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Abstract 

 Drowsy driving is one of the leading contributing factors to traffic accidents. As 

drivers continue driving despite being aware of their drowsy states, it is necessary to 

adopt active countermeasures to avoid them falling asleep behind the wheel. Based on 

the multiple resources model, this study proposed five countermeasure types using 

voice assistants (no-countermeasure vs. meaninglessly listening vs. meaningfully 

listening vs. repeating vs. answering) and investigated their effects on countering 

drowsiness for young and middle-aged drivers. A five-week simulated manual driving 

experiment was conducted to evaluate the effectiveness of countermeasures based on 

driver performance, physiological indicators, eye movement indicators, and subjective 

ratings. Results indicated that repeating and answering were the two most effective 

countermeasures. The self-reported sleepiness of these two countermeasures (6.328 and 

5.276 for repeating and answering, respectively) were significantly (p < 0.05) lower 

than that of the no-countermeasure (7.983). The physiological arousal state in term of 

skin conductance level for the two (1.798 and 1.990 for repeating and answering, 

respectively) were significantly (p < 0.05) higher than that of the no-countermeasure 

(1.022). Consistent patterns were also found in driving performance, eye movement 

indicators, psychomotor vigilance task accuracy, and subjective acceptance ratings. 

These findings suggested that countermeasures involving more resource stages can 

enhance drivers’ alertness. The trend of higher alertness in the answering condition 

compared to the repeating condition highlighted the advantage of increasing cognitive 

load in countering drowsiness. Although young and middle-aged drowsy drivers did 

not differ on their average responses to different countermeasures, they showed 

differences in their physiological activation in reacting to the countermeasures. 

Drowsiness countermeasures should be tailored to fulfill individual needs, particularly 

for middle-aged drivers. This study not only clarifies how drowsiness countermeasures 

work but also offers practical guidance for vehicle designers on using in-vehicle voice 

assistants effectively.  
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1 Introduction  

1.1 Background 

Drowsy driving is one of the leading contributory factors to traffic accidents, 

resulting in approximately 20% of all motor vehicle crashes (National Sleep Foundation, 

2023) and 1.8 % of fatal crashes from 2017 to 2021 in the U.S.A. (NHTSA, 2023). 

Drowsiness is a state of low alertness associated with lower frontal lobe functioning, 

greater exertion of mental effort, and an involuntary tendency for rapid skeletal muscle 

inhibition (APA Dictionary of Psychology, n.d.). The state of drowsiness may result 

from low arousal (e.g., long, monotonous driving), high workload (e.g., multitasking 

while driving), or sleep-related factors (e.g., sleep deprivation) (Ayas et al., 2023). It 

could reduce drivers’ attention, impair their hazard perception, and slower their 

responses, and thus increase the risk of accidents (Kaplan & Prato, 2012; Smith et al., 

2009). 

Given the common causes of driver drowsiness, implementing timely 

countermeasures is crucial for driving safety. More than 16 methods to mitigate 

drowsiness have been reported in the literature (Gershon et al., 2011; Meng et al., 2015), 

including talking with passengers, taking a short nap, listening to music or the radio, 

opening the window, drinking, and etc. However, drivers continue to drive despite 

being aware of their drowsy states and available effective countermeasures (Jackson et 

al., 2011; Nordbakke & Sagberg, 2007). This tendency might stem from drivers’ 

reliance on their past experiences, perceived social norms, journey goals, or a lack of 

understanding for the risks associated with drowsy driving due to reduced brain 

activation levels (Jackson et al., 2011; Large et al., 2017). Therefore, it is important to 

adopt active countermeasures for drowsiness to avoid drivers falling asleep behind the 

wheel.  

With the widespread of in-vehicle voice assistants (RationalStat LLC, 2023), it is 

promising to adopt voice assistants as active drowsiness countermeasures. Moreover, 

given the significant rise of global median age (UN DESA, 2024) and the high 
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prevalence of sleepy driving across ages (Obst et al., 2011), exploring the feasibility of 

voice-assistant based drowsiness countermeasures for drivers of different ages has 

become increasingly important. By adopting voice assistants, this study innovatively 

proposed different countermeasures and conducted a simulated driving experiment to 

evaluate their effectiveness in countering drowsiness among drivers of different age 

groups.  

