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An explicit formula for the interaction energy of n vortices in the Abelian Higgs (or Ginzburg-Landau)
model is derived, valid in the regime where all vortices are close to one another. An immediate consequence

of this formula is that the interaction energy of a vortex pair with separation d varies as d*, not d>. The
formula contains n — 1 real coefficients, which are fixed by certain spectral data of the Jacobi operator of
the cocentered n-vortex. The coefficients are computed numerically for » = 2 and n = 3 for couplings
0.1 < 1 < 2.5. The resulting short-range interaction potentials are compared with the results of full field
theory simulations for A = 0.5 and 1 = 2, with excellent agreement at small to moderate vortex separation.
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I. INTRODUCTION

Abelian Higgs vortices are the preeminent example of
topological solitons in two spatial dimensions. They have
important applications in condensed matter physics and
cosmology, where they arise as sections through cosmic
strings. As the simplest topological soliton arising in gauge
theory, they also provide an invaluable toy model for
exploring soliton dynamics in the general context of high
energy physics.

To study the phenomena induced by vortices it is crucial
to understand the forces between them. The Abelian Higgs
model on the Euclidean plane has a single dimensionless
coupling constant 4 > 0 whose value controls the nature of
these forces. For A < 1, vortices attract one another while
for 4 > 1 they repel. The case of critical coupling, A = 1, is
particularly well studied: here static vortices exert no net
forces on one another, but there are still velocity-dependent
forces that can be understood within a beautiful geometric
framework proposed by Manton. There is a well-developed
formalism for understanding asymptotic intervortex forces
at large separation, in which vortices are modeled as point
sources in the linearization of the model about its vacuum
[1]. This formalism successfully accounts for long-range
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intervortex forces, including velocity-dependent forces at
critical coupling [2], and has been extended to variants of
the model with multiple scalar fields [3-6] and nonlinear
target space [7,8].

By contrast, a quantitative understanding of short-range
intervortex forces has, so far, been missing. Numerical
studies have indicated that, for three or more vortices, they
cannot be understood as a sum of pairwise interactions [9],
but a detailed analysis has been hampered by the technical
challenge of computing interaction energies for close but
not coincident multivortices.

This paper aims to remedy this deficiency. It rests on two
ideas. The first is to treat the n-vortex interaction energy E;
as a function on the moduli space of n-vortex positions,
rather than as a function of the positions directly. This
distinction, while subtle, immediately yields insight: it
follows, for example, that the two-vortex interaction poten-
tial varies at small separation R as R*, not R? as one might
naively expect. The point in moduli space corresponding to
n coincident vortices (at the origin, say) is certainly a critical
point of E;, a local maximum if 4 > 1, a local minimum if
A < 1, so the leading terms in the Taylor expansion of Ej,
about this point are quadratic. The second idea is that we can
compute the leading coefficients in this expansion by
solving the eigenvalue problem for the Jacobi operator of
the model associated with the coincident n-vortex. By
rotational symmetry, this reduces to a linear ordinary
differential equation (ODE) problem that is much more
tractable than the computation of E;; directly. This allows us
to construct explicit formulas for the n = 2 and n = 3 vortex
interaction potentials, valid at small separation, with coef-
ficients whose 4 dependence we determine numerically.
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The rest of the paper is structured as follows. Section II
introduces the model and defines E;, precisely. In Sec. III
we compute the Jacobi operator in a general setting and
then, in Sec. IV we use the rotational equivariance of
cocentered vortices in the plane to reduce it to a sequence of
ordinary differential operators whose spectra are numeri-
cally amenable. This section also describes the simple
shooting scheme we use to find the spectrum. Section V
explains how we can extract a small separation approxi-
mation to E;, from the spectral data, and presents the
numerically computed Taylor coefficients (as functions of
coupling 4) for n =2, 3. In Sec. VI we compute E;,;
numerically in the full field theory via a constrained
gradient descent algorithm and compare the results with
our approximate formulas for n = 2, 3 at couplings A = 0.5
and 1 =2, finding excellent agreement. Section VII
presents some concluding remarks.

