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Malignant lymphomas encompass a range of malignancies with incidence rising globally,
particularly with age. In younger populations, Hodgkin and Burkitt lymphomas predominate,
while older populations more commonly experience subtypes such as diffuse large B-cell, fol-
licular, marginal zone, and mantle cell lymphomas. Positron emission tomography/computed
tomography (PET/CT) using ['®FI fluorodeoxyglucose (FDG) is the gold standard for staging,
treatment response assessment, and prognostication in lymphoma. However, interpretation
of PET/CT is complex, time-consuming, and reliant on expert imaging specialists, exacerbat-
ing challenges associated with workforce shortages worldwide. Artificial intelligence (Al
offers transformative potential across multiple aspects of PET/CT imaging in this setting.

Al applications in appointment planning have demonstrated utility in reducing nonatten-
dance rates and improving departmental efficiency. Advanced reconstruction techniques
leveraging convolutional neural networks (CNNs) enable reduced injected activities of
radiopharmaceutical and patient dose whilst maintaining diagnostic accuracy, particularly
benefiting younger patients requiring multiple scans. Automated segmentation tools, pre-
dominantly using 3D U-Net architectures, have improved quantification of metrics such as
total metabolic tumour volume (TMTV) and total lesion glycolysis (TLG), facilitating prog-
nostication and treatment stratification. Despite these advancements, challenges remain,
including variability in segmentation performance, impact on Deauville Score interpretation,
and standardization of TMTV/TLG measurements. Emerging large language models (LLMs)
also show promise in enhancing PET/CT reporting, converting free-text reports into struc-
tured formats, and improving patient communication.

Further research is required to address limitations such as Al-induced errors, physiological
uptake differentiation, and the integration of Al models into clinical workflows. With robust
validation and harmonization, Al integration could significantly enhance lymphoma care,
improving diagnostic precision, workflow efficiency, and patient outcomes.
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mantle cell lymphomas predominate. The incidence of lym-
phoma is increasing worldwide.' Although the prevalence is
higher in high-income countries, lymphoma-associated mor-
tality is disproportionately greater in low-income countries. In
the UK, there are around 4900 deaths from non-Hodgkin lym-
phoma and 310 deaths from Hodgkin lymphoma each year.””

Introduction

Lymphoma encompasses a heterogenous group of malig-
nancies with variable prevalence depending on patient
age. In younger patients Hodgkin and Burkitt lymphomas pre-
dominate. However, with increasing age, other subtypes such

as diffuse large B-cell (DLBCL), follicular, marginal zone and
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['®F] fluorodeoxyglucose positron emission tomography/
computed tomography (FDG PET/CT) is the gold standard
for staging patients with high-grade lymphoma, being supe-
rior to CT alone. The Lugano classification is a widely used
and validated method of staging lymphoma with stage T dis-
ease representing the mildest form involving one nodal group
and stage IV the most severe, representing extranodal dis-
ease.” FDG PET/CT is also widely used for interim and end
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of treatment response assessment in lymphoma’ in conjunc-
tion with Deauville Score (DS), a widely validated response
assessment reporting scale.”

In the context of increasing demand for medical imaging
with aging populations, there is a worldwide shortage of radi-
ologists and nuclear medicine physicians.” This workforce
challenge has contributed to increased rates of burnout
which can negatively impact patient care. There has been an
explosion of research using artificial intelligence (AI) meth-
ods in medical imaging over the past few years, with imaging
experiencing the greatest increase of Al-enabled medical
device regulatory submissions.” There are a range of com-
mercially available radiology Al products, however, relatively
few target nuclear medicine imaging.

Interpretation of FDG PET/CT scans in patients with lym-
phoma can be complex, with heterogenous disease through-
out the body and potential pitfalls related to physiological
and false-positive activity, which requires experience for
accurate interpretation. In addition, there is increasing evi-
dence regarding the utility of quantitative measurements
derived from FDG PET imaging to predict prognosis and
response to treatment in lymphoma. Widespread clinical use
of quantitative metrics is not yet established, in part because
until recently this required additional, potentially time-con-
suming evaluation. Al has the potential to transform the way
in which PET/CT is performed and interpreted. If used effec-
tively Al could significantly reduce the burden of reporting
PET/CT studies for patients with lymphoma while providing
additional information which could directly enhance patient
management. Figure 1 highlights the areas in which Al could
be implemented to improve care of patients with lymphoma
undergoing PET/CT investigations.