1.2 Adopting voice assistants as drowsiness countermeasures 

 In-vehicle voice assistants provide different types of interaction such as playing the 

radio and starting conversations. They may be promising drowsiness countermeasures 

with several advantages. First, adopting such assistants to counter drowsiness is 

convenient. In 2023, over 20 million vehicles have equipped with automotive voice 

assistants, with an installation rate higher than 80 % (RationalStat LLC, 2023). These 

widespread voice assistants can provide convenient ways to counter drowsiness when 

the monitoring systems detect drivers’ drowsiness (Arakawa, 2021; Lu et al., 2022). 

Second, engaging drowsy drivers in voice interactions is a proactive drowsiness 

countermeasure. Compared to passively receiving countermeasures such as feedback 

and warnings to be notified of their drowsy state (Aidman et al., 2015; Nishigaki & 

Shirakata, 2019), drivers can actively participate in the alerting process. In this process, 

voice assistants play the role of passengers, encouraging drivers to listen, think, or talk. 

Third, interacting with voice assistants have little competition in attention resources 

needed for driving. According to the multiple resources model, tasks interfere each 

other when they share the same resource stages (e.g., perception, cognition, responding), 

sensory modalities (auditory vs. visual), codes (spatial vs. verbal), and visual channels 

(Wickens, 2002). Driving primarily involves visual perception, spatial cognition, and 

motor skills. In contrast, alert maintenance tasks, such as memory recall tasks, auditory 

motor tasks, and gamified tasks (Gershon et al., 2009; Saxby et al., 2017; Takayama & 

Nass, 2008), often overlap with the same attention resources with the driving task. 

However, interacting with voice assistants primarily involves auditory perception, 
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cognitive processing, and verbal responding. These are largely distinct from driving 

demands. The drowsy drivers are, then, allowed to stay engaged in the alerting process 

with minimal interference. 

Furthermore, interacting with voice assistants forms different types of drowsiness 

countermeasures, which would exert various drowsiness countering effects. As the 

Table 1 shows, countermeasures vary in the number of resource stages required for 

information processing and the extent of cognitive load involved, ranging from 

listening to music to engaging in conversations. On the one hand, increasing the number 

of resource stages in voice interactions might enhance alertness of drowsy drivers. For 

example, listening to music increases drivers’ mental arousal through auditory 

perception alone. However, engaging conversations alert drivers with more resource 

stages, including perception, cognition, and responding. Since physical and mental 

arousals could produce combined arousal states (Oken et al., 2006; Yang et al., 2017), 

conversating with voice assistants that engage drivers both mentally and physically 

might exhibit more arousal states than passive listening. It was preliminary evidenced 

by Papachristos et al. (2024), who engaged drowsy drivers in listening to music and 

observed that drivers’ vocal participation during the process yields a beneficial alerting 

effect, compared to passive listening or physical participation. On the other hand, 

moderately increasing drowsy drivers’ cognitive load might also help to improve 

drivers’ alertness. As underload is one of the reasons of drowsiness, increasing driver’s 

cognitive load can alleviate the underload induced drowsiness (May & Baldwin, 2009). 

For instance, listening to more meaningful content (vs. less meaningful content) and 

engaging deeper conversations (vs. lighter conversations) could induce higher cognitive 

load for the drowsy drivers, helping to counteract underload-induced drowsiness by 

activating cognitive processes. This was supported by a non-driving-related study, 

which suggested that increasing workload from low to moderate levels was associated 

with reductions in fatigue (Grech et al., 2009).  
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Table 1. Involvement of resources in driving tasks and countermeasures using voice 

assistants 

Task type 
Information processing stages  

with perception modalities and codes 
Common instances 

 
(Visual) 

Perception 

(Spatial) 
Cognition 

(Motor) 
Responding 

 

Driving Tasks ✓ ✓ ✓  

 
(Auditory) 

Perception 

(Verbal) 

Cognition 

(Verbal) 

Responding 
 

Countermeasure types 
using voice assistants 

✓   Listening to music 

✓ ✓  Listening to the radio 

✓ ✓ ✓ Engaging in light conversation 

✓   ✓✓ ✓ Engaging in deep conversation 

Note: ✓ means involvement of the corresponding resource; ✓✓ means the strong involvement 

of the corresponding resource. 

 How these various voice-assistant-based countermeasures varying in resource 

stages and cognitive load would counter drowsiness remains unknown. Previous studies 

suggest that countermeasures involving human auditory and verbal processes can 

effectively alert drowsy drivers (Atchley et al., 2014; Mahajan, 2021; Large et al., 2017; 

Orsini et al., 2024; Takayama & Nass, 2008; Papachristos et al., 2024). Listening to 

music or engaging in conversation with a voice assistant, compared to having no 

countermeasure, has been shown to increase driver alertness. For example, Orsini et al. 

