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An explicit formula for the interaction energy of n vortices in the Abelian Higgs (or Ginzburg-Landau)
model is derived, valid in the regime where all vortices are close to one another. An immediate consequence
of this formula is that the interaction energy of a vortex pair with separation d varies as d4, not d2. The
formula contains n − 1 real coefficients, which are fixed by certain spectral data of the Jacobi operator of
the cocentered n-vortex. The coefficients are computed numerically for n ¼ 2 and n ¼ 3 for couplings
0.1 ≤ λ ≤ 2.5. The resulting short-range interaction potentials are compared with the results of full field
theory simulations for λ ¼ 0.5 and λ ¼ 2, with excellent agreement at small to moderate vortex separation.
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I. INTRODUCTION

Abelian Higgs vortices are the preeminent example of
topological solitons in two spatial dimensions. They have
important applications in condensed matter physics and
cosmology, where they arise as sections through cosmic
strings. As the simplest topological soliton arising in gauge
theory, they also provide an invaluable toy model for
exploring soliton dynamics in the general context of high
energy physics.
To study the phenomena induced by vortices it is crucial

to understand the forces between them. The Abelian Higgs
model on the Euclidean plane has a single dimensionless
coupling constant λ > 0 whose value controls the nature of
these forces. For λ < 1, vortices attract one another while
for λ > 1 they repel. The case of critical coupling, λ ¼ 1, is
particularly well studied: here static vortices exert no net
forces on one another, but there are still velocity-dependent
forces that can be understood within a beautiful geometric
framework proposed by Manton. There is a well-developed
formalism for understanding asymptotic intervortex forces
at large separation, in which vortices are modeled as point
sources in the linearization of the model about its vacuum
[1]. This formalism successfully accounts for long-range

intervortex forces, including velocity-dependent forces at
critical coupling [2], and has been extended to variants of
the model with multiple scalar fields [3–6] and nonlinear
target space [7,8].
By contrast, a quantitative understanding of short-range

intervortex forces has, so far, been missing. Numerical
studies have indicated that, for three or more vortices, they
cannot be understood as a sum of pairwise interactions [9],
but a detailed analysis has been hampered by the technical
challenge of computing interaction energies for close but
not coincident multivortices.
This paper aims to remedy this deficiency. It rests on two

ideas. The first is to treat the n-vortex interaction energyEint
as a function on the moduli space of n-vortex positions,
rather than as a function of the positions directly. This
distinction, while subtle, immediately yields insight: it
follows, for example, that the two-vortex interaction poten-
tial varies at small separation R as R4, not R2 as one might
naively expect. The point in moduli space corresponding to
n coincident vortices (at the origin, say) is certainly a critical
point of Eint, a local maximum if λ > 1, a local minimum if
λ < 1, so the leading terms in the Taylor expansion of Eint
about this point are quadratic. The second idea is that we can
compute the leading coefficients in this expansion by
solving the eigenvalue problem for the Jacobi operator of
the model associated with the coincident n-vortex. By
rotational symmetry, this reduces to a linear ordinary
differential equation (ODE) problem that is much more
tractable than the computation ofEint directly. This allows us
to construct explicit formulas for the n ¼ 2 andn ¼ 3 vortex
interaction potentials, valid at small separation, with coef-
ficients whose λ dependence we determine numerically.
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The rest of the paper is structured as follows. Section II
introduces the model and defines Eint precisely. In Sec. III
we compute the Jacobi operator in a general setting and
then, in Sec. IV we use the rotational equivariance of
cocentered vortices in the plane to reduce it to a sequence of
ordinary differential operators whose spectra are numeri-
cally amenable. This section also describes the simple
shooting scheme we use to find the spectrum. Section V
explains how we can extract a small separation approxi-
mation to Eint from the spectral data, and presents the
numerically computed Taylor coefficients (as functions of
coupling λ) for n ¼ 2, 3. In Sec. VI we compute Eint
numerically in the full field theory via a constrained
gradient descent algorithm and compare the results with
our approximate formulas for n ¼ 2, 3 at couplings λ ¼ 0.5
and λ ¼ 2, finding excellent agreement. Section VII
presents some concluding remarks.

II. THE MODEL AND ITS VORTEX
INTERACTION ENERGY

The model comprises a complex scalar field ϕ and a
Uð1Þ gauge field A on the Euclidean plane, which is
conveniently identified with C. With such a pair we
associate the energy

Eðϕ; AÞ ¼
Z
C

�
1

2
jdAϕj2 þ

1

2
jBj2 þ λ

8
ð1 − jϕj2Þ2

�
; ð2:1Þ

where B ¼ dA is the magnetic field and dAϕ ¼ dϕ − iAϕ is
the covariant derivative. This energy is invariant under
gauge transformations, ϕ ↦ eiχϕ, A ↦ Aþ dχ. To ensure
finite energy, one imposes the boundary condition jϕj → 1
as r → ∞, but the phase of ϕmay wind any integer number
n times around the unit circle as one circles the boundary
at spatial infinity. Requiring jdAϕj → 0 as r → ∞, a
standard invocation of Stokes’s theorem implies that the
total magnetic flux of a winding n configuration isR
C B ¼ 2πn. Without loss of generality, we may assume
that n ≥ 0. The Higgs field of a winding n configuration
(generically) vanishes at n points in C counted with
multiplicity, which we interpret as vortex positions (or
antivortex positions if their multiplicity is negative).
For each n∈Zþ there is a rotationally symmetric static

solution of the model (that is, the critical point of E)
consisting of n vortices colocated at the origin, which we
will call the n-vortex. In suitable gauge this takes the form