Appointment Scheduling

Al tools have been developed to facilitate efficient planning of
hospital appointments. Several studies have demonstrated
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the benefits of utilizing machine learning to interrogate the
electronic medical record in patients referred for diagnostic
investigations and predict the likelihood of non-
attendance.” ' This insight could prompt additional inter-
vention for those more at risk of not attending, resulting in
more effective scheduling and optimized departmental
throughput delivering care for patients with lymphoma in a
more-efficient manner. Published studies predicting likeli-
hood of appointment attendance have largely employed rela-
tively simple machine learning techniques; the performance
of these models could be improved by applying more com-
plex multi-modal Al techniques. Lymphoma is prone to a
delay in diagnosis due to the variability in its presentation'”
and increasing efficiency of the investigative pathway particu-
larly FDG PET/CT staging, could improve patient outcome.

Image Reconstruction

PET/CT image reconstruction is an area of intense research
activity, with increasing evidence demonstrating real-world util-
ity of more efficient scan acquisition, reduced dose and
improved resolution for detection of small lesions. Until rela-
tively recently, ordered-subset expectation maximization
(OSEM) reconstruction was the standard for PET/CT image
reconstruction, and quantitative and semi-quantitative analysis
of conventionally reconstructed PET images were used to vali-
date scoring and grading of treatment response in patients with
lymphoma used routinely. More recent reconstruction techni-
ques such as point-spread function (PSF)'” and Bayesian penal-
ized likelihood (BPL) reconstruction have been developed.H
The latest generation of silicon photomultiplier enabled scan-
ners also incorporate Al-assisted image reconstruction algo-
rithms."” Whilst these developments provide several benefits
including increasing sensitivity particularly due to superior sig-
nal recovery within small lesions increasing detectability, cau-
tion is required because of the nonspecific nature of FDG
activity and  potential  reduced  specificity.'®  These
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Figure 1 Steps in the PET imaging pathway which can be targeted by Al tools in lymphoma patients.
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reconstructions can also augment benign/inflammatory tracer
activity and in some circumstances, this could lead to upstaging
of Deauville Score in the assessment of treatment response in
patients which might impact management decisions.

Al can be utilized to aid dose reduction, improve image
quality and result in more efficient scanning and subsequent
cost savings, enhancing patient throughput by scanning
more patients on a single scanner. It may also have benefits
for patients who cannot tolerate the standard duration of
scanning acquisition and reduce motion artefacts. A reduc-
tion in dose is particularly important for younger patients
presenting with lymphoma who may undergo multiple PET
scans over their lifetime. Dose reduction requires an efficient
solution to deal with increased noise. Convolutional neural
networks (CNN) can be trained on matching high and low
noise PET/CT images to consistently produce low noise
images from noisy data.'’

Theruvath et al demonstrated in a prospective study that
by simulating lower dose FDG PET/MRI scans (by reducing
counts) in 20 children and young adults with lymphoma, a
CNN could be developed to reduce dose associated with the
investigation by 50% with identical sensitivity and specificity
of reporting.'® Similarly, Chaudhari et al. utilised low count
whole body PET combined with deep learning to reduce the
dose of a PET scan by four-fold. In a multicentre study
involving 50 patients from 3 institutions, they demonstrated
maintained diagnostic image quality in a variety of conditions
including lymphoma.'” Earlier attempts at low dose PET/CT
imaging had demonstrated reduced conspicuity for hyper-
metabolic lesions and altered SUV measurements, but by uti-
lizing a CNN their model demonstrated equivalence to full
dose studies. This model was externally validated simulating
real-world situations utilizing a variety of scanners. Katsari et
al. utilized the FDA-cleared SubtlePET (Subtle Medical,
subtlemedical.com) Al algorithm to reduce image noise and
radiation exposure associated with PET imaging in a prospec-
tive study with 61 patients and demonstrated noninferiority
of Al-processed FDG PET/CT examinations with 66% of the
standard dose in a variety of malignancies including lym-
phoma. Reviewers could tell whether they were viewing the
Al generated datasets, but the mean image quality score sub-
jectively evaluated by reviewers for datasets was not signifi-
cantly different. Only 9 (14.8%) patients in this study had
lymphoma and the implications of this algorithm on quanti-
tative metrics was not evaluated. This study incorporated
cost analysis in which the departments were able to save
25% on gross annual radiopharmaceutical costs.”’