(2024) found that listening to music had a positive acute effect on perceived driving 

fatigue compared to not listening. Other studies have also showed that verbal response 

tasks could enhance alertness and driving performance more effectively than listening 

tasks (Atchley et al., 2014; Takayama & Nass, 2008). For instance, Takayama et al. 

(2008) indicated that drivers preferred and drove more safely with the verbally 

repeating task compared to the passively listening task. However, the above-mentioned 

studies differed in task types, interaction materials, countermeasure durations, and 

driving conditions, making it difficult to compare the effectiveness of various 
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countermeasures among these studies. Moreover, most of those studies assessed 

countermeasure effectiveness using specific auditory (e.g., radio listening; Atchley et 

al., 2014) or verbal tasks (e.g., repeating phrases; Takayama & Nass, 2008). Few studies 

have explored the usage of in-vehicle voice assistants to counter drowsiness, even 

though these assistants are increasingly integrated into vehicles for infotainment and 

driving support (Lee & Jeon, 2022). Although some researchers have employed a digital 

voice assistant to counter passive task-related fatigue (Mahajan et al., 2021; Large et 

al., 2017), they did not compare different types of countermeasures in terms of resource 

stages and cognitive involvement. Therefore, the effects of different countermeasures 

using voice assistants on countering drowsiness remain unclear. Inspired by the benefit 

of increasing resource stages (Oken et al., 2006; Yang et al., 2017) and enhancing 

cognitive load (May & Baldwin, 2009; Grech et al., 2009) in enhancing drowsy drivers’ 

alertness, the following hypotheses were proposed:  

H1: By adopting voice assistants, countermeasures with more resource stages alert 

drowsy drivers better than those with less resource stages.  

H2: Increasing cognitive load in countermeasures can enhance drowsy drivers’ 

alertness. 

1.3 Age and drowsiness countermeasures 

Effective countermeasures should ideally be generalized to the general population. 

The number and proportion of middle-aged drivers are expected to increase with the 

global aging trend. This is reflected in the rise of the global median age from 22.2 years 

in 1950 to 30.4 years in 2023 (UN DESA, 2024). This increasing trend is particularly 

evident in countries such as Japan (from 21.3 in 1950 to 49.0 in 2023), China (from 

22.2 in 1950 to 39.1 in 2023), and the United States (from 29.0 in 1950 to 38.0 in 2023 

(UN DESA, 2024). Drowsy driving is a common issue reported by drivers of different 

ages (National Sleep Foundation, 2023). It is necessary to consider effects of age when 

evaluating the effectiveness of drowsiness countermeasures as the literature (Anstey et 

al., 2005) indicates that driving related capabilities decline with age.  
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Various countermeasures using voice assistants may benefit drowsy drivers of 

different age differently. As age increases, drivers are less physiologically susceptible 

to sleep loss and sleepiness-related driving impairment. This is supported by the 

middle-aged or older drivers’ lower level of sleepiness-related neurophysiological 

indicators and lower subjective reported sleepiness under sleepy-inducing driving 

conditions (Lowden et al., 2009; Vaz Fragoso et al., 2015). Additionally, middle-aged 

drivers (30+ years) have more driving experience and hold more negative attitudes 

toward sleepy driving than young drivers (17–29 years) (Watling and Watling, 2015). 

As a result, they tend to self-regulate by avoiding challenging situations like nighttime 

driving (Charlton et al., 2006) and by reducing their driving distances (Braitman et al., 

2011). These self-regulatory behaviors might help them compensate the impaired 

driving-related cognitive abilities like divided attention, which decrease with age 

(Anstey et al., 2005; Murman et al., 2015). On the other hand, as voice interactions 

while driving constitute a dual task, age-related cognitive declines may interfere drivers 

of middle age to perform the dual task as effectively as their younger counterpart. 

Specifically, middle-aged drivers show longer reaction times and higher error rates in 

dual tasks, regardless of resource competition between tasks (Doroudgar et al., 2017; 

Fraser et al., 2010; Song et al., 2017). Therefore, the middle-aged drivers might have a 

relatively decreased ability to allocate their attention to the driving task and the voice 

interaction task simultaneously than young drivers. This could threaten their driving 

safety and reduce the drowsiness countermeasure efficiency. 

