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Abstract

Drowsy driving is one of the leading contributing factors to traffic accidents. As
drivers continue driving despite being aware of their drowsy states, it is necessary to
adopt active countermeasures to avoid them falling asleep behind the wheel. Based on
the multiple resources model, this study proposed five countermeasure types using
voice assistants (no-countermeasure vs. meaninglessly listening vs. meaningfully
listening vs. repeating vs. answering) and investigated their effects on countering
drowsiness for young and middle-aged drivers. A five-week simulated manual driving
experiment was conducted to evaluate the effectiveness of countermeasures based on
driver performance, physiological indicators, eye movement indicators, and subjective
ratings. Results indicated that repeating and answering were the two most effective
countermeasures. The self-reported sleepiness of these two countermeasures (6.328 and
5.276 for repeating and answering, respectively) were significantly (p < 0.05) lower
than that of the no-countermeasure (7.983). The physiological arousal state in term of
skin conductance level for the two (1.798 and 1.990 for repeating and answering,
respectively) were significantly (p < 0.05) higher than that of the no-countermeasure
(1.022). Consistent patterns were also found in driving performance, eye movement
indicators, psychomotor vigilance task accuracy, and subjective acceptance ratings.
These findings suggested that countermeasures involving more resource stages can
enhance drivers’ alertness. The trend of higher alertness in the answering condition
compared to the repeating condition highlighted the advantage of increasing cognitive
load in countering drowsiness. Although young and middle-aged drowsy drivers did
not differ on their average responses to different countermeasures, they showed
differences in their physiological activation in reacting to the countermeasures.
Drowsiness countermeasures should be tailored to fulfill individual needs, particularly
for middle-aged drivers. This study not only clarifies how drowsiness countermeasures
work but also offers practical guidance for vehicle designers on using in-vehicle voice

assistants effectively.
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1 Introduction
1.1 Background

Drowsy driving is one of the leading contributory factors to traffic accidents,
resulting in approximately 20% of all motor vehicle crashes (National Sleep Foundation,
2023) and 1.8 % of fatal crashes from 2017 to 2021 in the U.S.A. (NHTSA, 2023).
Drowsiness is a state of low alertness associated with lower frontal lobe functioning,
greater exertion of mental effort, and an involuntary tendency for rapid skeletal muscle
inhibition (APA Dictionary of Psychology, n.d.). The state of drowsiness may result
from low arousal (e.g., long, monotonous driving), high workload (e.g., multitasking
while driving), or sleep-related factors (e.g., sleep deprivation) (Ayas et al., 2023). It
could reduce drivers’ attention, impair their hazard perception, and slower their
responses, and thus increase the risk of accidents (Kaplan & Prato, 2012; Smith et al.,
2009).

Given the common causes of driver drowsiness, implementing timely
countermeasures is crucial for driving safety. More than 16 methods to mitigate
drowsiness have been reported in the literature (Gershon et al., 2011; Meng et al., 2015),
including talking with passengers, taking a short nap, listening to music or the radio,
opening the window, drinking, and etc. However, drivers continue to drive despite
being aware of their drowsy states and available effective countermeasures (Jackson et
al., 2011; Nordbakke & Sagberg, 2007). This tendency might stem from drivers’
reliance on their past experiences, perceived social norms, journey goals, or a lack of
understanding for the risks associated with drowsy driving due to reduced brain
activation levels (Jackson et al., 2011; Large et al., 2017). Therefore, it is important to
adopt active countermeasures for drowsiness to avoid drivers falling asleep behind the
wheel.

With the widespread of in-vehicle voice assistants (RationalStat LL.C, 2023), it is
promising to adopt voice assistants as active drowsiness countermeasures. Moreover,

given the significant rise of global median age (UN DESA, 2024) and the high



prevalence of sleepy driving across ages (Obst et al., 2011), exploring the feasibility of
voice-assistant based drowsiness countermeasures for drivers of different ages has
become increasingly important. By adopting voice assistants, this study innovatively
proposed different countermeasures and conducted a simulated driving experiment to
evaluate their effectiveness in countering drowsiness among drivers of different age
groups.
1.2 Adopting voice assistants as drowsiness countermeasures

In-vehicle voice assistants provide different types of interaction such as playing the
radio and starting conversations. They may be promising drowsiness countermeasures
with several advantages. First, adopting such assistants to counter drowsiness is
convenient. In 2023, over 20 million vehicles have equipped with automotive voice
assistants, with an installation rate higher than 80 % (RationalStat LLC, 2023). These
widespread voice assistants can provide convenient ways to counter drowsiness when
the monitoring systems detect drivers’ drowsiness (Arakawa, 2021; Lu et al., 2022).
Second, engaging drowsy drivers in voice interactions is a proactive drowsiness
countermeasure. Compared to passively receiving countermeasures such as feedback
and warnings to be notified of their drowsy state (Aidman et al., 2015; Nishigaki &
Shirakata, 2019), drivers can actively participate in the alerting process. In this process,
voice assistants play the role of passengers, encouraging drivers to listen, think, or talk.
Third, interacting with voice assistants have little competition in attention resources
needed for driving. According to the multiple resources model, tasks interfere each
other when they share the same resource stages (e.g., perception, cognition, responding),
sensory modalities (auditory vs. visual), codes (spatial vs. verbal), and visual channels
(Wickens, 2002). Driving primarily involves visual perception, spatial cognition, and
motor skills. In contrast, alert maintenance tasks, such as memory recall tasks, auditory
motor tasks, and gamified tasks (Gershon et al., 2009; Saxby et al., 2017; Takayama &
Nass, 2008), often overlap with the same attention resources with the driving task.

However, interacting with voice assistants primarily involves auditory perception,



cognitive processing, and verbal responding. These are largely distinct from driving
demands. The drowsy drivers are, then, allowed to stay engaged in the alerting process
with minimal interference.

Furthermore, interacting with voice assistants forms different types of drowsiness
countermeasures, which would exert various drowsiness countering effects. As the
Table 1 shows, countermeasures vary in the number of resource stages required for
information processing and the extent of cognitive load involved, ranging from
listening to music to engaging in conversations. On the one hand, increasing the number
of resource stages in voice interactions might enhance alertness of drowsy drivers. For
example, listening to music increases drivers’ mental arousal through auditory
perception alone. However, engaging conversations alert drivers with more resource
stages, including perception, cognition, and responding. Since physical and mental
arousals could produce combined arousal states (Oken et al., 2006; Yang et al., 2017),
conversating with voice assistants that engage drivers both mentally and physically
might exhibit more arousal states than passive listening. It was preliminary evidenced
by Papachristos et al. (2024), who engaged drowsy drivers in listening to music and
observed that drivers’ vocal participation during the process yields a beneficial alerting
effect, compared to passive listening or physical participation. On the other hand,
moderately increasing drowsy drivers’ cognitive load might also help to improve
drivers’ alertness. As underload is one of the reasons of drowsiness, increasing driver’s
cognitive load can alleviate the underload induced drowsiness (May & Baldwin, 2009).
For instance, listening to more meaningful content (vs. less meaningful content) and
engaging deeper conversations (vs. lighter conversations) could induce higher cognitive
load for the drowsy drivers, helping to counteract underload-induced drowsiness by
activating cognitive processes. This was supported by a non-driving-related study,
which suggested that increasing workload from low to moderate levels was associated

with reductions in fatigue (Grech et al., 2009).



Table 1. Involvement of resources in driving tasks and countermeasures using voice

assistants

Information processing stages .
Task type . . . Common instances
with perception modalities and codes

(Visual) (Spatial) (Motor)
Perception Cognition  Responding
Driving Tasks v v v
(Auditory) (Verbal) (Verbal)
Perception Cognition  Responding
v Listening to music
Countermeasure types v v Listening to the radio
using voice assistants v v v Engaging in light conversation
v v v Engaging in deep conversation

Note: v' means involvement of the corresponding resource; v'v" means the strong involvement
of the corresponding resource.

