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Bacteria evolve in volatile environments and complex spatial structures. Migration, fluctuations
and environmental variability therefore have a significant impact on the evolution of microbial pop-
ulations. Here, we consider a class of spatially explicit metapopulation models arranged as regular
(circulation) graphs where wild-type and mutant cells compete in a time-fluctuating environment
in which demes (subpopulations) are connected by slow cell migration. The carrying capacity is
the same at each deme and endlessly switches between two values associated to harsh and mild
environmental conditions. It is known that environmental variability can lead to population bottle-
necks, following which the population is prone to fluctuation-induced extinction. Here, we analyse
how slow migration, spatial structure, and fluctuations affect the phenomena of fixation and ex-
tinction on clique, cycle, and square lattice metapopulations. When the carrying capacity remains
large, bottlenecks are weak and deme extinction can be ignored. The dynamics is thus captured by
a coarse-grained description within which the probability and mean time of fixation are obtained
analytically. This allows us to show that, in contrast to what happens in static environments, the
mutant fixation probability depends on the rate of migration. We also show that the fixation proba-
bility and mean fixation time can exhibit a non-monotonic dependence on the switching rate. When
the carrying capacity is small under harsh conditions, bottlenecks are strong, and the metapopu-
lation evolution is shaped by the coupling of deme extinction and strain competition. This yields
rich dynamical scenarios, among which we identify the best conditions to eradicate mutants with-
out dooming the metapopulation to extinction. We offer an interpretation of these findings in the
context of an idealised treatment strategy and discuss possible generalisations of our models.

I. INTRODUCTION

Microbial populations live in volatile and time-varying
environments embedded in complex spatial settings,
across which the distribution of microbes fluctuates. For
instance, many organisms live in densely packed aggre-
gates on surface-attached biofilms [1], numerous com-
mensal bacteria are distributed throughout the gastroin-
testinal tract [2, 3], and patients’ organs are spatial envi-
ronments between which bacteria can migrate [4]. More-
over, natural environments are not static, e.g. tempera-
ture, pH, or available resources change over time. These
abiotic variations, not caused by the organisms them-
selves, are referred to as environmental fluctuations and
can have a significant influence on the evolution of nat-
ural populations. For example, the gut microbiome of a
host is exposed to fluctuations of great amplitude on vari-
ous timescales, and these affect the diversity of the micro-
biota [5, 6]. In small populations, demographic fluctua-
tions are another important form of randomness resulting
in fixation - where one strain takes over the community -
or extinction [7, 8]. Since the variations of population size
and composition are often interdependent [9–15], this can
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lead to the coupling of environmental and demographic
fluctuations [16–24]. Their interplay is particularly sig-
nificant in microbial communities, where it can lead to
population bottlenecks, where new colonies consisting of
a few cells are prone to fluctuations [25–29]. Population
bottlenecks and fluctuations are particularly relevant for
the evolution of antimicrobial resistance, when cells sur-
viving antibiotics treatment may replicate leading to the
spread of resistance [21, 24, 30–32].

How likely is a population to be taken over by a mutant
or to go extinct? What is the typical time for these events
to occur? These are central questions in evolution, and
the answers depend on the population’s spatial structure
as well as the environmental variations and fluctuations.
In this context, it is important to understand the impact
of spatial structure, migration, and fluctuations on the
spread of a mutant strain. A common approach to repre-
sent a spatially structured biological population is by di-
viding it into several demes - well-mixed subpopulations
connected by cell migration - hence forming a metapopu-
lation [33–42]. The influence of the spatial arrangement
of a population and stochastic fluctuations on mutants’
fate has been studied in static environments both theo-
retically [33, 34, 41, 43–54] and experimentally [55–58].
Maruyama notably showed that in a constant environ-
ment, when cell migration is symmetric and preserves
the overall mutant fraction, the fixation probability of a
mutant is independent of the spatial structure and migra-
tion rate [43]. However, it has been shown that random
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extinction and recolonisation can affect the mutant fixa-
tion probability on fully-connected (static) graphs, even
when cell migration is symmetric [44]. In this case, deme
extinction is immediately followed by recolonisation by
a mixture of cells from other demes [35, 36, 44]. Fur-
thermore, independent extinction and recolonisation by
a single neighbour of demes has been studied on fully-
connected (static) graphs [59]. Recently, the authors of
Ref. [41] studied the the influence of slow migration on
the fate of mutants on static graphs, and demonstrated
that migration asymmetry can dramatically affect their
fixation probability on certain spatial structures like the
star graph. However, the biologically relevant problem
of mutants evolving in time-varying spatially structured
populations has been rather scarcely investigated, and
the case of strains competing to colonise and fixate demes
prone to extinction remains under-explored.

Here, we tackle these important issues by studying a
class of time-fluctuating microbial metapopulation mod-
els consisting of demes in which wild-type and mutant
cells evolve in a time-varying environment represented
by a switching carrying capacity. We use coarse-grained
descriptions of the dynamics to study the joint influence
of environmental variability, demographic fluctuations,
migration, and spatial structure on the evolution of the
metapopulation. We obtain explicit results for cliques
(island model [33, 34], or fully-connected graph), cycles,
and two-dimensional grids (with periodic boundaries). In
stark contrast with the evolution in static environments,
we demonstrate that when bottlenecks are weak, the fix-
ation probability on regular circulation graphs depends
on the migration rate. Moreover, we show that under
the effect of environmental variability and fluctuations
the fixation probability and mean fixation time can ex-
hibit a non-monotonic dependence on the switching rate.
In the case of strong bottlenecks, arising when the car-
rying capacity is small under harsh conditions, the dy-
namics is characterised by deme extinction and strain
competition coupled by environmental switching. This
yields rich dynamical scenarios among which we identify
the best conditions to eradicate mutants without risking
metapopulation extinction.

In the next section, we introduce the explicit spa-
tial metapopulation model that we study and outline
our methodology. In Sec. III, we present our results in
the case of static environments. This paves the way to
the detailed analysis in time-fluctuating environments of
Sec. IV, with the weak and strong bottleneck regimes re-
spectively studied in Secs. IVA and IVB. Sec. V is ded-
icated to a discussion of our findings, assumptions and
possible generalisations. We present our conclusions in
Sec. VI. Additional technical details are given in a series
of appendices.

II. MODEL & METHODS

We consider a class of spatially explicit metapopulation
models of Ω demes labelled by x ∈ {1, ...,Ω}, each of
which at time t consists of a well-mixed subpopulation
of nW cells of wild-type W , and nM mutants of strain
M . Each wild-type cell has a baseline fitness fW = 1
and all mutant cells have fitness fM = 1+ s. We assume
0 < s≪ 1, givingM a small selective advantage over W .
The microbial metapopulation can be envisioned as

a graph whose nodes x ∈ {1, . . . ,Ω} are demes (also
called sites). Each deme x is a well-mixed subpopula-
tion of size n(x) =

∑
α∈{W,M} nα(x) = nW (x) + nM (x)

located at a node of the metapopulation graph. Thus,
NW/M ≡ ∑

x nW/M (x) is the number of W/M individ-
uals across the metapopulation, and N ≡ NW + NM
is the total number of individuals in the whole graph.
Here, we focus on fully-connected graphs (as in the island
model [33, 34]), called cliques, and periodic one- and two-
dimensional lattices called respectively cycles and grids;
see Fig. 1(a). These are regular graphs, generally de-
noted by G = {clique, cycle, grid}, of Ω demes connected
by edges to their qG nearest neighbours via cell migration
at per capita rate m (independently from division and
death) [33, 34, 41–43, 60]; see Fig. 1(a-c). We study the
eco-evolutionary dynamics of the metapopulation in the
biologically relevant regime of slow migration (whereby
intra-deme dynamics occur much faster than inter-deme
dynamics; see below) [41, 42, 61–63], and consider that
initially one deme is occupied entirely by mutants (M
deme), while the other Ω − 1 demes (W demes) are all
populated by W cells; see Sec. V. All demes are assumed
to have the same carrying capacity K which encodes en-
vironmental variability. In Sec. III, we assume that K
is constant, and in Sec. IV we let the carrying capacity
switch endlessly between two values representing mild
and harsh conditions [16–24, 32]; see below.
In close relation to the Moran process [64–67] (see Ap-

pendix B), a reference model in mathematical biology [7],
the intra-deme dynamics in a deme x is thus represented
by a multivariate birth-death process defined by the birth
and death of a cell of type α ∈ {W,M} in that site ac-
cording to the reactions [16, 17, 22, 32]

nα
T+
α−→ nα + 1 and nα

T−

α−→ nα − 1, (1)

occurring at the transition rates

T+
α (x) =

fα

f
nα and T−

α (x) =
n

K
nα, (2)

where f ≡ (nW fW + nMfM )/n is the average fitness in
deme x, and K here denotes the constant carrying capac-
ity in a static environment and its time-switching version
in a dynamical environment; see below. In this formu-
lation, without loss of generality, selection operates on
birth events. This can be generalised to include selection
on deaths; see e.g. [10, 11].
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∆t ∼ O(ln(K))

FIG. 1. Metapopulation dynamics in a static environment. (a) Examples of metapopulation graphs: a clique, cycle, and grid
(from left to right). Neighbouring demes are connected by migration (double arrows). Initially, there is one mutant deme
(red/light) and Ω− 1 wild-type demes (blue / dark), and all demes have the same constant carrying capacity K. (b) Dynamics

in a single deme. Left: Wild-type W cells (blue / dark) compete with mutants of type M (red / light). When K is small, the
deme is prone to extinction. When K is large, both types coexist prior to W or M fixation. Top right: Realisations of the
rescaled deme size n/K vs. time t for K = 5 (orange/light) and K = 100 (green/dark) illustrating how n fluctuates about K.
Bottom right: Fraction of M cells vs. t in a deme with K = 100. Deme extinction is not observed. Transient coexistence of W
and M is followed by the fixation of W (blue traces) or M (red traces). Here s = 0.01. (c) Invasion of W deme by an M cell:
AnyM cell of a deme migrates to a neighbouringW site with migration rate m after a mean time ∆t = 1/(mK), and then type
M either quickly fixates, producing a newM deme (right), or does not fix leaving the pair ofM andW demes unchanged (left).
The same picture holds for the invasion of anM deme by aW cell; see text. (d) Deme recolonisation (here for the clique): Deme
extinction occurs after a mean time τE , and empty demes are then recolonised by an invader from a neighbouring surviving
deme after ∆t ∼ 1/(mK). A recolonised deme is rapidly taken over (in ∆t ∼ O(ln(K))). (e) Coarse-grained description of

the metapopulation dynamics: Each deme is always either fully W (blue / dark) or M (red / light) or empty (white). In this
description, different scenarios arise, shown for the clique. Competition-dominated regime: all demes are occupied and there is
always fixation of W or M . Extinction-dominated regime: there are frequent deme extinctions and the metapopulation quickly
goes extinct.

The inter-deme dynamics stems from the migration of
one cell of type α ∈ {W,M} from the site x to one of
its qG neighbouring demes denoted by y at a per-capita
migration rate m. Here, for the sake of simplicity, we as-
sume that the migration rate is the same in all directions
and for both types (symmetric migration); see Sec. V
for a discussion of these assumptions. The inter-deme
dynamics for all cells at deme x with its neighbouring
demes labelled y is therefore implemented according to
the reaction

[
nα(x), nα(y)

] Tm,G
α−→

[
nα(x)− 1, nα(y) + 1

]
, (3)

occurring at the migration transition rate

Tm,Gα (x) =
mnα
qG

. (4)

On a given metapopulation, if the number of cells migrat-
ing into a deme equals the number of cells migrating out,
and this is true for all demes, we say that the metapop-
ulation is a circulation. Precisely, the condition here for
a metapopulation to be a circulation is given by

∑

y n.n. x

∑

α

Tm,Gα (x) =
∑

y n.n. x

∑

α

Tm,Gα (y) for all x,

(5)
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where y n.n. x denotes the sum over the qG neighbours
y of the deme x. In our case, this simplifies considerably
to give n(x) =

∑
y n.n. x n(y)/qG for all x. Intuitively,

this means that for our setup, if each deme has the same
population size, then the metapopulation is a circulation:
there is the same incoming and outgoing migration flow
at each deme. This will indeed be the case under suffi-
ciently large carrying capacity.
Microbial communities generally live in time-varying

conditions, and are often subject to sudden and drastic
environmental changes. Here, environmental variability
is encoded in the time-variation of the binary carrying
capacity [16–24, 32]

K(t) =
1

2
[K− +K− + ξ(t)(K+ −K−)] , (6)

driven by a random telegraph process ξ(t) ∈ {−1, 1}.
The coloured dichotomous Markov noise (DMN) ξ(t)
switches between ±1 according to ξ → −ξ at rate ν
for the symmetric DMN (see Sec. V and Appendix H
for the generalisation to asymmetric switching) [68–70].
The carrying capacity, equal across demes, thus switches
at a rate ν between a value K = K+ in a mild en-
vironment (e.g. abundance of nutrients, lack of toxin)
and K = K− < K+ under harsh environmental con-
ditions (e.g. lack of nutrients, abundance of toxin) ac-

cording to K−
ν
⇌ K+, and thus represents random cy-

cles of mild and harsh conditions (feast and famine cy-
cles). The randomly time-switching K(t) drives the size
of each deme, and is hence responsible for the coupling of
demographic fluctuations with environmental variability,
an effect particularly important when there are popu-
lation bottlenecks [16–19, 21–24, 32]; see below. Here,
the DMN is at stationarity, i.e. it is initialised from its
long-time distribution where instantaneous correlations
become time-independent (while the autocovariance is a
function of the time difference) [69, 71]. This means that
the average of the DMN vanishes, ⟨ξ(t)⟩ = 0, and its au-
tocovariance coincides with its autocorrelation reading
⟨ξ(t)ξ(t′)⟩ = e−2ν|t−t′| [68–70], where ⟨·⟩ denotes the en-
semble average and 1/(2ν) is the finite correlation time
(with t, t′ → ∞). As a consequence, the fluctuating car-
rying capacity is always at stationarity, with a constant
average ⟨K(t)⟩ = ⟨K⟩ = (K+ +K−)/2 and an autocor-

relation ⟨K(t)K(t′)⟩ = ⟨K⟩e−2ν|t−t′|. In our simulations
with symmetric random switching, the carrying capacity
is initially drawn from its stationary distribution, with
K(0) = K+ or K(0) = K− each with probability 1/2;
see Sec. V and Appendix H.
The full individual-based model is therefore a

continuous-time multivariate Markov process defined by
the reactions and transition rates Eqs. (1)-(4) that sat-
isfies the master equation Eq. (A1) discussed in Ap-
pendix A 1. The microscopic intra- and inter-deme dy-
namics encoded in the master equation (A1) has been
simulated using the Monte Carlo method described in
Appendix I. The eco-evolutionary dynamics of a single
deme is outlined in Appendix A2. It is worth noting that

n, nW/M , T±
W/M , and Tm,GW/M are all quantities that depend

on the site x and time t, and on ξ in a time-varying en-
vironment. However, for notational simplicity, we often
drop the explicit dependence on some or all of the vari-
ables x, t, and ξ. Below, we combine coarse-grained an-
alytical approximations and individual-based stochastic
simulations to study how the spatial structure, migration,
and demographic fluctuations influence the fixation and
extinction properties of the microbial metapopulation.