It was suspected that middle-aged drivers, who are less prone to drowsiness but 

have impaired attention allocation capability, could respond better to lighter 

countermeasures that require less resource stages and cognitive effort. In contrast, 

young drivers, with relatively stronger attention allocation capability for dual tasks but 

are more prone to drowsiness, might benefit more from stronger countermeasures 

involving more resource stages and cognitive effort.  
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The research exploring how age affects the effectiveness of various voice-

assistants-based countermeasures in countering drowsiness is limited. Song et al. (2017) 

found that young drivers were more affected in driving performance by fatigue but were 

benefitted more from the verbal responding task, while older drivers were relative 

unaffected by fatigue. Nevertheless, their study mainly focused on exploring different 

drivers’ drowsiness development over time and investigating only the effects of verbal 

task as drowsiness countermeasure. Comparisons among different countermeasures for 

alerting drowsy drivers of different age groups remain underexplored. In addition, 

acceptance of a device can significantly influence the intention of drivers to use such 

devices (Yılmaz et al., 2022). It is important to understand how drivers of different ages 

accept voice assistants as drowsiness countermeasures. Even though some studies have 

indicated that older generations often face barriers to adopting new technologies 

(Tacken et al., 2005), the others have shown that middle-aged adults exhibited more 

positive intentions to use voice assistance than the young ones (Zhong et al., 2024). 

Although age-related differences in the acceptance of voice assistants have been 

examined (Zhong et al., 2024; Gollasch et al., 2021), most evaluations have considered 

voice assistants primarily as infotainment or in-vehicle control systems. Investigations 

on drivers’ acceptance of voice assistants by serving them as drowsiness 

countermeasures have not been reported. How countermeasures that vary in resource 

stages and cognitive load would counter driver drowsiness and influence drivers’ 

acceptance of different ages needs further investigation. Therefore, considering the 

trend of increasing resistance in drowsiness (Lowden et al., 2009) alongside the decline 

in cognitive capabilities with age (Anstey et al., 2005), this study formulated the 

following hypothesis:  

H3: Young drivers may benefit more from countermeasures that involve more 

mental resource stages and higher cognitive load, while middle-aged drivers may suit 

better with lighter countermeasures. 

 



 11 

1.4 Aim of the present study 

In summary, the effect of voice-assistants-based countermeasures on countering 

drowsiness of drivers in different ages needs further investigation. Filling these gaps 

can provide insights into how countermeasures should be employed to drowsy drivers 

by using in-vehicle technologies. A simulated driving experiment in this study was 

conducted to explore the effects of five countermeasure types using voice assistants on 

countering young and middle-aged drivers’ drowsiness, as measured by self-reported 

sleepiness, driving performance, physiological indicators, and eye movement indicators. 

In addition, differences in drivers’ acceptance of using in-vehicle voice assistants 

between the two age groups were also analyzed and discussed. By adopting voice 

assistants, this study aimed to answer the following three research questions (RQs): 

RQ1: Do countermeasures involving more resource stages (i.e., perception, 

cognition, responding) benefit more in alerting drowsy drivers? 

RQ2: Does increased cognitive load in countermeasures alert drowsy drivers more?  

RQ3: How does the effectiveness of different countermeasures vary in alerting 

drowsy drivers of young and middle-aged groups?  

 

2 Method 

2.1 Participants  

This study focused on recruiting young (18-35 years) and middle-aged (36-64 years) 

male drivers, as previous research indicates that this demographic reports the highest 

frequency of drowsy driving incidents (Obst et al., 2011). This classification also 

aligned with the new age group classification considering the aging population (Mazer 

et al., 2021).  

The minimum sample size required was 26. This was calculated using the G*Power  

software (3.1.9.6) using the effect size of 0.25, an  of 0.05, a power of 0.90,   

countermeasures of 5, a correlation of 0.5 among repeated measures, and a non-

sphericity correction of 1 (G*Power, 2023).  
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A total of 30 participants were recruited through advertising and snowballing. One 

participant quitted due to personal reasons, leaving 15 participants in the young group 

(24-35 years, M = 27.93, SD = 2.62) and 14 in the middle-aged group (36-60 years, M 

= 44.5, SD = 8.03). All participants had valid driver’s license and several years of 

driving experience (young group: M = 5, SD = 2.45; middle-aged group: M = 20, SD = 

5.35).  