II. THE MODEL AND ITS VORTEX
INTERACTION ENERGY

The model comprises a complex scalar field ¢ and a
U(1) gauge field A on the Euclidean plane, which is
conveniently identified with C. With such a pair we
associate the energy

B6.4) = [ (GlauP + 18P 450 -10PP). @)

where B = dA is the magnetic field and dy¢p = d¢p — iA¢g is
the covariant derivative. This energy is invariant under
gauge transformations, ¢ — e%¢, A — A + dy. To ensure
finite energy, one imposes the boundary condition |¢| — 1
as r — oo, but the phase of ¢ may wind any integer number
n times around the unit circle as one circles the boundary
at spatial infinity. Requiring |dy¢p| > 0 as r - oo, a
standard invocation of Stokes’s theorem implies that the
total magnetic flux of a winding n configuration is
fc: B = 2zn. Without loss of generality, we may assume
that n > 0. The Higgs field of a winding n configuration
(generically) vanishes at n points in C counted with
multiplicity, which we interpret as vortex positions (or
antivortex positions if their multiplicity is negative).

For each n € Z* there is a rotationally symmetric static
solution of the model (that is, the critical point of E)
consisting of n vortices colocated at the origin, which we
will call the n-vortex. In suitable gauge this takes the form

& = f(r)e™, A = a(r)do, (2.2)
where f,a:(0,00) — R satisfy
' A
—f”—é+(a—n)2£+§(f2—l)f:0, (2.3)
-a" + a7’ +(a=n)f* =0, (2.4)

subject to the boundary conditions f(0)=a(0) =0,
f(o0) =1, and a(o0) = n. For 4 < 1 this solution is stable
(a local minimum of E) while for A > 1 it is unstable
(asaddle point). If 1 = 1, itis one point in a 2n-dimensional
family of static solutions all of equal energy, but for 4 # 1,
this solution is thought to be unique up to gauge and
translation.

Given a choice of n points zy, ..., z, in C, possibly with
repeats, there is no static solution with vortices located at
the points z;, unless they are coincident (or 4 = 1): there are
forces between static vortices, encapsulated by their inter-
action energy. This assigns, to the collection of marked
points zy, ..., 2,

Eint(ZI’ ...,Zn> = 1nfE(¢,A) —nEl, (25)
where the infimum is over all smooth fields vanishing at
exactly the points z; (with the correct multiplicity), and
having winding »n at infinity, and E| is the energy of a single
vortex. This infimum is attained only in the coincident case,
by (a translation of) the n-vortex (2.2). If A < 1 (1 > 1), itis
strictly negative (positive).

It is clear that the order in which we label the marked
points z; is irrelevant, so E;, is actually a function on
C"/S,, the quotient of C" by the symmetric group, that is
the symmetric n-fold product of C. Although this space is a
smooth manifold diffeomorphic to C”" itself, it is helpful to
give it a different name, to emphasize that this is not the
space of ordered vortex positions (z;, 22, ..., 2,). We will
denote it by M,,, and call it the n-vortex configuration space.
To see that M,, = C", we identify the permutation orbit of
(21,22, .-+, 2,) With the unique monic polynomial whose
roots are 2y, 2z, ..., Z,:

p(z)=(@-a)(z-2) (z-z)=2"+az""

+ a7t a2t ay, (2.6)
Hence, the interaction energy is actually a function of
aeC" (the coefficients of this polynomial). More
abstractly, we think of a; as global complex coordinates
on the space M,,.

By translation symmetry, we may restrict to the set of
n-vortex configurations whose center of mass is at z = 0,
that is, satisfying

Z1+Zz+"'+Zn:—01=0, (27)
so Ej: C'! - R. Again, it is conceptually helpful to
denote this submanifold of M, by MY, and call it the
centered n-vortex configuration space. We assume that
E(as, as, ...,a,) is smooth (or at least twice differen-
tiable). The radially symmetric n-vortex corresponds to
p(z) = 7", that is, a = 0, and is a critical point of Ej,—a
local maximum if 4 > 1 and a local minimum if 1 < 1.
Hence, provided all the vortices are close to 0, Ej,(a)
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should be well approximated by its Taylor expansion about
a = 0 to quadratic order in a, that is,
1 n
Ein(0) + 5 Z (M;ja;a; + Hjja;a; + M;; a; a;)
ij=2

Eint(a) =

+ o (2.8)
where M and H are complex (n—1) x (n — 1) matrices
and H is Hermitian. Note the expansion has no linear terms
since a =0 is a critical point of E;,. Note also that
E;(0) = E, — nE,, where E, is the energy of the rota-
tionally symmetric n-vortex.

The interaction energy is invariant under simultaneous
rotation of all the vortex positions. That is, for all w € U(1),
the map z; — wgz; is a symmetry of E;, (preserving the
centering condition a; = 0). The action of this map on the
polynomial p(z) is p(z) — w"p(z/w), so maps the coef-
ficients a; = w'a;. Hence, Ej,(a) is invariant under the
U(1) action

Jwha,,).