How these various voice-assistant-based countermeasures varying in resource
stages and cognitive load would counter drowsiness remains unknown. Previous studies
suggest that countermeasures involving human auditory and verbal processes can
effectively alert drowsy drivers (Atchley et al., 2014; Mahajan, 2021; Large et al., 2017;
Orsini et al., 2024; Takayama & Nass, 2008; Papachristos et al., 2024). Listening to
music or engaging in conversation with a voice assistant, compared to having no
countermeasure, has been shown to increase driver alertness. For example, Orsini et al.
(2024) found that listening to music had a positive acute effect on perceived driving
fatigue compared to not listening. Other studies have also showed that verbal response
tasks could enhance alertness and driving performance more effectively than listening
tasks (Atchley et al., 2014; Takayama & Nass, 2008). For instance, Takayama et al.
(2008) indicated that drivers preferred and drove more safely with the verbally
repeating task compared to the passively listening task. However, the above-mentioned
studies differed in task types, interaction materials, countermeasure durations, and
driving conditions, making it difficult to compare the effectiveness of various
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countermeasures among these studies. Moreover, most of those studies assessed
countermeasure effectiveness using specific auditory (e.g., radio listening; Atchley et
al., 2014) or verbal tasks (e.g., repeating phrases; Takayama & Nass, 2008). Few studies
have explored the usage of in-vehicle voice assistants to counter drowsiness, even
though these assistants are increasingly integrated into vehicles for infotainment and
driving support (Lee & Jeon, 2022). Although some researchers have employed a digital
voice assistant to counter passive task-related fatigue (Mahajan et al., 2021; Large et
al., 2017), they did not compare different types of countermeasures in terms of resource
stages and cognitive involvement. Therefore, the effects of different countermeasures
using voice assistants on countering drowsiness remain unclear. Inspired by the benefit
of increasing resource stages (Oken et al., 2006; Yang et al., 2017) and enhancing
cognitive load (May & Baldwin, 2009; Grech et al., 2009) in enhancing drowsy drivers’
alertness, the following hypotheses were proposed:

H1: By adopting voice assistants, countermeasures with more resource stages alert
drowsy drivers better than those with less resource stages.

H2: Increasing cognitive load in countermeasures can enhance drowsy drivers’
alertness.
1.3 Age and drowsiness countermeasures

Effective countermeasures should ideally be generalized to the general population.
The number and proportion of middle-aged drivers are expected to increase with the
global aging trend. This is reflected in the rise of the global median age from 22.2 years
in 1950 to 30.4 years in 2023 (UN DESA, 2024). This increasing trend is particularly
evident in countries such as Japan (from 21.3 in 1950 to 49.0 in 2023), China (from
22.2in 1950 to 39.1 in 2023), and the United States (from 29.0 in 1950 to 38.0 in 2023
(UN DESA, 2024). Drowsy driving is a common issue reported by drivers of different
ages (National Sleep Foundation, 2023). It is necessary to consider effects of age when
evaluating the effectiveness of drowsiness countermeasures as the literature (Anstey et

al., 2005) indicates that driving related capabilities decline with age.



Various countermeasures using voice assistants may benefit drowsy drivers of
different age differently. As age increases, drivers are less physiologically susceptible
to sleep loss and sleepiness-related driving impairment. This is supported by the
middle-aged or older drivers’ lower level of sleepiness-related neurophysiological
indicators and lower subjective reported sleepiness under sleepy-inducing driving
conditions (Lowden et al., 2009; Vaz Fragoso et al., 2015). Additionally, middle-aged
drivers (30+ years) have more driving experience and hold more negative attitudes
toward sleepy driving than young drivers (17-29 years) (Watling and Watling, 2015).
As aresult, they tend to self-regulate by avoiding challenging situations like nighttime
driving (Charlton et al., 2006) and by reducing their driving distances (Braitman et al.,
2011). These self-regulatory behaviors might help them compensate the impaired
driving-related cognitive abilities like divided attention, which decrease with age
(Anstey et al., 2005; Murman et al., 2015). On the other hand, as voice interactions
while driving constitute a dual task, age-related cognitive declines may interfere drivers
of middle age to perform the dual task as effectively as their younger counterpart.
Specifically, middle-aged drivers show longer reaction times and higher error rates in
dual tasks, regardless of resource competition between tasks (Doroudgar et al., 2017;
Fraser et al., 2010; Song et al., 2017). Therefore, the middle-aged drivers might have a
relatively decreased ability to allocate their attention to the driving task and the voice
interaction task simultaneously than young drivers. This could threaten their driving
safety and reduce the drowsiness countermeasure efficiency.

It was suspected that middle-aged drivers, who are less prone to drowsiness but
have impaired attention allocation capability, could respond better to lighter
countermeasures that require less resource stages and cognitive effort. In contrast,
young drivers, with relatively stronger attention allocation capability for dual tasks but
are more prone to drowsiness, might benefit more from stronger countermeasures

involving more resource stages and cognitive effort.



The research exploring how age affects the effectiveness of various voice-
assistants-based countermeasures in countering drowsiness is limited. Song et al. (2017)
found that young drivers were more affected in driving performance by fatigue but were
benefitted more from the verbal responding task, while older drivers were relative
unaffected by fatigue. Nevertheless, their study mainly focused on exploring different
drivers’ drowsiness development over time and investigating only the effects of verbal
task as drowsiness countermeasure. Comparisons among different countermeasures for
alerting drowsy drivers of different age groups remain underexplored. In addition,
acceptance of a device can significantly influence the intention of drivers to use such
devices (Y1lmaz et al., 2022). It is important to understand how drivers of different ages
accept voice assistants as drowsiness countermeasures. Even though some studies have
indicated that older generations often face barriers to adopting new technologies
(Tacken et al., 2005), the others have shown that middle-aged adults exhibited more
positive intentions to use voice assistance than the young ones (Zhong et al., 2024).
Although age-related differences in the acceptance of voice assistants have been
examined (Zhong et al., 2024; Gollasch et al., 2021), most evaluations have considered
voice assistants primarily as infotainment or in-vehicle control systems. Investigations
on drivers’ acceptance of voice assistants by serving them as drowsiness
countermeasures have not been reported. How countermeasures that vary in resource
stages and cognitive load would counter driver drowsiness and influence drivers’
acceptance of different ages needs further investigation. Therefore, considering the
trend of increasing resistance in drowsiness (Lowden et al., 2009) alongside the decline
in cognitive capabilities with age (Anstey et al., 2005), this study formulated the
following hypothesis:

H3: Young drivers may benefit more from countermeasures that involve more
mental resource stages and higher cognitive load, while middle-aged drivers may suit

better with lighter countermeasures.
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1.4 Aim of the present study

In summary, the effect of voice-assistants-based countermeasures on countering
drowsiness of drivers in different ages needs further investigation. Filling these gaps
can provide insights into how countermeasures should be employed to drowsy drivers
by using in-vehicle technologies. A simulated driving experiment in this study was
conducted to explore the effects of five countermeasure types using voice assistants on
countering young and middle-aged drivers’ drowsiness, as measured by self-reported
sleepiness, driving performance, physiological indicators, and eye movement indicators.
In addition, differences in drivers’ acceptance of using in-vehicle voice assistants
between the two age groups were also analyzed and discussed. By adopting voice
assistants, this study aimed to answer the following three research questions (RQs):

RQ1: Do countermeasures involving more resource stages (i.e., perception,
cognition, responding) benefit more in alerting drowsy drivers?

RQ2: Does increased cognitive load in countermeasures alert drowsy drivers more?

RQ3: How does the effectiveness of different countermeasures vary in alerting

drowsy drivers of young and middle-aged groups?

2 Method
2.1 Participants

This study focused on recruiting young (18-35 years) and middle-aged (36-64 years)
male drivers, as previous research indicates that this demographic reports the highest
frequency of drowsy driving incidents (Obst et al., 2011). This classification also
aligned with the new age group classification considering the aging population (Mazer
et al., 2021).