III. STATIC ENVIRONMENTS

We first consider a static environment where the car-
rying capacity K of each deme is constant. In this set-
ting, the size n of each deme rapidly reaches and fluctu-
ates about K, with n ≈ K when K ≫ 1; see Fig. 1(b,
top right). The expected number of migrants per unit
time and deme is thus mK. The occurrence of migra-
tion events, alongside the competition between M and
W to take over demes of the other type, increases with
K. Cell migration and competition are however limited
when K is small: regardless of their type, demes of small
size are prone to extinction in a mean time τE(K); see
Fig. 1(b,d). For independent demes of size K, the deme
mean extinction time τE(K) can be obtained from a lo-
gistic birth-death process (see Appendix C) yielding

τE(K) ≈ eK

K
, (7)

when K ≫ 1; see Fig. 2(b,top). We thus refer to K as
“small” where fixation of a deme (intra-deme dynamics)
occurs on slower timescale than its extinction. Similarly,
K is referred to as large (i.e. K ≫ 1) where fixation of
a site occurs faster than deme extinction. In our analy-
sis, we distinguish between different dynamical scenarios
through

ψ(m,K) ≡ mKτE , (8)

giving the average number of migration events during
the typical deme extinction time. With Eq. (7), we have
ψ(m,K) ≈ meK when K ≫ 1. In the regime where
ψ ≫ 1, many migration events occur before any deme
extinction, and the dynamics is thus dominated byM/W
competition. When ψ(m,K) < 1, migration is ineffective
and there is fast extinction of all demes. An intermediate
regime where some demes are empty and others occupied
by W or M arises when ψ(m,K) ≳ 1. To rationalise
this picture in the coarse-grained description of Ref. [59],
it is useful to track the number of occupied demes j =
0, 1, . . . ,Ω (by eitherW orM cells). For cliques, as shown
in Appendix D, we find that the long-time fraction of
occupied demes is

j

Ω
→ Ωocc(m,K)

Ω
≈





1 if ψ ≫ 1,
ψ−1
ψ if ψ ≳ 1,

0 if ψ < 1.

(9)
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The expression of Ωocc ignores spatial correlations and
hence is not accurate for cycles and grids if ψ(m,K) is
not much larger than 1. However, ψ(m,K) allows us to
efficiently distinguish between the regimes dominated by
M/W competition (ψ ≫ 1) and deme extinction (ψ <
1); see Appendix D. The crossover intermediate regime
(ψ ≳ 1) is discussed in detail in Appendix F.

Henceforth, we refer to “invasion” when a cell of type
M/W migrates to and fixates in a W/M deme, and to
“recolonisation” when a cell of either type migrates into
an empty deme and takes it over; see Fig. 1(c,d). The
competition-dominated dynamics is characterised by in-
vasions, while the extinction-dominated regime consists
of extinctions and some recolonisations prior to the fi-
nal extinction of the metapopulation. A summary of the
timescales for the different processes and regimes consid-
ered in this work can be found in Tables I and II.

A. Competition-dominated dynamics

When ψ ≫ 1 with mK < 1 (slow migration; see
Eq. (12)), the carrying capacity is large enough for many
migrations to occur on the timescale τE of deme ex-
tinction, with intra-deme dynamics occurring faster than
inter-deme dynamics. Since every deme expects many
incoming cells in time τE , deme extinction is unlikely
and can be neglected. In this regime, the dynamics is
dominated by local M/W competition: W and M cells
compete in each deme to fixate the local subpopulation;
see Fig. 1(b).

As in Refs. [41, 42, 51], the slow migration condition
allows us to adopt a coarse-grained description treating
each deme as a single entity of type W or M . This is be-
cause in the regime of slow migration, the mean time for
anM orW invader to fixate a deme is much shorter com-
pared to 1/(mK), the expected time between migrations
(see Appendix C, Table I and Eq. 12). When the dynam-
ics is dominated by W/M competition and mK < 1, at
a coarse-grained level, each deme can thus be regarded
as being either entirely occupied by W or M individuals;
see Fig. 1(c,e). In this regime, each sequential migration
is an invasion attempt, with a cell from anM/W site try-
ing to invade a neighbouring W/M deme; see Fig. 1(c).
Here, an M/W invasion is the fixation of a single M/W
mutant in a deme consisting of K−1 cells of type W/M .

In the realm of the coarse-grained description, the state
of the metapopulation in this regime is denoted by i,
where i = 0, 1, . . . ,Ω is the number of demes of type M
leaving Ω− i demes of type W . The probability ρM/W of
invasion by an M/W migrant is here given by the prob-
ability that a single M/W cell takes over a population
of constant size K in a Moran process [7, 64–67] and, as

shown in Appendix B, reads

ρM (K) =
1

1 + s

[
s

1− (1 + s)−K

]
,

ρW (K) =
1

(1 + s)K

[
s

1− (1 + s)−K

]
.

(10)

In each time unit, a deme receives from and sends to its
neighbours an average of mK cells. Importantly, only
edges connecting M and W demes can lead to invasions;
see Fig. 1(c). These are “active edges” and their num-
ber in state i on graph G is denoted by EG(i), where
here we consider G = {clique, cycle, grid}. Moreover, mi-
gration from a deme can occur to any of the qG neigh-
bours of the deme, where qclique = Ω − 1, qcycle = 2,
qgrid = 4, and qd−dim = 2d for a d-dimensional regular
lattice. The number of active edges generally varies with
the metapopulation state and the spatial structure, and is
difficult to determine. However, a clique being the fully-
connected graph, the i demes of typeM are connected to
the Ω− i demes of type W , yielding Eclique(i) = i(Ω− i).
The M demes of a clique form a single unbreakable clus-
ter since all demes are connected. For a cycle, if the
initial state is i = 1, the M deme is initially connected
to exactly two W demes. This property is conserved by
the coarse-grained dynamics on a cycle, with an unbreak-
able cluster of M demes always connected to a cluster of
W demes by two active edges until W or M fixes the
metapopulation, yielding Ecycle(i) = 2 for i ̸= 0,Ω; see
Fig. 1(a,c) and below. The unbreakable nature of the M
cluster in these two cases (and the symmetric nature of
the graphs), means there is only one possible metapopu-
lation state for a given size ofM cluster. This allows us to
obtain the above explicit expressions for Eclique,cycle(i).

The number of active edges in a grid is difficult to
find because the cluster of demes is not unbreakable on
a two-dimensional lattice, and there are many possible
metapopulation states for a given number of M demes.
However, in Appendix E, we show that the average num-
ber of active edges on a grid, starting from the metapop-
ulation state (i,Ω− i) = (1,Ω− 1), can be approximated

by 2
√
πi. We will therefore approximate Egrid(i) ≈ 2

√
πi

for i ̸= 0,Ω. When i = 0,Ω, one strain fixates the entire
metapopulation, where all demes are M if i = Ω and all
demes areW when i = 0, and hence EG(0) = EG(Ω) = 0.

In the coarse-grained description of the competition-
dominated dynamics, starting from a singleM deme (i =
1), there are mKEG(i)/qG expected migration attempts
per unit time to grow the number ofM demes by invading
neighbouring W demes. Since the probability of an M
invasion is ρM , given by Eq. (10), the number ofM demes
grows at a rate mKEG(i)ρM/qG. Similarly a W invader
attempts to increase the number ofW demes by invading
M demes, hence reducing the number of M demes, at a
rate mKEG(i)ρW /qG. In this representation, M and W
invasions therefore act at the interface ofM andW demes
by increasing or reducing the number i of M demes at
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FIG. 2. (a): Competition-dominated dynamics, ψ ≫ 1. (Top left) M fixation probability ϕ vs. constant carrying capacity K;
(Bottom left) unconditional mean fixation time θ vs. K; (Top right) ϕ vs. per capita migration rate m; (Bottom right) θ vs.
m. Markers are simulation results and lines are predictions of Eq. (14) for s = 0.1 (blue) and s = 0.01 (red) on a clique (solid
lines / crosses), cycle (dashed lines / circles), and grid (dotted lines / triangles). In (left), m = 10−4,Ω = 16, and in (right),
K = 50,Ω = 16. In (top), markers for the same s are almost indistinguishable indicating independence of the spatial structure.
(b): Extinction-dominated dynamics, ψ < 1. (Top) Mean extinction time of a single deme τE vs. K (m = 0). Circles are
simulation data, line shows the predictions of Eq. (7). (Bottom) Metapopulation mean extinction time θE vs. K for Ω = 16
and m = 10−2 (blue) and 10−4 (red). Markers are simulation results and thick lines are predictions of Eq. (C4) for cliques
(solid lines / crosses), cycles (dashed lines / circles), and grids (dotted lines / triangles). Thin dashed vertical lines are guides
to the eye showing ψ = 1 for m = 10−2 (blue) and 10−4 (red). Selection plays no role in this regime, so simulation data for
(b) has been obtained with s = 0. In all panels, there is initially one M deme and Ω − 1 demes occupied by W . In panels
(a,top) and (b,bottom), dashed lines overlap with solid lines and so are not visible. Error bars are plotted in each case but are
typically too small to see.

respective rates [41, 42, 60],

T+
i (m,G,K) = mK

EG(i)

qG
ρM ,

T−
i (m,G,K) = mK

EG(i)

qG
ρW .

(11)

These rates, together with the fact that the timescale
of intra-deme dynamics is 1/s (timescale of fixation of a
single isolated deme [7, 64–67]; see Table I) can be used
to define slow migration in the competition-dominated
regime. To this end, we notice that the growth of the
cluster of imutant demes in time 1/s is T+

i (m,G,K)/s =
mKEG(i)ρM/(qGs).

1 In the coarse-grained description,

1 Here, we use the growth of the M cluster to define slow migration

slow migration is the regime where invasion can be re-
garded as being instantaneous, with fixation of a success-
ful M invader occurring before the next invasion. This
requires that the average number of successful M inva-
sions on the timescale of the intra-deme dynamics is less
than one, i.e. T+

i (m,G,K)/s < 1. Therefore, the condi-
tion for slow migration here is

m <
sqG

KρMEG(i)
≤ s

KρM
, (12)

where we have used qG/EG(i) ≤ 1. When s ≪ 1 and
Ks ≫ 1, we have ρM ∼ s [7, 64–67] and there is slow

as the mutant has a fitness advantage. Therefore, ρM > ρW and
T+
i (m,G,K) > T−

i (m,G,K) in general.
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migration when mK ≲ 1, i.e. the expected number of
migrants from a deme per unit time is less than one.
For typical values used here, e.g. Ω = 16,K = 100
and s = 0.1, we estimate that there is slow migra-
tion if m ≲ 10−2, which is in line with the values of
m ∈ [10−5, 10−2] used in our examples, and explains the
deviations reported in Fig. 2(a,bottom right) for larger
m. The coarse-grained competition-dominated dynam-
ics is thus a birth-death process for the number i of M
demes, with absorbing boundaries at i = Ω (M fixa-
tion) and i = 0 (W fixation); see Appendix G. In this
representation, the M fixation probability in a metapop-
ulation of size Ω, spatially structured as a graph G, con-
sisting initially of i mutant demes is denoted ϕGi , and
the unconditional (i.e. regardless of whether M or W
takes over [7, 66, 67]) mean fixation time (uMFT) de-
noted θGi . These quantities satisfy the first-step equa-
tions [7, 66, 67, 72]

(T+
i + T−

i )ϕGi = T+
i ϕ

G
i+1 + T−

i ϕ
G
i−1,

(T+
i + T−

i )θGi = 1 + T+
i θ

G
i+1 + T−

i θ
G
i−1,

(13)

for i = 1, . . . ,Ω − 1, with boundary conditions ϕG0 =
1−ϕGΩ = 0 and θG0 = θGΩ = 0. Eqs. (13) can be solved ex-
actly [66, 67] (see also Appendix B). Here, we are chiefly
interested in the fixation of a single initialM deme, i = 1,
and simply write ϕG ≡ ϕG1 and θG ≡ θG1 , finding

ϕG(K) = ϕ(K) =
1− γ

1− γΩ
,

θG(m,K) =
1− γ

1− γΩ

Ω−1∑

k=1

k∑

n=1

γk−n

T+
n (m,G,K)

,

(14)

where γ ≡ T−
i /T

+
i = ρW /ρM ≈ exp(−Ks) is a quantity

independent of m and G. As noted in Refs. [41, 42, 50]
the fixation probability ϕG = ϕ is therefore indepen-
dent of the migration rate and spatial structure. This
remarkable result stems from the graphs considered here
being circulations; see Eq. (5). In static environments, a
generalised circulation theorem ensures that the fixation
probability is independent of m and G for circulation
graphs [41, 42, 47], a feature displayed in the stochas-
tic simulations of Fig. 2(a,top) for the full microscopic
model. In excellent agreement with simulation data of
Fig. 2(a,top), we find that the M fixation probability in-
creases almost exponentially with Ks and approaches 1
when Ks ≫ 1, ϕG ≈ 1. This stems from the invasion of
W demes being increasingly likely (and the invasion ofM
demes exponentially less likely) when the average num-
ber of migrations (mK) increases along with K. When
Ks ≪ 1, the competition is effectively neutral, and in
this case ϕG ≈ 1/Ω. In good agreement with simulation
results of Fig. 2(a,bottom), Eq. (14) predicts that the
uMFT decreases with the migration rate θG ∼ 1/m and,
for given parameters, the uMFT is shortest on cliques,
while it is larger on cycles than on grids. Intuitively, for
higher m and more connected graphs, migrants spread
faster leading to quicker invasion and fixation.

B. Extinction-dominated dynamics

In the extinction-dominated regime ψ < 1 with mK <
1 (slow migration), we do not expect any deme inva-
sions in a time τE , enabling us to adopt a suitable
coarse-grained description. Deme invasions being neg-
ligible under slow migration, the timescale of extinction
dynamics is much shorter than that of M/W competi-
tion, and site extinction dominates over deme invasion;
see Fig. 1(e). The dynamics in this extinction-dominated
regime is hence governed by the random extinction of
demes, regardless of their type. Following Ref. [59], in
the realm of the coarse-grained description outlined in
Appendix C, demes are regarded as being either occupied
(by either W or M cells) or empty. Deme extinction oc-
curs randomly while empty demes may be recolonised by
migrations from occupied neighbouring demes, which oc-
cur rarely in this regime. Since spatial structure may only
influence the dynamics via migrations, the coarse-grained
dynamics is largely independent of the spatial structure
in this regime where mK < 1, and can be represented by
a birth-death process for the number of occupied demes,
assuming that the site extinction and recolonisation oc-
cur instantaneously [59]; see Appendix C. In this coarse-
grained representation, when all demes are initially oc-
cupied (n = K), the metapopulation mean extinction
time (mMET), denoted by θE , is given by Eq. (C4) in
Appendix C. When Ω ≫ 1 and ψ < 1, the leading con-
tribution to the mMET arises from the term i = n in the
innermost sum, yielding

θE(K,Ω) ≈ τE(ln(Ω) + γEM), (15)

where γEM ≈ 0.577... is the Euler-Mascheroni constant.
Eq. (15) gives a good approximation of the mMET as
reported in Fig. 8. As ψ increases with K, at the
upper-limit of the extinction-dominated limit (where ψ
approaches 1), the mMET grows almost exponentially
with K and logarithmically with Ω, θE ≈ eK ln (Ω)/K.
Eq. (C4) thus predicts a rapid growth of the mMET when
ψ ≳ 1, as shown in Fig. 2(b,bottom) where simulation re-
sults are found to be in good agreement with Eq. (C4).
When ψ ≳ 1, the competition- and extinction-

dominated dynamics are separated by an intermediate
crossover regime analysed in detail in Appendix F.

