, in favour of
a,a’ we see that, on the k-eigenspace of I, ® i %, our operator takes the form

14

Oc= S {Li (@) + L@+ Lo (aTa+ aa") + Ls + & (Lua” + Lia) + L} + M (612)

13
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where we have defined the n x n complex matrices,

L= - o +i(Qif + o3 ©13)
128 = Qo 4 Q2P (6.14)
L =i (Qlazﬁ _ Q;ﬁ) (6.15)
L% = — (i + oY) +i(os + o) (6.16)
L?B _ Q%ﬂ’ (6.17)

and M was defined in (6.2).
We now define the functions

10) := ¢~ (YI+13)/2 (6.18)
1
p) = (a")"|0) (6.19)

and note that a|0) =0, a|p) = \/p|p— 1) and a' |p) = \/p+ 1|p+ 1). We then seck eigen-
functions of 5k of the form

ba =Y _crlp). (6.20)
p=0

That is, our function space is ® := C" @ S where § = €D,y ) is the space of “particle’ states
spanned by |p). It is useful to introduce the parity operator

Pg:S—S, Pslp) = (—=1)"|p), (6.21)

and define P:=1, ® Ps : & — ®. Note that Pg anti-commutes with both @ and ', and so for
all p € D,

OxPp = PO_;. 6.22)

It follows immediately that the spectrum of Ois symmetric under k — —k, since if (A)kqb =\
then O_P¢p = A\P¢. Hence the lowest eigenvalue \.(k) of O attains a local extremum at
k=0, and it suffices to compute A, (k) for k > 0. Since Ls is a positive hermitian matrix, it is
clear that A, (k) grows unbounded above quadratically as |k| — 0o, so A, (k) attains a minimum
at some ko € [0,00), and Ao = A, (ko). As, just observed, it seems to be a universal assumption
in the literature that A\, (k) attains a minimum at k = 0, but for multicomponent ansisotropic
systems, this is not necessarily true.

To compute A, (k) numerically, we truncate the state space S to finite dimension S,, =
@;":0 |p) so that the ladder operators are approximated by the finite matrices

0 v 0 0 ... 0
0 0 V2 0 ... 0
00 0 V3 ... 0 f
am=| . . . . ) ; a), = a,,. (6.23)
0 0 0 0 .. m
0O 0 0 0 .. 0
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This produces a n(m+ 1) x n(m + 1) matrix OIEm) approximant to Oy,

|H|
2
+k (L4 Qal +LZ ® am) + I Ls @ T4 } FMS Ly, (6.24)

o = {1, 0 (@) 4Ll 0+ 1o (dhan + aneh) + L@ T

whose lowest eigenvalue ), can be computed by any standard linear algebra package. We
start with m =2 and keep doubling m until |\,, — A, >| is less than some desired tolerance,
at which point we accept the approximation A, (k) = ). The results presented below had
tolerance 10~°, which typically required a state space with m = 64.

This algorithm computes the lowest eigenvalue A, (k) for a given value of k € [0, 00). One
must then use a one-dimensional search method to find the minimum value attained by this
quantity as k varies. This minimum value is Ao, the lowest eigenvalue of O for the applied field

= |H|H, in the chosen direction H. In general, one must then vary |H| to find where \o(|H|)
crosses from negative to positive, this value being H,, for the direction H.

This final search problem (with respect to the parameter |[H|) can be avoided if, as is the
case in most models of phenomenological interest, 1) =0 is a local maximum of F),. In this

case, the matrix M is negative definite. Let ej,es,...,e, be a unitary basis of eigenvectors
of M corresponding to the eigenvalues —pu?,—pu3, ..., —u2. Then we may perform a linear
transformation of our fields by defining 1, so that
.~
=y Ya, (6.25)
a=1 Ha

whence, with respect to the new fields,
Fp=—30'0+0 (1), (6:26)

and the corresponding M-matrix is M = —I,. The Gibbs energy takes the same form (2.1) in
the new fields, but with transformed anisotropy matrices

0;=D"'Utg;uD™", (6.27)

where U is the unitary matrix whose columns are ey,...,e,, and D = diag(p1, 12, .. ., ftn)-
Hence, the normal state 1) = 0,B = H is linearly stable if and only if the operator

~

Hl —
0= —%Qij.@zl@j -1, (6.28)

has positive spectrum, where Qb = RTQO‘ﬁR are the spatially rotated Q-matrices, as before.
But the lowest eigenvalue of this operator is |H |)\0 — 1 where )\0 is the lowest eigenvalue of
the |H|-independent operator

=—-0,9:9,. (6.29)

Hence H., =2/ Xo, and we need only find the lowest eigenvalue of the single operator 0. Note
that the search over £ is still necessary to find )\0 Note also that )\o, and hence H,, in general
depend on H, the direction of the applied field, through the R-dependence of the matrices Q.