(ay,....,a,) > w-a:=Wa,,... (2.9)
Since Ejy(w - a) = Ey, forallaeC"! and we U(1), we

see from (2.8) that

Z(Wi+jMijCliClj + wj_iH,-ja_iaj + W_(i+j)Mij a_,a_j)

ij
= Z(Mijaiaj+Hija_iaj+Mija_ia_j) (2.10)
i.j

for all a and w, so M = 0 and H is diagonal (and hence

1 n
Ein(a) = (E, —nE)) +5 3 cila +0(laf).  (2.11)
k=2

The real coefficients ¢, depend on 4, are all positive for
A < 1, are all negative for 4 > 1, and all vanish at 1 = 1. To
complete our short-range approximation to E;, we must
compute them. To do so, we will consider the second
variation of E about the n-vortex (2.2).

III. THE JACOBI OPERATOR

Assume we have a static solution (¢, A) of this model,
i.e., a critical point of E. We wish to understand the second
variation of E about (¢, A), which is encoded in the spectral
properties of its associated Jacobi operator J. The spectrum
of J has been heavily studied before, from the original work
of Goodband and Hindmarsh [10] to more recent detailed
studies by Alonso-Izquierdo and collaborators [11,12]. We
will require not just the low-lying eigenvalues of J but also
their associated eigenmodes, which cannot be read off from
previous work. We have no choice, therefore, but to solve
the eigenvalue problem for J afresh and, this being the case,
we take the opportunity to give a more geometric derivation
of J and its symmetry reduction than has appeared
previously.

For this purpose, it is helpful to think of ¢ as a section of
a Hermitian line bundle L, with inner product A(¢p,w) =
(¢pw + @) /2, over a Riemannian 2-manifold £, and A as a
connection on L. We will revert to the choice of direct
interest, & = R2, in Sec. IV.

Consider a two-parameter variation (¢, A,,) of

real). That is, there exist real numbers ¢, cs, ...,c, such (¢, A) = (o0, Ago) and define the infinitesimal perturba-
that tions it generates
d d d d
= s E=— 5 e As‘ 5 O =— A 3.1
€ ds S:0¢s.0 € di I:O¢0,z a ds|_q 5.0 a di|,_, 0.t (3.1)
Note that ¢, & are, like ¢, sections of L, while @, & are (globally defined) one-forms on X. Then,
’E JA
OE(sroAsr) = Hess((2,a), (¢,a))
dsor (5.1)=(0.0)
A
= <e Aye+5 (hlgh.§) = Ve + (0. e>¢> (80 % (@ A #dadp + da(xadh)))
L2
+ (@, h(e, ids) + h(p, idge)) 2 + (&, 8da + h(¢p, P)a) . (3.2)
In this formula, (-,-);> denotes L? the inner product, A, is the gauge covariant Laplacian, A, = — x d, * d4, and & is the
coderivative adjoint to d.
From this symmetric bilinear form, we extract the Jacobi operator for the solution (¢, A),
JH B [AAS +3 (16 = e+ Ah(h. ) + i (a A 5y + da(+ad)) (33)
a sda + |p|2a + h(e, idyg) + (g, idse) ’ '
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defined by the requirement that

Hess((2,a),J(e,a)) = ((8,a),J(e,a)) ;2. (3.4)
This is a formally self-adjoint operator on I'(L) @ Q!(X),
with respect to its natural L? inner product, that is,

(@.a).J(e.a))> = ((e.a), J(8,2)) .

This follows immediately from the symmetry of Hess, but
can also be verified by explicit calculation. The spectrum of
J informs us about the stability of the critical point (¢, A):
if the spectrum is non-negative, the solution is linearly
stable. Eigensections with negative eigenvalues are pertur-
bations that decrease E to second order and hence con-
stitute directions of instability.

Any (¢, a) tangent to a deformation that does not change
E should be in the kernel of J. For example, E is gauge
invariant, so all infinitesimal gauge transformations

(3.5)

(e.a) = (igy.dy). (3.6)

where y:X — R is an arbitrary smooth function, are in
ker J.