IV. TIME-FLUCTUATING ENVIRONMENTS

Microbial populations generally evolve in time-varying
environments, and are often subject to conditions chang-
ing suddenly and drastically, e.g. experiencing cycles of
harsh and mild environmental states [20, 28, 30, 73–84],
see Fig. 3. These variations cause fluctuations often as-
sociated with population bottlenecks, arising when the
deme size is drastically reduced, e.g. due to nutrient
scarcity or exposure to toxins [27–29, 31, 78]. Here, envi-
ronmental variability is encoded in the time-fluctuating
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Strong bottlenecks and intermediate switching

FIG. 3. (a) Left: single deme in time-switching environment. The carrying capacity K(t) encodes environmental variability
by switching between K = K+ (mild environment, green / light) and K(t) = K− < K+ (harsh environment, orange / dark)
at symmetric rate ν (see also Appendix H). Communities are larger in the mild environment. When K(t) switches at an
intermediate rate ν ≲ 1, each deme experiences bottlenecks prior to deme fixation at an average frequency ν/2; see text.
Right: n and K vs. time in the intermediate switching regime where the size n of a deme undergoes bottlenecks. Parameters
are: K+ = 200, ν = 0.05 and K− = 100 (top) and K− = 5 (bottom). The bottlenecks are weak when ψ(m,K−) ≫ 1 (top,
right) where deme extinction is unlikely. When ψ(m,K−) < 1, there are strong bottlenecks and each deme can go extinct in
the harsh environment (bottom, right). (b) Clique metapopulation with Ω = 6 connected demes (double arrows). All demes
have the same time-switching carrying capacity K(t) encoding environmental variability across the metapopulation, with each
deme in the same environmental state. (c) Example evolution across two nearest-neighbour demes in a switching environment
subject to strong bottlenecks in the intermediate switching regime; see text. Starting in the mild environment where K = K+,
the carrying capacity switches to K− (harsh environment) after t ∼ 1/ν. Following the K+ → K− switch, each deme size
decreases and each subpopulation is subject to strong demographic fluctuations and hence prone to extinction. In the absence
of recolonisation of empty demes, effective only in the mild state, all demes go extinct. If there is a switch back to the mild
environment K− → K+ prior to total extinction, empty demes can be rescued by migration and recolonised by incoming W
or M cells from neighbouring demes. In the sketch, an empty deme is recolonised by a mutant in the mild environment and
becomes an M deme. The cycle continues until the entire metapopulation consists of only W or M demes, or metapopulation
extinction.

carrying capacity K(t) of Eq. (6) driven by the DMN
ξ(t) ∈ {−1, 1} [16–24, 32, 68–70]; see Sec. II. Since the
dynamics of the deme size n occurs on a timescale of
order 1 (see Appendix A 2), the variable n tracks K(t)
and experiences a bottleneck whenever the carrying ca-
pacity switches from K+ to K− at a rate ν ≲ 1; see
Fig. 3(a,right) [16–18].

In order to study the joint effect of migration and fluc-
tuations on the metapopulation dynamics, we assume
K+ ≫ 1 such that demographic fluctuations are weak
in the mild environment. In what follows, we distin-
guish between weak bottlenecks, where ψ(m,K−) ≫ 1
and deme extinction is negligible, and strong bottlenecks,
where ψ(m,K−) < 1 and deme extinctions dominate.

A. Weak bottlenecks: ψ(m,K−) ≫ 1

When K+ > K− with ψ(m,K−) ≫ 1, each deme ex-
periences a weak bottleneck at an average frequency ν/2
when ν ≲ 1 [16–18]; see Fig. 3(a,top). The condition
ψ(m,K−) ≈ meK− ≫ 1 ensures that deme extinction
can be neglected, with metapopulation dynamics domi-
nated by M/W competition. The metapopulation fate
can thus be captured by a two-state coarse-grained de-
scription similar to that of Sec. IIIA. Since the deme size
in the environment ξ, and thus the number of migrating
cells, varies with K(t), it is useful to introduce the long-
time average deme size in environmental state ξ = ±1
under switching rate ν denoted by Nξ(ν) ≡ N±(ν); see
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FIG. 4. Fixation probability ΦG and mean fixation time ΘG against switching rate ν for various parameters. Each panel shows
ΦG vs. ν (top) and ΘG vs. ν (bottom). Markers show simulation results and lines are predictions of Eq. (26). (a,b) Φclique(ν)
and Θclique(ν) for a clique metapopulation and different values of m in (a) and s in (b). (a) m = 10−5 (red), m = 10−4

(blue), m = 10−3 (yellow), and s = 0.01. (b) s = 10−3 (red), s = 10−2 (blue), s = 10−1 (yellow), and m = 10−4. Dashed
black lines are guides to the eye showing Φ0,∞ in (a,top) and Θ0,∞ in (a,bottom); see text. Other parameters are Ω = 16,
K+ = 200, and K− = 20. (c) ΦG(ν) and ΘG(ν) for clique (red, crosses), cycle (blue, circles), and grid (yellow, triangles)
metapopulations. Other parameters are Ω = 16, K+ = 200, K− = 20, s = 0.01, m = 10−4. (d) Φclique(ν) and Θclique(ν)
for a clique metapopulation with K+ = 200 (red), K+ = 500 (blue), and K+ = 1000 (yellow). Deviations occur for Θ with
K+ = 1000 since the slow-migration condition is not satisfied in the mild environment. Other parameters are Ω = 16, K− = 20,
and s = 0.01, m = 10−4. In all examples, there is initially a single M deme and Ω− 1 others of type W ; see text.

below.

We first discuss the metapopulation fate in the limit of
slow and fast environmental switching, and then return
to the above case of weak bottlenecks with ν ≲ 1.

When the environment varies very slowly, ν ≪ 1,
the carrying capacity remains at its initial value, i.e.
K(t) = K+ or K(t) = K− each with a probability
1/2, until invasions lead to the fixation of W or M . In
other words, the time between switches is longer than
the mean fixation time in each environment such that
νmax(θG(m,K+), θ

G(m,K−)) < 1, where θG(m,K) is
given by Eq. (14). In the slow switching regime, the
M fixation probability and uMFT on a metapopulation
spatially arranged as a regular graph G are respectively
denoted by ΦG

0 and ΘG
0 . The quantities are obtained by

averaging their static counterparts (14) over the station-

ary distribution of K, yielding for symmetric switching

ΦG
0 (m,K±) = Φ0(K±) =

1

2
[ϕ(K+) + ϕ(K−)] ,

ΘG
0 (m,K±) =

1

2

[
θG(m,K+) + θG(m,K−)

]
.

(16)

When the environment varies very quickly, ν ≫ 1, the
DMN self averages before invasion-mediated fixation oc-
curs, and the carrying capacity of each deme rapidly
reaches the effective value

K ≡ 2K+K−

K+ +K−
, (17)

the harmonic mean of K+ and K−, with K ≈ 2K− if
K− ≫ 1 and N±(∞) → K when K ≫ 1 [16–18, 22];
see Appendix A2. In this fast switching regime, the M
fixation probability and uMFT on a metapopulation spa-
tially arranged as a regular graph G, respectively denoted
by ΦG

∞ and ΘG
∞, are obtained by replacing K with K in
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Eq. (14), yielding

ΦG
∞(m,K) = Φ∞(K) = ϕ(K),

ΘG
∞(m,K±) = θG(m,K).

(18)

From these expressions and Eq. (14), we notice the fixa-
tion probability in the regime of slow and fast switching is
independent of the migration rate and spatial structure:
ΦG

0 = Φ0 and ΦG
∞ = Φ∞. However, the metapopulation

uMFT depends explicitly on the migration rate m and
G, with ΘG

0 ∼ 1/m and ΘG
∞ ∼ 1/m.

Under intermediate switching rate, when ν ≲ 1, the
coupling of demographic and environmental fluctuations
plays a key role, while cell migration depends on the
deme size that in turn varies with the environmental
state. Here, the metapopulation dynamics cannot be
directly related to its static counterpart. The average
deme size Nξ(ν) depends non-trivially on ν and ξ, and
generally needs to be computed by sampling long-time
simulations. However, analytical progress can be made
by approximating the distribution of the size n of an
isolated deme in the environmental state ξ by the joint
probability density pξ(n; ν) of the piecewise deterministic
Markov process (PDMP), where n and ξ are variables,
and ν a parameter, obtained by ignoring demographic
fluctuations [16, 17, 85, 86] (see Appendix A 2):

pξ(n; ν) =





Z+

n2

(
K+−n
n

)ν−1 (
n−K−

n

)ν
if ξ = +1,

Z−

n2

(
K+−n
n

)ν (
n−K−

n

)ν−1

if ξ = −1.

(19)
The density pξ(n; ν) has support [K−,K+], and the nor-

malisation constants Z± ensure
∫K+

K−

pξ(n; ν) dn = 1.

The M/W competition characterising the intermedi-
ate switching regime dynamics can be described by the
coarse-grained representation of Sec. III A generalised to
a time-fluctuating environment following Refs. [16, 17,
22]. Here, we analyse the influence of ν and m on the M
fixation probability, ΦG

i (ν,m), and uMFT, ΘG
i (ν,m), in a

metapopulation consisting of i mutants demes and Ω− i
W -demes spatially arranged as a regular graph G. To
this end, we consider a birth-death process for the num-
ber i = 0, . . . ,Ω ofM demes. As in Sec. III A, we assume
that there is initially a single M deme (i = 1). The ef-
fective rates, denoted by T ±

i,ξ, for the increase or decrease
by one of the number i of M demes in the environmen-
tal state ξ depend on the expected number of migrating
cells, which in turn depends on the deme size that is now
a time-fluctuating quantity driven by Eq. (6). In a time-
varying environment, the expected number of migrants
from a deme, mn, is approximated by mNξ(ν), where
the the long-time mean deme size in the environmental
state ξ is obtained from the PDMP density according to

Nξ(ν) =

∫ K+

K−

npξ(n; ν/s) dn, (20)

where, as in Refs. [16–19, 23], the switching rate has
been rescaled, ν → ν/s, by the timescale of the deme

fixation dynamics (see Appendix A2) where there are
an average of O(ν/s) switches on the deme fixation
timescale [17, 18]. The (marginal) average deme size re-
gardless of ξ is given by N (ν) = 1

2

∑
ξNξ(ν) and known

to be a decreasing function of ν [16, 17]. As in static
environments (see Eq. (11)) the transition rates T ±

i de-
pend on the spatial structure, via EG(i)/qG, and on the
probability ρM/W,ξ(ν) that an M/W migrant invades a
W/M deme in the environment ξ. Putting everything
together, this yields the effective transition rates

T +
i,ξ(ν,m,G) = mNξ(ν)

EG(i)

qG
ρM,ξ(ν),

T −
i,ξ(ν,m,G) = mNξ(ν)

EG(i)

qG
ρW,ξ(ν),

(21)

where, by analogy with Eq. (10), we have introduced

ρM,ξ(ν) ≡
s

1 + s

1

1− (1 + s)−Nξ(ν)
,

ρW,ξ(ν) ≡
s

(1 + s)Nξ(ν)

1

1− (1 + s)−Nξ(ν)
.

(22)

With Eq. (21), by dropping all explicit dependence ex-
cept on i and ξ, we obtain the M fixation probability
starting from the environmental state ξ with i mutant
demes on a graph G, denoted by ΦG

i,ξ(ν,m), as the solu-
tion of the ν-dependent first-step analysis equation
[
T +
i,ξ + T −

i,ξ + ν
]
ΦG
i,ξ = T +

i,ξΦ
G
i+1,ξ + T −

i,ξΦ
G
i−1,ξ + νΦG

i,−ξ,

(23)
subject to the boundary conditions ΦG

0,ξ = 0 and ΦG
Ω,ξ =

1. The metapopulation uMFT starting from the same
initial conditions, denoted by ΘG

i,ξ, similarly satisfies

[
T +
i,ξ + T −

i,ξ + ν
]
ΘG
i,ξ = 1+T +

i,ξΘ
G
i+1,ξ+T −

i,ξΘ
G
i−1,ξ+νΘ

G
i,−ξ,

(24)
with boundary conditions ΘG

0,ξ = ΘG
Ω,ξ = 0. Eqs. (23)

and (24) generalise Eqs. (13) to a time-switching envi-
ronment, with the last terms on the RHS accounting for
environmental switching, and coupling ΦG

i,ξ to ΦG
i,−ξ and

ΘG
i,ξ to ΘG

i,−ξ. Eqs. (23) and (24) can be solved numeri-
cally using standard methods. The M fixation probabil-
ity ΦG

i (ν) and uMFT ΘG
i (ν) regardless of ξ are obtained

by averaging over the stationary distribution of ξ, yield-
ing

ΦG
i (ν,m) =

1

2

∑

ξ

ΦG
i,ξ(ν,m),

ΘG
i (ν,m) =

1

2

∑

ξ

ΘG
i,ξ(ν,m),

(25)

where we have reinstated the explicit dependence on ν
and m. As we specifically consider the initial condition
of a single M deme, we set i = 1 in Eq. (25) and simplify
the notation by writing

ΦG(ν,m) = ΦG
1 (ν,m) and ΘG(ν,m) = ΘG

1 (ν,m). (26)
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Eq. (26) are the expressions of the M fixation proba-
bility and metapopulation uMFT in the realm of the
combined coarse-grained and PDMP description. This
approach is valid under slow migration rate (mK < 1)
and weak selection strength (s ≪ 1) for the assumption
n ≈ Nξ(ν) to hold at each invasion; see Appendix A 2.
In Fig. 4, the comparison of the predictions of Eq. (26)
with the simulation results of the full model on the reg-
ular graphs G = {clique, cycle, grid} shows that Eq. (26)
captures well the dependence of ΦG and ΘG on ν, m,
s and K+. In particular, Eq. (26) reproduces on all G
the non-monotonic ν-dependence of ΦG and ΘG (when
it exhibits this feature), as well as their behaviour when
ν → 0,∞ given by Eqs. (16) and (18).

A striking feature of ΦG and ΘG is their dependence on
spatial migration. In Fig. 4(a,top), we indeed find that
simulation data for Φclique(ν,m) vary noticeably with
m in the range ν ∈ [10−4, 10−1]. These deviations, of
up to 20%, exceed the error bars and are reasonably
well captured by Eq. (26). In Fig. 4(c,top), we notice
that both simulation results and predictions of Eq. (26)
for ΦG(ν,m) differ slightly for each graph G, whereas
Fig. 4(c,bottom) shows that ΘG clearly depends on the
spatial structure. The explicit dependence of the fixa-
tion probability on migration and spatial structure is in
stark contrast with the result Eq. (14) obtained in static
environments, and is therefore a signature of the eco-
evolutionary dynamics in time-fluctuating environments.
As shown in Appendix G, the correspondence demon-
strated in Ref. [41] between ΦG and the fixation proba-
bility of a random walk for the number i = 0, 1, . . . ,Ω of
mutant demes with hopping probabilities independent of
m and G, and absorbing states 0,Ω, breaks down in time-
varying environments. This leads to the dependence of
ΦG and ΘG on m and G in time-switching environments.