Data-driven motion correction (as opposed to hardware
motion correction) in PET/CT acquisition has facilitated the
use of Al to reduce motion artefact, particularly associated
with respiration and subsequently improve image quality.”'
To date, no studies have reported the impact of this technol-
ogy on patients undergoing PET/CT for lymphoma.

Automated Segmentation

There is an increasing drive to perform quantitative analysis
of PET/CT images in lymphoma for prognostication and

treatment response assessment. Previously, simple quantita-
tive measurements such as the diameter of the largest tumor
lesion or the furthest distance between lesions have been uti-
lized and shown to correlate with prognosis.”” However,
there is growing evidence supporting measurements of total
metabolic tumor volume (TMTV) and total lesion glycolysis
(TLG) as potentially more accurate measures for predicting
prognosis across various malignancies including lym-
phoma.”” In lymphoma, these measurements require seg-
mentation of all radiologically evident lymphoma lesions in
the body. There is no consensus currently on the most accu-
rate technique for selection/segmentation of lymphoma
lesions on PET/CT scans and currently manual verification of
all lesions detected and segmented is advised for clinical use.

Manual segmentation of lymphoma lesions through delin-
eation of regions of interest (ROI) by expert clinicians is often
clinically impractical due to its time-consuming nature. This
has necessitated development of semi-automated and auto-
mated segmentation techniques. Developing automated
methods for lymphoma detection and segmentation is chal-
lenging due to the highly variable distribution, shape and
volume of lymphoma lesions. Additionally, normal physio-
logical FDG uptake and clearance can result in SUV measure-
ments similar to lymphomatous lesions and have to be
manually excluded during the segmentation process. Chal-
lenges may also arise with automated segmentation techni-
ques when there is diffuse lymphomatous involvement of the
liver and/or spleen.

Given the complexity and time required for segmentation
of lesions to accurately determine TMTV and TLG, surrogate
measures have been proposed. Girum et al. utilized a CNN
with only sagittal and coronal PET maximum-intensity pro-
jection reconstruction images as a surrogate to full lesion seg-
mentation in the calculation of TMTV in 382 patients with
DLBCL.”" This tool demonstrated efficacy as a prognostic
biomarker being correlated to TMTV calculated from manual
segmentation and demonstrating similar hazard ratios to
TMTV from manual segmentation in predicting progression
free survival. Similarly, Yousefirizi et al. effectively utilized
MIP images to assess risk of relapse/disease progression using
end of treatment scans in 31 patients with primary mediasti-
nal large B cell lymphoma (PMBCL).”

Multiple semi-automated and automated segmentation
techniques have evolved for TMTV and TLG measurement
including threshold-based methods (eg. SUV ;. >2.5 or 4),
region-growing or ROI dependent methods (e.g. segment
using 40% or 50% of SUV,,,. in ROD). This is an area where
the introduction of convolutional neural networks (CNNs)
has produced clear tangible benefit. CNNs use deep learning
methods to learn the hierarchy of relevant features from pro-
vided training data. The open-source 3D U-Net architecture
has been the most utilized class of CNN evaluated for seg-
menting lymphoma lesions on PET/CT so far. This has a dis-
tinctive U-shaped design including an encoder path for
feature extraction and a decoder path for localization
(Fig. 2). U-Nets enable pixel-level classification by incorpo-
rating skip connections that link corresponding encoder and
decoder layers, preserving spatial details. Performance can be
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Figure 2 3D U-Net Architecture utilized for automated segmentation.

enhanced by modifying the architecture with additional
layers and this has demonstrated impressive results.”

The dice similarity coefficient (DSC) is a commonly uti-
lized measure of segmentation performance when compared
to a defined ground truth (typically semi-automated/manual
segmentation of lesions by an expert reader). Several CNNs
such as that reported by Sibille et al. have been developed to
identify suspicious lesions in patients with lymphoma.”’
Subsequent efforts have focused on using these techniques to
calculate TMTV and TLG. Capobianco et al utilized a CNN
for TMTV estimation in DLBCL with similar performance
(DSC 0.73 (Interquartile range (IQR) 0.33-0.86)). This
CNN-predicted TMTV correlated with progression-free sur-
vival (PFS) and overall survival (OS), with hazard ratios of
2.3 (95% Confidence Interval (CI): 1.5-3.6) and 2.8 (95%
CI: 1.6-5.1) respectively in 301 patients.””