15
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Figure 3. The lowest eigenvalue, \., of the stability operator O as a function of
Y3-momentum, k, for the anisotropic two-component model with Q matrices defined
in (6.30). Note that this eigenvalue attains a local maximum at k =0, not a minimum.

This is the algorithm used to compute H,, for all of the specific models considered in this
paper. We end this section by applying it to a simple two-component model devised to illustrate
that the ground state may have k ## 0. The model has

—0.35 —0.25 0.39 0.11 021 0.27
o' =07 =1,, 0%=[ —024 011 038 |—+i 0 -0.1 007
042 037 -04 0.18 0.14 022

(6.30)

and M = —I,. Choosing H = (0,0,1), we find that the lowest eigenvalue \, (k) of O acting
on the k-eigenspace of I, ® &5 has a local maximum at k=0, and attains its minimum at
k = £1.03. Making the erroneous assumption that the ground state has k =0 would lead us to
underestimate H,, by 1.2% for this model and field orientation. A graph of A, (k) is presented
in figure 3.

The model (6.30) was engineered to have a stability operator whose ground state has k # 0.
It turns out that all the models we will consider subsequently do not exhibit this exotic beha-
viour. Nonetheless, this is something that must be checked on a case by case basis.

16
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om

Figure 4. A plot of the critical values of external field strength H,,, H., (left) and H,
alone (right) for the single component model given in (7.1) with < = 3. They are plotted
for all orientations of the external field H = |H|(cos ¢ sinf,sin ¢ sinf, cos ) paramet-
rised by 6. Note that the model has an SO(2) symmetry about the z-axis and hence is
invariant w.r.t. ¢. The dashed curve in the left plot (H,) is the prediction from the res-

caling method given in (7.3). The dashed line in the right plot (H(‘.l,) corresponds to the
value of H,, (erroneously) predicted if we assume that the vortex lines must be parallel
to H.

7. Anisotropic single component GL

We will now make the simplest extension to the type II example considered in section 4 by
introducing spatial anisotropy. Consider the single component model with anisotropy matrix,

0
0
A

1 0
o'=1 0 1 (7.1)
0 0

2

and potential F, as in (2.2) with k =3 (strongly type II). Physically 1/, gives an effective
mass ratio of the electron excitations for different spin directions. This model has an SO(2)
symmetry about the z-axis but will exhibit markedly different behaviour dependent on the
angle that the applied field H makes with the basal (x—y) plane, which we denote 6 (defined so
that H3 = |H|cos¥).

Experimentally, the clearest manifestation of spatial anisotropy is in the ratio of second
critical fields H;, and H;, = H’, in the z-direction and in the basal plane respectively. For
many strongly anisotropic materials this ratio ranges between 2 and 3 [19, 26-28]. In our
model, A, = 0.1 produces a model with

X

H
[:=—2 =3.16. (7.2)
H:
Cz

This choice is also consistent with models in the literature [19, 27], so we fix A, = 0.1 for all
our simulations.

The critical fields for this model are plotted in figure 4. Note that H,, is a decreasing function
of 6 € [0, 7] whereas H,, monotonically increases. This is unsurprising as the effective mass
is increasing, making the model effectively more type II and hence increasing the region of
parameter space for which the vortex state is optimal. We have also compared the difference
in approximating H,, by assuming the vortex line and applied field are parallel (dashed line)
and by solving the full non-linear problem presented in section 5 (solid red line). As predicted
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when applied along one of the crystalline axes the two methods agree, however the true H,, is
as low as 77% of the approximation Hﬂl.

It is interesting to compare H,, (f) and H,, (¢) with the expressions predicted by the scaling
method of [20]. Our single component model has (in their notation) anisotropy parameter
g2 = )\, = 0.1. Hence, any ‘magnetic quantity’ Q(#) in the anisotropic model with field applied
at angle 6 is obtained from the same ‘magnetic quantity’ O for a related (but fixed) isotropic
model by

Q(0) = o . (7.3)

cos26 + £2sin> 0

In deriving this formula, one should note that [20] uses a different definition of € and we are
using their scaling formula for a magnetic quantity Q which does not itself depend on the
applied field strength—as H,, and H,., tautologically do not. Note that formula (7.3) implies
identical 6 dependence for all such magnetic quantities, and is increasing on [0, 7] if €2 < 1,
as in our case. Clearly, this is qualitatively quite wrong for H,, (6), but it reproduces H,,(0)
perfectly.