Another distinctive feature of ΦG and ΘG is their non-
monotonic ν-dependence when the other parameters (s,
m, K±, Ω) are kept fixed. In particular, Fig. 4 shows that
ΦG may exhibit a sharp peak in the regime of interme-
diate ν ∈ [10−4, 10−1] that is well captured by Eq. (26).
These results are in marked contrast with their counter-
parts in a single deme, which vary monotonically with
ν [16, 17, 19]. The non-monotonic ν-dependence of ΦG

and ΘG is therefore an inherent effect of spatial migra-
tion. Intuitively, this behaviour stems, on the one hand,
from more M invasions occurring when the deme size is
as close as possible to n ≈ K+; see Eq. (21). On the
other hand, the average deme size is a decreasing func-
tion of ν [16–18]; see Appendix A 2. Therefore, optimis-
ing the probability of M fixation requires two considera-
tions: the environment should avoid remaining stuck in
the harsh environment for too long, which can happen
with a probability close to 1/2 when ν ≪ 1; and the en-
vironment should not switch too frequently (i.e. ν ≫ 1),
as this reduces the effective deme size (n ≈ K), which
can be significantly smaller than K+. Hence, the best
conditions for the fixation of M are for a range of ν in
the intermediate regime. Since the uMFT is longer in

the harsh than in the mild environment (where there are
fewer migration events; see Fig. 2(a,bottom left)), a sim-
ilar reasoning leads to a minimum mean fixation time for
ν in the intermediate regime; see Fig. 4(b,d).

B. Strong bottlenecks: ψ(m,K−) < 1

When ψ(m,K−) < 1, each deme can undergo strong
bottlenecks; see Fig. 3(a) and below. In the harsh envi-
ronment ξ = −1 (K = K−), the entire metapopulation
experiences extinction, in an observable time θE(K−,Ω),
denoted θE here for conciseness. However, in the mild
state ξ = +1 (K = K+), deme extinction can be ne-
glected and each site can be regarded as being occupied
by either W or M cells. The dynamics in the harsh state
is thus dominated by extinction, whereas theM/W com-
petition characterising the mild state is aptly captured by
the two-state coarse-grained description of Section IIIA.
Environmental switching thus couples regimes that are
dominated in turn by deme extinction andM/W compe-
tition, yielding complex dynamical scenarios whose anal-
ysis is difficult. However, we can gain valuable insight by
considering first the limits ν ≪ 1, ν ≫ 1, and then the
case of intermediate switching where ν ≲ 1.
When the environment varies very slowly, ν ≪ 1, the

K(t) remains at its initial value for long periods, that
is K = K± if ξ(0) = ±1 each with a probability 1/2.
On the one hand, if initially ξ = −1 (harsh environ-
ment), K = K− and each deme is prone to extinc-
tion after a mean time τE(K−), which eventually leads
to the collapse of the metapopulation after a mMET
θE ≈ eK− ln (Ω)/K− when Ω ≫ 1 and K− ≫ 1; see
Eqs. (7) and (15) and Fig. 5(a). On the other hand, if
initially ξ = +1 (mild condition), n ≈ K+ and there
is M/W competition characterised by the fixation of M
with a probability ϕ(K+) approaching 1 when K+s≫ 1;
see Eq. (14) and Fig. 5(b). As a result, when ν ≪ 1 and
K+s ≫ 1, there are two equally likely outcomes illus-
trated in Fig. 5: either the extinction of the metapopu-
lation in a mean time θE as in Fig. 5(a), or the fixation
of M after a mean time θG(K+) as in Fig. 5(b).
In frequently varying environments, when ν ≫ 1,

the size of each deme readily settles about the effec-
tive carrying capacity Eq. (17), with n ≈ K (when
K ≫ 1) after t ∼ 1 [16, 17]. Since K ≈ 2K− when
K+ ≫ K−, if ψ(m, 2K−) < 1 the dynamics is charac-
terised by the extinction of individual demes and then of
the entire metapopulation after mean times τE(2K−) and
θE(Ω, 2K−); see Fig. 5(e). However, if ψ(m, 2K−) ≫ 1
and 2K−s ≫ 1, the dynamics is characterised by M/W
competition with M most likely to fix the metapop-
ulation after a mean time θG(2K−), as illustrated by
Fig. 5(f).

In slowly and rapidly changing environments, regard-
less of the spatial structure, the metapopulation subject
to strong bottlenecks is therefore always at risk of either
complete extinction or of being taken over by mutants.
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FIG. 5. Typical single realisations of N/Ω (black), NM/Ω (red), NW /Ω (blue), and K(t) (grey) against time for different
values of K− and ν. (a,b): Here, ν = 10−4 and K− = 8. In (a), K = K− at t = 0 and M and then W quickly go extinct. In
(b), K = K+ at t = 0 and M fixes the population while W goes extinct. (c,d): Here, ν = 10−2 and K− = 8. In (c), mutants
survive the first few bottlenecks but their abundance is low leading to the fixation ofW and removal ofM after four bottlenecks
(t ≳ 1000). In (d), mutants survive the first bottlenecks and spread in the mild state where they recolonise and invade demes.
They are eventually able to fix the population. (e,f): Here, ν = 10, and K− = 4 in (e) and K− = 10 in (f). K(t) switches
very frequently and is not shown for clarity. In (e), the deme size is n ≈ 2K− = 8 and the dynamics is dominated by deme
extinction leading to the rapid extinction of the metapopulation. In (e), the deme size is n ≈ 2K− = 20 and there is M/W
competition that leads to fixation of M and extinction of W after a typical time t ∼ θclique(2K−) ≳ 104 (not shown). Similar
results are obtained on other regular graphs G; see text. Other parameters are Ω = 10, s = 0.1, m = 10−4, and K+ = 200. In
all panels, initially there is a single M deme and Ω− 1 demes occupied by W .

In the intermediate switching regime, ν ≲ 1 with
ψ(m,K−) < 1, each deme is subject to strong bottle-
necks [16–18]; see Appendix A (and first paragraph of
Sec. IV). In this regime the entire metapopulation there-
fore experiences strong bottlenecks and can avoid extinc-
tion for extended periods of time while either strain can
prevail. In the harsh environmental state (K = K−),
the dynamics is always dominated by deme extinction.
In the mild state (K = K+ ≫ K−), there is recolonisa-
tion of empty demes that rapidly become either W or M
demes, followed by invasions and M/W competition. In
order to ensure that the collapse of the metapopulation is
unlikely to be observed, the mean time spent in either en-
vironmental state needs to be shorter than the metapop-
ulation mean extinction time in the harsh environment,
i.e. 1/ν < θE . Moreover, when ν ∼ 1/τE(K−) > 1/θE ,
numerous demes go extinct in the harsh environment be-
fore switching to the mild state. Hence, when ν ≲ 1 and

νθE > 1, the metapopulation is unlikely to go extinct
and transiently consists of a mixture of empty demes and
W/M demes before eitherW orM eventually takes over.
In this regime, mutants are likely to be removed from the
metapopulation when there is a small fraction of them in
the harsh environment; see Fig. 5(c). At each strong
bottleneck, M demes have a finite probability to go ex-
tinct before switching to the mild environment, where
surviving mutants can invade W demes and recolonise
empty demes. In a scenario illustrated by Fig. 5(c), there
are periods of duration ∼ 1/ν during which the number
of mutants remains low and prone to extinction when
K = K−, followed by periods in K+ where the number
of M demes increases (due to M/W competition). Each
bottleneck can thus be regarded as an attempt to remove
M demes, whereas each switch K− → K+ can be envi-
sioned as a rescue of mutants. This cycle repeats itself
until M demes are entirely removed after enough bottle-
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FIG. 6. Near-optimal condition for the idealised treatment strategy. (ν,K−) heatmaps of Φ, Θ, ΘE and (1 − Φ)(1 − Θ/ΘE)
for a clique metapopulation. The migration rate is m = 10−3 in (a-d) and m = 10−4 in (e-h). White space in panels (c) and
(g) indicates where at least one realisation for those parameters did not reach extinction by t = 105, i.e. ΘE ∼ 105 or larger.
Grey lines in panels (d) and (h) are show the near-optimal conditions for the idealised treatment strategy, given by Eq. (27):
ψ(m,K−) < 1 below the top horizontal line, mK+θE > 1 above the bottom horizontal line, and νθE > 1 above the curved
line, while the vertical line indicates where ν < 1. Here, θE is obtained from Eq. (15). The near-optimal treatment conditions
is the yellowish cloud at the centre of the area enclosed by these lines. Similar results are obtained on other regular graphs G;
see text and Fig. 10. Other parameters Ω = 16, s = 0.1, and K+ = 200. In all panels, initially there is a single M deme and
Ω− 1 demes occupied by W .

necks. The metapopulation thus consists of a fluctuating
number of W demes and empty demes. This scenario
is the most likely to occur when the initial fraction of
M demes is small. Another possible outcome, illustrated
by Fig. 5(d), occurs when mutants surviving the harsh
conditions invade and are successful in recolonising many
demes in the mild environment. Mutants can thus signif-
icantly increase the number of M demes, exceeding that
of W demes. In this case, bottlenecks can be seen as an
attempt to remove W and M demes, and the most likely
outcome is the removal ofW demes. In this scenario, the
metapopulation eventually consists of a fluctuating num-
ber of empty demes and mutant demes, as illustrated by
Fig. 5(d). The results of Fig. 5 have been obtained for
cliques, but the same qualitative behaviour is expected
for any regular graphs G, with the spatial structure af-
fecting the the long-term fraction of occupied demes and
therefore the probability of removal of each bottleneck.
However, phenomena operated by extinction are mostly
independent of G and m, as illustrated by Fig. 10.

A hypothetical idealised treatment strategy: In this in-
termediate switching regime, the metapopulation is likely
to avoid extinction in the harsh environment if νθE ≳ 1.
Moreover, when mK+θE ≳ 1, then enough demes are
recolonised in the mild environment to ensure that the
metapopulation will not readily go extinct after a bot-
tleneck. Hence, the metapopulation is likely to avoid
extinction when νθE > 1 and mK+θE > 1. In this sce-
nario, either W or M can be entirely removed, with re-
spective probabilities Φ and 1 − Φ, after a mean time
Θ, while metapopulation extinction occurs after a mean
time ΘE ≫ Θ. As an application, we consider a hy-
pothetical idealised treatment to efficiently remove un-
wanted mutants by controlling the environmental condi-
tions via the parameters K− and ν. In this context, M
cells are interpreted as unwanted mutants that have a se-
lective advantage over theW cells we would like the pop-
ulation to consist of, here represented by the metapopu-
lation consisting initially of Ω−1 demes of typeW and a
singleM deme. In a healthy host, cells replicate in a con-
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trolled, self-regulating manner. Mutations may lead to
the loss of self-regulation of cell replication, and such mu-
tant cells replicate rapidly. This is the case of cancerous
cells, that appear as rare mutants before possibly prolifer-
ating. Thus, initial conditions like those considered here
are relevant, even for smaller systems. If allowed to pro-
liferate, cancer cells will outcompete the slower-growing
healthy cells, leading to a growing tumour. Therefore,
in this motivating context, we wish to remove these ag-
gressive cells while not eliminating healthy ones. The
idealised treatment strategy consists of finding the set
of near-optimal environmental conditions to remove M
cells and minimise the risk of extinction of the entire
metapopulation. This corresponds to determining the
range of K− and ν for which Φ and Θ/ΘE are minimal.
According to the above discussion, the near-optimal con-
ditions for this idealised treatment strategy on a regular
graph G are

ψ(m,K−) < 1, ν ≲ 1, νθE ≳ 1, mK+θE ≳ 1.
(27)

Under these conditions, illustrated in Fig. 6, which de-
pend on m but not on the spatial structure G, environ-
mental variability generates a succession of strong bot-
tlenecks at a frequency ensuring that the mutant type is
the most likely to go extinct in a mean time that is much
shorter than the metapopulation mean extinction time.
While determining analytically Φ and Θ/ΘE satisfying
Eq. (27) is challenging, this can be done efficiently nu-
merically as illustrated by the heatmaps of Fig. 6, and
be summarised by maximising the composite quantity
(1 − Φ) (1−Θ/ΘE), as shown in Fig. 6(d,h). In the ex-
amples of Fig. 6, we find that the near-optimal treatment
conditions are 10−2 ≲ ν ≲ 1 and for K− that changes
with m: K− ∈ [2, 7] for m = 10−3 and K− ∈ [4, 9] for
m = 10−4. The idealised treatment strategy therefore
consists of letting the metapopulation evolve under the
near optimal conditions Eq. (27), under which it under-
goes a series of strong bottlenecks whose expected out-
come is the removal of mutants. Once all mutants are
removed, as in Fig. 5(c), the final course of the treatment
consists of keeping the metapopulation in the mild envi-
ronment (with K = K+), where W cells would spread
and finally take over all the demes. In the example of
Fig. 5(c), this would be achieved by setting K = K+

after t ≳ 1000. This idealised treatment strategy, illus-
trated for clique metapopulations in Fig. 6, qualitatively
holds on regular graphs G, with small influence of the
spatial structure on the shape of the heatmap when m is
kept fixed, as seen by comparing Figs. 6(e-h) and 10.

V. DISCUSSION, GENERALISATIONS AND

ROBUSTNESS

Here, we discuss our main results by critically review-
ing our assumptions and outline possible generalisations.
We have studied the eco-evolutionary dynamics of a
metapopulation consisting of Ω identical demes with the

same carrying capacity K, containing wild-type W and
mutant M cells, that are connected by slow migration
and arranged according to regular circulation graphs.
While our approach holds for any regular graph, we have
specifically considered the examples of cliques (island
model), cycles, and square grids (with periodic bound-
aries) which are all circulation graphs, i.e. the rate of
in-flow and out-flow migration is the same at each deme.
This has allowed us to consider the impact of various
graph structures on the metapopulation dynamics. We
have analysed the metapopulation dynamics in a static
environment where K is constant, and in a time-varying
environment whereK switches endlessly betweenK+ and
K− < K+ at a rate ν; see Eq. (6). In static environments,
the deme size fluctuates about K and the metapopula-
tion dynamics is characterised by either M/W competi-
tion (when ψ ≫ 1), or by deme extinction (when ψ < 1).
We have used suitable coarse-grained descriptions to an-
alytically characterise the fate of the population in those
regimes; see Fig. 2. When, as here, the metapopulation is
spatially arranged on circulation graphs, the circulation
theorem [41, 47] guarantees that the fixation probability
in the competition-dominated regime is independent of
the migration rate and the spatial structure. We have
also devised a coarse-grained three-state description of
the dynamical equilibrium in the crossover regime (where
ψ ≳ 1) where in the long run there is a mixture of oc-
cupied demes of type W or M and empty demes; see
Appendix F. In time-fluctuating environments, when K
switches neither too quickly nor too slowly, each deme
is subject to bottlenecks that can be weak when K− is
large enough to ensure ψ(m,K−) ≫ 1. Deme extinc-
tion can be neglected in the weak bottleneck regime, and
we have combined a coarse-grained description with a
PDMP approximation to characterise theW/M competi-
tion in time-varying environments in the absence of deme
extinction. This has allowed us to show that weak bottle-
necks lead to a non-monotonic dependence of the mutant
fixation probability ΦG and mean fixation time ΘG on
the switching rate ν, with an explicit dependence on the
migration rate, whereas the spatial structure has an un-
noticeable effect on ΦG, regardless of spatial correlations,
but influences ΘG. When demes are subject to strong
bottlenecks, metapopulation extinction is a likely out-
come under slow and fast switching (ν ≪ 1 and ν ≫ 1),
whereas the overall extinction can be avoided for long
periods under intermediate switching, when W/M com-
petition and deme extinction dynamics are coupled. As a
hypothetical application, we have considered an idealised
treatment strategy for the rapid removal of the mutant
conditioned on minimising the risk of overall extinction.