ϕ ¼ fðrÞeinθ; A ¼ aðrÞdθ; ð2:2Þ
where f; a∶ð0;∞Þ → R satisfy

−f00 −
f0

r
þ ða − nÞ2 f

r2
þ λ

2
ðf2 − 1Þf ¼ 0; ð2:3Þ

−a00 þ a0

r
þ ða − nÞf2 ¼ 0; ð2:4Þ

subject to the boundary conditions fð0Þ ¼ að0Þ ¼ 0,
fð∞Þ ¼ 1, and að∞Þ ¼ n. For λ < 1 this solution is stable
(a local minimum of E) while for λ > 1 it is unstable
(a saddle point). If λ ¼ 1, it is one point in a 2n-dimensional
family of static solutions all of equal energy, but for λ ≠ 1,
this solution is thought to be unique up to gauge and
translation.
Given a choice of n points z1;…; zn in C, possibly with

repeats, there is no static solution with vortices located at
the points zi, unless they are coincident (or λ ¼ 1): there are
forces between static vortices, encapsulated by their inter-
action energy. This assigns, to the collection of marked
points z1;…; zn,

Eintðz1;…; znÞ ≔ inf Eðϕ; AÞ − nE1; ð2:5Þ

where the infimum is over all smooth fields vanishing at
exactly the points zi (with the correct multiplicity), and
having winding n at infinity, and E1 is the energy of a single
vortex. This infimum is attained only in the coincident case,
by (a translation of) the n-vortex (2.2). If λ < 1 (λ > 1), it is
strictly negative (positive).
It is clear that the order in which we label the marked

points zi is irrelevant, so Eint is actually a function on
Cn=Sn, the quotient of Cn by the symmetric group, that is
the symmetric n-fold product of C. Although this space is a
smooth manifold diffeomorphic to Cn itself, it is helpful to
give it a different name, to emphasize that this is not the
space of ordered vortex positions ðz1; z2;…; znÞ. We will
denote it byMn, and call it the n-vortex configuration space.
To see that Mn ≡ Cn, we identify the permutation orbit of
ðz1; z2;…; znÞ with the unique monic polynomial whose
roots are z1; z2;…; zn:

pðzÞ ¼ ðz − z1Þðz − z2Þ � � � ðz − znÞ≕ zn þ a1zn−1

þ a2zn−2 þ � � � þ an−1zþ an: ð2:6Þ

Hence, the interaction energy is actually a function of
a∈Cn (the coefficients of this polynomial). More
abstractly, we think of ai as global complex coordinates
on the space Mn.
By translation symmetry, we may restrict to the set of

n-vortex configurations whose center of mass is at z ¼ 0,
that is, satisfying

z1 þ z2 þ � � � þ zn ¼ −a1 ¼ 0; ð2:7Þ

so Eint∶ Cn−1 → R. Again, it is conceptually helpful to
denote this submanifold of Mn by M0

n, and call it the
centered n-vortex configuration space. We assume that
Eintða2; a3;…; anÞ is smooth (or at least twice differen-
tiable). The radially symmetric n-vortex corresponds to
pðzÞ ¼ zn, that is, a ¼ 0, and is a critical point of Eint—a
local maximum if λ > 1 and a local minimum if λ < 1.
Hence, provided all the vortices are close to 0, EintðaÞ
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should be well approximated by its Taylor expansion about
a ¼ 0 to quadratic order in a, that is,

EintðaÞ ¼ Eintð0Þ þ
1

2

Xn
i;j¼2

ðMijaiaj þHijaiaj þMij ai ajÞ

þ � � � ; ð2:8Þ

where M and H are complex ðn − 1Þ × ðn − 1Þ matrices
and H is Hermitian. Note the expansion has no linear terms
since a ¼ 0 is a critical point of Eint. Note also that
Eintð0Þ ¼ En − nE1, where En is the energy of the rota-
tionally symmetric n-vortex.
The interaction energy is invariant under simultaneous

rotation of all the vortex positions. That is, for all w∈Uð1Þ,
the map zi ↦ wzi is a symmetry of Eint (preserving the
centering condition a1 ¼ 0). The action of this map on the
polynomial pðzÞ is pðzÞ ↦ wnpðz=wÞ, so maps the coef-
ficients ai ↦ wiai. Hence, EintðaÞ is invariant under the
Uð1Þ action

ða2;…; anÞ ↦ w · a ≔ ðw2a2;…; wnanÞ: ð2:9Þ

Since Eintðw · aÞ ¼ Eint for all a∈Cn−1 and w∈Uð1Þ, we
see from (2.8) that

X
i;j

ðwiþjMijaiaj þ wj−iHijaiaj þ w−ðiþjÞMij ai ajÞ

¼
X
i;j

ðMijaiaj þHijaiaj þMij ai ajÞ ð2:10Þ

for all a and w, so M ¼ 0 and H is diagonal (and hence
real). That is, there exist real numbers c2; c3;…; cn such
that

EintðaÞ ¼ ðEn − nE1Þ þ
1

2

Xn
k¼2

ckjakj2 þOðjaj3Þ: ð2:11Þ

The real coefficients ck depend on λ, are all positive for
λ < 1, are all negative for λ > 1, and all vanish at λ ¼ 1. To
complete our short-range approximation to Eint we must
compute them. To do so, we will consider the second
variation of E about the n-vortex (2.2).