The minimum sample size required was 26. This was calculated using the G¥Power
software (3.1.9.6) using the effect size of 0.25, an a of 0.05, a power of 0.90,
countermeasures of 5, a correlation of 0.5 among repeated measures, and a non-

sphericity correction of 1 (G*Power, 2023).
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A total of 30 participants were recruited through advertising and snowballing. One
participant quitted due to personal reasons, leaving 15 participants in the young group
(24-35 years, M = 27.93, SD = 2.62) and 14 in the middle-aged group (36-60 years, M
= 44.5, SD = 8.03). All participants had valid driver’s license and several years of
driving experience (young group: M =5, SD = 2.45; middle-aged group: M =20, SD =
5.35).

For inclusion, participants needed to meet the following criteria: 1) physically
healthy and cognitively intact; 2) own a valid driving license with over three years of
driving experience; 3) regular driving of at least three times a week; 4) normal or
corrected-to-normal vision and hearing; 5) regular sleep habits with no sleep-related
disorders or shift work in the past month; 6) absence of cardiovascular, digestive, or
psychological disorders; 7) no excessive daytime sleepiness (Epworth Sleepiness Scale
score < 16) (Johns, 1991; Mahajan, 2021); 8) no plans for or recent engagement in
extensive physical activities; 9) do not understand, speak, or write in French.

All participants signed an informed consent form before they joined the study. The
experiment was approved by the Institutional Review Board of the Department of
Industrial Engineering, Tsinghua University.

2.2 Experimental design

This study adopted a 2 X 5 mixed factorial design. The factors included age group
and countermeasure type. The age group included young and middle-aged group. It was
a between-subject variable. The countermeasure type included no countermeasure,
meaninglessly listening, meaningfully listening, repeating, and answering. This
variable was a within-subject variable. All participants completed driving tasks under
each of the five countermeasure types.

2.3 Countermeasures and materials

The countermeasure types are listed in Table 2. This study used poems as materials

for drowsy countermeasures because they are rhythmic with powerful effectiveness in

eliciting peak emotional responses, as known as arousal (Wassiliwizky et al., 2017).
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Two types of auditory poems with similar rhythms were selected. For the meaningless
listening condition, the French poem “la Nuit de décembre” was used. Since all
participants were required to not understand, speak, or write in French, this poem was
meaningless to them. For the meaningful listening, repeating, and answering conditions,
ten classical ancient Chinese poems were used. All the participants were familiar with
these Chinese poems. They could comprehend and recite these poems easily since the
primary study. Moreover, all the Chinese poems followed a five-character-quatrain
structure, consisting of four lines with five characters per line. Since every Chinese
character is monosyllabic, the five characters in each line corresponded exactly to five
syllables. For example, “The Peasant's Lot comprises four lines with five syllables for
each line, which is easy and quick for participants to recite (see Figure 1 a)). For
meaningfully listening condition, ten Chinese poems were compiled into a collection.
For repeating and answering conditions, Chinese poems were displayed line by line.
All poems were recorded in a consistent tone and speed (i.e., around 95 characters/
minutes) by a female speaker fluent in both French and Chinese. Each recording was
processed to ensure similar rhythm across both languages, see audio track in Figure 1
b). Poems were played at an average volume of approximately 68 dB. A female
experimenter manipulated the voice assistant to display all countermeasures. Each

countermeasure lasted for approximately 3.5 minutes.
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Table 2. Five countermeasure types

Countermeasure

Explanation

No

countermeasure

Meaninglessly

listening

Meaningfully

listening

Repeating

Answering

Participants accepted no countermeasures.

[Involve no process of auditory perception, verbal cognition, or verbal responding]

Participants listened to a French poem.

[Involve process of auditory perception only]

Participants listened to a series of Chinese poems.

[Involve process of auditory perception and verbal cognition]

Participants repeated one line of Chinese poems that was played by the voice assistant,
imitating its tone and speed (e.g., the voice assistant played “chu hé ri dang wu” and
participants repeated “cht hé ri dang wu”).

[Involve process of auditory perception, verbal cognition, and verbal responding]

Participants answered the next line in response to the line of Chinese poems played by the
voice assistant, imitating its tone and speed (e.g., the voice assistant played “chu hé ri dang
wl” and participants answered the next line “han d1 hé xia ti”).

[Involve process of auditory perception, verbal cognition (higher), and verbal responding]

chi hé

han di
iF ik
shui zhi

li i
il i

Min Néng The Peasant's Lot

ding wi  Hoeing in the paddy under the mid-day sun

54 ot - RPN O DRRRY A0 0 RO DD D '4

xid i His sweat drips on the ground beneath the seedling

Zhong  oin  Who knows that the meal in the dish Freach [B

& e Tm-nn»q-m-mhm»hummpm»mnrun

xin ki Every single grain of rice means hard work

(Meaning of the poem)

a) b)

Figure 1. Illustration of countermeasure materials (a): an instance of Chinese poem,

b): audio tracks of Chinese poem series and the French poem)
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2.4 Measurements

The dependent variables included driving performance, physiological measures,
eye movements, mental workload, and acceptance of countermeasures. The variables
related to driving performance included standard deviation of lane position (SDLP),
standard deviation of vehicle heading angular (SDVHA), and standard deviation of
driving speed (SD-Speed). The literature has shown that a decrease of SDLP and
SDVHA and an increase of SD-Speed are related to increased alertness and reduced
driving drowsiness (Atchley et al., 2014; Large et al., 2017; Portouli et al., 2007).

The physiological measures included skin conductance level (SCL) (uS), the
standard deviation of normal-to-normal intervals (SDNN), and breathing rate (breaths
per minute). These variables were extracted from the raw data of the physiological
signals of electrodermal activity, cardiac activity, and respiratory activity, respectively.
The literature has shown that an increase of these variables is associated with the
enhance of alertness (Bundele & Banerjee, 2010; De Naurois et al., 2019; Kiashari et
al., 2018). In addition, these variables are all sensitive to age. All the SDNN
(Bonnemeier et al., 2003), SCL, and the standard deviation of the SCL (Doberenz et al.,
2011) tend to decrease with age.

The eye movement measures included pupil diameter (PD) (mm), proportion of
visit duration on the road center (PVRC) (%), and blink rate (times per minute). PVRC
was calculated as the proportion of visit duration within the road center area during the
time of interest (TOI). The literature has shown that an increase of PD and PVRC and
an decrease of blink rate are associated with enhanced alertness and reduced drowsiness
(De Naurois et al., 2019; Large et al., 2017).

Subjective ratings for both mental workload and acceptance for countermeasures
were collected. The mental workload was measured using the unweighted NASA-TLX
scale (Hart & Staveland, 1988). This scale is composed of six sub-items: mental
demand, physical demand, temporal demand, performance, effort, and frustration. The

acceptance for countermeasure was collected using a questionnaire comprising five
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items for usefulness and four items for satisfaction (Van Der Laan et al., 1997). A 7-
point Likert scale was used in this questionnaire to evaluate drivers’ opinions on
different countermeasures.
2.5 Drowsiness inducement and detection

Drowsiness was induced by manipulating the awake time, the experimental
environment, and the driving task. For the awake time, the participant was required to
wake up one hour earlier than usual on the day of his visit and stayed awake for 16
hours before the experiment. The experiment visit time ranged from 21:00 PM to 01:00
AM, lasting one hour for each participant. The specific visiting time for each participant
was scheduled based on their wake-up time. Moreover, the participant was instructed
to refrain from caffeine, mints, teas, alcohol, or related beverages, smoking, or having
a nap for the entire day of the experiment. For the environment, the experiment was
conducted in a quiet and dark room. For the driving task, a monotonous night driving
scenario was created by the driving simulator software. The participant was asked to
follow a truck traveling at a constant speed of 90 km/h on a four-lane highway (two
lanes in each direction), with a speed limit of 120 km/h.