The coarse-grained descriptions adopted in the static
and dynamic environments track the dynamics of the
number of M demes, which, in the case of the clique
and cycle, is a single unbreakable cluster of M demes
(M -cluster). This requires starting from such a cluster,
where here we assumed the natural initial condition of a
single M deme. Under these considerations, the number
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of active edges connecting W and M demes in cliques
and cycles is known exactly, making these graphs partic-
ularly amenable to detailed analysis. It is also possible
to capture the number of active edges exactly for other
starting configurations of these graphs (e.g. two or more
neighbouring M demes) provided that the unbreakable
structure of theM -cluster is preserved at all times t ≥ 0.
For the sake of concreteness and simplicity, we have fo-
cussed on a class of regular circulation graphs. In two
dimensions, spatial correlations between demes are more
complex, and the coarse-grained description of theM/W
competition dynamics on a grid has required approxima-
tions of the the number of active edges; see Appendix E.
A similar approximation is expected to hold on hyper-
cubic lattices (with periodic boundaries). These consid-
erations on the role of the initial condition and spatial
structure do not matter when the metapopulation dy-
namics is dominated by the extinction of demes since
these occur randomly. As a consequence, the “idealised
treatment strategy” based on the dynamic coupling of
competition and deme extinction to remove a targeted
strain is expected to hold on more complex structures,
including generic regular graphs.

In this work, we have focussed on the biologically rel-
evant regime of slow migration, which is well known to
increase population fragmentation and hence influences
its evolution and diversity [61, 87]. Here, the assump-
tion of slow migration is crucial for the coarse-grained
description of the metapopulation dynamics, and the val-
ues considered in our examples, m ≈ 10−5 − 10−2, are
comparable with those used in microfluidic experimen-
tal setups [63]. For m ≫ 1, the behaviour of a single
well-mixed deme is recovered; see Ref. [16]. For inter-
mediate m, the dynamics is characterised by coarsening,
i.e. the slow growth of domain sizes over time [88, 89].
For the sake of simplicity and without loss of generality,
we have assumed that migration occurs without any di-
rectional preference and with the same rate for M and
W . These assumptions can be relaxed and the coarse-
grained description be readily generalised to the case of
directional and type-specific migration [51], yielding the
same qualitative behaviour discussed here for circulation
graphs. We note however that asymmetric directional
migration significantly affects the evolutionary dynamics
on non-circulation graphs, like the star [41, 42, 50, 54]. It
would be interesting to study the evolution on these non-
circulation graphs in time-varying environments in the
case of symmetric and directional migration. For compu-
tational tractability, we have chiefly considered metapop-
ulations consisting of 16 demes of size ranging between
1 and 200, which are much smaller systems than most
realistic microbial communities. However, with microflu-
idic devices and single-cell techniques, it is possible to
perform spatially structured experiments with 10 to 100
cells per microhabitat patch, which are conditions close
to those used here [63, 90, 91]. Moreover, in-vivo host-
associated metapopulations are often fragmented into a
limited number of relatively small demes, e.g. Ω ≈ 25

and K ≈ 1000 in mouse lymph nodes [60, 92, 93].
Here, we have conveniently represented environmen-

tal variability by the random switching of the carrying
capacity K = {K+,K−} driven by a symmetric dichoto-
mous Markov noise (DMN), with the extension to asym-
metric DMN outlined in Appendix H. DMN is commonly
used to model evolutionary processes because it is sim-
ple to simulate and analyse, and closely reproduces the
binary conditions used in many laboratory-controlled ex-
periments. These are typically carried out in periodically
changing environments [80, 94, 95]. It has however been
shown that letting K vary periodically between K+ and
K− with a period 1/(2ν) leads to essentially the same
dynamics [18]. Moreover, the relationship between DMN
used here and other common forms of environmental
noise has been extensively studied [18, 19, 69, 70], show-
ing that DMN is a convenient and non-limiting choice to
model environmental variability.

VI. CONCLUSIONS

Cells evolve in spatially structured settings, where the
competition with those nearby is stronger than those
further afield, subject to never-ending environmental
changes. Spatial structure and environmental variability
impact the eco-evolutionary dynamics of microbial pop-
ulations significantly, but their joint influence is scarcely
considered. Mutations frequently arise in cell communi-
ties and some may increase cell proliferation while having
deleterious effects to a host organism, e.g. leading to can-
cerous cells or causing resistance to antibiotics [21, 30–
32]. Motivated by these issues, and inspired by recent ad-
vances in microfluidics allowing experiments to track dy-
namics at the single-cell level [63, 90, 91], we have investi-
gated the classic example of a rare mutant having a selec-
tive advantage over wild-type resident cells occupying a
spatially structured population in time-fluctuating envi-
ronments. Here, we have considered a class of metapop-
ulation models spatially arranged as regular (circulation)
graphs where cells of wild and mutant types compete in a
time-fluctuating environment. The metapopulation con-
sists of demes (subpopulations) with the same carrying
capacity, connected to each other by slow cell migration.
We represent environmental variability by letting the car-
rying capacity endlessly switch between two values asso-
ciated to harsh and mild conditions. In this framework,
we have studied how migration, spatial structure, and
fluctuations influence the probability and time for the
mutant or wild-type to take over the metapopulation,
and under which conditions extinction of demes and the
entire metapopulation occurs. This allows us to identify
when environmental variability coupled to demographic
fluctuations can be utilised to remove the mutant.
We have first considered the case where demes fluc-

tuate about a constant carrying capacity in static envi-
ronments. We have thus characterised analytically and
using stochastic simulations a regime dominated by the
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competition between the mutants and wild-type cells,
another where there is deme extinction, as well as a
crossover regime combining local competition and ex-
tinction. In time-varying environments, various quali-
tatively different dynamical scenarios arise and environ-
mental fluctuations can significantly influence the evolu-
tion of metapopulations. When the rate of switching is
neither too slow nor too fast, demes experience bottle-
necks and the population is prone to fluctuations or ex-
tinction. When the fluctuating carrying capacity remains
large and bottlenecks are weak, deme extinction is negli-
gible. The dynamics is thus dominated by the competi-
tion between wild-type cells and mutants to invade and
take over demes, and eventually the population, which
we characterise by devising a suitable coarse-grained de-
scription of the individual-based model when migration
is slow. This allows us to determine the fixation prob-
ability and mean fixation time by combining analytical
and computational tools, and to show that these quanti-
ties can vary non-monotonically with the environmental
switching rate. We find that in the regime of weak bottle-
necks, the mutant fixation probability on regular circu-
lation graphs depends on the migration rate, which is in
stark contrast with what happens in static environments,
while the spatial structure has no noticeable influence.
When the carrying capacity is small under harsh condi-
tions, bottlenecks are strong and there is a dynamical
coupling of strain competition in the mild environmental
state and deme extinction in the harsh environment. This
yields rich dynamical scenarios among which we identify
a mechanism, expected to hold on any regular graph,
driven by environmental variability and fluctuations to
efficiently eradicate one strain. As a hypothetical ap-
plication, we have thus proposed an idealised treatment
strategy to remove the mutant, assumed to be unwanted
and favoured by selection. We have shown that, when
each deme is subject to strong bottlenecks at intermedi-
ate switching rates, the mutant can be efficiently removed
by demographic fluctuations arising in the harsh envi-
ronment without exposing the entire population to a risk
of rapid extinction. We have thus determined the near-
optimal conditions on the switching rate and bottleneck
strength for this idealised treatment strategy and found
that these are qualitatively the same on other graphs.

In summary, our analysis sheds further light on
the influence of the spatial structure, migration, and
fluctuations on the spread of a mutant strain in time-
fluctuating environments. We have identified and
characterised various dynamical scenarios, displaying
a complex dependence on the switching and migration
rates. We have also shown how environmental variability
and fluctuations can be utilised to achieve desired
evolutionary outcomes like the efficient removal of a
pathogenic mutant. While we have made a number of
simplifying assumptions, allowing us to make analytical
progress, many of these can be relaxed without affecting
the results or the methodology. Our approach holds for
arbitrary regular graphs and can be generalised to more

complex spatial settings. We therefore believe that the
model studied here has numerous potential applications.
For instance, it mirrors the in vitro evolution of a
mutant across an array of microfluidic devices, where
cells migrate between “microhabitat patches” either via
microchannels or pipette, with bottlenecks implemented
via a strict control of the nutrient level in each device.

Data availability statement: The data and codes that
support the findings of this study are openly available at
the following URL/DOI: 10.5518/1660 [96].
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Appendix A: Further details on the model

In this section, we provide further details on the
model by discussing the master equation encoding its
individual-based dynamics, and give further details of
the size distribution of a single deme.
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TABLE I. Typical timescales in metapopulation dynamics

Process Timescale for Expression

Deme size growth
Time for deme size to reach
equilibrium

∼ lnK = O(1)

Deme fixation
Time for fixation
in single deme

∼ 1/s [7, 66, 67]

Migration
Expected time between
migration events

1

mK

Deme extinction
Mean extinction time
of isolated deme

τE(K) ≈ eK

K

Metapopulation extinction
Extinction time
for full metapopulation

θE ≈ τE lnΩ

Metapopulation fixation
Unconditional mean
fixation time

Unwieldy expression

Environmental switching
Correlation time of the
dichotomous Markov noise

1

2ν

TABLE II. Dynamical regimes and their characteristics

Regime Condition Characteristics Dependence

Static environment

Competition-dominated ψ ≫ 1
Mutant and wild-type species compete for demes
until fixation of the metapopulation.

ϕ independent of m and G

Extinction-dominated ψ < 1 Rapid metapopulation extinction θE independent of G

Intermediate ψ ≳ 1

Competition between demes with stochastic deme
extinction and recolonisation. Fraction of occupied
demes: Ωocc

Ω
≈ 1− 1

ψ

Weak G dependence of ϕint

Time-varying environment

Weak bottlenecks ψ(m,K−) ≫ 1
Non-monotonic ν-dependence of
ΦG, ΘG ΦG depends on m

Strong bottlenecks ψ(m,K−) < 1
Extinction likely at ν extremes.
Mutant removal optimal at intermediate ν

Independent of G

1. Master equation

As discussed in Sec. II, the individual-based model is
a continuous-time multivariate Markov process defined
by the reaction and transition rates Eq. (1)-(4). The
intra and inter-deme dynamics is encoded in a master
equation for the probability P ({nW , nM}, ξ, t) that at

time t the metapopulation is in the environmental state ξ
and configuration {nW , nM} ≡ (. . . , nW (x), nM (x), . . . ),
where nW/M (x) denotes the number of cells of typeW/M
in deme x = 1, . . . ,Ω. The master equation (ME) for
the metapopulation dynamics subject to environmental
switching on a regular graph G = {clique, cycle, grid}
with degrees (or number of nearest neighbours) given by
qclique = Ω− 1, qcycle = 2, or qgrid = 4 reads

∂P ({nW , nM}, ξ, t)
∂t

=
Ω∑

x=1

∑

α

[ (
E
−
α (x)− 1

)
T−
α (x)P ({nW , nM}, ξ, t) +

(
E
+
α (x)− 1

)
T+
α (x)P ({nW , nM}, ξ, t)

]

+
1

2

Ω∑

x=1

∑

y n.n. x

[ (
E
+
W (y)E−

W (x)− 1
)
Tm,GW (x) +

(
E
+
W (x)E−

W (y)− 1
)
Tm,GW (y)

]
P ({nW , nM}, ξ, t)

+
1

2

Ω∑

x=1

∑

y n.n. x

[ (
E
+
M (y)E−

M (x)− 1
)
Tm,GM (x) +

(
E
+
M (x)E−

M (y)− 1
)
Tm,GM (y)

]
P ({nW , nM}, ξ, t)

+ ν [P ({nW , nM},−ξ, t)− P ({nW , nM}, ξ, t)] ,
(A1)
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where y n.n. x denotes the sum over the qG neigh-
bours y of the deme x and P (. . . ) = 0 whenever
any of T±

α or Tm,Gα is negative. The shift opera-
tors E

±
α (x) act by raising or decreasing by one the

number of cells of type α in deme x. For exam-
ple, E

±
W (x)[nW (x)P (. . . , nW (x), nM (x) . . . , ξ, t)] =

(nW (x) ± 1)P (· · · , nW (x) ± 1, nM (x) · · · , ξ, t) and
E
±
M (x)[nW (x)P (· · · , nW (x), nM (x) · · · , ξ, t)] =

nW (x)P (· · · , nW (x), nM (x) ± 1 · · · , ξ, t). The first
line on the right-hand-side (RHS) of Eq. (A1) encodes
the intra-deme birth-death dynamics, the second and
third lines represent the inter-deme dynamics via inward
and outward migration, and the last line accounts for
symmetric random environmental switching. Here, the
ME has specifically been formulated in the presence
of environmental switching, but its static-environment
counterpart is readily obtained from Eq. (A1): it suffices
to set ν = 0 and to replace K(t) by a constant carrying
capacity K, yielding the ME for P ({nW , nM}, t) that
is the probability to find the metapopulation in a
given state {nW , nM} at time t (with no environmental
dependence). Moreover, by setting Ω = 1 and m = 0 in
Eq. (A1), the second and third lines on the RHS cancel,
we obtain the ME encoding the intra-deme dynamics of
a single isolated deme [16, 17].
While the ME Eq. (A1) holds for any regular graphs

G, in our examples we consider specifically the regu-
lar circulation graphs G = {clique, cycle, grid}. The
space-dependent individual-based dynamics encoded in
the ME Eq. (A1) has been simulated using the Monte
Carlo method described in Appendix I. It is worth not-
ing that demographic fluctuations eventually lead to the
extinction of the entire metapopulation, in all regimes.
However, this phenomenon occurs after a time growing
dramatically with the system size, and it can generally
not be observed in sufficiently large metapopulations; see
Fig. 2(b,bottom right).