Since all infinitesimal gauge transformations are in ker J,
this kernel is infinite dimensional. Let (e,a) be any
eigensection of J with eigenvalue A # 0. Then, since J
is self-adjoint, for any (&, &) € ker J,

((.a),(e.a)) 2 =
(3.7)

Hence, every such eigensection is L> orthogonal to all
infinitesimal gauge transformations. We may therefore
insist that (e, a) is L* orthogonal to the subspace

Goo ={(igy.dy) : y€C*(Z,R)}. (3.8)

Then (&, @) must satisfy the partial differential equation

Sa+ h(e, igp) = 0. (3.9)

In the case of interest, ¥ = R2, translation is also a
symmetry so, for example,

(e,a) = (0:¢,0,A) (3.10)

is in kerJ. Note that this translational zero mode

does not (necessarily) satisfy the gauge orthogonality
condition (3.9).

IV. SYMMETRY REDUCTION

From now on, assume that ¥ = R? = C and that (¢, A)
is the cocentered n-vortex solution (2.2). In this section we
rederive the decomposition of J into a sequence of ordinary
differential operators observed in [11,12], clarifying how
this results directly from the equivariance of the n-vortex
with respect to rotations and reflexions.

Given w € U(1) denote by the same symbol the rotation
map C — C, z — wz. Then, the n-vortex is invariant under
the circle action

¢ > wlpow, A~ wrA. (4.1)
(The symbol w* in the above formula denotes the pullback
of A by the map w. We will always denote complex
conjugation by an overbar.) This circle action is a symmetry
of the functional E, so J must preserve the invariant
subspaces of its action on T'(L) @ Q!(X). These are labeled
by k€{0,1,2,...},

Cr = {e (el Lg_(r)el=K0: ¢, 1 (0, 00) - C}

@ {(a(r) cos k@ + ay(r) sin k@)dr + (az(r) cos k@ + a,(r) sin k@) rdd: a,: (0, 0) — R}.

(4.2)

The vortex is also invariant under the parity operation I1:(¢,A) > (co¢oc,—c*A), where ¢:C — C is complex
conjugation. Each of the subspaces %', decomposes further into a pair of invariant subspaces, preserved by II

¢ = {e1(r)e"R0 4 g5(r) e’ "0 q,(r) sin k@dr + a3(r) cos kOrdo},

€ = {iey(r)e" 0 gy (r)e’ "9 (r) cos kOdr + ay(r) sin kOrdo},

(4.3)

(4.4)

where ¢,: (0, 00) — R. So € is the subspace on which . are real and a; = a4 = 0, while €’} is the subspace on which

&4 are imaginary and a, = a3 = 0.
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J preserves this splitting, that is, J: €7 — ¢} and J: € > €

. In particular, its action on ‘5,(* is

. Dol +4(f2 = Dey +52(e1 + &) + oo f —az(n+5 a)l;ﬂLf(;af)

1 ,

e Dty +4(f2 = Vs +412(e) +&3) — aof —az(n = —a) L - L2
J = » , 45
e (<t ) 4Py 4 f e — ) — £~ ) 43)

a ros
’ —(—]f02+(, ) +fza3—2(”—a)§(£1+€3)—kf(81—53)
|

where, for any integer ¢, The subspace %, is exceptional since ) = €5 @ G

! _ 2
2= g £ LA

r

(4.6)
A section in ‘Kk* is gauge orthogonal [satisfies (3.9)] if and
only if

, ar ka';

02:—7+T+f(€1—53)- (4.7)

For each k > 1, the linear map L: €} — €7,

L: (g0 1 g10!=K)0 o) sin k@dr 4 a3 cos kOrdd)
ieze! "= o, cos k@dr — as sin kOrd#),

(4.8)

— (iEl ei(11+k)0

commutes with J. Also, if (¢,a) €€} satisfies the gauge
orthogonality condition (4.7), then L(e,a) € €} satisfies
the gauge orthogonality condition on %,

a a
a :—71—k74+f(82—|—84).

(4.9)

It follows that if v = (¢,a) €%’} is an eigensection of J
with eigenvalue A, sois Lve ¥ - S0 eigensections come
in degenerate pairs, and we may restrict attention to €’y .

|

that is, the —1 eigenspace of Il consists of 1nﬁn1t651mal
gauge transformations. Hence, eigensections with k = 0 do
not come in pairs, but it is still true that one need only
consider the subspace . For our purposes, we will need
€y for k=2,3,...,n only.