Blanc Durand et al utilized a 3D U-Net architecture to cre-
ate an automated segmentation tool for TMTV calculation in
DLBCL, trained on 639 patients and validated on 94 patients
with a DSC of 0.73 (Standard deviation (SD) £ 0.2).” Tt
incorporated an additional processing layer in which there is
concatenation of the PET and CT segmentation data to
improve the model performance. However, this model
underestimated TMTV by 20.8% in the validation cohort
and this was statistically significant. This underestimation
has emerged as a common problem with Al-based segmenta-
tion demonstrating poor precision in small lymphoma
lesions with limited stage disease and/or small lesions. Huang
et al also utilized a 3D U-net architecture with concatenated
PET/CT data in 173 patients with lymphoma, but utilized
Dempster-Shafer theory to deal with discrepancies between
the PET and CT data regions of interest and this improved
the segmentation performance of the 3D U-net architecture,
particularly for segmentation of small lymphoma lesions
(DSC 0.64, SD + 0.02).”” By adding a squeeze and excitation
model to the 3D U-net architecture, Yousefirizi et al.
achieved a DSC of 0.77 (SD £ 0.08) in a multicentre study
of 194 DLBCL and PMBCL patients.”'

Yousefirizi et al. subsequently developed TMTV-Net, a
fully automated TMTV segmentation tool utilizing 3D U-Net

architecture with additional cascaded refinement. They
added a test-time augmentation cascade to the 3D U-Net
architecture to enhance prediction robustness and a soft vot-
ing cascade to better manage model uncertainty. Compared
to the previously described Bland Durand et al and Huang et
al 3D”* U-net models these cascades improved performance
in a multi-site cohort of 517 patients with DLBCL and pri-
mary mediastinal B cell lymphoma with an overall DSC 0.66
(SD + 0.16).”> The downside of the model was that the
training data included a variety of different malignancies in
addition to lymphoma, which may have impacted its effec-
tiveness in accurately identifying lymphoma lesions.
Karimdjee et al. evaluated a commercial CNN-based seg-
mentation tool (Al lesion detector) implemented within
Syngo.via (Siemens Healthineers, siemens-healthineers.com)
for automated TMTV and TLG measurement in 51 patients
with DLBCL, evaluating inter-observer agreement and impact
on reporting time in clinical practice.”” They reported a pos-
sible reduction in time to calculate TMTV and TLG in clinical
practice when compared to semi-automated threshold meth-
ods of segmentation with excellent inter-observer agreement.

Outcome Prediction

Accurate outcome prediction in lymphoma provides valuable
prognostic information for clinicians and patients. There is
also the future potential to stratify patient treatment and fol-
low up with the goal being to improve outcomes and quality
of life. The use of Al segmentation, as described previously,
allows extraction of quantitative metrics relating to spread of
disease, metabolic activity of lesions, density and texture of
lesions and underlying body composition of the patient.’”
These models can be formed as part of a single neural net-
work, outputted as a readable result for analysis and interpre-
tation by the clinician or combined with other modelling/
machine learning techniques.

One of the largest studies assessing semi-quantitative anal-
ysis as part of outcome prediction, performed by Mikhaeel et
al., assessed the predictive ability of TMTV in DLBCL in
1241 patients derived from five different published studies.”
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They demonstrated TMTV, segmented with a >4 SUV
threshold, to be superior to the currently used clinically
based International Prognostic Index (IPI) in predicting PFS
and OS. The study created an International Metabolic Prog-
nostic Index model consisting of TMTV, age and stage which
also outperformed IPI and was superior at defining both PFS
and OS high-risk groups. This model can be applied to real-
world data with a simple CSV tool provided as part of their
research output allowing computation of model coefficients.
Cottereau et al. reported that MTV derived from >2.5 SUV
thresholding in 258 patients was significant in predicting 5-
year PFS and OS in early-stage HL.”" Frood et al. in a mix of
289 early and advanced stage HL patients demonstrated the
ability of TMTV derived using two different segmentation
thresholds (=4.0 SUV and >1.5 times mean liver SUV) to
predict 3-year PFS and OS. "