The static configurations that were found using the H,, algorithm are displayed for various
applied fields in figure 5. The left panel shows the angle o between the applied field H and
the vortex line v3, this is also plotted as the red curve in figure 6. This angle is high when the
applied field is far from the crystaline axes X or Z and is almost 7 /4 at its highest. When the
angle « is high we see that the magnetic field twists direction in the plane, as indicated by the
right panel in the plots.

Finally we have plotted some lattice solutions for various applied field directions H for an
applied field strength of |H| = 3 in figure 7. We can see that for the top row (H = 7) we have an
exact Abrikosov lattice and for the bottom row (H = %) we have a stretched Abrikosov lattice.
We then continuously deform the lattice as the angle of H with Z changes from 0 to 7/2. As
the lattice deforms the angle between H and 3 increases, which is shown clearly for many
values of |H| in figure 6. As the applied field is increased the angle becomes shallower and as
it decreases the curve approaches the limiting curve for when |H| = H,,.

8. Multicomponent s + id example

We now consider a more complicated example with both anisotropy and multiple compon-
ents. In particular, we will consider an s + id model derived in [29]. This is an n =2 compon-
ent model that exhibits a d,>_,» electron pairing symmetry, which is of interest in modelling
high 7, superconductors in materials such as YBCO [30]. To write this model in our notation
we use,

2
V2A

2

diag(1,1,x), 12—
7o g( ), QO

4
o :Ediag(LLKzL 0*

with the potential,

diag(1,—1,0) (8.1)

Ba
Fp=—aaltal* + 7|¢a|4 + Y121 P12 |* + mia o1 || cos pra. (8.2)
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Figure 5. Plots of vortices for the single component model in (7.1) for |H| = H,, and
H= (sin#,0,cos6), found using the algorithm described in section 5. The left panel
shows the applied field direction H, the normal to the vortex plane ¥3 and the angle
between them «. The other panels are a cross-section of the vortex line in the plane
spanned by X1 = (cos(6 + a),0, —sin(f + «)) and y = (0, 1,0), where B = B -v3,p =
[4|, and B, = |B — B)v3| (orthogonal to the vortex line).



J. Phys. A: Math. Theor. 58 (2025) 095203 M Speight and T Winyard

0 10 20 30 40 50 60 70 80 90

Figure 6. A plot of the angle o between the applied field H and the vortex line 73 for
optimal vortex lattices at various field strengths |H| and orientations 6 such that H =
|H|(cos ¢ sinf,sin¢ sinf,cosh). Note that the model is invariant w.r.t. ¢. The top red
curve corresponds to the limiting case |H(0)| \, Hc, (). In the opposite limit, |[H(6)|
H.,(0), a(0) — 0.

Here k is a parameter that has been introduced as the model in [29] is 2-dimensional, focussing
entirely on solutions in the basal (x, y) plane with applied field always orthogonal to this in the
z direction. For the rest of the paper we will make use of the following parameters,

4 1

ﬁ2:§7

al:1-4a a2:17 Blzga
, A=4. (8.3)

Y12 = 3, M2 =

W | oo
NIES

To approximate physical values for £ we can consider the anisotropy of the crystal unit cell
which is orthorhombic [28] with a cell of,

a=b=3.8677TA, c¢=12.2874A, (8.4)

where A is Angstroms. This gives an aspect ratio of ¢/a=3.1769. Hence, by applying the
relative rescalings we get that x = (a/c)? ~ 0.1. The best way to check this naive approxim-
ation is physically sensible is to compare H,, anisotropy with that from experimental data. If

we define,
Hbasal
=2 (8.5)
HE,

where ‘basal’ refers to the x—y plane, then experiment suggests that I' ~2 [21]. For our
chosen parameters I is between 2.5 and 3.5 depending on the choice of basal direction, where
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Figure 7. Plots of the vortex lattice minimizers for the single component model in (7.1)
for [H| = 3 and H = (sin6, 0, cos ), found using the algorithm in section 3. The notation
and labels are the same as figure 5.
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Figure 8. The correct values of H,, (left), the approximation Hﬂl which is calculated
assuming that vs is parallel to H (right), and H., (bottom) for the s+ id model given
in (8.1) and (8.2), calculated using the methods presented in sections 5 and 6. The hori-
zontal and vertical axes correspond to the x and y coordinates of the normalised applied

field H and the colour the strength of H., and H.,. Note that while the scale is the same
for H., and Hﬁ] , itdiffers for H., as the parameters give a strongly type Il model. Also the
value for H,, (H.,) decreases (increases) from the origin H = 2 radially to the equator,
leading to a more type Il model when H is in the basal plane (equator).