III. THE JACOBI OPERATOR

Assume we have a static solution ðϕ; AÞ of this model,
i.e., a critical point of E. We wish to understand the second
variation of E about ðϕ; AÞ, which is encoded in the spectral
properties of its associated Jacobi operator J. The spectrum
of J has been heavily studied before, from the original work
of Goodband and Hindmarsh [10] to more recent detailed
studies by Alonso-Izquierdo and collaborators [11,12]. We
will require not just the low-lying eigenvalues of J but also
their associated eigenmodes, which cannot be read off from
previous work. We have no choice, therefore, but to solve
the eigenvalue problem for J afresh and, this being the case,
we take the opportunity to give a more geometric derivation
of J and its symmetry reduction than has appeared
previously.
For this purpose, it is helpful to think of ϕ as a section of

a Hermitian line bundle L, with inner product hðϕ;ψÞ ¼
ðϕψ þ ϕψ̄Þ=2, over a Riemannian 2-manifold Σ, and A as a
connection on L. We will revert to the choice of direct
interest, Σ ¼ R2, in Sec. IV.
Consider a two-parameter variation ðϕs;t; As;tÞ of

ðϕ; AÞ ¼ ðϕ0;0; A0;0Þ and define the infinitesimal perturba-
tions it generates

ε ¼ d
ds

����
s¼0

ϕs;0; ε̂ ¼ d
dt

����
t¼0

ϕ0;t; α ¼ d
ds

����
s¼0

As;0; α̂ ¼ d
dt

����
t¼0

A0;t: ð3:1Þ

Note that ε; ε̂ are, like ϕ, sections of L, while α; α̂ are (globally defined) one-forms on Σ. Then,

∂
2Eðϕs;t; As;tÞ

∂s∂t

����
ðs;tÞ¼ð0;0Þ

¼ Hessððε̂; α̂Þ; ðε;αÞÞ

¼
�
ε̂;ΔAεþ

λ

2
ðhðϕ;ϕÞ − 1Þεþ λhðϕ; εÞϕ

�
L2

þ hε̂; i � ðα ∧ �dAϕþ dAð�αϕÞÞiL2

þ hα̂; hðε; idAϕÞ þ hðϕ; idAεÞiL2 þ hα̂; δdαþ hðϕ;ϕÞαiL2 : ð3:2Þ

In this formula, h·; ·iL2 denotes L2 the inner product, ΔA is the gauge covariant Laplacian, ΔA ¼ − � dA � dA, and δ is the
coderivative adjoint to d.
From this symmetric bilinear form, we extract the Jacobi operator for the solution ðϕ; AÞ,

J

�
ε

α

�
¼

�ΔAεþ λ
2
ðjϕj2 − 1Þεþ λhðϕ; εÞϕþ i � ðα ∧ �dAϕþ dAð�αϕÞÞ

δdαþ jϕj2αþ hðε; idAϕÞ þ hðϕ; idAεÞ

�
; ð3:3Þ
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defined by the requirement that

Hessððε̂; α̂Þ; Jðε; αÞÞ ¼ hðε̂; α̂Þ; Jðε; αÞiL2 : ð3:4Þ

This is a formally self-adjoint operator on ΓðLÞ ⊕ Ω1ðΣÞ,
with respect to its natural L2 inner product, that is,

hðε̂; α̂Þ; Jðε;αÞiL2 ≡ hðε; αÞ; Jðε̂; α̂ÞiL2 : ð3:5Þ

This follows immediately from the symmetry of Hess, but
can also be verified by explicit calculation. The spectrum of
J informs us about the stability of the critical point ðϕ; AÞ:
if the spectrum is non-negative, the solution is linearly
stable. Eigensections with negative eigenvalues are pertur-
bations that decrease E to second order and hence con-
stitute directions of instability.
Any ðε; αÞ tangent to a deformation that does not change

E should be in the kernel of J. For example, E is gauge
invariant, so all infinitesimal gauge transformations

ðε; αÞ ¼ ðiϕχ; dχÞ; ð3:6Þ

where χ∶Σ → R is an arbitrary smooth function, are in
ker J.
Since all infinitesimal gauge transformations are in ker J,

this kernel is infinite dimensional. Let ðε; αÞ be any
eigensection of J with eigenvalue Λ ≠ 0. Then, since J
is self-adjoint, for any ðε̂; α̂Þ∈ ker J,

hðε̂; α̂Þ; ðε; αÞiL2 ¼ 1

Λ
hðε̂; α̂Þ; Jðε; αÞiL2

¼ 1

Λ
hJðε̂; α̂Þ; ðε; αÞiL2 ¼ 0: ð3:7Þ

Hence, every such eigensection is L2 orthogonal to all
infinitesimal gauge transformations. We may therefore
insist that ðε; αÞ is L2 orthogonal to the subspace

G∞ ≔ fðiϕχ; dχÞ ∶ χ ∈C∞ðΣ;RÞg: ð3:8Þ

Then ðε; αÞ must satisfy the partial differential equation

δαþ hðε; iϕÞ ¼ 0: ð3:9Þ

In the case of interest, Σ ¼ R2, translation is also a
symmetry so, for example,

ðε; αÞ ¼ ð∂xϕ; ∂xAÞ ð3:10Þ

is in ker J. Note that this translational zero mode
does not (necessarily) satisfy the gauge orthogonality
condition (3.9).