The largest study looking at distribution of disease based
on distance between the two farthest PET-avid lesions
(Dmax) was performed by Girum et al. in 382 patients.””
Their study demonstrated the significant ability of Dmax cal-
culated by CNN based segmentation from coronal and sagit-
tal PET MIP images to predict PFS and OS in DLBCL,
although confidence intervals were relatively large and the
area under the curve (AUC) of time-dependent receiver oper-
ating characteristics (ROC) for OS of the test dataset was
only 0.5. Durmo et al. demonstrated the ability of Dmax to
predict PFS in 155 HL patients, using 20 cm as a cutoff value,
to be independently associated with PFS (HR =2.70, 95% CI
1.1-6.63, P-value =0.03)." The use of radiomics based
modelling has also been demonstrated as being able to pre-
dict PFS and OS in both DLBCL and HL. However, there is
still currently a lack of repeatability. Carlier et al demon-
strated an ROC AUC of 0.62 % 0.07 for 2-year PFS in 545
patients with DLBCL using a model derived from radiomic
features (RFs) extracted from the largest lesion, although RFs
did not outperform clinical features alone.™ The study by
Frood et al. showed a ridge regression model using RFs
derived from a 1.5x mean liver SUV segmentation threshold
had the highest test AUC for 2-year event free survival (EFS)
in HL at 0.81 #+ 0.12.”% However, there was no significant
difference when compared to a logistic regression model
derived from MTV alone.

Body composition analysis (Fig. 3) offers the opportunity
to extract additional information from PET/CT indicating a
patient’s general frailty and may provide an indication of
prognosis.’' Presence of sarcopenia is one of the most
reported body composition metrics in the literature. The
largest study in lymphoma to date by Xiao et al demonstrated
that the presence of baseline sarcopenia was associated with
increased neutropenia hospitalization adjusted Odds Ratio
1.64 (95% CI 1.01-2.65) and inability to complete the stan-
dard number of treatment cycles (1.49, 95% CI 1.02-
2.16).%* Guo et al. demonstrated that the skeletal muscle
gauge, a metric calculated from skeletal muscle area adjusted
for height and muscle density was a predictor of toxicity
(HR=1.11,95% CI, 1.04-1.18), PFS (2.889; 95% CI, 1.401-
5.959) and OS (2.655; 95% CI, 1.218-5.787) in 201 patients
with DLBCL.™ Besutti et al. reported that reduced skeletal

Figure 3 Example of Al-driven body composition analysis. Lym-
phoma PET-CT (CT component) at the level of the L3 vertebral
body. Labels show adipose tissue (subcutaneous light brown; vis-
ceral blue), muscle (yellow), bone (green) and miscellaneous soft
tissue (red) volumes. Figure provided by Chris Winder, PhD Fel-
low, University of Leeds.

muscle density/increased intramuscular fat rather than skele-
tal area adjusted for height was associated with poor OS and
PFS, HR=1.35; CI=1.03-1.7; P=0.03, and HR=1.30;
CI=1.04-1.64; P=0.024, respectively.”" These studies all
used measurements taken at the level of L3.

One of the limitations when trying to evaluate the litera-
ture and for the community to build a body of evidence sur-
rounding outcome prediction is the heterogeneity in data.
There are variations in outcome measures assessed, the stages
of disease included in analysis, definitions for metrics and
thresholds used to segment lesions, treatment and follow up
regimes used and differences in the populations studied. A
consensus on definitions of thresholds, metrics and appro-
priate outcome measures needs to be reached and a large
well planned multicentre, ideally federated, study needs to
be designed.

Response Assessment

Accurate response assessment is vital in lymphoma as it fre-
quently influences patient management and helps guide
treatment adaption. Use of the Deauville Score is the current
standard of care, evaluating any residual lymphomatous dis-
ease activity relative to background liver and mediastinal
blood pool uptake to determine the degree of metabolic
response’. End-of-treatment scans have routinely been per-
formed for most lymphoma subtypes. More recently, the use
of interim PET/CT, specifically during chemotherapy for
Hodgkin’s lymphoma has been formally incorporated into
treatment guidelines.
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Figure 4 A 67-year-old man with relapsed Hodgkin’s lymphoma treated with 3 cycles of salvage chemotherapy. 18F-
FDG PET images in the coronal plane highlighting a residual right paratracheal lymph node (arrow) which changed
from Deauville score 3 to 4 between ordered subset expectation maximization (OSEM) (left) and Bayesian penalized

likelihood (BPL) Q.Clear (right) reconstructions.