Participants’ drowsiness level was detected through self-reported Karolinska
Sleepiness (KSS) ratings and performance on a psychomotor vigilance task (PVT). The
KSS was used to measure the participants” drowsiness level (Akerstedt & Gillberg,
1990). It was based on a 9-point Likert scale from 1 (extremely alert) to 9 (very sleepy,
great effort to keep awake, fighting sleep). Every 5 minutes, the message “Please report
your state based on the KSS scale” was emitted to request the participant to report his
own drowsiness level. The participant rated his drowsiness by pressing a number button
on the keypad on the steering wheel. One minute after each KSS rating, the participant
performed the PVT, a sensitive drowsiness detection method requiring a button-press
response to visual stimuli. A decrease of PVT performance often indicates drowsiness
(Basner & Dinges, 2011; Philip et al., 2005). In this study, a simplified PVT was

designed. The participant was required to press the R3 button on the steering wheel
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whenever a red square icon in the gray area changed to triangle (see Figure 2). These
red triangle icons appeared at random intervals (2-10 seconds) with a 1-second display
duration. Responses with a reaction time of 600 ms or more were classified as lapses
(Kozak et al., 2005). The PVT was conducted every eight minutes during driving and
lasted for approximately two minutes. The experimenter implemented the drowsiness
countermeasures only when the participants’ KSS rating was equal to or larger than 7
and their PVT accuracy was lower than 70%.
2.6 Apparatus
2.6.1 Driving simulator

The driving simulator in this study was composed of a driving-simulated software
(STISIM DRIVE Build 3.22.05, System Technology Inc., Hawthorne, CA, USA), an
operational system, a Dell workstation (Dell Precision 3640 Tower, Dell Inc., Round
Rock, TX, USA), an audio system, and a 65-inch monitor with 4k resolution (see Figure
2). The operation system included a steering wheel with force feedback, a brake pedal,
an acceleration pedal, and a clutch pedal. Driving data was recorded at a frequency of
120 Hz.
2.6.2 Physiological equipment

An eye tracker (Tobii X3 Pro, Tobii Inc., Danderyd, Stockholm, Sweden) was used
to track participants’ eye movement behaviors with the pupillary responses at a
sampling rate of 250 Hz. A portable wireless physiological system, ErgoLAB (Kingfar
Co., Beijing, China), with  modules of  electrodermal activity
(EDA), photoplethysmography (PPG), and reparation (RESP), was used to record the
physiological signals at 64 Hz. As Figure 2 shows, the EDA was measured using two
electrode patches attached to the index and ring fingers. The PPG was captured by an

infrared sensor on the left earlobe, and RESP was collected via a strap on the abdomen.
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Figure 2. Experimental setup

2.6.3 Drowsiness detection and countermeasure equipment

The drowsiness detection and countermeasure equipment included the Eprime 3.0
software (Psychology Software Tools, Inc. Sharpsburg, PA, USA), a ThinkCentre
workstation (ThinkCentre M80, Lenovo Ltd., Beijing, China), an iPad (iPad 9th
generation, Apple Inc., Cupertino, CA, USA), a numeric keypad, and an audio system.
The iPad positioned at the top right corner of the desk was used to display the KSS
scale, while the keypad was installed on the steering wheel and was used to collect KSS
responses. The ThinkCentre workstation was linked to the Dell system that ran the
driving scenario, enabling real-time PVT responses collection. A customized voice
interaction program in Eprime 3.0 enabled sequential or line-by-line playback of poems
to simulate an interactive voice assistant. Interfaces of real-time PVT response results,
KSS reporting outcomes, and voice interaction programs were positioned out of
participant’s view.

2.7 Procedures
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Each participant completed five visits, scheduled one week apart. At the first visit,
the experimenter introduced the objectives of the study and the noninvasive
physiological system to the participant. The participant signed an informed consent
form and completed a demographic questionnaire about his age, driving experience,
and health state.

The experiment process for each visit was similar. At first, the experimenter helped
the participants to wear all physiological devices, completed eye movement calibration,
and had the participant rested for 5 minutes. Then, the participant completed two
practice sessions: a three-minute session to familiarize him with the driving simulator
and a five-minute session to practice KSS reporting and PVT while driving. The
participant was instructed to keep his thumbs near the R3 button on the steering wheel
to complete PVT. During the formal driving test, the participant drove continuously and
completed KSS reporting and the PVT for approximately every 5 minutes (see Figure
3 a)). For drowsiness detection and countermeasure implementation, this study
employed the widely used “Wizard of Oz” (WoZ) method (Dahlbéck et al., 1993). The
participant was told that he was interacting with a real digital voice assistant. In fact,
the interaction was operated by a female experimenter, who monitored the experiment
process without the awareness of the participant. She implemented countermeasures
when each participant’s drowsiness level met the countermeasure criterion (i.e., KSS
> 7 & PVT accuracy <70%). To minimize the potential alerting effect of PVT, all
countermeasures were conducted one minute after the last PVT. Once the
countermeasure criterion was met, the experimenter either played a continuous poem
for the meaninglessly or meaningfully listening conditions, controlled the line-by-line
playback of poems based on participants’ responses for the repeating and answering
conditions, or played nothing for the no countermeasure condition. This was
accomplished by using the customized voice interaction program. Following each
countermeasure, the participant reported his KSS rating immediately and completed a

PVT again. After the experiment, the participant filled out questionnaires on mental
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workload during the countermeasure and the subjective ratings for countermeasure
acceptance. The experiment in each week lasted for 50-70 minutes, depending on when
the participant’s drowsiness level met the countering criteria. The sequence of the five
countermeasure types was balanced by using a Latin Square design. After five visits,
each participant received a cash compensation of 1,000 RMB (i.e., approximately 140
USD) for his participation in the experiment.

2.8 Data analysis

2.8.1 Data preprocessing

To evaluate the effectiveness of the countermeasures, different timings regarding
the implementation of countermeasures were extracted for indicators (see Figure 3 b)).
For KSS ratings and PVT accuracy, the corresponding values (i.e., KSSi1 and PVTi),
which exactly met the countermeasure criteria, were treated as the “before
countermeasure” indicators. The KSS ratings and PVT accuracy (i.e., KSS2 and PVT?)
after the countermeasure were treated as the “after countermeasure” indicators.

Driving performance data were exported from the STISIM software and averaged
according to different time intervals. Figure 3 b) shows that the period of 1 minute right
before the instructional speech for KSSi rating served as the time interval of the “before
countermeasure” (i.e., orange square) and the exact 3.5-minute duration of the
countermeasure served as the time interval of “during countermeasure” (i.e., blue
square).

Physiological and eye movement signals were first extracted and averaged using
the ErgoLAB software. The time intervals of “before countermeasure” and “during
countermeasure” for both indicators were set same as driving performance data. Then,
a multistage normalization method was applied to normalize data across different age
groups, baseline states, and weekly calibration variances (Yang et al., 2021). Data were
normalized by dividing the mean values from the “before countermeasure” or “during

countermeasure” intervals by the mean “baseline” value. The baseline interval was
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defined as a one-minute period from the start of the formal driving session in each week

(i.e., green square) (see Figure 3 b)).

countermeasure countermeasure
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1 min : 3
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Figure 3. a) formal driving process in each week and b) data preprocess for different
indicators in each week

2.8.2 Statistical analysis
RStudio (2023.10.31) was used for statistical analysis. For ordinal data, the non-
parametric Friedman test was conducted (Friedman, 1937). If the Friedman test showed
statistically significant differences, a Wilcoxon signed-rank test was employed for the
post-hoc test (Wilcoxon, 1992). For continuous data, the linear mixed model (LMM)
accounting for both fixed and random effects, was adopted (Baayen et al., 2008; Wan
& Sarter, 2022). Residual normality was checked using Q-Q plots and the one-sample
Kolmogorov-Smirnov test (Venables & Ripley, 2002). The homogeneity of variance
was assessed using the Levene’s test (Levene, 1960). If the model assumption was
violated, the data was transformed into a logarithm function. In the LMM data analysis,

age group, countermeasure type, countermeasure timing, and their interaction effects
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were considered as fixed-effect variables. The individual variance was considered as a
random variable. The paired #-test was used for the post hoc analysis if the main effect
was significant and for the simple effect analysis if the interaction effect was significant.
The significant level of all analyses was set at 0.05 and corrected by a Bonferroni
adjustment.