IV. SYMMETRY REDUCTION

From now on, assume that Σ ¼ R2 ≡ C and that ðϕ; AÞ
is the cocentered n-vortex solution (2.2). In this section we
rederive the decomposition of J into a sequence of ordinary
differential operators observed in [11,12], clarifying how
this results directly from the equivariance of the n-vortex
with respect to rotations and reflexions.
Given w∈Uð1Þ denote by the same symbol the rotation

map C → C, z ↦ wz. Then, the n-vortex is invariant under
the circle action

ϕ ↦ w−nϕ ∘w; A ↦ w�A: ð4:1Þ

(The symbol w� in the above formula denotes the pullback
of A by the map w. We will always denote complex
conjugation by an overbar.) This circle action is a symmetry
of the functional E, so J must preserve the invariant
subspaces of its action on ΓðLÞ ⊕ Ω1ðΣÞ. These are labeled
by k∈ f0; 1; 2;…g,

C k ¼ fεþðrÞeiðnþkÞθ þ ε−ðrÞeiðn−kÞθ∶ε�∶ ð0;∞Þ → Cg
⊕ fðα1ðrÞ cos kθ þ α2ðrÞ sin kθÞdrþ ðα3ðrÞ cos kθ þ α4ðrÞ sin kθÞrdθ∶αa∶ð0;∞Þ → Rg: ð4:2Þ

The vortex is also invariant under the parity operation Π∶ðϕ; AÞ ↦ ðc ∘ϕ ∘ c;−c�AÞ, where c∶C → C is complex
conjugation. Each of the subspaces C k decomposes further into a pair of invariant subspaces, preserved by Π

Cþ
k ¼ fε1ðrÞeiðnþkÞθ þ ε3ðrÞeiðn−kÞθ;α2ðrÞ sin kθdrþ α3ðrÞ cos kθrdθg; ð4:3Þ

C −
k ¼ fiε2ðrÞeiðnþkÞθ þ iε4ðrÞeiðn−kÞθ; α1ðrÞ cos kθdrþ α4ðrÞ sin kθrdθg; ð4:4Þ

where εa∶ ð0;∞Þ → R. So Cþ
k is the subspace on which ε� are real and α1 ¼ α4 ¼ 0, while C −

k is the subspace on which
ε� are imaginary and α2 ¼ α3 ¼ 0.
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J preserves this splitting, that is, J∶ Cþ
k → Cþ

k and J∶ C −
k → C −

k . In particular, its action on Cþ
k is

Jþk

2
6664
ε1

ε3

α2

α3

3
7775 ¼

2
666666664

Dnþkε1 þ λ
2
ðf2 − 1Þε1 þ λ

2
f2ðε1 þ ε3Þ þ α2f0 − α3

	
nþ k

2
− a


 f
r þ fðrα2Þ0

2r

Dn−kε3 þ λ
2
ðf2 − 1Þε3 þ λ

2
f2ðε1 þ ε3Þ − α2f0 − α3

	
n − k

2
− a


 f
r −

fðrα2Þ0
2r

− k
r

�
− k

r α2 þ ðrα3Þ0
r

�
þ f2α2 þ f0ðε1 − ε3Þ − fðε01 − ε03Þ

−
�
− k

r α2 þ ðrα3Þ0
r

�0 þ f2α3 − 2ðn − aÞ fr ðε1 þ ε3Þ − k
r fðε1 − ε3Þ

3
777777775
; ð4:5Þ

where, for any integer q,

Dqξ ≔ −ξ00 −
ξ0

r
þ ðq − aðrÞÞ2

r2
ξ: ð4:6Þ

A section in Cþ
k is gauge orthogonal [satisfies (3.9)] if and

only if

α02 ¼ −
α2
r
þ kα3

r
þ fðε1 − ε3Þ: ð4:7Þ

For each k ≥ 1, the linear map L∶ Cþ
k → C −

k ,

L∶ðε1eiðnþkÞθ þ ε3eiðn−kÞθ; α2 sin kθdrþ α3 cos kθrdθÞ
↦ ðiε1eiðnþkÞθ − iε3eiðn−kÞθ; α2 cos kθdr − α3 sin kθrdθÞ;

ð4:8Þ

commutes with J. Also, if ðε; αÞ∈Cþ
k satisfies the gauge

orthogonality condition (4.7), then Lðε; αÞ∈C −
k satisfies

the gauge orthogonality condition on C −
k ,

α01 ¼ −
α1
r
− k

α4
r
þ fðε2 þ ε4Þ: ð4:9Þ

It follows that if v ¼ ðε; αÞ∈Cþ
k is an eigensection of J

with eigenvalue Λ, so is Lv∈C −
k . So eigensections come

in degenerate pairs, and we may restrict attention to Cþ
k .