During the validation of Deauville Score guidelines, images
were acquired using OSEM image reconstruction. However,
new image reconstruction technologies, including Al meth-
ods, may cause interpretative challenges for application of
the Deauville Score. For example, the Q.Clear (GE Health-
care) reconstruction algorithm has been shown in some stud-
ies to upgrade the Deauville Score from 3 to 4 (Fig. 4),
potentially leading to treatment escalation with increased risk
of treatment toxicity without clear evidence of benefit.”>*® If
AT derived techniques of image reconstruction are to be uti-
lized in clinical practice their impact on response assessment
must be carefully evaluated.

Development of Al methods have largely focused on
tumor segmentation and prognosis prediction at a single
time point but have not addressed the evolution of disease or
treatment response that can lead to immediate treatment
decisions. Few have utilized CNN based automated TMTV
calculation for pretreatment, interim and end of treatment
scans to provide a more accurate assessment of treatment
response. Sadik et al. demonstrated the efficacy of CNN-
based automated mediastinal blood pool and liver SUV ;.
measurement to facilitate more efficient Deauville Score cal-
culation in 80 patients with lymphoma. This model demon-
strated good agreement with manual measurements by
experienced imaging specialists.”’ Jemaa et al. demonstrated
the efficacy of an end-to-end model to calculate TMTV and
treatment response (utilizing Deauville Score) from pretreat-
ment, interim and end of treatment PET/CT scans in patients

with FDG-avid non-Hodgkin Lymphoma. This retrospective
multicentre study validated this CNN-based model on 678
patients from 3 clinical trials involving over 90 centers. It
demonstrated excellent observer agreement (85%-93%) com-
pared to adjudicated responses from an independent review
committee.”” Further research is required to refine auto-
mated response assessment methods and demonstrate their
clinical utility.

Enhanced Reporting

AT has the potential to improve the accuracy and efficiency of
PET/CT interpretation in lymphoma allowing the reporter to
focus on placing imaging findings in context for clinical col-
leagues.

By utilizing automated segmentation techniques described
earlier, CNNs can be utilized to predict the likelihood that a
detected lesion is suspicious for cancer or not. For example,
Sibille et al. developed a CNN with automated lesion detec-
tion for use in lymphoma and lung cancer, which in tandem
predicted the likelihood that a detected lesion was malignant
and achieved excellent performance in lymphoma with an
AUROC curve >0.95 in a 600-patient cohort.”’

Combining automated segmentation with TMTV and TLG
calculation should allow reporting clinicians to confer impor-
tant additional information regarding the extent of disease
beyond conventional staging using the Lugano classification.
Frood et al demonstrated that the use of an automated FDG
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PET/CT segmentation tool in high-grade lymphoma reduced
the time taken to report studies without reducing report
quality in reporters with a range of experience.w

Psychological implications of implementing Al tools in the
interpretation of complex scans needs to be considered. Like
humans, Al is prone to error and the extra layer of explain-
ability associated with some Al tools can hinder and per-
suade physicians to follow incorrect suggestions.””

Large Language Models (LLMs) and Multi-
Modal Models

LLMs particularly generative pretrained transformer (GPT)-
based models have gained popularity for their ability to pro-
vide fast and accurate written answers to diverse questions.
They have potential to be utilized in a variety of medical sub-
fields and given that diagnostic radiology exists in predomi-
nantly a digital format, it lends itself well to the
implementation and evaluation of LLM solutions.

Structured reporting in radiology is emerging as a neces-
sity, with societies such as the European Society of Radiology
(ESR) and the Radiological Society of North America (RSNA)
promoting its adoption in clinical settings. It may improve
the radiological workflow, allowing more efficient communi-
cation among physicians.”’ There may be resistance to the
implementation of structured reporting due to the time-con-
suming nature of completing a structured report when com-
pared to free text reports. Additionally, some express
concerns regarding decreased diagnostic accuracy and com-
pleteness due to constraints of structured reports.”