For inclusion, participants needed to meet the following criteria: 1) physically 

healthy and cognitively intact; 2) own a valid driving license with over three years of 

driving experience; 3) regular driving of at least three times a week; 4) normal or 

corrected-to-normal vision and hearing; 5) regular sleep habits with no sleep-related 

disorders or shift work in the past month; 6) absence of cardiovascular, digestive, or 

psychological disorders; 7) no excessive daytime sleepiness (Epworth Sleepiness Scale 

score < 16) (Johns, 1991; Mahajan, 2021); 8) no plans for or recent engagement in 

extensive physical activities; 9) do not understand, speak, or write in French. 

 All participants signed an informed consent form before they joined the study. The 

experiment was approved by the Institutional Review Board of the Department of 

Industrial Engineering, Tsinghua University.  

2.2 Experimental design 

 This study adopted a 2 × 5 mixed factorial design. The factors included age group 

and countermeasure type. The age group included young and middle-aged group. It was 

a between-subject variable. The countermeasure type included no countermeasure, 

meaninglessly listening, meaningfully listening, repeating, and answering. This 

variable was a within-subject variable. All participants completed driving tasks under 

each of the five countermeasure types.  

2.3 Countermeasures and materials  

The countermeasure types are listed in Table 2. This study used poems as materials 

for drowsy countermeasures because they are rhythmic with powerful effectiveness in 

eliciting peak emotional responses, as known as arousal (Wassiliwizky et al., 2017). 
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Two types of auditory poems with similar rhythms were selected. For the meaningless 

listening condition, the French poem “la Nuit de décembre” was used. Since all 

participants were required to not understand, speak, or write in French, this poem was 

meaningless to them. For the meaningful listening, repeating, and answering conditions, 

ten classical ancient Chinese poems were used. All the participants were familiar with 

these Chinese poems. They could comprehend and recite these poems easily since the 

primary study. Moreover, all the Chinese poems followed a five-character-quatrain 

structure, consisting of four lines with five characters per line. Since every Chinese 

character is monosyllabic, the five characters in each line corresponded exactly to five 

syllables. For example, “The Peasant's Lot” comprises four lines with five syllables for 

each line, which is easy and quick for participants to recite (see Figure 1 a)). For 

meaningfully listening condition, ten Chinese poems were compiled into a collection. 

For repeating and answering conditions, Chinese poems were displayed line by line. 

All poems were recorded in a consistent tone and speed (i.e., around 95 characters/ 

minutes) by a female speaker fluent in both French and Chinese. Each recording was 

processed to ensure similar rhythm across both languages, see audio track in Figure 1 

b). Poems were played at an average volume of approximately 68 dB. A female 

experimenter manipulated the voice assistant to display all countermeasures. Each 

countermeasure lasted for approximately 3.5 minutes. 
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Table 2. Five countermeasure types  

Countermeasure Explanation 

No 

countermeasure 

Participants accepted no countermeasures. 

[Involve no process of auditory perception, verbal cognition, or verbal responding] 

Meaninglessly 

listening 

Participants listened to a French poem. 

[Involve process of auditory perception only] 

Meaningfully 

listening 

Participants listened to a series of Chinese poems. 

[Involve process of auditory perception and verbal cognition] 

Repeating 

Participants repeated one line of Chinese poems that was played by the voice assistant, 

imitating its tone and speed (e.g., the voice assistant played “chú hé rì dāng wǔ” and 

participants repeated “chú hé rì dāng wǔ”). 

[Involve process of auditory perception, verbal cognition, and verbal responding] 

Answering 

Participants answered the next line in response to the line of Chinese poems played by the 

voice assistant, imitating its tone and speed (e.g., the voice assistant played “chú hé rì dāng 

wǔ” and participants answered the next line “hàn dī hé xià tǔ”). 

[Involve process of auditory perception, verbal cognition (higher), and verbal responding] 

 

 

Figure 1. Illustration of countermeasure materials (a): an instance of Chinese poem, 

b): audio tracks of Chinese poem series and the French poem) 
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2.4 Measurements  

 The dependent variables included driving performance, physiological measures, 

eye movements, mental workload, and acceptance of countermeasures. The variables 

related to driving performance included standard deviation of lane position (SDLP), 

standard deviation of vehicle heading angular (SDVHA), and standard deviation of 

driving speed (SD-Speed). The literature has shown that a decrease of SDLP and 

SDVHA and an increase of SD-Speed are related to increased alertness and reduced 

driving drowsiness (Atchley et al., 2014; Large et al., 2017; Portouli et al., 2007).  