The subspace C 0 is exceptional since C 0 ¼ Cþ
0 ⊕ G∞;

that is, the −1 eigenspace of Π consists of infinitesimal
gauge transformations. Hence, eigensections with k ¼ 0 do
not come in pairs, but it is still true that one need only
consider the subspace Cþ

0 . For our purposes, we will need
Cþ

k for k ¼ 2; 3;…; n only.
To construct an eigensection of J in the class Cþ

k , we
must solve the ODE system

Jþk

2
6664
ε1

ε3

α2

α3

3
7775 ¼ Λ

2
6664
ε1

ε3

α2

α3

3
7775 ð4:10Þ

coupled to the gauge orthogonality condition (4.7), and for
this we must determine the correct boundary conditions for
ðε1; ε3;α2; α4Þ. All the components ε1, ε3, α2, α3 should
approach 0 exponentially fast as r → ∞. Their boundary
behavior at 0 is determined by demanding that the section ε
and the one-form α should be smooth at the origin. So

ε1 ∼ rnþk; ε3 ∼ rjn−kj: ð4:11Þ

The boundary conditions for α2, α3 are more subtle.
Noting that dr ¼ cos θdxþ sin θdy and rdθ ¼ − sin θdxþ
cos θdy, we find

α ¼ ½α2ðrÞ sin kθ cos θ − α3ðrÞ cos kθ sin θ�dxþ ½α2ðrÞ sin kθ sin θ þ α3ðrÞ cos kθ cos θ�dy; ð4:12Þ
so α is smooth at the origin if and only if the functions A1; A2∶ R2nfð0; 0Þg → R,

A1 ≔ α2ðrÞ sin kθ cos θ − α3ðrÞ cos kθ sin θ

¼ 1

2
ðα2ðrÞ − α3ðrÞÞ sinðkþ 1Þθ þ 1

2
ðα2ðrÞ þ α3ðrÞÞ sinðk − 1Þθ; ð4:13Þ

A2 ≔ α2ðrÞ sin kθ sin θ þ α3ðrÞ cos kθ cos θ

¼ −
1

2
ðα2ðrÞ − α3ðrÞÞ cosðkþ 1Þθ þ 1

2
ðα2ðrÞ þ α3ðrÞÞ cosðk − 1Þθ; ð4:14Þ

extend smoothly to ðx; yÞ ¼ ð0; 0Þ. This requires that
α2 − α3 ∼ rkþ1; α2 þ α3 ∼ rjk−1j: ð4:15Þ
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Hence, at small r,

ε1ðrÞ ¼ e1rnþk þ � � � ;
ε3ðrÞ ¼ e2rjn−kj þ � � � ;
α2ðrÞ ¼ e3rjk−1j þ e4rkþ1 þ � � � ;
α3ðrÞ ¼ e3rjk−1j − e4rkþ1 þ � � � ; ð4:16Þ

for some unknown constants e1; e2; e3; e4 ∈R.
Our computational scheme may be described as follows. We reinterpret the first, second, and fourth equations in (4.10),

together with (4.7),

Dnþkε1 þ
λ

2
ðf2 − 1Þε1 þ

λ

2
f2ðε1 þ ε3Þ þ α2f0 − α3

�
nþ k

2
− a

�
f
r
þ fðrα2Þ0

2r
− Λε1 ¼ 0;

Dn−kε3 þ
λ

2
ðf2 − 1Þε3 þ

λ

2
f2ðε1 þ ε3Þ − α2f0 − α3

�
n −

k
2
− a

�
f
r
−
fðrα2Þ0
2r

− Λε3 ¼ 0;

−
�
−
k
r
α2 þ

ðrα3Þ0
r

�0
þ f2α3 − 2ðn − aÞ f

r
ðε1 þ ε3Þ −

k
r
fðε1 − ε3Þ − Λα3 ¼ 0;

α02 þ
α2
r
−
kα3
r

− fðε1 − ε3Þ ¼ 0; ð4:17Þ

as a first order flow for the collected fields

ϕ ¼ ðε1; ε3; α3; ε01; ε03; α03; α2Þ ð4:18Þ

in R7, which we solve using a shooting method. We choose
r0 ≪ 1 and r2 ≫ 1, then shoot forwards from r ¼ r0 and
backwards from r ¼ r2, matching at r1 ¼ ðr0 þ r2Þ=2. Let
us denote by S0∶ R4 → R7 the linear map

S0∶ ðe1; e2; e3; e4Þ ↦ ϕ0ðr1Þ; ð4:19Þ

where ϕ0∶ ½r0; r1� → R7 is the solution of (4.17) with
initial data ϕ0ðr0Þ as determined by the asymptotic ex-
pressions in (4.16) evaluated at r ¼ r0. So S0 maps the left
shooting data to the value of the solution ϕ at the matching
point r1. We similarly define the right shooting map
S2∶ R3 → R7 by