H/|H| = (1,0,0) has the highest H,, and H/|H| = (1,1,0) has the smallest H,,, note that the
model has 4-fold symmetry about the z-axis. The different values for H,, can be seen in figure 8.
In addition we can see that H,, follows a similar pattern but reversed, so it is higher when H
is out of the basal plane and more suppressed when H is pointing in the plane.

Note that this s + id model has previously been considered in the basal plane [31]. In this
paper the authors studied large rectangular systems of vortices and studied the skyrmion chains
that formed. It has also been shown that the coupled length scales of this model [32] lead to a lot
of the unconventional behaviour it exhibits [33]. Some of these details were also subsequently
summarised in [34].
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Figure 9. A heat plot of the angle o between the applied field H and the vortex line 73
in degrees, for the s + id model given in (8.1) and (8.2) where |H| = H,,. The horizontal
and vertical axes correspond to the x and y coordinates of the normalised applied field .
As predicted the angle is zero at the origin H = % and for H in the basal plane (equator).
The plot retains the four fold symmetry of the model, and hits its peak along the x=0
and y =0 axes.

We have also plotted the angle that H makes with the vortex line in figure 9, for |H| = H,..
The maximal angle of deviation is close to 30°, which is a substantial change. In addition we
can also see the deviation of H,, from the old method where it is assumed V3 and H are parallel

(HL'I ) in figure 8. These two plots demonstrate the importance of taking into account the vortex
line disinclination to the applied field H.

We have also plotted the N = 2 configurations for various applied field directions that were
found in the process of finding H,, in figure 10 for the x — z plane, figure 11 for the x — y plane
and figure 12 for the x =y plane. We can see that away from the crystalline axes (X,y,z) we
see substantial local magnetic field twisting, shown in the final panel of each row. This shows

that the magnitude of the magnetic field orthogonal to v (1/|B|*> — B?) is as high as 20% of
B3. This will cause the magnetic field to twist direction in the plane. This is not a surprise as
v3 and H are misaligned.

We also observe that the for particular orientations of applied field H the vortex zeroes of
the two components p; and p, are not co-centred, thus forming a so called Skyrmion [35]. This
is a feature of a number of anisotropic models, but here it is driven by the coupled gradient
terms given by Q'2. As a result the Skyrmions only appear for the top part of the hemisphere
of applied fields H (when close to the 7 axis). This is a result of the form of Q' which couples
the gradients in the basal plane. Note that if we had assumed (as is usual) that v3 and H were
aligned we would have found a much larger region for Skyrmions, however in true physical
systems it is energetically favourable for vortex lines to orient themselves closer to the basal
plane (hence away from the z-axis) making vortex splitting less favourable.
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Figure 10. Winding N =2 solutions for the model in (8.1) and (8.3) with an applied
field |H| = H, in the x — z plane. The left panel shows the applied field direction H
(red arrow), the normal to the vortex plane V3 (green arrow), the angle between them
« and the vortex plane basis (X1,%;) (blue arrows), which are orthogonal to ¥3. We
choose x; to be the unit vector in the direction of the component of H orthogonal to
v, and % = P3 X %1. In the top and bottom rows, 93 = H, so we take X = (1,0,0) and
%1 = (0,0, —1) respectively. Note that B = B - 73 (along the vortex string), p, is the
magnitude of condensate 1), and By = |B — B) 3| (orthogonal to the vortex line).

We have also shown an example of the lattice solutions for an applied field of |H| = 0.6
and various applied field directions figure 13 for the x — z plane, figure 14 for the x — y (basal)
plane and figure 15 for the x =y plane. We note that the stronger the applied field the more
aligned the vortex line 3 is with H and also the smaller the local magnetic field twisting is.
As this deviation moves the vortices away from the region where vortex splitting (Skyrmions)
is observed, this leads to the surprising result that as the applied field increases this region
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Figure 11. Winding N =2 solutions for the model in (8.1) and (8.3) with applied field
|H| = H, in the x — y plane. Notation and labels are the same as in figure 10.

increases. Note that, eventually the lattice will go through a further transition near H., where
the vortices are too tightly packed and cannot split [3].

The above results show the importance of moving away from considering a single applied
field in z direction. When one does this the possibility of V3 being misaligned from H must
be allowed. It not only tilts the vortex plane significantly, it directly introduces an additional
anisotropic term that affects the field configurations, as can be seen by the large magnetic field
twisting. It also directly affects the regions of parameter space that various solutions exist in.
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Figure 12. Winding N = 2 solutions for the model in (8.1) and (8.3) with applied field
|H| = H, in the plane x =y. Notation and labels are the same as in figure 10.