 The physiological measures included skin conductance level (SCL) (μS), the 

standard deviation of normal-to-normal intervals (SDNN), and breathing rate (breaths 

per minute). These variables were extracted from the raw data of the physiological 

signals of electrodermal activity, cardiac activity, and respiratory activity, respectively. 

The literature has shown that an increase of these variables is associated with the 

enhance of alertness (Bundele & Banerjee, 2010; De Naurois et al., 2019; Kiashari et 

al., 2018). In addition, these variables are all sensitive to age. All the SDNN 

(Bonnemeier et al., 2003), SCL, and the standard deviation of the SCL (Doberenz et al., 

2011) tend to decrease with age.  

The eye movement measures included pupil diameter (PD) (mm), proportion of 

visit duration on the road center (PVRC) (%), and blink rate (times per minute). PVRC 

was calculated as the proportion of visit duration within the road center area during the 

time of interest (TOI). The literature has shown that an increase of PD and PVRC and 

an decrease of blink rate are associated with enhanced alertness and reduced drowsiness 

(De Naurois et al., 2019; Large et al., 2017). 

Subjective ratings for both mental workload and acceptance for countermeasures 

were collected. The mental workload was measured using the unweighted NASA-TLX 

scale (Hart & Staveland, 1988). This scale is composed of six sub-items: mental 

demand, physical demand, temporal demand, performance, effort, and frustration. The  

acceptance for countermeasure was collected using a questionnaire comprising five 
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items for usefulness and four items for satisfaction (Van Der Laan et al., 1997). A 7-

point Likert scale was used in this questionnaire to evaluate drivers’ opinions on 

different countermeasures.  

2.5 Drowsiness inducement and detection 

Drowsiness was induced by manipulating the awake time, the experimental 

environment, and the driving task. For the awake time, the participant was required to 

wake up one hour earlier than usual on the day of his visit and stayed awake for 16 

hours before the experiment. The experiment visit time ranged from 21:00 PM to 01:00 

AM, lasting one hour for each participant. The specific visiting time for each participant 

was scheduled based on their wake-up time. Moreover, the participant was instructed 

to refrain from caffeine, mints, teas, alcohol, or related beverages, smoking, or having 

a nap for the entire day of the experiment. For the environment, the experiment was 

conducted in a quiet and dark room. For the driving task, a monotonous night driving 

scenario was created by the driving simulator software. The participant was asked to 

follow a truck traveling at a constant speed of 90 km/h on a four-lane highway (two 

lanes in each direction), with a speed limit of 120 km/h. 

Participants’ drowsiness level was detected through self-reported Karolinska 

Sleepiness (KSS) ratings and performance on a psychomotor vigilance task (PVT). The 

KSS was used to measure the participants’ drowsiness level (Åkerstedt & Gillberg, 

1990). It was based on a 9-point Likert scale from 1 (extremely alert) to 9 (very sleepy, 

great effort to keep awake, fighting sleep). Every 5 minutes, the message “Please report 

your state based on the KSS scale” was emitted to request the participant to report his 

own drowsiness level. The participant rated his drowsiness by pressing a number button 

on the keypad on the steering wheel. One minute after each KSS rating, the participant 

performed the PVT, a sensitive drowsiness detection method requiring a button-press 

response to visual stimuli. A decrease of PVT performance often indicates drowsiness 

(Basner & Dinges, 2011; Philip et al., 2005). In this study, a simplified PVT was 

designed. The participant was required to press the R3 button on the steering wheel 
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whenever a red square icon in the gray area changed to triangle (see Figure 2). These 

red triangle icons appeared at random intervals (2-10 seconds) with a 1-second display 

duration. Responses with a reaction time of 600 ms or more were classified as lapses 

(Kozak et al., 2005). The PVT was conducted every eight minutes during driving and 

lasted for approximately two minutes. The experimenter implemented the drowsiness 

countermeasures only when the participants’ KSS rating was equal to or larger than 7 

and their PVT accuracy was lower than 70%. 