S2∶ðb1; b2; b3Þ ↦ ϕ2ðr1Þ; ð4:20Þ

where ϕ2∶ ½r1; r2� → R7 is the solution of (4.17) with final
data

ϕ2ðr2Þ ¼ ð0; 0; 0;−r2b1e−r2 ;−r2b2e−r2 ;−r2b3e−r2 ; 0Þ:
ð4:21Þ

So we approximate the decaying boundary condition as
r → ∞ by imposing that εi, αi vanish at some large fixed
r2, with exponentially small derivatives. Again S2 is linear
by linearity of (4.17). In practice, we construct S1, S2 by
solving (4.17) numerically using a fourth order Runge-
Kutta method.
Now Λ is an eigenvalue of Jþk if and only if there exist

nonzero e ¼ ðe1; e2; e3; e4Þ∈R4 and b ¼ ðb1; b2; b3Þ∈R3

such that S0ðeÞ ¼ S2ðbÞ; the corresponding eigenfunction
is then the solution of (4.17) with shooting data e at r1 and
b at r2. To determine whether such a pair ðe; bÞ∈R4 ⊕ R3

exists, we construct the 7 × 7 matrix QðΛÞ:

QðΛÞ ¼

0
B@

↑ ↑ ↑ ↑ ↑ ↑ ↑

S0ðe1Þ S0ðe2Þ S0ðe3Þ S0ðe4Þ −S2ðf1Þ −S2ðf1Þ −S2ðf3Þ
↓ ↓ ↓ ↓ ↓ ↓ ↓

1
CA; ð4:22Þ

where feig and ffig are the usual bases for R4 and R3,
respectively. A smooth solution of the shooting problem
with parameter Λ exists if and only ifQðΛÞ has a nontrivial
kernel, that is, if and only if detQðΛÞ ¼ 0. So we compute
QðΛÞ as a function of Λ and then solve detQðΛÞ ¼ 0 using

the bisection method. Having identified Λ, we construct
ðe; bÞ∈ kerQðΛÞ ⊂ R7. The corresponding eigenfunction
is then the solution with shooting data e at r0 and b at r2.
In principle, this method can be used to find any and

all eigenvalues of J, together with their corresponding
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eigensections. We will only need those eigenmodes whose
eigenvalues ΛðλÞ pass through 0 at λ ¼ 1. Let us denote the
space of such eigenmodes VðλÞ. It has dimension 2n and is
spanned by one vector in Cþ

k for each of k ¼ 1; 2;…; n,
together with their images under L [see Eq. (4.8)]. The
numerical results of finding ΛðλÞ using the method above
are shown in Fig. 1 for n ¼ 2, 3. As a consistency check,
we have also computed numerically the lowest eigenvalue
in the space Cþ

1 . This coincides with the (gauge orthogonal
component of) the overall translation mode in the
x-direction (3.10), so must be Λ1 ≡ 0 for all λ. We find
numerically that jΛ1ðλÞj < 10−5 for 1=4 ≤ λ ≤ 2, which
gives an indication of the expected accuracy of our results.

V. EXTRACTING THE n-VORTEX
INTERACTION POTENTIAL

Our short-range approximation to Eint∶ Mn → R
amounts to replacing it by its Hessian at 0, a symmetric
bilinear form on the tangent space to Mn at 0. At λ ¼ 1, we
may identify this tangent space with ker J or, more
precisely, the 2n-dimensional subspace of ker J orthogonal
to G∞. This, in the notation of Sec. IV, is Vð1Þ. For λ ≠ 1,
this identification persists: we may identify the tangent
space to Mn at 0 with VðλÞ, the 2n-dimensional subspace
spanned by the eigenmodes of J whose eigenvalues pass

through 0 at λ ¼ 1. Having made this identification, it is
natural to posit that the Hessian of Eint at 0 coincides with
the restriction to VðλÞ of the Hessian of the Ginzburg-
Landau energy functional (2.1) at the n-vortex. We will test
this supposition numerically in Sec. VI. This allows us to
extract the coefficients ck in our short-range formula (2.11)
for Eint from spectral data for J.
To be explicit, choose k∈ f2; 3;…; ng and consider the

eigenmode v ¼ ðε; αÞ∈VðλÞ ∩ Cþ
k , normalized so that

kvkL2 ¼ 1. Denote by Λk its eigenvalue and by bk its
associated left shooting coefficient e2 [see Eq. (4.16)].
Consider now the curve of configurations

ðϕt; AtÞ ¼ ðϕ; AÞ þ tv ¼ ðϕþ tε; Aþ tαÞ: ð5:1Þ
This is a smooth curve passing through the symmetric n-
vortex

ðϕ; AÞ ¼ ðfðrÞeinθ; aðrÞdθÞ; ð5:2Þ

so

d
dt

����
t¼0

Eðϕt; AtÞ ¼ 0; ð5:3Þ

and, by the definition of the Jacobi operator,

FIG. 1. Plots of the eigenvalues of J (left column) and the coefficients of the short-range approximation for the n-vortex interaction
energy (right column) for n ¼ 2, 3.
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d2

dt2

����
t¼0

Eðϕt; AtÞ ¼ hv; JviL2 ¼ Λkkvk2L2 ¼ Λk: ð5:4Þ

We wish to identify the curve ðϕt; AtÞ with a curve in the
centered n-vortex configuration space aðtÞ∈Cn−1. To do
so, we must identify the monic polynomial whose roots
coincide with the zeroes of ϕtðzÞ. For small t, these roots
will be close to 0, where the small z expansions