To check the success of manipulation and the countermeasure outcomes, this study
examined the effects of countermeasure type on KSS ratings and PVT accuracy by
separating age group and countermeasure timing. To compare the effectiveness of
different countermeasures on alerting drowsy drivers, the effects of age group,
countermeasure type, countermeasure timing, and their interaction effects on driving
performance, physiological indicators, and eye movement indicators were analyzed. In
addition, the heterogeneity of participant in the effect of overall countermeasures on the
above indicators was analyzed by adopting causal processing methods. Finally, the
mental workload and acceptance in different countermeasures between two age groups
were analyzed. Data and analysis code can be found in the following link

(https://github.com/zhangweibetty/Drowsy-countermeasures).

3 Results
3.1 Manipulation checks and results
3.1.1 Karolinska Sleepiness ratings

For the young group, before the countermeasure, there was no main effect of
countermeasure type on KSS ratings (x*(4) = 3.591, p = 0.464). After the
countermeasure, the main effect of countermeasure type on the KSS rating was
significant (x*(4) = 29.813, p < 0.001) (see Figure 4). Post hoc analysis suggested that
the answering condition (M = 4.767, SE = 0.518) led to the lowest KSS rating, which
was significantly lower than those of the meaningfully listening (M =7.100, SE =0.391)
(p <0.01), the meaninglessly listening (M = 7.567, SE = 0.271) (p < 0.05), and the no

countermeasure (M = 8.033, SE =0.172) (p < 0.05) conditions. The repeating condition
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M = 6.067, SE = 0.396) achieved the second lowest KSS ratings, which was
significantly lower than that of the no countermeasure condition (p < 0.05). No
significant differences in KSS ratings were observed between the answering and
repeating conditions.

For the middle-aged group, before the countermeasure, there was a main effect of
countermeasure type on KSS ratings (3%(4) = 10.488, p < 0.05), but post hoc analysis
revealed no significant differences among the five countermeasure types. After the
countermeasure, the main effect of countermeasure type on KSS ratings was significant
(x2(4) = 21.780, p < 0.001) (see Figure 4). The answering condition (M = 5.821, SE =
0.468) produced the lowest KSS rating, which was significantly lower than both the
meaningless listening (M = 7.536, SE = 0.350) and no-countermeasure (M = 7.929, SE
= 0.245) conditions (p < 0.05 for each comparison).

3.1.2 Psychomotor vigilance task accuracy

For the young group, the main effect of countermeasure type on PVT accuracy was
not significant before the countermeasure (F (4, 56) = 0.822, p = 0.517) nor after the
countermeasure (F (4, 56) = 1.114, p = 0.359). For the middle-aged group, the main
effect of countermeasure type on PVT accuracy was not significant before the
countermeasure (F (4, 65) = 0.926, p = 0.455). However, after the countermeasure, the
main effect of countermeasure type on PVT accuracy was significant (F (4, 65) = 2.533,
p <0.05) (see Figure 4). Post hoc analysis suggested that both the answering (M =0.651,
SE = 0.040) and meaningfully listening (M = 0.657, SE = 0.057) conditions resulted in
significant higher PVT accuracy than the no countermeasure condition (M = 0.425, SE

=0.074) (p < 0.05 for each comparison).
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Figure 4. Means and standard errors of KSS ratings and PVT accuracy for different
countermeasure types before and after countermeasures (* p < 0.05; ** p <0.01)

3.2 Driving performance
3.2.1 Standard deviation of line position

Although no main effects of countermeasure type or countermeasure timing on
SDLP were found, there were significant interaction effects between countermeasure
type and timing (see Table 3). Figure 5 shows that no significant differences were
observed on SDLP among the five countermeasure types before the countermeasure.
However, during the countermeasure, participants had smaller SDLP when repeating
(M =0.796, SE = 0.041) than when meaningfully listening (M = 1.018, SE = 0.069) (p
<0.01), meaninglessly listening (M = 1.087, SE = 0.059) (p < 0.001), and receiving no
countermeasure (M = 1.067, SE = 0.087) (p < 0.05). Additionally, SDLP was also
smaller in the answering condition (M = 0.832, SE = 0.064) than in the meaninglessly
listening condition (p < 0.01).

24



Table 3. Effects of age group, countermeasure type, and countermeasure timing on

dependent variables

Driving behaviors

SDLP
F(p) 'S
Age group 0.009 <0.001
Countermeasure type 1.200 0.019
Countermeasure timing 0.226 0.001
Age group X Countermeasure type 0.001 0.008
Age group X Countermeasure timing 0.503 <0.001
Countermeasure timing X Countermeasure type 6.917 ™ 0.102
Age group X Countermeasure timing X Countermeasure type (.385 0.006

Physiological measurements

SCL
F(p) M’
Age group 0.007 <0.001
Countermeasure type 9.084 ™ 0.130

Countermeasure timing 30998 0.113

Age group X Countermeasure type 1.607 0.026
Age group X Countermeasure timing 0.031 <0.001
Countermeasure timing X Countermeasure type 5.913"* 0.089
Age group X Countermeasure timing X Countermeasure type (.159 0.003

Eye movement indicators

Pupil diameter

F(p) n’
Age group 0.008 <0.001
Countermeasure type 9.571™ 0.136
Countermeasure timing 29.240 " 0.107
Age group X Countermeasure type 0.974 0.016
Age group X Countermeasure timing 0.695 0.003
Countermeasure timing X Countermeasure type 12.349 ™ 0.169
Age group X Countermeasure timing X Countermeasure type (.354 0.006

SDVHA
F(p) urs
0.451 0.016
1.060 0.017
2.661 0.011

1.422 0.023
0.780 0.003
8.052™*  0.117
0.423 0.007

SDNN
F(p) Ny’
0.267 0.010

2.265* 0.036
17.266

o 0.066
0.397 0.006
0.057 <0.001
6.626 ™ 0.098
0.392 0.006
PVRC
F(p) m’

2.123 0.073
0.613 0.010
4115° 0.017

0.499 0.008
0.762 0.003
2901 0.046

0.406 0.007

SD-speed

F(p) '’

0.370 0.102
1.190 0.014
27.620 7 0.019
4308 ™ 0.066
0.254 0.001
1.442 0.023
0.607 0.010

Breathing rate

F(p) np*
0.047 0.002
2.069 0.033
0.776 0.003
1.181 0.019
0.660 0.003
0.648 0.011
0.668 0.011
Blink rate

F(p) n*
0.493 0.018
1.669 0.027
0.756 0.003
0.965 0.016
0.011 <0.001
0.262 0.004
0.364 0.005

Note: F(p) indicates the F values and significance signs, suggesting * p < 0.05; ** p < 0.01; *** p < 0.001; n,? indicates the partial eta

square, namely, determines the effect size; SDLP- standard deviation of lane position; SDVHA- standard deviation of vehicle heading

angular; SDSpeed- standard deviation of driving speed; SCL- skin conductance level; SDNN- standard deviation of normal-to-normal

intervals; PVRC- proportion of visit duration on the road center.
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Figure 5. Means and standard errors of dependent variables for different
countermeasure types before and during countermeasures (* p < 0.05; ** p <0.01;
ek <0.001)

3.2.2 Standard deviation of vehicle heading angular

Table 3 shows that there were significant interaction effects between
countermeasure type and countermeasure timing, although the main effects of
countermeasure type and countermeasure timing were not significant. Simple effect
analysis suggests that before the countermeasure, no significant differences were
observed on SDVHA (F (4, 112) = 1.620, p = 0.174) (see Figure 5). However, during
the countermeasure, the five countermeasure types produced significant differences (F
(4, 112) = 10.74, p < 0.001). Participants’ SDVHA when answering (M = 0.563, SE =
0.052) was significantly lower than accepting no countermeasure (M = 0.755, SE =
0.080) (p < 0.05) and meaninglessly listening (M = 0.828, SE = 0.089) (p < 0.01).