To construct an eigensection of J in the class €, we
must solve the ODE system

&1 &1
€ €
7 =A (4.10)
a a
az az

coupled to the gauge orthogonality condition (4.7), and for
this we must determine the correct boundary conditions for
(€1, €3, 0, a4). All the components €;, €3, a,, az should
approach 0 exponentially fast as » — oco. Their boundary
behavior at 0 is determined by demanding that the section &
and the one-form « should be smooth at the origin. So

n+k’ (411)

e ~r £ ~ rInkl.
The boundary conditions for a,, @3 are more subtle.
Noting that dr = cos 8dx + sin #dy and rdd = —sin 0dx +

cos Ody, we find

a = [ay(r) sin kO cos @ — a3 (r) cos kO sin 0]dx + [a,(r) sin kO sin O + a3 (r) cos k6 cos ]dy, (4.12)

so a is smooth at the origin if and only if the functions A;,A,: R*\{(0,0)} — R,

A; = ay(r) sin k@ cos @ — a3 (r) cos kOsin O
- % (e(r) = aa(r)) sin(k + 10+ 3 (aa(r) + () sin(k = 10, (4.13)
:= oy (r) sin k@ sin O + a3 (r) cos kO cos O
= %( »(r) —az(r)) cos(k + 1)6 +%(a2(r) + a3(r)) cos(k — 1)6, (4.14)
extend smoothly to (x,y) = (0,0). This requires that

ay —az ~ rkt ay + ay ~ rik1l (4.15)
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Hence, at small r,

e(r)=e k4 ...,

e5(r) = eyri" = +

ay(r) = exrll eyt g

a3 (r) = eyr1l — ekt 4 (4.16)

for some unknown constants e, e, e3, ¢4 € R.

Our computational scheme may be described as follows. We reinterpret the first, second, and fourth equations in (4.10),

together with (4.7),

A A k
Direr +5 (2 = 1)gy —l—ifz(sl +83)+a2f’—a3<n+§—a> ;

2

A A k
Dnies +5 (= 1)e3 +§f2(51+€3)—052f/—053<”———a)

2

!
J_c+f(r0‘2) ~ Aey =0,
2r
[ flra)
__7—A —
2 r 2r & =0,

(S + T 4 o =20 - @ 4 e - E e - ) - Ay =0
r r r r

as a first order flow for the collected fields

¢ =(e1.63.23.8). 8. 05, 1) (4.18)
in R7, which we solve using a shooting method. We choose
ro < 1 and r, > 1, then shoot forwards from r = ry and
backwards from r = r,, matching at r; = (ry + r,)/2. Let
us denote by Sy: R* — R” the linear map

So: (e1.en, e3,eq4) > o(ry), (4.19)
where ¢g: [rg, 1] = R7 is the solution of (4.17) with
initial data ¢(rg) as determined by the asymptotic ex-
pressions in (4.16) evaluated at » = r. So Sy maps the left
shooting data to the value of the solution ¢ at the matching
point r;. We similarly define the right shooting map
S,: R - R7 by

Sy:(by, by, b3) = ¢a(ry), (4.20)
|
T t 1
O(A) = | So(e;) So(ey) So(es)
! ! \:

where {e;} and {f;} are the usual bases for R* and R?,
respectively. A smooth solution of the shooting problem
with parameter A exists if and only if Q(A) has a nontrivial
kernel, that is, if and only if det Q(A) = 0. So we compute
Q(A) as a function of A and then solve det Q(A) = 0 using

So(es)

ar k(l:;

a/2+7—7—f(81—€3):0, (417)

where ¢, : [r, r,] = R’ is the solution of (4.17) with final
data

¢2(r2) = (O, O, O, —rzble_r2, —r2b2€_r2, —72b3€_r2, O)
(4.21)

So we approximate the decaying boundary condition as
r — oo by imposing that ¢;, ; vanish at some large fixed
-, with exponentially small derivatives. Again S, is linear
by linearity of (4.17). In practice, we construct Sy, S, by
solving (4.17) numerically using a fourth order Runge-
Kutta method.

Now A is an eigenvalue of J; if and only if there exist
nonzero e = (ey, e,, e3,¢,) ER*and b = (b, b,, b3) ER?
such that Sy(e) = S,(b); the corresponding eigenfunction
is then the solution of (4.17) with shooting data e at r; and
b at r,. To determine whether such a pair (e, b) € R* @ R3

exists, we construct the 7 x 7 matrix Q(A):
0 0 0 0

=S3(f1) —=Sy(f)) —Sa(f) |. (4.22)
\ \ \ \

|
the bisection method. Having identified A, we construct
(e,b) € ker Q(A) C R”. The corresponding eigenfunction
is then the solution with shooting data e at ry and b at r,.