9. Concluding remarks

In this paper we have developed methods to compute energetically optimal vortex lattices, isol-
ated vortices and the first and second critical magnetic fields in a general spatially anisotropic
n-component Ginzburg-Landau model of superconductivity. Our methods do not assume a
priori anything about the periodicity of the vortex lattice, or the orientation of the vortex lines
relative to the applied magnetic field: both of these data are determined by the energy min-
imization algorithm itself. We have found that even in a simple one-component model with
comparatively modest anisotropy, the vortex lines of lattices at fairly low applied field (with
|H| only a little above H,,) tilt away from the direction of H by as much as 40°. While H,,
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Figure 13. Lattice solutions for the model in (8.1) and (8.3) with applied field |H| = 0.6
in the x — z plane. The left panel shows the applied field direction H (red arrow), the
normal to the vortex plane v3 (green arrow), the angle between them « and the vortex
plane basis (%1,%,) (blue arrows), which are orthogonal to ¥3. Note that we system-
atically choose X; = ¥, parallel to one of the period vectors, and X, = 93 X X; (which
generically differs from ;). The optimal unit cell has N =2 and is marked in black.
Note that B = B - V3 (along the vortex string), p., is the magnitude of condensate
and B = |B — B)¥3| (orthogonal to the vortex line).

follows the orientation dependence predicted by standard scaling arguments in the literature
[20], H,, certainly does not.

In a more elaborate two-component s+ id system, recently proposed to model high T,
superconductors, we showed that the lattices exhibit fractional vortex splitting only for applied
field H near the z-axis (away from the basal plane). We also observed that for applied field
strength |H| ~ H,, the direction of v; tilts away from H towards the basal plane by as much
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Figure 14. Lattice solutions for the model in (8.1) and (8.3) with applied field |H| = 0.6
in the x — y plane. Notation and labels as in figure 13.

as 30°. This tilting suppresses the vortex splitting, which relies on gradient coupling terms
associated with gradients parallel to the basal plane, since the line of translation symmetry is
tilted towards this plane. Hence, the region of S? consisting of applied field directions which
yield vortex splitting initially grows as the applied field strength |H| is increased above H.,,
due to the decreasing angle between v; and H. As |H]| is increased further, this region shrinks
and eventually disappears: as |H| approaches H.,,, the lattice tends to a (possibly distorted)
Abrikosov lattice, with vortex lines parallel to H. It is interesting to consider how the line
tilting phenomenon predicted here might be observed experimentally. We have constructed
energetically optimal bulk vortex lattices, in the idealized limit of infinite sample size, using a
method that rigorously excludes all surface effects (indeed our system has no boundary even in
the mathematical or practical computational sense). By contrast, experimental studies of vortex
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Figure 15. Lattice solutions for the model in (8.1) and (8.3) with applied field |H| = 0.6
in the plane x =y. Notation and labels as in figure 13.

lattices in tilted applied fields tend to use scanning tunneling electron microscopy to directly
image the vortex cores on the surface of a (usually modestly sized) sample [36, 37]. It would
be naive indeed to expect this vortex lattice to simply be a slice through our bulk vortex lattice
along the sample surface. Boundary effects, in particular the energetics of the induced magnetic
field outside the sample (the so-called stray field) are likely to exert significant effects, partic-
ularly in the regime of low applied field where our predicted tilting phenomenon is strongest.
Predicting the surface vortex core distribution is a difficult mathematical challenge which is
typically attempted only approximately [38]. Theoretical studies often assume that the vor-
tex lines are aligned with the applied field in the bulk, and bend towards the surface normal
as they approach the surface. This bending is modelled by ascribing elastic properties to the
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vortex lines such as a shear modulus [37]. Hence the bulk lattice is a key input to many sur-
face calculations, and the common assumption that bulk vortices align with the applied field
is, in anisotropic systems, likely to lead to systematic errors. Our results should be relevant,
therefore, to calculations of the surface distribution of vortex cores, but such calculations lie
considerably beyond the scope of the present work.

To find direct evidence of line tilting in bulk vortex lattices one would need to use an exper-
imental technnique that probes the magnetic field within the sample, such as muon spin rota-
tion spectrosocopy [39]. This does not directly image the vortex cores, but provides statistical
information about the strength and direction of the magnetic field across the whole sample.
Extracting a clean experimental signature of line tilting detectable by ;SR remains a signific-
ant challenge, however.
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