2.6 Apparatus  

2.6.1 Driving simulator 

 The driving simulator in this study was composed of a driving-simulated software 

(STISIM DRIVE Build 3.22.05, System Technology Inc., Hawthorne, CA, USA), an 

operational system, a Dell workstation (Dell Precision 3640 Tower, Dell Inc., Round 

Rock, TX, USA), an audio system, and a 65-inch monitor with 4k resolution (see Figure 

2). The operation system included a steering wheel with force feedback, a brake pedal, 

an acceleration pedal, and a clutch pedal. Driving data was recorded at a frequency of 

120 Hz. 

2.6.2 Physiological equipment   

 An eye tracker (Tobii X3 Pro, Tobii Inc., Danderyd, Stockholm, Sweden) was used 

to track participants’ eye movement behaviors with the pupillary responses at a 

sampling rate of 250 Hz. A portable wireless physiological system, ErgoLAB (Kingfar 

Co., Beijing, China), with modules of electrodermal activity 

(EDA), photoplethysmography (PPG), and reparation (RESP), was used to record the 

physiological signals at 64 Hz. As Figure 2 shows, the EDA was measured using two 

electrode patches attached to the index and ring fingers. The PPG was captured by an 

infrared sensor on the left earlobe, and RESP was collected via a strap on the abdomen.  



 18 

 

Figure 2. Experimental setup 

2.6.3 Drowsiness detection and countermeasure equipment 

The drowsiness detection and countermeasure equipment included the Eprime 3.0 

software (Psychology Software Tools, Inc. Sharpsburg, PA, USA), a ThinkCentre 

workstation (ThinkCentre M80, Lenovo Ltd., Beijing, China), an iPad (iPad 9th 

generation, Apple Inc., Cupertino, CA, USA), a numeric keypad, and an audio system. 

The iPad positioned at the top right corner of the desk was used to display the KSS 

scale, while the keypad was installed on the steering wheel and was used to collect KSS 

responses. The ThinkCentre workstation was linked to the Dell system that ran the 

driving scenario, enabling real-time PVT responses collection. A customized voice 

interaction program in Eprime 3.0 enabled sequential or line-by-line playback of poems 

to simulate an interactive voice assistant. Interfaces of real-time PVT response results, 

KSS reporting outcomes, and voice interaction programs were positioned out of 

participant’s view. 

2.7 Procedures 
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Each participant completed five visits, scheduled one week apart. At the first visit, 

the experimenter introduced the objectives of the study and the noninvasive 

physiological system to the participant. The participant signed an informed consent 

form and completed a demographic questionnaire about his age, driving experience, 

and health state.  

The experiment process for each visit was similar. At first, the experimenter helped 

the participants to wear all physiological devices, completed eye movement calibration, 

and had the participant rested for 5 minutes. Then, the participant completed two 

practice sessions: a three-minute session to familiarize him with the driving simulator 

and a five-minute session to practice KSS reporting and PVT while driving. The 

participant was instructed to keep his thumbs near the R3 button on the steering wheel 

to complete PVT. During the formal driving test, the participant drove continuously and 

completed KSS reporting and the PVT for approximately every 5 minutes (see Figure 

3 a)). For drowsiness detection and countermeasure implementation, this study 

employed the widely used “Wizard of Oz” (WoZ) method (Dahlbäck et al., 1993). The 

participant was told that he was interacting with a real digital voice assistant. In fact, 

the interaction was operated by a female experimenter, who monitored the experiment 

process without the awareness of the participant. She implemented countermeasures 

when each participant’s drowsiness level met the countermeasure criterion (i.e., KSS ≥ 7 & PVT accuracy ≤70%). To minimize the potential alerting effect of PVT, all 

countermeasures were conducted one minute after the last PVT. Once the 

countermeasure criterion was met, the experimenter either played a continuous poem 

for the meaninglessly or meaningfully listening conditions, controlled the line-by-line 

playback of poems based on participants’ responses for the repeating and answering 

conditions, or played nothing for the no countermeasure condition. This was 

accomplished by using the customized voice interaction program. Following each 

countermeasure, the participant reported his KSS rating immediately and completed a 

PVT again. After the experiment, the participant filled out questionnaires on mental 
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workload during the countermeasure and the subjective ratings for countermeasure 

acceptance. The experiment in each week lasted for 50-70 minutes, depending on when 

the participant’s drowsiness level met the countering criteria. The sequence of the five 

countermeasure types was balanced by using a Latin Square design. After five visits, 

each participant received a cash compensation of 1,000 RMB (i.e., approximately 140 

USD) for his participation in the experiment.  

2.8 Data analysis  

2.8.1 Data preprocessing 

To evaluate the effectiveness of the countermeasures, different timings regarding 

the implementation of countermeasures were extracted for indicators (see Figure 3 b)). 