In principle, this method can be used to find any and
all eigenvalues of J, together with their corresponding
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n=2
0.1

Type |

Type Il

FIG. 1.
energy (right column) for n = 2, 3.

eigensections. We will only need those eigenmodes whose
eigenvalues A(4) pass through 0 at 4 = 1. Let us denote the
space of such eigenmodes V/(4). It has dimension 2n and is
spanned by one vector in %fj foreach of k =1,2,...,n,
together with their images under L [see Eq. (4.8)]. The
numerical results of finding A(A) using the method above
are shown in Fig. 1 for n = 2, 3. As a consistency check,
we have also computed numerically the lowest eigenvalue
in the space ¢’;. This coincides with the (gauge orthogonal
component of) the overall translation mode in the
x-direction (3.10), so must be A; =0 for all .. We find
numerically that |A;(4)] < 107 for 1/4 <1 <2, which
gives an indication of the expected accuracy of our results.

V. EXTRACTING THE n-VORTEX
INTERACTION POTENTIAL

Our short-range approximation to FE;.: M, » R
amounts to replacing it by its Hessian at 0, a symmetric
bilinear form on the tangent space to M, at 0. At 1 = 1, we
may identify this tangent space with kerJ or, more
precisely, the 2n-dimensional subspace of ker J orthogonal
to G,. This, in the notation of Sec. IV, is V(1). For 4 # 1,
this identification persists: we may identify the tangent
space to M,, at 0 with V (1), the 2n-dimensional subspace
spanned by the eigenmodes of J whose eigenvalues pass

n=2
0.1

Type | Type Il

0.05

0.02

Type |

0.015

-0.01

-0.015

-0.02

Plots of the eigenvalues of J (left column) and the coefficients of the short-range approximation for the n-vortex interaction

through 0 at 4 = 1. Having made this identification, it is
natural to posit that the Hessian of Ej, at O coincides with
the restriction to V(A) of the Hessian of the Ginzburg-
Landau energy functional (2.1) at the n-vortex. We will test
this supposition numerically in Sec. VI. This allows us to
extract the coefficients ¢, in our short-range formula (2.11)
for E,, from spectral data for J.

To be explicit, choose k€ {2,3,...,n} and consider the
eigenmode v = (g,a) €V(1) N ¢}, normalized so that
|lv]],» = 1. Denote by A, its eigenvalue and by by its
associated left shooting coefficient e, [see Eq. (4.16)].
Consider now the curve of configurations

(91, A) = (P, A) +tv = (p+te, A+ ta). (5.1)

This is a smooth curve passing through the symmetric n-
vortex

(. A) = (f(r)e™, a(r)do), (5.2)
d
E t:OE(gbt’At) =0, (5-3)

and, by the definition of the Jacobi operator,
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d2

— (5.4)
dr|,_

E(p.A) = (v.0)2 = Aol = Ay

We wish to identify the curve (¢,, A,) with a curve in the
centered n-vortex configuration space a(t) € C"~!. To do
so, we must identify the monic polynomial whose roots
coincide with the zeroes of ¢,(z). For small z, these roots
will be close to 0, where the small z expansions

B = o+ @ =b e (55)
are valid, where
fr)y=for" +---, e(r)=br"*+.... (5.6)
So
by .
#:(2) = fo <z" + =" ") + (5.7)
fo

that is, for small 7, the curve ¢, corresponds to the curve of
polynomials with

j#k,

07
a0 = { . (53)
/ bit/fo. J =k
The second derivative of Ej, along a(t) is
& b2
prel t:oEim(a(t)) = Ckf_(%- (5.9)
Matching with (5.4), we find that
cr = (fo/br)* A (5.10)

To summarize, our short-range approximation to the n-
vortex interaction energy is

nt

2 n A
E9(a) = B, —nEy + 105 M0 (5.11)
2 k=2 bk

where f is the leading coefficient of the expansion of
the vortex profile function f(r) about r =0, A is the
eigenvalue of the eigenmode in €’} that passes through 0 at

TABLE L

A =1, and b, is the leading coefficient of the expansion of
e3(r) about r =0 for this (L? normalized) eigenmode.
Plots of the coefficients c,(4) for n =2, 3 are presented
in Fig. 1.