2. Eco-evolutionary dynamics of a single deme

Since the metapopulation consists of a graph of con-
nected demes, all with the same carrying capacity, we can
gain significant insight into its dynamics by looking into
its building block. In this section, we therefore analyse
the eco-evolutionary dynamics of a single isolated deme
(when m = 0).
For an isolated deme, there is only intra-deme dy-

namics according to the birth-death process defined by
Eqs. (1) and (2). The ME for the dynamics of a sin-
gle isolated deme is thus given by setting Ω = 1 and
m = 0 in Eq. (A1); see Appendix A 1. The correspond-
ing intra-deme dynamics in a time-varying environment
can be simulated using exact methods like the Gillespie
algorithm [97], as in Refs [16–18, 20–24]. It is instruc-
tive to ignore all forms of fluctuations and consider the
mean-field approximation of an isolated deme dynamics
subject to a constant carrying capacity K ≫ 1. Follow-

ing Refs. [16, 17], with the transition rates Eq. (2), the
mean-field eco-evolutionary dynamics of a single isolated
deme is characterised by rate equations for the size n of
the deme and the fraction x = nM/n of mutants in the
deme, which read

ṅ =
∑

α

T+
α −

∑

α

T−
α = n

(
1− n

K

)
,

ẋ =
T+
M − T−

M

n
− x

ṅ

n
=
sx(1− x)

1 + sx
,

(A2)

where the dot indicates the time derivative and we have
used fM = 1+s and fW = 1. The prefactors of these de-
coupled rate equations predict the relaxation of the deme
size towards the constant carrying capacity, with n→ K
on a timescale t ∼ 1, and the growth of the fraction of
mutants, with x→ 1 on a timescale t ∼ 1/s. In the total
absence of fluctuations, when 0 < s ≪ 1 (small selective
advantage toM), in the mean-field picture, the deme size
quickly approaches the carrying capacity and there is a
timescale separation between n and x, respectively the
fast and slow variables, where n evolves on a timescale
of order 1 and x on a timescale ∼ 1/s ≫ 1; see Table I.
Thus, W cells are thus slowly wiped out by mutants that
take over the deme on a timescale t ∼ 1/s ≫ 1 [16, 17].
It is worth noting that with the effective transition rates
Eq. (21) we have assumed that invasions always occur
after deme size and composition relaxation. This means
that Eqs. (25) and (26) assume a timescale separation
between n and x in addition to the slow migration as-
sumption.
It is also relevant to consider the intra-deme dynamics

of a single isolated site subject to a finite constant carry-
ing capacity K. As explained in Appendix B, the intra-
deme dynamics can be well approximated by a Moran
process for a deme of constant size n = K [7, 16, 17, 64–
66], and characterised by the fixation probability and
mean fixation time given by Eq. (B3). The probabil-
ity ρM/W (K) that a single M/W cell takes over a W/M
deme of size K is given by Eq. (10).
When demographic fluctuations can be neglected and

randomness only arises from environmental variability
via Eq. (6), the intra-deme dynamics of an isolated deme
is well-captured by the piecewise deterministic Markov
process (PDMP) for n, obtained by ignoring demographic
fluctuations [16, 17, 85]. In the realm of the PDMP ap-
proximation, the deme size thus satisfies a determinis-
tic logistic equation in each environmental state, subject
to a carrying capacity that switches when the environ-
ment changes (K = K± when ξ = ±1), yielding the
n-PDMP [16–18, 21, 22, 32]

ṅ =




n
(
1− n

K−

)
if ξ = −1,

n
(
1− n

K+

)
if ξ = +1,

(A3)

that is decoupled from the mean-field equation for x that
is as in Eq. (A2). The stationary joint probability density
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of this n-PDMP is given by Eq. (19) [17, 18], while the
marginal probability density is

p(n; ν) =
1

2

∑

ξ

pξ(n; ν) =
Z
n2

[(
K+

n
− 1

)(
1− K−

n

)]ν−1

,

(A4)
where Z is the normalisation constant and n ∈ [K−,K+].
Despite ignoring the effect of demographic noise, p(n; ν)
aptly captures many properties of the quasi-stationary
distribution of the size of an isolated single deme [17, 18].
For instance, the long-time average deme size is accu-

rately approximated by N (ν) =
∫K+

K−

np(n; ν)dn, and is

a decreasing function of ν [16, 17].
While pξ(n; ν) and p(n; ν) give a PDMP description of

the quasi-stationary distribution of the size of an isolated
deme (m = 0), the n-PDMP stationary densities given
by Eqs. (19) and (A4) are still a valid approximation of
the long-time size distribution of n in the presence of
migration between many connected demes, as considered
here. In fact, as shown below in Fig. 7, the influence
of migration on the distribution of the deme size is es-
sentially unnoticeable, where the predictions of Eqs. (19)
for a single isolated deme (no migration) are compared
with the deme size distribution obtained from by sam-
ple averaging across all demes of the metapopulation in
the presence of migration. Its main features are therefore
well captured by Eq. (19) and Eq. (A4). As illustrated
by Fig. 7, the density p(n; ν) correctly predicts that the
deme size distribution is bimodal when ν < 1 and uni-
modal when ν > 1, and that it is peaked at n ≈ K±

when ν ≪ 1 (slow switching) and centred around n ≈ K
when ν ≫ 1 (fast switching), see Eq. (17). The joint
and marginal PDMP probability densities Eq. (19) and
Eq. (A4) provide valuable insight into the deme size dis-
tribution when these are subject to weak bottlenecks and
their extinction can be neglected [16–19, 21, 22, 32].
In the main text, we have used the PDMP approxi-

mation to describe the size distribution of a single iso-
lated deme subject to symmetric random switching of its
carrying capacity Eq. (6). Here, we show that spatial
migration has no noticeable influence on the size distri-
bution of a single deme of a metapopulation structured
as a clique (though the same holds for other spatial struc-
tures). To this end, in Fig. 7, we compare the size distri-
bution of a single deme in a metapopulation structured
as a clique in the presence of a migration per capita rate
m ∈ {10−3, 10−2, 10−1} (obtained from stochastic simu-
lations) with the predictions of Eq. (19). These results
illustrate that migration has no noticeable effect on the
deme size distribution that can approximated by PDMP
density Eq. (19) (or Eq. (A4)) in the absence and pres-
ence of migration.
As a consequence, the deme size distribution of any

metapopulation considered here is well approximated by
the joint and marginal PDMP densities p±(n; ν) and
p(n; ν), given by Eq. (19) and Eq. (A4).
Intuitively, this can be understood by noticing that the

spatial structures considered here are circulation graphs,

yielding the same inward and outward migration flow at
each deme, and each deme has the same carrying capac-
ity. As a consequence, the average number of cells per
deme is expected to be independent of migration. The
latter remains well captured by p±(n; ν) and p(n; ν) re-
gardless of migration rate, as seen in Fig. 7.

Appendix B: Deme invasion

In this section, we analyse the process of invasion of
a single deme subject to a constant carrying capacity K
when ψ(m,K) ≫ 1; see Sec. IIIA. In this competition-
dominated regime, the extinction of demes can be ne-
glected and their size rapidly fluctuates about K; see
Fig. 1(a). In this scenario, we can assume that the deme
size is constant n(x) = K, and describe the deme dy-
namics by tracking the number of mutants nM and wild-
type cells nW in the deme x. The deme composition
(nM , nW ) = (nM ,K − nM ) thus changes according to
the Moran process [7, 64–66]

(nM , nW )
T +

Mo−→ (nM + 1, nW − 1),

(nM , nW )
T −

Mo−→ (nM − 1, nW + 1), (B1)

where the transition rates are defined in terms of T±
M/W ,

given by Eq. (2), according to [16, 17, 21, 22]

T +
Mo(nM ) =

T+
MT

−
W

K
=
fM

f

nMnW
K

=
fM

f
nM

(
1− nM

K

)
,

T −
Mo(nM ) =

T−
MT

+
W

K
=
fW

f

nMnW
K

=
fW

f
nM

(
1− nM

K

)
.

(B2)

These transition rates correspond to the the effective
rates of increase and decrease in the number of M in
a deme of size K. This Moran process conserves the
deme size by accompanying each birth of anM/W by the
simultaneous death of a W/M , and is characterised by
the absorbing states (nM , nW ) = (K, 0) (M deme) and
(nM , nW ) = (0,K) (W deme). The M fixation probabil-
ity ϕMo and unconditional mean fixation time (uMFT)
θMo for this Moran process are classical results, and when
there are initially i cells of type M , they read [7, 65–67]

ϕMo(i) =
1− γiMo

1− γKMo

,

θMo(i) = ϕMo(i)

K−1∑

n=i

n∑

l=1

γn−lMo

T +
Mo(l)

− (1− ϕMo(i))

i−1∑

n=1

n∑

l=1

γn−lMo

T +
Mo(l)

,

(B3)

where γMo ≡ T −
Mo/T +

Mo = fW /fM = 1/(1 + s). The
fixation probability of a single mutant (i = 1) and of a
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FIG. 7. Quasi-stationary probability density of deme population size (n-QPSD) distribution on clique metapopulations for
various parameters and its n-PDMP approximation given by Eqs. (19) and (A4). Red and blue bars show data for the n-QPSD
conditioned on K(t) = K− and K(t) = K+, respectively. Red, blue, and black solid lines are the n-PDMP stationary densities
p−(n; ν), p+(n; ν), and p(n; ν), respectively, given by Eqs. (19) and (A4). Panels (a-c) are for m = 10−3, (d-f) for m = 10−2,
and (g-i) for m = 10−1. We have ν = 10−3 in (a,d,g), ν = 10−1 in (b,e,h), and ν = 102 in (c,f,i). Other parameters are Ω = 16,
K+ = 200, and K− = 20. All represent a single realisation tracked until t = 105.

singleW cell (i = K−1) are particularly relevant for our
purposes, and explicitly read

ρM ≡ ϕMo(1) =
s

1 + s

[
1

1− (1 + s)−K

]
,

ρW ≡ 1− ϕMo(K − 1) =
s

(1 + s)K

[
1

1− (1 + s)−K

]
.

(B4)

Appendix C: Deme and metapopulation mean

extinction times

In this section, we discuss the process of extinction of
a single deme that has a constant carrying capacity K
when ψ(m,K) ≪ 1; see Sec. III B. In this extinction-
dominated regime, we can assume that the deme size
rapidly fluctuates about K, and extinction occurs from
a deme of constant size n(x) = K prior to any invasion.
Without loss of generality (see below), we hence assume
that extinction occurs from entirely occupied demes, with
the metapopulation consisting only of W and M demes,
all of size K. In this representation, the dynamics of a

W/M deme when ψ ≪ 1 is given by the birth-death pro-
cess of Sec. II with transition rates T+

W/M = nW/M and

T−
W/M = n2W/M/K, subject to an absorbing boundary at

nW/M = 0; see Eq. (2). Clearly therefore, the deme dy-
namics is independent of its type, and the deme mean
extinction time (dMET) is the average time to reach
nW/M = 0 and is the same for W and M demes (dMET
is independent of s). A classical calculation (see, e.g.
Sec. 6.7 in Ref. [72]) for an initially fully occupied deme
of size K yields

τE(K) =

K−1∑

n=0

(
n!

Kn

∞∑

i=n+1

1

i

Ki

i!

)
. (C1)

The leading contribution to this expression arises from
the term n = 0: τE(K) ≃∑∞

i=1K
i/(i · i!). This expres-

sion, corresponding to the dMET of a deme initialised
with a single cell (of either type), is a good approxima-
tion of Eq. (C1) which indicates that the dMET is inde-
pendent of selection and initial condition (for the leading
order of τE). We can further simplify the leading contri-
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FIG. 8. θE vs. metapopulation size Ω for K = 7 (yellow),
K = 5 (blue), K = 3 (red) and m = 10−4. Markers are
simulation results and lines are predictions of Eq. (C4) for
cliques (solid lines / crosses), cycles (dashed lines / circles),
and grids (dotted lines / triangles). For the grid, the values
of Ω are chosen to maintain a square lattice, and thus occa-
sionally differ slightly from the metapopulation size used in
the cycle and clique. Markers of the same colour are almost
indistinguishable. Deviations occur due to the approximation
of τE(K) in Eq. (C2). Selection plays no role in this regime,
so results have been obtained with s = 0.

bution to the dMET by writing

τE(K) ≃
∞∑

n=1

Kn

n!

∫ 1

0

tn−1dt,

=

∫ 1

0

1

t

∞∑

n=1

(Kt)n

n!
dt,

=

∫ K

0

eu − 1

u
du,

where we have used u = Kt. The main contribution to
the last integral stem from the upper bound, yielding

τE(K) ≃ eK

K
. (C2)

The dMET hence increases almost exponentially with K,
is independent of the deme type, and its initial state.
The metapopulation mean extinction time (mMET)

in the regime ψ(m,K) ≪ 1 can be obtained analytically
within the realm of the above coarse-grained description,
in the spirit of the approach of Ref. [59] for cliques. The
metapopulation thus consists initially of entirely occu-
pied demes (i mutant demes and Ω − i type W demes).
Since deme extinction here occurs prior to any invasion,
we describe the metapopulation dynamics in terms of the
number j = 0, 1, . . . ,Ω of entirely occupied demes. Resi-
dents (of either W or M type) of these filled demes can
recolonise a neighbouring empty site at a rate B(j); see
Fig. 1(d). In addition, each occupied deme goes extinct
at a rate D(j). This coarse-grained description of the
metapopulation dynamics is therefore a birth-death pro-
cess with an absorbing state j = 0 corresponding to the

eventual extinction of the metapopulation, and a reflect-
ing boundary at j = Ω (all demes are occupied). In this
picture, proceeding as above [72], the mMET reads

θE(K,Ω) =
Ω−1∑

n=1



(
n−1∏

m=1

B(m)

D(m)

)
Ω∑

j=n

∏j
l=1

B(l)
D(l)

D(j)


 . (C3)

In the vein of Ref. [59], the recolonisation-birth rate
of occupied demes is B(j) = mKj(1 − j/Ω), corre-
sponding to a logistic growth with a rate proportional
to the expected number of migrations from an occupied
deme mK. Here, the extinction rate is D(j) = j/τE
and is inversely proportional to the mean local extinc-
tion time, that is the dMET. With ψ = mKτE , using∏j−1
l=n(1 − l

Ω ) = 1
Ωj−n

(Ω−n)!
(Ω−j)! , Eq. (C3) can be rewritten

as

θE(K,Ω) = τE(K)

Ω∑

n=1

Ω∑

j=n

1

j

(
ψ

Ω

)j−n
(Ω− n)!

(Ω− j)!
. (C4)

In the extinction-dominated regime ψ ≪ 1, the main
contribution to the inner sum stems from j = n, and the
leading contribution to the mMET is therefore

θE(K,Ω) ≈ τE(K)

Ω∑

n=1

1

n
= τE(K)HΩ, (C5)

where HΩ is the Ω-th harmonic number. Asymptot-
ically, we have HΩ ≃ ln(Ω) + γEM + O(Ω−1) where
γEM ≈ 0.577... is the Euler-Mascheroni constant. This
expression is independent of selection and, to leading or-
der, generally does not depend on the initial state of the
metapopulation. In the limit of a large metapopulation,
Ω ≫ 1, the metapopulation mean extinction time in the
regime ψ(m,K) ≪ 1, is asymptotically given by the sim-
ple expression Eq. (15): θE(K,Ω) ≃ τE(ln(Ω) + γEM).
When Ω ≫ 1 and K ≫ 1, we simply have θE(K,Ω) ≃
eK ln(Ω)/K.
The result θE(K,Ω) has been explicitly derived for

cliques (island model), but is found to provide good qual-
itative insight into the extinction dynamics for cycles and
grids; see Fig. 2.

Appendix D: Stationary deme occupancy

In the realm of the coarse-grained description of the
extinction-dominated regime discussed in the previous
section, we can use the rates B(j) = mKj(1 − j/Ω)
and D(j) = j/τE to estimate the number of occupied
demes Ωocc in the metapopulation when the environment
is static (constant carrying capacity K). At mean-field
level, we can write the following balance equation [35]

d

dt
Ωocc = B(Ωocc)−D(Ωocc),

= mKΩocc

(
1− 1

ψ
− Ωocc

Ω

)
.

(D1)
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FIG. 9. Metapopulation occupancy: Ωocc vs. t for cliques
(yellow), cycles (red), and grids (blue), with Ω = 100 and
K = 8. Simulation results averaged on 100 realisations for the
stationary number Ωocc of occupied demes for ψ = 100 (solid
lines), ψ = 5 (dashed lines), ψ = 2.5 (dotted lines), and ψ < 1
(dash-dotted lines). Eq. (9) predicts Ωocc = 100, 80, 60, 0 for
ψ = 100, 5, 2.5 and ψ < 1, respectively.