ϕðzÞ ¼ f0zn þ � � � ; εðzÞ ¼ bkzn−k þ � � � ð5:5Þ

are valid, where

fðrÞ ¼ f0rn þ � � � ; ε3ðrÞ ¼ bkrn−k þ � � � : ð5:6Þ
So

ϕtðzÞ ¼ f0

�
zn þ bk

f0
tzn−k

�
þ � � � ; ð5:7Þ

that is, for small t, the curve ϕt corresponds to the curve of
polynomials with

ajðtÞ ¼


0; j ≠ k;

bkt=f0; j ¼ k:
ð5:8Þ

The second derivative of Eint along aðtÞ is

d2

dt2

����
t¼0

EintðaðtÞÞ ¼ ck
b2k
f20

: ð5:9Þ

Matching with (5.4), we find that

ck ¼ ðf0=bkÞ2Λk: ð5:10Þ

To summarize, our short-range approximation to the n-
vortex interaction energy is

Eð0Þ
int ðaÞ ¼ En − nE1 þ

f20
2

Xn
k¼2

Λk

b2k
jakj2; ð5:11Þ

where f0 is the leading coefficient of the expansion of
the vortex profile function fðrÞ about r ¼ 0, Λk is the
eigenvalue of the eigenmode in Cþ

k that passes through 0 at

λ ¼ 1, and bk is the leading coefficient of the expansion of
ε3ðrÞ about r ¼ 0 for this (L2 normalized) eigenmode.
Plots of the coefficients ckðλÞ for n ¼ 2, 3 are presented
in Fig. 1.

VI. COMPARISON WITH FIELD THEORY

We now compare the predictions for the short-range
interaction energy with a direct computation of Eint in
numerical field theory. Our algorithm is explained in detail
in [8]: we minimize E over all fields on a large rectangle,
with ϕ having winding n on the boundary, subject to the
constraint that ϕ ¼ 0 at a collection of n prescribed points
in the rectangle. In practice, this is achieved by solving
Newton flow for a lattice approximant to E with an
arresting criterion that sets the velocity of the fields to 0
if the flow starts to move opposite to the direction of the
gradient [13]. The Higgs field at the prescribed points is
simply fixed to 0. The results presented below were all
obtained using a lattice of size N1 × N2 ¼ 1001 × 1001
and mostly with equal lattice spacings h1 ¼ h2 ¼ 0.05
(vortex pairs and collinear vortex triples). To compute the
interaction energy of an equilateral triangle of vortices, it is
more convenient to use a rectangular but not a square
lattice. Choosing h2 ¼

ffiffiffi
3

p
h1, our lattice can accommodate

vortices positioned at the sites (0, 0), ð2mh1; 0Þ,
ðmh1; 2mh2Þ for any positive integer m, and these form
the vertices of an equilateral triangle. The interaction
energies of vortex triangles were computed on such a
lattice with h1 ¼ 0.05.
The derivatives were approximated using a fourth order

central finite difference scheme. The “time evolution” of
the Newton flow was implemented via the Euler method
with time step δt ¼ h1h2 and, as in [8], a force arresting
criterion was used. Since full field theory simulations are
computationally costly, we construct Eint only for two
representative choices of coupling, λ ¼ 2 and λ ¼ 0.5, for
n ¼ 2 and n ¼ 3. The coefficients of both the short-range
approximation to Eint and the long-range approximation
developed in [1] for these couplings are quoted in Table I. A
more finely discretized dataset of these coefficients for
λ∈ ½0.1; 2.5� can be found at [14].

TABLE I. The coefficients cn¼2
2 , cn¼3

2 , and cn¼3
3 in the short-range approximation to the vortex interaction energy

for n ¼ 2 and n ¼ 3 vortices at couplings λ ¼ 0.5, λ ¼ 1, and λ ¼ 2. The data for λ ¼ 1 are included as a numerical
check: all coefficients ck are known to vanish exactly in this case. The final two columns give the scalar monopole
charge q and the magnetic dipole moment m of a single vortex, as used to compute the long-range asymptotics of
Eint (see [1]). Again, the λ ¼ 1 data provide a numerical check, as it is known that q ¼ m exactly at critical coupling.

n ¼ 2 n ¼ 3 Long-range

λ c2 c2 c3 q m

0.5 0.0181513 0.00399462 0.00273742 8.34655004 13.83923926
1 6.06 × 10−9 −1.93 × 10−8 6.12 × 10−9 10.72945106 10.72878913
2 −0.1070864 −0.0238484 −0.0348234 15.24390759 8.9584101
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By translation and rotation invariance, Eint for n ¼ 2
depends only on the distance between vortices, so it suffices
to consider the one-parameter family of minimal energy
configurations with vortices at −R and R, for R ≥ 0. As
argued above, the correct coordinate onM0

2 is not the vortex
separation 2R, but rather the polynomial coeffcient
a2 ¼ R2. Hence, our small R approximation is

EintðRÞ ¼ E2 − 2E1 þ
c2
2
R4: ð6:1Þ

Note that the two-vortex interaction energy at short range is
quartic, not quadratic, in R. This formula is compared with
the numerically computed Eint for λ ¼ 2 and λ ¼ 0.5 in
Fig. 2. The match is very close until it crosses with the
long-range approximation [1]