VI. COMPARISON WITH FIELD THEORY

We now compare the predictions for the short-range
interaction energy with a direct computation of E;, in
numerical field theory. Our algorithm is explained in detail
in [8]: we minimize E over all fields on a large rectangle,
with ¢ having winding n on the boundary, subject to the
constraint that ¢p = 0 at a collection of n prescribed points
in the rectangle. In practice, this is achieved by solving
Newton flow for a lattice approximant to E with an
arresting criterion that sets the velocity of the fields to 0
if the flow starts to move opposite to the direction of the
gradient [13]. The Higgs field at the prescribed points is
simply fixed to 0. The results presented below were all
obtained using a lattice of size N; x N, = 1001 x 1001
and mostly with equal lattice spacings h; = h, = 0.05
(vortex pairs and collinear vortex triples). To compute the
interaction energy of an equilateral triangle of vortices, it is
more convenient to use a rectangular but not a square

lattice. Choosing h, = \/§hl, our lattice can accommodate
vortices positioned at the sites (0, 0), (2mh;,0),
(mhy,2mh,) for any positive integer m, and these form
the vertices of an equilateral triangle. The interaction
energies of vortex triangles were computed on such a
lattice with i; = 0.05.

The derivatives were approximated using a fourth order
central finite difference scheme. The “time evolution” of
the Newton flow was implemented via the Euler method
with time step 6t = h;h, and, as in [8], a force arresting
criterion was used. Since full field theory simulations are
computationally costly, we construct E;, only for two
representative choices of coupling, A =2 and 4 = 0.5, for
n =2 and n = 3. The coefficients of both the short-range
approximation to Ej, and the long-range approximation
developed in [1] for these couplings are quoted in Table I. A
more finely discretized dataset of these coefficients for
1€[0.1,2.5] can be found at [14].

The coefficients ¢4=2, ¢#=3, and ¢4=> in the short-range approximation to the vortex interaction energy

for n = 2 and n = 3 vortices at couplings 4 = 0.5, 4 = 1, and 4 = 2. The data for A = 1 are included as a numerical
check: all coefficients c; are known to vanish exactly in this case. The final two columns give the scalar monopole
charge ¢ and the magnetic dipole moment m of a single vortex, as used to compute the long-range asymptotics of
E; (see [1]). Again, the A = 1 data provide a numerical check, as it is known that ¢ = m exactly at critical coupling.

n=72 n=3 Long-range
A Ch CH Cc3 q m
0.5 0.0181513 0.00399462 0.00273742 8.34655004 13.83923926
1 6.06 x 1070 -1.93x 1078 6.12 x 107° 10.72945106 10.72878913
2 —0.1070864 —0.0238484 —0.0348234 15.24390759 8.9584101
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By translation and rotation invariance, E;, for n =2
depends only on the distance between vortices, so it suffices
to consider the one-parameter family of minimal energy
configurations with vortices at —R and R, for R > 0. As
argued above, the correct coordinate on MY is not the vortex
separation 2R, but rather the polynomial coeffcient
a, = R?. Hence, our small R approximation is

EMm:@—Mﬁ%M. (6.1)
Note that the two-vortex interaction energy at short range is
quartic, not quadratic, in R. This formula is compared with
the numerically computed E;, for A =2 and 1= 0.5 in
Fig. 2. The match is very close until it crosses with the
long-range approximation [1]

Eu(R) = 5= [m(22Ko(2R) ~ 422 Ko2VIR)]. (6.2

T

The three-vortex interaction energy is more complicated.
By translation and rotation invariance it reduces to a
function of (|a,|,a3) €0, ) x C. Rather than attempt
to survey this entire three-dimensional space, we will
compute the restriction of E;, to 2 curves within it, namely,
the curve

r(2)=2-R° (6.3)

consisting of vortices at the vertices R, Re?*/3, Re=>"/3 of
an equilateral triangle and

A=2
1 Ll Ll T L] .
numerics  +
bessel
05 short range
S of
-05 e
-1 1 1 1 1
0 1 2 3 4 5
R
A=05
1 > T
y numerics  *
/ bessel
05 | short range
g of
’0000{0000&#&—0—{00000*00*00‘.00'0‘40000""
05 F 4
-1 1 1 1 1
0 1 2 3 4 5

R

FIG. 2. Plot of numerical interaction energies (points) for two vortices of separation 2R, compared with the approximation for the
short-range interaction in (6.1) (blue curves) and the long-range interaction given by the point source approximation in the linearized

model (green curves).
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p(z) =22 -R%z (6.4)
consisting of collinear vortices located at —R, 0, and R.
An immediate prediction of our short-range approxima-
tion is that E;, should be sextic in R for the triangle
curve and quartic for the line. A comparison with
numerical data for A=2 and 1=0.5 is given in
Figs. 3 and 4.