The equilibria of this equation are Ωocc = 0 and Ωocc =
Ωψ−1

ψ when ψ > 1. The equilibrium Ωocc = 0 is asymp-

totically stable when ψ < 1 and unstable otherwise. This
means that all demes go extinct, and there is extinction
of the entire metapopulation when ψ < 1. When ψ > 1,
the equilibrium Ωocc = Ωψ−1

ψ is asymptotically stable.

This corresponds to a fraction 1− 1/ψ of the demes be-
ing entirely occupied, and there is fraction 1/ψ of empty
demes. In the limit where ψ ≫ 1, we have Ωocc → Ω and
all demes and hence the metapopulation are fully occu-
pied. Putting everything together, we obtain Eq. (9).
This mean-field derivation of Ωocc is accurate for large

clique metapopulations but, as it ignores spatial corre-
lations, it is a crude approximation for cycles and grids;
see Fig. 9. In particular, Ωocc overestimates the number
of occupied demes in cycles when ψ is not much larger
than 1. However, ψ = mKτE allows us to distinguish be-
tween different regimes and provides a sound estimate of
the number of occupied demes in the intermediate regime
when ψ(m,K) ≈ meK is sufficiently bigger than 1.

Appendix E: Average number of active edges on the

square grid and the influence of the spatial structure

In principle, the coarse-grained description of the
M/W competition holds for any regular circulation
graph. However, this approach requires the number of
active edges for a given number of mutant demes to
be known, which, except for cycles (one dimension) and
cliques, is a difficult task due to complex spatial corre-
lations between demes. Here, we consider the case of
the square grid (with periodic boundaries), and illus-
trate how to estimate the average number of active edges
when the metapopulation consists of only one single fully-
occupied M deme and all other demes are occupied by

W cells. In the case of a large metapopulation, Ω ≫ 1,
with unit spacing between neighbours, we assume that
the mutant spreads outwards from the initialM deme ap-
proximately forming an M -cluster with a circular front.
If this circular M -cluster has a radius r, it has an area
πr2 containing a number i of M demes. The boundary
of the circularM -cluster is of length 2πr. Assuming that
this length is equal to the number of M demes on the
boundary, we find that r =

√
i/π and there are 2

√
iπ

boundary demes given i demes of type M . We therefore
estimate that the average number active edges for a grid
is Egrid(i) ≈ 2

√
πi. We have notably used this approx-

imation in the transitions rates Eq. (11) and Eq. (21)
for the coarse-grained description of M/W competition
in static and time-varying environments in the regime of
weak bottlenecks.
In Figs. 2(a,top) and 4(c), we have found that the spa-

tial structure has a barely noticeable influence on the fix-
ation probability under both constant carrying capacity
and in the regime of weak bottlenecks. The mean fixa-
tion time also appears unchanged when the carrying ca-
pacity is constant. Fig. 10 shows the heatmaps on a cycle
and a grid metapopulation for the “idealised treatment
strategy” proposed in Sec. IVB, which are almost identi-
cal. This is in accord with Eqs. (27) predicting that the
same migration rate yields the same near optimal con-
ditions for the heatmaps of metapopulation on any reg-
ular graph, here a cycle and a grid. Simulation results
confirm spatial structure is only responsible for minor
quantitative changes in the region of the heatmaps cor-
responding to the near-optimal “treatment conditions”.
This stems from the removal scenario characterising the
idealised treatment strategy being due to deme extinc-
tion which is mostly independent of G and m.

Appendix F: Intermediate dynamics in static

environments

When ψ ≳ 1 with mK < 1 (slow migration) in static
environments, migration and deme extinction occur on
the timescale τE . In the long run, deme recolonisations
and extinctions balance each other, yielding a dynami-
cal equilibrium consisting of Ωocc = Ω(1 − 1/ψ) occu-
pied demes and Ω − Ωocc empty demes; see Fig. 9. In
this regime, the three-state coarse-grained description of
the dynamical equilibrium consists of a random mixture
of empty demes, and occupied W and M demes; see
Fig. 1(d). After a mean time θGint the metapopulation
reaches the dynamical equilibrium consisting of a frac-
tion 1− Ωocc/Ω = 1/ψ empty demes, and the remaining
demes are all of either typeM orW with probability ϕGint
and 1− ϕGint, respectively. The dynamical equilibrium is
thus defined by the quantities ψ, given by Eq. (8), and
ϕGint which is the probability that mutants M take over
the Ωocc = Ω(1 − 1/ψ) occupied demes, where the un-
conditional mean fixation time is given by θGint. In this
section, we complete the results given in the main text by
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FIG. 10. Near-optimal condition for the idealised treatment strategy on a cycle and grid metapopulation. (ν,K−) heatmaps of
Φ, Θ, ΘE and (1−Φ)(1−Θ/ΘE) for the cycle (a-d) and grid (e-h) metapopulations; see Appendix E. White space in panels (c)
and (g) indicates the parameter region where at least one realisation for those parameters did not reach extinction by t = 105.
Grey lines in panels (d) and (h) show the near-optimal conditions for the idealised treatment strategy: ψ(m,K−) < 1 below
the top horizontal line, mK+θE > 1 above the bottom horizontal line, and νθE > 1 above the curved line, while the vertical
line indicates where ν < 1 and θE from Eq. (15). The near-optimal treatment conditions is the yellowish cloud at the centre of
the area enclosed by these lines. Other parameters are Ω = 16, m = 10−4, s = 0.1, and K+ = 200. In all panels, initially there
is a single M deme and Ω− 1 demes occupied by W .

considering metapopulation intermediate dynamics on a
regular graph G, obtaining the explicit results ϕGint and
θGint for G = {clique, cycle, grid} reported in Fig. 11 when
the metapopulation initially consists of a single M deme
and Ω − 1 demes occupied by W . This region is con-
cretely defined for values of ψ such that 1 < ψ < KΩ
for Ω ≫ 1, where the lower bound ensures Ωocc = 1
from Eq. (9) and the upper bound is obtained by con-
sidering the limiting case where every individual is ex-
pected to migrate on the timescale of deme extinction.
Using that ψ ≈ meK for K ≫ 1, we obtain the condition
ln(1/m) ≲ K ≲ ln(KΩ/m). These bounds are illustrated
by the vertical lines in Fig. 11.

The intermediate regime is characterised by M/W
competition and deme extinction. Therefore, in addition
to invasions, aW deme may become anM deme through
extinction followed by a recolonisation, i.e. W → ∅ →
M , where ∅ indicates an extinct deme. Similarly, an M -
deme can be changed into a W -deme via M → ∅ → W .
We assume that there is initially a single M deme in the
metapopulation (and Ω − 1 demes of type W ). With

a probability psurv (see below), the initial M deme sur-
vives the short transient as the metapopulation reaches
the dynamical equilibrium that consists of the M deme,
the remainingW demes, and extinct demes. The number
of M demes i = 0, 1, . . . ,Ωocc grows and shrinks through
invasions and extinction-recolonisation events. We as-
sume that immediately ΩE = Ω/ψ demes go extinct,
so that the metapopulation quickly reaches its equilib-
rium occupancy Ωocc = Ω(1− 1/ψ). In this dynami-
cal equilibrium, a W deme can become an M deme via
W → ∅ (W deme extinction) at rate rext,W followed by
∅ →M (recolonisation by M) at rate rGrec,M . The overall

extinction-recolonisation reaction W → ∅ → M thus oc-
curs at rate 1/(1/rext,W +1/rGrec,M ). Here, the rate of W

deme extinction is rext,W = (Ωocc− i)/τE and τE is given
by Eq. (7). We proceed similarly for the extinction of an
M deme and its recolonisation into a W site according
to M → ∅ → W . Taking also into account the rate of
invasion (see Eq. (11)) the number of M demes i on a
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FIG. 11. ϕint vs. K for s = 0.1 (blue) and s = 0.01 (red)
on clique (solid lines / crosses), cycle (dashed lines / circles),
and a grid (dotted lines / triangles). The different symbols
and lines are almost indistinguishable. θint vs. K for the
same parameters for a clique metapopulation. The vertical
solid and dashed line indicate where the number of occupied
demes Ωocc ∈ [1,Ω − 1]; see text. The dotted line indicates
where ψ = KΩ, i.e. every individual migrates in the time
required for an independent deme extinction. Markers show
simulation results, solid lines are predictions of Eq. (F3), and
dash-dot lines are predictions of Eq. (14). Other parameters
are m = 10−4 and Ω = 16.

regular graph G varies according to the transition rates

T̃+
i (m,G,K) = mK

ẼG(i)

qG

[
ρM +

1

ψ − 1

qG
Ω

i(Ωocc − i)

ẼG(i)

]
,

T̃−
i (m,G,K) = mK

ẼG(i)

qG

[
ρW +

1

ψ − 1

qG
Ω

i(Ωocc − i)

ẼG(i)

]
.

(F1)

It is important to note that the ẼG(i) in these expres-
sions explicitly represent the number of active edges be-
tween M and W on the metapopulation given i mutant
demes, taking into account the presence of extinct demes.
Therefore, their expressions for a given graph structure G
generally differ from those considered in the competition-
dominated regime, denoted EG(i). With these rates,
we can solve the following first-step analysis equations
for the probability ϕGint,i that the dynamical equilibrium

comprising initially i demes of type M consists of oc-
cupied M demes and extinct demes after a mean time
θGint,i

(T̃+
i + T̃−

i )ϕGint,i = T̃+
i ϕ

G
int,i+1 + T̃−

i ϕ
G
int,i−1,

(T̃+
i + T̃−

i )θGint,i = 1 + T̃+
i θ

G
int,i+1 + T̃−

i θ
G
int,i−1.

(F2)

These equations are subject to the boundary conditions
ϕGint,0 = 0, ϕGint,Ωocc

= 1 and θGint,0 = θGint,Ωocc
= 0. We

thus have ϕGint ≡ psurvϕ
G
int,1 and θGint ≡ psurvθ

G
int,1 + (1 −

psurv)τE . The factor psurv = Ωocc

Ω = 1−1/ψ is the proba-
bility that the initialM deme reaches the dynamical equi-
librium (after what is assumed to be a short transient),
while the contribution (1 − psurv)τE to θGint accounts for
the probability that the initial M deme goes extinct in
a mean time τE (given by Eq. (7)) before reaching the
equilibrium. The final expressions of ϕGint and θGint thus
read

ϕGint = psurv
1

1 +
∑Ωocc−1
k=1

∏k
m=1 γ̃(m)

,

θGint = ϕGint

Ωocc−1∑

k=1

k∑

n=1

∏k
m=n+1 γ̃(m)

T̃+
n

+ (1− psurv)τE ,

(F3)
where

γ̃G(i) ≡
ρW + 1

ψ−1
qG
Ω
i(Ωocc−i)

ẼG(i)

ρM + 1
ψ−1

qG
Ω
i(Ωocc−i)

ẼG(i)

, (F4)

and the upper limit of the first sum in ϕGint and θGint is
rounded to the nearest integer. We find that ϕGint de-
pends on the migration rate m, carrying capacity K, and
the spatial structure G via γ̃G and Ωocc. In the case of
the clique discussed in the main text, the expression of
Eq. (F4) simplifies to

γ̃clique(i) ≡ γ̃clique =
ρW + 1

ψ−1

ρM + 1
ψ−1

. (F5)

We notice that for all graphs G, the expressions
of Eq. (F3) coincide with those of Eq. (14) of the

competition-dominated regime, with γ̃G(i)
ψ≫1−→ γ =

ρW /ρM . In Fig. 11, we find that the predictions of
Eq. (F3) are in good agreement with simulation results
for all spatial structures G. Moreover, we observe that
the spatial dependence of ϕGint and θGint is barely notice-
able.

Appendix G: Fixation probability in time-switching

environments under weak bottlenecks

In this section, we discuss in further detail the depen-
dence of the fixation probability ΦG(ν,m) on the migra-
tion rate m and spatial structure G of the metapopula-
tion in time-switching environments under weak bottle-
necks.



25

In static environments, where K is constant, a gener-
alisation of the circulation theorem guarantees that the
fixation probability is independent of the migration rate
and spatial structure of the metapopulation arranged on
a circulation graph; see Eq. (14). This results from a
correspondence between the fixation probability and the
number of M demes performing a biased random walk
on {0, . . . ,Ω} with a bias that is independent of m and
G [41].
In time-switching environments under weak bottle-

necks (deme extinction is negligible) the correspondence
is between the fixation ΦG(ν,m) and the random walk
(with absorbing boundaries) on {0, . . . ,Ω} × {−1, 1} for
the number of fully mutant demes in the environmen-
tal state ξ = ±1. As a consequence, ΦG(ν,m) is the
probability of absorption in the state Ω. In this set-
ting, defining the state of the random walk by (i, ξ),
where i = 0, 1, . . . ,Ω, the random walk moves to the
right (i → i + 1) with a probability r(i, ξ), to the left
(i→ i−1) with a probability ℓ(i, ξ), or switches environ-
ment (ξ → −ξ) with probability ϵ(i, ξ), where

r(i, ξ) =
mNξ(ν)

EG(i)
qG

ρM,ξ(ν)

mNξ(ν)
EG(i)
qG

ρM,ξ(ν) +mNξ(ν)
EG(i)
qG

ρW,ξ(ν) + ν
,

ℓ(i, ξ) =
mNξ(ν)

EG(i)
qG

ρW,ξ(ν)

mNξ(ν)
EG(i)
qG

ρM,ξ(ν) +mNξ(ν)
EG(i)
qG

ρW,ξ(ν) + ν
,

ϵ(i, ξ) =
ν

mNξ(ν)
EG(i)
qG

ρM,ξ(ν) +mNξ(ν)
EG(i)
qG

ρW,ξ(ν) + ν
.