Moreover, SDVHA in the repeating condition (M = 0.522, SE = 0.047) was also lower
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than that in the no countermeasure (p < 0.01), meaninglessly listening (p < 0.001), and
meaningfully listening (M = 0.678, SE = 0.073) (p < 0.05) conditions.
3.2.3 Standard deviation of driving speed

There was a main effect of countermeasure timing on SD-speed (see Table 3).
Participants’ SD-speed during the countermeasure (M = 4.897, SE = 0.632) was
significantly larger than that before the countermeasure (M = 3.528, SE = .643) (p <
0.001). Although the interaction effects between age group and countermeasure type
were significant, comparisons of different countermeasure types within each age group
were not reported when countermeasure timing was not considered.

3.3 Physiological measurements
3.3.1 Skin conductance level

There was a significant main effect of countermeasure type on SCL (see Table 3).
Post hoc analysis results suggested that the answering condition (M =1.575, SE=0.131)
resulted in higher SCL than the meaninglessly listening (M = 1.088, SE = 0.084) and
no countermeasure (M = 1.059, SE =0.073) conditions (p < 0.001 for each comparison).
The SCL in the repeating condition (M = 1.443, SE = 0.142) was also higher than in
the meaninglessly listening (p < 0.05) and no countermeasure (p < 0.01) conditions.
The meaningfully listening also showed increased SCL when compared with the no
countermeasure condition (p < 0.05).

The main effect of countermeasure timing on SCL was significant. Participants’
SCL during the countermeasure (M = 1.520, SE = 0.151) was higher than that before
the countermeasure (M =1.129, SE =0.088) (p < 0.001). The interaction effect between
countermeasure type and countermeasure timing was also significant. Figure 5 shows
there were no significant differences among countermeasure types in SCL (F (4,112) =
0.913, p = 0.459) before the countermeasure was presented. However, the five
countermeasure types differed on SCL (F (4,112) = 12.035, p < 0.001) during the
countermeasure. Specifically, SCL was higher in the answering condition (M = 1.990,

SE = 0.140) compared to the meaninglessly listening (M = 1.147, SE = 0.085) and no
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countermeasure (M = 1.022, SE = 0.066) conditions (p < 0.001 for each comparison).
The repeating condition (M = 1.798, SE = 0.165) also produced higher SCL than the
meaningfully listening (M = 1.643, SE = 0.187) and no countermeasure conditions. The
meaningfully listening condition resulted in higher SCL than the no countermeasure
condition (p < 0.05).

3.3.2 Standard deviation of normal-to-normal intervals

The main effect of countermeasure timing on SDNN was significant (see Table 3).
Post hoc analysis suggested that participants had higher SDNN during the
countermeasure (M = 1.361, SE = 0.110) than before the countermeasure (M = 1.121,
SE = 0.074) (p < 0.001). Significant interaction effects between countermeasure type
and timing on SDNN were observed.

Figure 5 shows that there were no significant differences in SDNN among the five
countermeasure types before the countermeasure was implemented. However, during
the countermeasure, SDNN was significantly smaller in the no countermeasure
condition (M =1.013, SE = 0.054) compared to the meaninglessly listening (M = 1.348,
SE = 0.098) (p < 0.05), meaningfully listening (M = 1.314, SE = 0.084) (p < 0.05),
repeating (M = 1.650, SE = 0.130) (p < 0.01), and answering (M = 1.481, SE = 0.132)
(p <0.05) conditions.

3.3.3 Breathing rate

No significant main effects nor interaction effects of age group, countermeasure
type, and countermeasure timing on breathing rate were found (see Table 3).

3.4 Eye movement variables
3.4.1 Pupil diameter

Table 3 shows that there was a significant main effect of countermeasure type on
participants’ PD. Participants had a significant larger PD in the answering condition (M
= 1.062, SE = 0.019) than in the meaningfully listening (M = 1.003, SE = 0.013),
meaninglessly listening (M = 1.005, SE = 0.013), and no countermeasure (M = 0.999,

SE =0.013) conditions (p < 0.01 for each comparison).
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The main effect of countermeasure timing on PD was also significant. Participants
generally had larger PD during the countermeasure (M = 1.042, SE = 0.018) than before
the countermeasure (M = 1.00, SE =0.012) (p <0.001). The interaction effects between
countermeasure type and countermeasure timing were also significant. Figure 5 shows
that there were no significant differences in the impact of the five countermeasure types
on PD before the countermeasure was presented. During the countermeasure, however,
the answering condition (M = 1.124, SE = 0.018) resulted in significantly larger PD
than the meaningfully listening (M = 1.009, SE = 0.015), meaninglessly listening (M =
0.999, SE = 0.014), and no countermeasure conditions (M = 0.997, SE = 0.014) (p <
0.001 for each comparison). The repeating condition (M = 1.078, SE = 0.015) also
resulted in a larger PD than the other three conditions, except for the answering
condition (p < 0.01 for each comparison).

3.4.2 Proportion of visit duration on the road center

There was a main effect of countermeasure timing on PVRC (see Table 3).
Participants had higher PVRC during the countermeasure (M = 0.997, SE = 0.063) than
before the countermeasure was presented (M = .922, SE = 0.060) (p < 0.01).

The interaction effects between countermeasure type and countermeasure timing
on PVRC were also significant. Figure 5 shows that the five countermeasure conditions
produced no significant differences on the PVRC before the countermeasure was
presented. During the countermeasure, the repeating condition (M = 1.124, SE = 0.053)
led to a higher PVRC than the no countermeasure condition (M = 0.878, SE = 0.079)
(p <0.05).

3.4.3 Blink rate

No main effects or interaction effects of age group, countermeasure type, and

countermeasure timing were found on blink rate (see Table 3).
3.5 Heterogeneity
This study further explored heterogeneity of participant in the effect of overall

countermeasures by adopting causal processing methods (Bolger et al., 2019;
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Goodridge et al., 2024). A rule of thumb indicates that causal effect heterogeneity is
noteworthy if its standard deviation is 0.25 (i.e., relative size) or greater relative to the
fixed effect (Bolger et al., 2019). The overall countermeasures (see Table 4), therefore,
demonstrated notable causal heterogeneity effect of participant on SDLP, SCL, SDNN,
and the breathing rate.

Table 4. Heterogeneity of participant on the effects of overall countermeasures.

Parameter estimates

Fixed effect SD Relative size
Driving performance
SDLP 0.125 0.057 0.457
SDVH 0.149 0.030 0.201
SD-speed 0.946 0.154 0.163
Physiological indicators
SCL 0.844 0.241 0.285
SDNN 0.356 0.103 0.289
Breathing rate 0.105 0.053 0.501
Eye movement indicators
PVRC 0.150 0.009 0.058
Pupil Diameter 0.126 0.019 0.149
Blink rate 0.180 0.002 0.010

Note: SD: standard deviation; relative size = SD/ Fixed effect.

Furthermore, given that age was more variable in the middle-aged group (SD =
8.026) than in the young group (SD = 2.615), this study explored whether age could
predict between-participant heterogeneity in SDLP, SCL, SDNN, and the breathing rate.
By adding the effects of age and its interaction effects with countermeasures in LMM
models, the results suggested that age accounts for 78.27%, 25.05%, 17.67%, and 35.97%
of the between-participants heterogeneity in the causal effects of countermeasures on
SDLP, SCL, SDNN, and breathing rate, respectively. As shown in Figure 6, what is
particularly interesting is the relationship between age and the total implied

heterogeneity of the countermeasures on the physiological indicators. Namely, the
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effects of the countermeasures on all measures of physiological activation were more
variable for the middle-aged drivers than the young ones. Hence whilst there were no
interaction effects in physiological activation as a function of age and countermeasures,

it seems that middle-aged drivers tended to be more variable in physiological activation.
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Figure 6. Relationship between the implied total heterogeneity of dependent variables
and mean centered age. The vertical line on the x axis denotes mean age. The horizontal
line on the y axis denotes the average effect of overall countermeasures on SDLP,

SDNN, SCL, and breathing rate, respectively.

3.6 Subjective ratings
3.6.1 Mental workload

The main effect of countermeasure type was significant on the NASA-TLX score.
Post hoc test results suggested that the repeating condition (M = 37.334, SE = 4.841)
resulted in a significant lower workload score than the no countermeasure condition (M
=44.828, SE =4.710) (p < 0.05).