One should note that the graph for the line of three
vortices in the type Il case (4 = 2) only has field theory data

for R > 1 due to a numerical artifact. For R < 1 it becomes
energetically favorable (on the lattice) for the central zero
to spread into a line from —R to R around which the phase
of ¢ winds only once, and for ¢ to spawn two extra
(winding 1) zeroes toward the boundary of the computa-
tional domain. We therefore removed these spurious data
points. This pathology is absent in the triangular case
because it is forbidden by symmetry, and absent always in
the type I case for energetic reasons (it is never favorable to
spawn extra well-separated zeroes).

A=2
1.5 T T ] T Ll Ll
numerics  +
bessel
1r short range .
05 | o O |
E
w
0F
05 i
-1 1 1 1 1 1
0 1 2 3 4 5 6 7
R
A=05
1-5 L} L} T Ll ] ]
numerics  *
bessel
1r short range .
05| |
E
W
0Fr /KW
'0.5’000*#00}&7970"“". .
-1 L 1 1 1 1 I
0 1 2 3 4 5 6 7
R
FIG. 3. Plot of numerical interaction energies (points) for three vortices in an equilateral triangle with distance R from the origin,

compared with the approximation for the short-range interaction in (5.11) (blue curves) and the long-range interaction given by the point

source approximation in the linearized model (green curves).
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0.8 - . .
06 | e

04 AR
02} :

Eint
o

0.2 f
04
-0.6 |
-0.8 L L

numerics  +
bessel
short range

0.8 T T

06
04
02 F

02}
'0.4 B . * *
06} ’

numerics  *
bessel
short range

FIG. 4. Plot of numerical interaction energies (points) for three vortices in an equispaced line with distance to nearest neighbor R,
compared with the approximation for the short-range interaction in (5.11) (blue curves) and the long-range interaction given by the point

source approximation in the linearized model (green curves).

VII. CONCLUDING REMARKS

In this paper we have demonstrated that the spectral data
of the Jacobi operator for the cocentered n-vortex can be
used to infer the short-range behavior of the n-vortex
interaction potential. This reduces a very challenging field
theory problem (computing E;, directly by constrained
energy minimization) to a sequence of simple linear ODE
problems. We have compared the resulting short-range
formulas to full field data for n = 2 and n = 3 in both the
type I and type II regimes, finding good agreement up to
vortex separations of around 3. Remarkably, the range of
validity of the short-range approximation comes rather
close to overlapping the range of validity of the already
established long-range formulas [1]. It would be straight-
forward to splice these together, using spline interpolation,
for example, to produce global explicit approximations for
E;,» which may be of great practical utility in condensed
matter physics. To facilitate this, we have computed the
spectral coefficients ¢, (for n = 2) and ¢,, c3 (for n = 3),
and the point vortex charges g, m, for a range of values of
coupling A. These data can be accessed at [14].

The methods introduced here can be straightforwardly
generalized to deal with multicomponent Ginzburg-Landau

theory, in which one has several Higgs fields
¢1.¢a, ..., 5. A key new phenomenon in such models
is type 1.5 superconductivity [4], in which vortices attract at
long range but repel at short range. The method introduced
here provides an easy and computationally efficient way of
surveying the (very large) parameter space of these models
for this phenomenon: one needs the longest length scale of
the linearization of the model about the vacuum to be
magnetic (or hybrid magnetic), and ¢5=2 < 0. The first
condition is checked by simple linear algebra, and the
second by solving the associated spectral problem.

A second new phenomenon possible in multicomponent
models is vortex core splitting [5]: the model may admit
potential or gradient coupling terms that favor the splitting
apart of the zeroes of the condensates, so that ¢7'(0) #
#5'(0). The minimal energy n = 1 structures are then bound
states of fractional flux vortices in the individual conden-
sates, often termed “skyrmions.” Again, this phenomenon
can be efficiently detected via the spectrum of J. The
rotationally symmetric 1-vortex is now a saddle point of
E, so J acquires a negative core-splitting mode.

In the relativistic setting of the Abelian Higgs model
our results describe the interactions of static vortices.
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Our analysis used only those eigenmodes of J that emerge
from its kernel at critical coupling, the so-called splitting
modes. There is another interesting eigenmode of J, for
n =1, in the symmetry class €, called the shape mode
[12]. This generates “breathing” oscillations of the vortex
[11]. It has recently been shown that short-range vortex
interactions are modified considerably if these normal
modes are excited [15,16]. Consequently, even at critical
coupling (where E;, vanishes identically), vortices may
attract when their individual shape modes are excited,
leading to the formation of fluctuation-induced orbital
bound states.
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