(G1)
ΦG(ν,m) thus coincides with the probability that the
random walk defined by Eq. (G1) gets absorbed in the
state i = Ω. Unlike the case of the competition-
dominated regime under the static environment, the fixa-
tion probability here typically depends on all parameters,
including the migration rate. For the fixation probability
to remain unchanged under parameter changes requires
strict conditions. This can be seen by assuming that for
a parameter set S1 the probabilities r1(i, ξ), ℓ1(i, ξ), and
ϵ1(i, ξ) define the random walk corresponding to the fix-
ation probability ΦG

i,ξ. We therefore have

ΦG
i,ξ = r1(i, ξ)Φ

G
i+1,ξ+ℓ1(i, ξ)Φ

G
i−1,ξ+ϵ1(i, ξ)Φ

G
i,−ξ. (G2)

We can also assume that under another set of parameters,
say S2, ΦG

i,ξ remains unchanged for all i and ξ with a
corresponding random walk defined by the probabilities
r2(i, ξ), ℓ2(i, ξ), and ϵ2(i, ξ), such that

ΦG
i,ξ = r2(i, ξ)Φ

G
i+1,ξ+ℓ2(i, ξ)Φ

G
i−1,ξ+ϵ2(i, ξ)Φ

G
i,−ξ. (G3)

Subtracting the second equation from the first, and using
conservation of probability, we find that

(r1(i, ξ)− r2(i, ξ))(Φ
G
i+1,ξ − ΦG

i,−ξ)

+ (ℓ1(i, ξ)− ℓ2(i, ξ))(Φ
G
i−1,ξ − ΦG

i,−ξ) = 0.
(G4)

The cases of ΦG
i+1,ξ − ΦG

i,−ξ = 0 and ΦG
i−1,ξ − ΦG

i,−ξ = 0
imply that the fixation probability of all transient states

is identical, and therefore we neglect this unphysical case.
Defining ∆r(i, ξ) = r1(i, ξ) − r2(i, ξ) and ∆ℓ(i, ξ) =
ℓ1(i, ξ)− ℓ2(i, ξ), Eq. (G4) yields

∆r(i, ξ) =
ΦG
i+1,ξ − ΦG

i,−ξ

ΦG
i,−ξ − ΦG

i−1,ξ

∆ℓ(i, ξ). (G5)

For each of the 2(Ω − 2) transient states we therefore
have a constraint given by Eq. (G5). However, ∆r(i, ξ)
and ∆ℓ(i, ξ) are controlled by |S1| = |S2| = p degrees
of freedom (system parameters) where p ≪ 2(Ω − 2).
Therefore, the system is overdetermined and Eq. (G5)
is only generally satisfied across all (i, ξ) for the trivial
solution ∆r(i, ξ) = ∆ℓ(i, ξ) = 0, i.e. S1 = S2. Thus,
in time-fluctuating environments the fixation probability
ΦG(ν,m) is expected to depend on m and G.
Interestingly however, Fig. 4(c) illustrates the almost

unnoticeable dependence of ΦG(ν,m) on the specific spa-
tial structure. This is due to the overall similar impact
of the factor EG(i)/qG for the various graphs. While
differences arise when m varies at fixed ν due to large
variations in the timescales of the competition dynam-
ics, varying spatial structure produces small changes in
these timescales, and as such leads to only unnoticeable
changes in ΦG.

Appendix H: Asymmetric dichotomous Markov

noise & environmental bias

For the sake of simplicity and clarity, in the main text
we have focussed on symmetric environmental switching.
In this section, we relax this assumption and outline how
the results of the paper can be generalised to the case
when there is an environmental bias, i.e. when there is a
different average time spent in the states ξ = ±1.
Here, we consider the coloured asymmetric dichoto-

mous Markov noise (aDMN), also called telegraph pro-
cess, ξ(t) ∈ {−1, 1} that switches between ±1 accord-
ing to ξ → −ξ at rate ν± when ξ = ±1 [68–70]. It is
convenient to write these asymmetric switching rates as
ν± = ν(1∓δ), where ν ≡ (ν−+ν+)/2 is the mean switch-
ing rate , δ ≡ (ν− − ν+)/(ν− + ν+) = (ν− − ν+)/(2ν)
denotes the switching bias, with |δ| ≤ 1 and δ > 0
when more time is spent on average in the mild environ-
ment [18, 19]. At stationarity, this aDMN has average
⟨ξ(t)⟩ = δ and autocovariance ⟨ξ(t)ξ(t′)⟩−⟨ξ(t)⟩⟨ξ(t′)⟩ =
(1− δ2)e−2ν|t−t′| [16, 17, 68–70].
The aDMN drives the time-switching carrying capacity

K(t) =
1

2
[K+ +K− + ξ(t) (K+ −K−)] , (H1)

which is the same expression as Eq. (6), but now driven
by the aDMN ξ(t) [16–19, 21, 22, 32]. The carrying ca-
pacity switches back and forth between K+ (mild envi-
ronment, ξ = +1) and K− < K+ (harsh environment,
ξ = −1) at rates ν± = ν(1∓ δ) according to

K+

ν+−−⇀↽−−
ν−

K−.
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FIG. 12. Fixation probability ΦG and mean fixation time ΘG

against switching rate ν for different values of δ for a clique
metapopulation. Red, blue, and yellow represent δ = −0.5,
δ = 0.0, and δ = 0.5, respectively. Markers show simulation
results and lines are predictions of Eq. (26). Other parameters
are Ω = 16, s = 0.01, m = 10−4, K+ = 200, and K− = 20.

At stationarity, the expected value of the carrying ca-
pacity is ⟨K(t)⟩ = 1

2 (K+ + K− + δ(K+ − K−)), and
its auto-covariance is ⟨K(t)K(t′)⟩ − ⟨K(t)⟩⟨K(t′)⟩ =(
K+−K−

2

)2 (
1− δ2

)
e−2ν|t−t′| [68–70]. Under asymmet-

ric switching, the stationary population distribution of a
single deme is well approximated by the stationary den-
sity of the piecewise Markov process Eq. (A3) (n-PDMP)
[17], now driven by the aDMN, whose joint density is

pξ(n; ν, δ) ∝





1+δ
n2

(
K+−n
n

)ν(1−δ)−1 (
n−K−

n

)ν(1+δ)
if ξ = +1,

1−δ
n2

(
K+−n
n

)ν(1−δ) (
n−K−

n

)ν(1+δ)−1

if ξ = −1,

(H2)
where the proportional factor accounts for the normali-
sation constants. The stationary marginal density of this

n-PDMP, up to the normalisation constant, is

p(n; ν, δ) =
∑

ξ

(
1 + ξδ

2

)
pξ(n; ν, δ),

∝ 1

n2

(
K+ − n

n

)ν(1−δ)−1(
n−K−

n

)ν(1+δ)−1

,

(H3)
where we have again omitted the normalisation constant.
The n-PDMP density captures the mean features of the
deme size distribution: It is bimodal with peaks at K+

and K− (n ≈ K±) when ν ≪ 1, and is unimodal and
centred around n ≈ 2K+K−/[(1 − δ)K+ + (1 + δ)K−]
when ν ≫ 1 [18, 21, 22, 24, 32]. When ν(1± δ) ≲ 1, the
size n of each deme tracks the carrying capacity, and a
bottleneck occurs at an average frequency ν+ν−/(2ν) =
ν(1 − δ2)/2, each time K switches from K+ to K− [18,
21, 32].
In the realm of the coarse-grained description discussed

in the main text, the regime of weak bottlenecks domi-
nated by the W/M competition can be characterised by
theM fixation probability ΦG(ν, δ,m) and unconditional
mean fixation time ΘG(ν, δ,m) by Eq. (26) obtained by
solving the first-step analysis equations Eq. (23) and
Eq. (24) with the transition rates Eq. (21) and Eq. (22)
obtained using Nξ(ν, δ) averaged over Eq. (H3), i.e.
Nξ(ν, δ) =

∫
npξ(n; ν, δ)dn. The results of Fig. 12 for

a clique metapopulation show that the predictions of the
coarse-grained description based on the PDMP approxi-
mation Eq. (H3) are in good agreement with simulation
results. ΦG(ν, δ,m) and ΘG(ν, δ,m) are again found to
exhibit a non-monotonic dependence on ν, with extrema
in the range of intermediate ν. The main effect of δ is
to increase the M fixation probability and reduce the
mean fixation time when δ > 0, which is intuitively clear
since this corresponds to a bias towards the mild state
favouring the fixation of M .
The regime of strong bottlenecks is dominated by the

interplay between M/W competition in the mild state
(K = K+) and deme extinction in the harsh environmen-
tal state (K = K−), occurring in time θE ≡ θE(K−,Ω).
In this regime, the near-optimal conditions for the re-
moval of the mutant strain can be obtained as under
symmetric switching (given by Eq. (27)) and read

ψ(m,K−) < 1, ν(1± δ) ≲ 1,

ν(1 + δ)θE ≳ 1, mK+θE
1 + δ

1− δ
≳ 1,

(H4)

which, as Eq. (27), are conditions depending on m but
not on the spatial structure G. The main differences from
Eq. (27) are in the conditions θEν− = θEν(1+δ) ≳ 1 and
mK+θE

ν−
ν+

= mK+θE
1+δ
1−δ ≳ 1. The first of these changes

ensures that a switch occurs before the metapopulation
mean extinction time in the harsh environment, θE . The
second ensures there are enough recolonisations in the
mild environment to maintain the metapopulation given
the minimum switching rate required to prevent extinc-
tion in the harsh environment, i.e. rearranging θEν− ≳ 1
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gives ν ≳ 1/(θE(1 + δ)) and for sufficient recolonisations
we require mK+/ν+ ≡ mK+/(ν(1 − δ)) ≳ 1, where we
substitute our expression for ν. Since θE is independent
of δ, we expect that the conditions Eq. (H4) define a
region in the parameter space that is similar to that ob-
tained under symmetric switching, shifted towards higher
(lower) values of ν and K− when δ < 0 (δ > 0). This
picture is confirmed by the heatmaps of Fig. 13.

Appendix I: Simulation methods & plots

In this section, we explain how the simulation of the
individual-based dynamics of the full model has been im-
plemented. We also outline how we have plotted the sim-
ulation/numerical data that we have obtained to produce
the figures discussed in the main text and appendices.
In addition to the coarse-grained descriptions of the

model that provide us with analytical approximations of
metapopulation dynamics in different regimes, we have
employed Monte Carlo (MC) methods to simulate the full
individual-based model and mirror the dynamics encoded
in the ME of Eq. (A1). In this section, we outline how we
have performed the stochastic simulations that we have
notably used to test our analytical predictions.
While not exact-like other simulation methods (e.g.

the Gillespie algorithm [97]) due to time-discretisation,
the MC algorithm used here improves on computational
efficiency making simulations with larger numbers of cells
on the metapopulation that run for long times feasible
and straightforward to implement. The questions of com-
putational efficiency and tractability are particularly crit-
ical in the context of this work in which we study fixa-
tion and extinction of spatially arranged populations, a
notoriously computationally demanding problem. In this
context MC algorithms similar to the one used are useful
tools to investigate the properties of spatially extended
systems; see, for example, Ref. [98].
In the case of symmetric environmental switching, the

MC algorithm that we have employed can be described as
follows: The graph, consisting of the spatially arranged
Ω deme forming the metapopulation, is initialised by ran-
domly picking an initial value for the carrying capacity
K(0) = {K−,K+} with equal probability (in the con-
stant environment case K(0) = K with probability 1),
populating a single deme with K(0) M -cells, and the re-
maining Ω − 1 of the demes with K(0) W -cells. Time
is then discretised in units of Monte Carlo steps (MCS)
whereby in each MCS we perform 2N birth/death events,
where N is measured at the start of the MCS. We choose
2N as we typically have N births and N deaths per
unit time according to the transition rates Eq. (2) and
Eq. (4) when summing over all cells on the metapopula-
tion. Therefore, our units of time are consistent between
the theoretical model and the Monte Carlo simulation.
We emphasise that migration events and environmental
switches do not contribute to the 2N events comprising
an MCS. Therefore, 2N birth/death events are performed

in a single MCS, and the expected number of migrations
and environmental switches in the MCS corresponds to
the migration and switching events expected in one unit
of time. Each of the 2N events in an MCS occurs se-
quentially and the rates are updated for the next event in
the MCS. The type of each event in an MCS is selected
sequentially based on the rates of the events, where a
higher rate means a larger probability of that event be-
ing selected. Concretely, the following steps for a single
MCS occur:

• Check if an environmental switch, occurring with
rate ν, occurs on the metapopulation. The rate of
reaction of birth/death/migration events on the en-
tire metapopulation is N(1+m+N/K(t)). There-
fore, the probability of an environmental switch is
given by ν/(N(1 +m+N/K(t)) + ν).

• Otherwise, a deme x is picked for an event to
occur based on the total rate of events on that
deme, n(x)(1 + m + n(x)/K(t)). Therefore, the
probability of selecting a deme x for an event is
n(x)(1+m+n(x)/K(t))
N(1+m+N/K(t)) .

• A species is picked for an event to occur based on
the total rate of events of that species on the se-
lected deme. The propensity of a given species α
on deme x is nα(x)(1 + m + n(x)/K(t)), and the
total rate of events on the deme is as in the pre-
vious step. Therefore, that species is selected with

probability nα(x)(1+m+n(x)/K(t))
n(x)(1+m+n(x)/K(t)) = nα(x)

n(x) .

• The species on the deme can then either undergo a
birth, death, or migration event, with the probabil-
ity of each depending on the rates of these events.
Birth, death, or migration is selected with proba-

bility
T+,−,m
α (x)

nα(x)(1+m+n(x)/K(t)) .

• The selected event is performed.

• The above steps are repeated until 2N birth/death
events are performed.

Since each event is selected based on the current propen-
sities of the system, and those are subsequently updated
before the selection of the next event. The probability
of events in our MC algorithm is thus statistically equiv-
alent to that of a simulation generating the statistically
correct sample paths (e.g. Gillespie [97]). The approx-
imation of this algorithm is to assign each MCS to 2N
birth/death events with N defined at the start of the
MCS, unlike a statistically exact simulation algorithm
where each event time is drawn individually.
In all simulations, each realisation is simulated until

fixation, tracking when fixation occurs and which species
fixates. In simulations for Figs. 2(b), 6, 10, and 13 the
simulation then continues until metapopulation extinc-
tion or a large fixed time T (here we set T = 105). For
a given set of parameters, if extinction does not occur
in any realisation, the extinction time is not recorded.
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FIG. 13. Near-optimal condition for the idealised treatment strategy on the clique metapopulation. (ν,K−) heatmaps of Φ, Θ,
ΘE and (1− Φ)(1−Θ/ΘE) for the δ = 0.5 (a-d) and δ = −0.5 (e-h) metapopulations; see Appendix H. Whitespace in panels
(c) and (g) indicate the region of the parameter where at least one realisation for those parameters did not reach extinction
by t = 105. Grey lines in panels (d) and (h) show the near-optimal conditions for the idealised treatment strategy in the
asymmetric environment: ψ(m,K−) < 1 below the top horizontal line, mK+θE

1+δ
1−δ

> 1 above the bottom horizontal line, and

ν(1 + δ)θE > 1 above the curved line, while the vertical line indicates where ν < 1 and θE from Eq. (15). The near-optimal
treatment conditions is the yellowish cloud at the centre of the area enclosed by these lines. Other parameters are Ω = 16,
m = 10−4, s = 0.1, and K+ = 200. In all panels, initially there is a single M deme and Ω− 1 demes occupied by W .

The data is averaged to obtain the fixation probability,
the mean fixation time, and the mean time to extinction
where applicable. Furthermore, we record the standard
error on the mean for each quantity. In Figs. 2, 4, and
12, 103 realisations are ran for each set of parameters,
and these data are plotted with the standard error on
the mean shows as error bars. In the heatmaps, each
data point corresponds to the average value for 103 sim-
ulations at that point in parameter space. The standard

error on the mean is not plotted for the heatmaps.
In the case that K(t) = K = constant, we set ν = 0

and K+ = K− = K, such that the first step of the above
process is effectively skipped. In the case that the switch-
ing is asymmetric, the starting state is chosen according
to the stationary distribution of K(t), i.e. K(0) = K±

with probability 1±δ
2 . The probability for an environmen-

tal switch in the first step then depends on the current
environmental state, where a switch occurs with proba-
bility ν±/(N(1 +m+N/K(t) + ν±) for K(t) = K±.
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and M. Kim, Antibiotic-induced population fluctuations
and stochastic clearance of bacteria, eLife 7, e32976
(2018).

[31] N. Mahrt, A. Tietze, S. Künzel, S. Franzenburg, C. Bar-
bosa, G. Jansen, and H. Schulenburg, Bottleneck size and
selection level reproducibly impact evolution of antibiotic
resistance, Nature Ecology & Evolution 5, 1233 (2021).

[32] L. Hernández-Navarro, K. Distefano, U. C. Täuber, and
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