There was a marginal significant three-way interaction effects among age group,
countermeasure type, and workload dimension. For the young group, the interaction
effects between countermeasure type and dimension were significant (F (20, 406) =
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1.891, p <0.05). Figure 7 shows, that the answering condition (M = 58.667, SE =7.784)
produced a higher score of mental demand than the meaninglessly listening condition
(M =29.333, SE =5.873) (p < 0.05). However, the answering condition (M = 18.333,
SE = 3.984) resulted in a lower workload score on frustration dimension compared to
the meaninglessly listening condition (M = 46.667, SE = 8.247) (p < 0.05). For the
middle-aged group, the interaction effects between countermeasure type and workload

dimension were not significant (F (20, 377) = 0.745, p = 0.779).

Younger Group
80 * *
0 60
: i
: it b
(2]
T 40-
o
<
o
= 20 '
0 T T T T T T
Mental Physical Time Effort Frustration Performance
Middle-aged Group
80

ol b ;

Workload scores
"
o
|

[
Mental Physical Time Effort Frustration Performance

3 No countermeasure T Meaninglessly Listening EE Meaningfully Listening Bl Repeating Hll Answering
Figure 7. Means and standard errors of subjective rating of mental workload for

countermeasure types and age groups (* p < 0.05)

3.6.2 Acceptance

For the young group, the Friedman test indicated a significant main effect of
countermeasure type on usefulness ratings (x*(3) = 24.147, p < 0.001) (see Figure 8 a)).
Post-hoc analysis suggested that answering (M = 1.587, SE = 0.111) was perceived as

the most useful countermeasure, with score significantly higher than those for
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meaningfully listening (M = 0.160, SE = 0.331) (p < 0.05) and meaninglessly listening
(M =-0.733, SE = 0.267) (p < 0.01). Repeating (M = 1.120, SE = 0.258) was rated as
the second most useful method. It was also significantly more useful than meaninglessly
listening (p < 0.05). The main effect of countermeasure type on satisfaction ratings was
also significant (x*(3) = 19.468, p < 0.001) (see Figure 8 c)). Compared to the
meaninglessly listening condition (M =-0.683, SE = 0.208), the answering (M = 1.083,
SE = 0.190) (p < 0.01) and repeating (M = 0.750, SE = 0.234) (p < 0.05) conditions
were rated as more satisfying.

For the middle-aged group, the Friedman test results suggested a significant main
effect of countermeasure type on usefulness ratings (y%(3) = 14.614, p < 0.01). Figure
8 b) shows that both answering (M = 1.329, SE = 0.262) and repeating (M = 1.143, SE
= 0.243) were perceived more useful than meaninglessly listening (M = -0.057, SE =
0.315) and meaningfully listening (M = 0.686, SE = 0.276) (p < 0.05 for each
comparison). Although the main effect of countermeasure type on satisfaction ratings
was not significant (x*(3) = 4.357, p = 0.225). The paired-¢ tests indicated that
participants rated answering (M = 0.750, SE = 0.277) as more satisfying than

meaninglessly listening (M = -0.036, SE = 0.250) (p < 0.05) (see Figure 8 d)).
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Figure 8. Means and standard errors of usefulness and satisfaction ratings for
countermeasure types and age groups (* p < 0.05; ** p <0.01).
4 Discussion

This study investigated the effects of different countermeasure type on alerting
young and middle-aged drivers. Drivers’ drowsiness was induced by monotonous
driving at night and was detected by drivers’ KSS ratings and PVT responses. The
results of KSS ratings and PVT accuracy before the countermeasure suggested no
significant differences among the five countermeasure types for both driver groups. It
indicated that the drowsy state of drivers was consistent before the countermeasure was
implemented.

4.1 Effects of different countermeasures by adopting voice assistants

It was found that the countermeasures involving more stages of resources provided
greater alertness for drowsy drivers. The first hypothesis (H1) of this study was
supported. Specifically, compared to the no countermeasure and listening conditions,
the repeating and answering conditions were the two most effective countermeasures.
It was reflected by drivers’ more stable lane keeping performance, higher physiological
arousal levels, greater attentions to the road, lower self-reported sleepiness, and higher
PVT accuracy in repeating and answering conditions.

Driving is a cognitively demanding task, requiring drivers’ perceptual abilities,
attention abilities, memory, executive functions, etc. (Anstey et al., 2005). In drowsy
states, drivers’ perception ability, cognitive processing, and responses to driving-related
stimuli are inhibited due to reduced physiological states and brain activation levels
(Khan & Hong, 2015; Worle et al., 2019). The listening tasks normally engage drivers’
auditory perception only. Repeating and answering tasks, on the other hand, can induce
a combination alert effect by animating drivers’ auditory perception, working memory,
and verbal responses through their active involvement. As a result, the combination of
alerting effects leads to a more alert physical and mental state. This makes drivers to

focus their attention better on the road and maintain more stable vehicle control. In

34



addition, higher usefulness and satisfaction scores for the repeating and answering
conditions were found than the two listening conditions. This implies that participants’
subjective acceptance ratings aligned with the objective findings. The present results
were consistent with previous findings of the advantages of verbal processes (Atchley
et al., 2014; Large et al., 2017; Mahajan, 2021; Orsini et al., 2024; Takayama & Nass,
2008) and listening tasks (Atchley et al., 2014; Takayama & Nass, 2008) in enhancing
alertness of drowsy drivers. The current study further emphasized the underlying
mechanisms for the superiority of verbal interactions based on resource stages, rather
than simply comparing different countermeasure methods. This is an advancement
beyond the previous studies.

A comparison between the answering and repeating conditions showed that
increasing drivers’ cognitive load led to the potential effect of achieving a more alert
state of drivers. This supports our second hypothesis (H2). It is noticeable that among
the five countermeasure conditions, the answering condition led to the highest mental
workload young drivers. The increased mental workload, however, reduced the
frustration levels for this group. Additionally, the answering condition produced a more
alert state than the repeating condition. This was verified by the lower KSS ratings,
higher SCL and PD, and smaller SDLP and SDVHA in answering condition, although
the differences were not statistically significant. These findings were inconsistent with
those of Saxby et al. (2017). Their study claimed that the increasing drivers’ cognitive
load by recalling of past events and their personal impacts failed to counter the
subjective automation-induced fatigue and the objective loss of performance. This
discrepancy may be due to the difference of the cognitive load between the two studies.
The cognitive load in Saxby et al. (2017), induced by a close-call incident recall task,
was believed to be higher than the poem recitation in our study.

Listening conditions, no matter the listening content was meaningless or
meaningful, had limited effects on alerting drowsy drivers. The meaninglessly listening

and meaningfully listening conditions did not significantly counter drowsiness beyond
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minor increases in SCL and SDNN compared to the no countermeasure condition. This
finding was inconsistent with those of Orsino et al. (2024)’s and Amirah and Puspasari
(2019), who found listening countermeasures led to a significant reduction in driving
drowsiness. This inconsistency could be attributed to facts that the participants in Orsini
et al. (2024) were allowed to select the music they were familiar. Amirah and Puspasari
(2019), on the other hand, adopted pop music. The familiarity and melody of the music
may provide additional benefits in physiological (Gabrielsson & Wik, 2003) and motor
responses (Vuong et al., 2023). Although the rhythmic poems adopted in the current
study could also elicit emotional arousal (Wassiliwizky et al., 2017), they may not be
as enjoyable as listening to familiar music. Nevertheless, it is noteworthy that listening
to poems did not adversely affect driving performance nor aggregate drowsiness, which
is consistent with the findings from a previous research (Unal et al., 2013).
4.2 Effects of different countermeasures for age groups