EintðRÞ ¼
1

2π
½mðλÞ2K0ð2RÞ − qðλÞ2K0ð2

ffiffiffi
λ

p
RÞ�: ð6:2Þ

The three-vortex interaction energy is more complicated.
By translation and rotation invariance it reduces to a
function of ðja2j; a3Þ∈ ½0;∞Þ × C. Rather than attempt
to survey this entire three-dimensional space, we will
compute the restriction of Eint to 2 curves within it, namely,
the curve

pðzÞ ¼ z3 − R3 ð6:3Þ

consisting of vortices at the vertices R, Re2πi=3, Re−2πi=3 of
an equilateral triangle and

FIG. 2. Plot of numerical interaction energies (points) for two vortices of separation 2R, compared with the approximation for the
short-range interaction in (6.1) (blue curves) and the long-range interaction given by the point source approximation in the linearized
model (green curves).
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pðzÞ ¼ z3 − R2z ð6:4Þ

consisting of collinear vortices located at −R, 0, and R.
An immediate prediction of our short-range approxima-
tion is that Eint should be sextic in R for the triangle
curve and quartic for the line. A comparison with
numerical data for λ ¼ 2 and λ ¼ 0.5 is given in
Figs. 3 and 4.
One should note that the graph for the line of three

vortices in the type II case (λ ¼ 2) only has field theory data

for R ≥ 1 due to a numerical artifact. For R < 1 it becomes
energetically favorable (on the lattice) for the central zero
to spread into a line from −R to R around which the phase
of ϕ winds only once, and for ϕ to spawn two extra
(winding 1) zeroes toward the boundary of the computa-
tional domain. We therefore removed these spurious data
points. This pathology is absent in the triangular case
because it is forbidden by symmetry, and absent always in
the type I case for energetic reasons (it is never favorable to
spawn extra well-separated zeroes).

FIG. 3. Plot of numerical interaction energies (points) for three vortices in an equilateral triangle with distance R from the origin,
compared with the approximation for the short-range interaction in (5.11) (blue curves) and the long-range interaction given by the point
source approximation in the linearized model (green curves).
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VII. CONCLUDING REMARKS

In this paper we have demonstrated that the spectral data
of the Jacobi operator for the cocentered n-vortex can be
used to infer the short-range behavior of the n-vortex
interaction potential. This reduces a very challenging field
theory problem (computing Eint directly by constrained
energy minimization) to a sequence of simple linear ODE
problems. We have compared the resulting short-range
formulas to full field data for n ¼ 2 and n ¼ 3 in both the
type I and type II regimes, finding good agreement up to
vortex separations of around 3. Remarkably, the range of
validity of the short-range approximation comes rather
close to overlapping the range of validity of the already
established long-range formulas [1]. It would be straight-
forward to splice these together, using spline interpolation,
for example, to produce global explicit approximations for
Eint, which may be of great practical utility in condensed
matter physics. To facilitate this, we have computed the
spectral coefficients c2 (for n ¼ 2) and c2, c3 (for n ¼ 3),
and the point vortex charges q, m, for a range of values of
coupling λ. These data can be accessed at [14].
The methods introduced here can be straightforwardly

generalized to deal with multicomponent Ginzburg-Landau

theory, in which one has several Higgs fields
ϕ1;ϕ2;…;ϕN . A key new phenomenon in such models
is type 1.5 superconductivity [4], in which vortices attract at
long range but repel at short range. The method introduced
here provides an easy and computationally efficient way of
surveying the (very large) parameter space of these models
for this phenomenon: one needs the longest length scale of
the linearization of the model about the vacuum to be
magnetic (or hybrid magnetic), and cn¼2

2 < 0. The first
condition is checked by simple linear algebra, and the
second by solving the associated spectral problem.
A second new phenomenon possible in multicomponent

models is vortex core splitting [5]: the model may admit
potential or gradient coupling terms that favor the splitting
apart of the zeroes of the condensates, so that ϕ−1

1 ð0Þ ≠
ϕ−1
2 ð0Þ. Theminimal energy n ¼ 1 structures are then bound

states of fractional flux vortices in the individual conden-
sates, often termed “skyrmions.” Again, this phenomenon
can be efficiently detected via the spectrum of J. The
rotationally symmetric 1-vortex is now a saddle point of
E, so J acquires a negative core-splitting mode.
In the relativistic setting of the Abelian Higgs model

our results describe the interactions of static vortices.

FIG. 4. Plot of numerical interaction energies (points) for three vortices in an equispaced line with distance to nearest neighbor R,
compared with the approximation for the short-range interaction in (5.11) (blue curves) and the long-range interaction given by the point
source approximation in the linearized model (green curves).
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Our analysis used only those eigenmodes of J that emerge
from its kernel at critical coupling, the so-called splitting
modes. There is another interesting eigenmode of J, for
n ¼ 1, in the symmetry class Cþ

0 , called the shape mode
[12]. This generates “breathing” oscillations of the vortex
[11]. It has recently been shown that short-range vortex
interactions are modified considerably if these normal
modes are excited [15,16]. Consequently, even at critical
coupling (where Eint vanishes identically), vortices may
attract when their individual shape modes are excited,
leading to the formation of fluctuation-induced orbital
bound states.
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