Despite guidelines issued by radiological societies on the
desired information to be issued in PET/CT reports, a study
in 2010 demonstrated that a minority of information deemed
desirable was included in clinical reports.”” With increasing
complexity of treatment regimens, accurate staging and con-
veying this information appropriately is vital. By utilizing
structured reports in primary staging of diffuse large B-cell
lymphoma Schoeppe et al. demonstrated a perceived signifi-
cant improvement across many domains by hematologists
such as comprehensibility, quicker information extraction
and easier classification of staging, with all four of the hema-
tologists involved in this study preferring structured reports
over free text reports.”” By leveraging LLMs free-text reports
can effectively be converted into structured reports with the
intended benefit of improving the quality of reports while
alleviating the concerns regarding the time-consuming nature
of structured reports.”’ Multiple studies have demonstrated
the effectiveness of LLMs in summarizing radiology
reports”® including a study which utilized this for PSMA
PET/CT studies.”’ Huemann et al. utilized a bidirectional
encoder representation from transformers (BERT) language
model which showed promise in accurately predicting Deau-
ville Scores from 4542 PET/CT reports.””

Utilizing LLMs to improve the interaction of patients with
the radiology department is another area of promise. LLMs
can generate layperson or colloquial radiology reports to
enhance understanding by patients” and Rogasch et al.

demonstrated that ChatGPT (Open Al, chatgpt.com) could
assist in preparing patients for FDG PET/CT studies and
explain the reports of these scans. However, in this study, the
LLM showed potential to cause confusion and/or harm
through incorrect responses and hallucinations. Further
improvement in consistency of responses is required to imple-
ment this into a clinical setting.”’ The recent evolution of
LLMs into more generalist Al models has enabled them to pro-
cess multi-modal inputs, such as text, images, and laboratory
results, by incorporating additional neural networks. This
could have transformative potential for medical imaging,
including in patients with lymphoma, with the potential to
streamline the reporting workflow by automating comparison
with previous studies, summarizing pertinent clinical data
from electronic health records and producing an interactive
Al-assisted report for review and evaluation by clinicians.”"**
However, there are several hurdles to achieving this, including
poor performance in interpretation of 3D data, challenges
combining image and text data and establishing business cases
for their use.”” There is a question of liability with large lan-
guage and multi-modal models which needs to be addressed.
Whilst these show considerable promise and there is extensive
commercial interest, no healthcare-related LLMs or multi-
modal models have been granted regulatory approval at the
time of writing.

Current Limitations of Al in Lymphoma

Deployment of Al within the nuclear medicine department
and to assist the management of patients with lymphoma has
clear potential. However, there are several key areas which
must be addressed through further research. Utilizing Al-
driven PET/CT image reconstruction warrants more robust
evaluation of the impact on patient management/outcome,
due to divergence from established clinical practice based on
high quality prospective trials employing older reconstruc-
tion algorithms from which Deauville Score assessment crite-
ria were derived and utilized extensively in segmentation
methods. All Al models (predominantly CNNs using the U-
Net framework) performing automated segmentation still
rely on end user validation for regions of interest and the
removal of physiological uptake. Further work should be
undertaken to implement a model which can more exten-
sively target differentiation between physiological and patho-
logical uptake. Additionally, the development of validation
data for automated segmentation is vital to facilitating clinical
implementation of measurements such as TMTV and TLG
which could improve the prognostication and treatment
stratification of patients with lymphoma. LLMs also require
refinement with a reduction in inaccuracies and hallucination
episodes to ensure reliability and clinical translation.

Conclusion

The integration of artificial intelligence (AI) into PET/CT
imaging for lymphoma offers significant potential to enhance
diagnostic accuracy, streamline workflows, and improve



384

J. Cairns et al.

patient outcomes. Al tools can optimize appointment sched-
uling, image reconstruction, segmentation, and reporting,
addressing workforce shortages and increasing efficiency.
However, challenges such as variability in segmentation per-
formance, impact on established frameworks like the Deau-
ville Score, and the reliability of large language models
should be addressed. Future efforts should focus on robust
validation and harmonization to ensure Al's safe and effective
implementation, paving the way for more precise and per-
sonalized care in lymphoma management.
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