The third hypothesis (H3) of this study claims that young drivers may benefit more
from stronger countermeasures that involve more resource stages and higher cognitive
load, while middle-aged drivers may suit better with lighter countermeasures. However,
the young and middle-aged participants were not significantly different in response to
different countermeasures. Despite varying levels of drowsiness susceptibility and
cognitive abilities, participants in the two groups exhibited similar responses to
countermeasures in terms of driving behavior, physiological measures, and eye
movement patterns. Our hypothesis was not supported. This finding was inconsistent
with that in Song et al. (2017), who claimed that young drivers benefited more from a
verbal alert maintain task while older drivers’ performance was less affected by fatigue.
One possible explanation for this discrepancy is that, although drivers’ resistance to
drowsiness increases with age, this resistance might result from their greater mental
efforts to avoid falling asleep (Lowden et al., 2009). The current study adopted
countermeasures based on the same high drowsiness level for both age groups, the

additional mental effort of middle-aged drivers might not be enough to compensate
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their drowsiness. This resulted in similar effects of countermeasures for the two age
groups. Nevertheless, the countermeasures in Song et al. (2017) were applied based on
the same driving time period. In this condition, the drowsiness level between young and
older drivers at the time of the countermeasure might be different. In addition, all the
middle-aged participants in the current study were experienced drivers. They were less
likely to increase their high-risk attention to secondary tasks over time during driving
compared to less experienced drivers (Klauer et al., 2014). Therefore, although middle-
aged drivers may have inferior attention allocation abilities than young drivers, their
extensive experiences with dual-task management could compensate for this deficit. As
a result, increasing resource stages and cognitive load did not diminish the
countermeasure effects for middle-aged drivers.

Whilst there were no average differences of different countermeasures between age
groups. The results of the heterogeneity analysis revealed that physiological activation
attributed to the countermeasures was more variable for middle-aged drivers than young
drivers. It has long been established that the whilst the central tendency of datasets can
be the same, the spread of the data may differ (Anscombe, 1973; Friedman, 1937). A
similar phenomenon may appear here. The heterogeneity results could imply that the
countermeasures may not have the same physiological effect for different driving
groups. The variability could manifest itself as middle-aged drivers having much higher
physiological activation (i.e., SCL, SDNN, and breathing rate) to countermeasures than
other demographics in certain instances. This pattern might be attributed to the greater
physiological shifts of middle-aged drivers when transitioning from the sleepy state to
countermeasure state. On the one hand, during drowsiness, age-related declines in
autonomic nervous system function and associated physical states tended to result in
lower physiological activation (Doberenz et al., 2011; Luebberding et al., 2014). For
example, epidermal hydration decreases with age (Cho et al., 2019), reducing skin
conductance level (Fowles & Venables, 1970) and skin elasticity (Lee et al., 2022). On

the other hand, when countermeasures were applied, the middle-aged drivers might pay

37



more efforts than young drivers in responding to countermeasures while driving, to
compensate their decreased cognitive abilities. This process could result in a relatively
greater physiological arise from their drowsy baseline. These findings align with
previous studies that older adults exhibit higher levels of cardiovascular reactivity (Hess
& Ennis, 2012) and prefrontal cortex activation (Ohsugi et al., 2013) in response to
cognitive engagement compared to young adults.
4.3 Practical implications

Findings of this experiment have practical implications for the design of in-vehicle
voice assistants as real-world drowsiness countermeasures. First, to maintain the
effectiveness of drowsiness countermeasures while minimizing potential adverse
effects, voice-assistant-based countermeasures should be tailored to drivers’ cognitive
characteristics and physiological limitations. For young drivers, it is recommended to
implement voice assistants that encourage them to speak and to think. These are
effective in countering drowsiness by involving more resource stages and cognitive
engagement. Nevertheless, countermeasures with excessive cognitive load should be
avoided as they may lead to detrimental driving performance if they are manifested as
distraction (D’ Addario & Donmez, 2019). For middle-aged drivers, although they were
also benefited from speaking and thinking, the design and implementation of voice-
assistant-based countermeasures should be more cautious due to their higher variability
in physiological activation to countermeasures. While the increased physiological
activation is generally associated with improved alertness (Oken et al., 2006; Yang et
al., 2017), it may also exacerbate declines in working memory (Riediger et al., 2014)
and increase susceptibility to distraction (Oztiirk et al., 2023), potentially threatening
driving safety. Moreover, sudden increases in physiological arousal should be carefully
managed for some middle-aged adults, given their higher susceptibility to
cardiovascular diseases (Shih et al., 2011).

Second, it is recommended to personalize the features of voice assistants to

encourage drivers to adopt them as drowsiness countermeasures. In practice, drivers
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may avoid voice assistants due to low trust and satisfaction, influenced by design factors
like voice characteristics, familiarity, anthropomorphism, and visual appeal (Lee &
Jeon, 2022; Liu et al., 2023; Park et al., 2024). Furthermore, middle-aged adults differ
significantly from young adults in their smart voice assistant usage requirements,
preferences, and acceptance (Zhong et al., 2024; Gollasch et al., 2021). Although both
driver groups in the current study showed high acceptance for overall countermeasures,
they may have been partly driven by the novelty of the experimental context and their
cooperation to “test” the system (Large et al., 2018). Therefore, personalizing voice
assistant features to meet drivers’ individual needs and preferences is essential to refine
drowsiness countermeasures, ensuring positive user experiences and improving
effectiveness in countering drowsiness.

4.4 Limitations and future works

This study has several limitations. First, this study utilized the “Wizard of Oz”
(WoZ) method to simulate the voice interaction by asking the participants to repeat and
to answer rhythmic poems instead of interacting with a real voice assistant. Although
these poems were familiar enough for participants to engage listening and speaking
processes, the simulated interaction may not fully reflect the dynamics of a natural real-
world conversation. Considering the benefits of verbal engagement in counteracting
drowsiness, future research should explore more naturalistic dialogues to enhance
drivers’ willingness to engage with voice assistants.

Second, this study compared the effectiveness of countermeasures only between
young (18-35 years) and middle-aged drivers (36—64 years). The older drivers aged 65
and above were not included. The results of these countermeasures may not be
generalizable to the older drivers due to the age-related decrease in physiological states
(Luebberding et al., 2013) and cognitive capabilities (Anstey et al., 2005; Murman et
al., 2015). Considering that many individuals aged 65 and above continue to drive
despite moderate cognitive decline (Shimada et al., 2016), future research should

investigate the effectiveness of these countermeasures for older drivers.
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Third, due to a device limitation, certain sensitive eye movement indicators, such
as PERCLOS (i.e., the percentage of time that the eyes are more than 80% closed), were
not recorded. As PERCLOS is a highly validated drowsiness indicator (Abe, 2023),
future studies should incorporate this parameter alongside other measures for a more
robust drowsiness detection and countermeasure framework.

Fourth, countermeasure effects might be transient. Orsini et al. (2024) found that
the effects of listening to self-selected music in countering drowsiness lasted for 12-25
mins. However, the current study focused only on the immediate effect of different
countermeasures. How long alertness might be maintained by using our
countermeasures remains unclear. As the superiority of repeating and answering
countermeasures was confirmed in our findings, the duration of alertness associated

with these countermeasures deserves further exploration.

5 Conclusion

This study conducted a simulated driving experiment to investigate the effects of
five different countermeasures using voice assistants on countering drowsiness for
young and middle-aged drivers. Results suggested that countermeasures involving
more resource stages were more effective in alerting drowsy drivers. This finding was
evidenced by lower self-reported sleepiness, more stable lane keeping, higher
physiological arousal level, greater attention to the road, and higher PVT accuracy. In
addition, drivers also had higher acceptance for the repeating and answering conditions
compared to the no countermeasure and listening conditions. Moreover, the increased
cognitive load of the answering condition may achieve a higher level of alertness than
that of the repeating condition. Listening tasks had limited effects on alerting drowsy
driver but did not adversely impact driving performance or drowsiness. In terms of age,
young and middle-aged drivers did not differ on average in response to different
countermeasures. Nevertheless, considering individual differences in drivers’

physiological activation in reacting to countermeasures, drowsiness countermeasures
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should be tailored to the individual needs, particularly for middle-aged drivers. Our
findings not only clarify drowsiness countermeasure mechanisms but also offer
practical guidance for vehicle designers to use in-voice assistants as anti-drowsiness

tools.
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