For KSS ratings and PVT accuracy, the corresponding values (i.e., KSS1 and PVT1), 

which exactly met the countermeasure criteria, were treated as the “before 

countermeasure” indicators. The KSS ratings and PVT accuracy (i.e., KSS2 and PVT2) 

after the countermeasure were treated as the “after countermeasure” indicators.  

Driving performance data were exported from the STISIM software and averaged 

according to different time intervals. Figure 3 b) shows that the period of 1 minute right 

before the instructional speech for KSS1 rating served as the time interval of the “before 

countermeasure” (i.e., orange square) and the exact 3.5-minute duration of the 

countermeasure served as the time interval of “during countermeasure” (i.e., blue 

square). 

Physiological and eye movement signals were first extracted and averaged using 

the ErgoLAB software. The time intervals of “before countermeasure” and “during 

countermeasure” for both indicators were set same as driving performance data. Then, 

a multistage normalization method was applied to normalize data across different age 

groups, baseline states, and weekly calibration variances (Yang et al., 2021). Data were 

normalized by dividing the mean values from the “before countermeasure” or “during 

countermeasure” intervals by the mean “baseline” value. The baseline interval was 
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defined as a one-minute period from the start of the formal driving session in each week 

(i.e., green square) (see Figure 3 b)). 

 

Figure 3. a) formal driving process in each week and b) data preprocess for different 

indicators in each week 

2.8.2 Statistical analysis 

RStudio (2023.10.31) was used for statistical analysis. For ordinal data, the non-

parametric Friedman test was conducted (Friedman, 1937). If the Friedman test showed 

statistically significant differences, a Wilcoxon signed-rank test was employed for the 

post-hoc test (Wilcoxon, 1992). For continuous data, the linear mixed model (LMM) 

accounting for both fixed and random effects, was adopted (Baayen et al., 2008; Wan 

& Sarter, 2022). Residual normality was checked using Q-Q plots and the one-sample 

Kolmogorov-Smirnov test (Venables & Ripley, 2002). The homogeneity of variance 

was assessed using the Levene’s test (Levene, 1960). If the model assumption was 

violated, the data was transformed into a logarithm function. In the LMM data analysis, 

age group, countermeasure type, countermeasure timing, and their interaction effects 
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were considered as fixed-effect variables. The individual variance was considered as a 

random variable. The paired t-test was used for the post hoc analysis if the main effect 

was significant and for the simple effect analysis if the interaction effect was significant. 

The significant level of all analyses was set at 0.05 and corrected by a Bonferroni 

adjustment. 

To check the success of manipulation and the countermeasure outcomes, this study 

examined the effects of countermeasure type on KSS ratings and PVT accuracy by 

separating age group and countermeasure timing. To compare the effectiveness of 

different countermeasures on alerting drowsy drivers, the effects of age group, 

countermeasure type, countermeasure timing, and their interaction effects on driving 

performance, physiological indicators, and eye movement indicators were analyzed. In 

addition, the heterogeneity of participant in the effect of overall countermeasures on the 

above indicators was analyzed by adopting causal processing methods. Finally, the 

mental workload and acceptance in different countermeasures between two age groups 

were analyzed. Data and analysis code can be found in the following link 

(https://github.com/zhangweibetty/Drowsy-countermeasures). 

 

3 Results  

3.1 Manipulation checks and results 

3.1.1 Karolinska Sleepiness ratings  

For the young group, before the countermeasure, there was no main effect of 

countermeasure type on KSS ratings (2(4) = 3.591, p = 0.464). After the 

countermeasure, the main effect of countermeasure type on the KSS rating was 

significant (2(4) = 29.813, p < 0.001) (see Figure 4). Post hoc analysis suggested that 

the answering condition (M = 4.767, SE = 0.518) led to the lowest KSS rating, which 

was significantly lower than those of the meaningfully listening (M = 7.100, SE = 0.391) 

(p < 0.01), the meaninglessly listening (M = 7.567, SE = 0.271) (p < 0.05), and the no 

countermeasure (M = 8.033, SE = 0.172) (p < 0.05) conditions. The repeating condition 

https://github.com/zhangweibetty/Drowsy-countermeasures
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(M = 6.067, SE = 0.396) achieved the second lowest KSS ratings, which was 

significantly lower than that of the no countermeasure condition (p < 0.05). No 

significant differences in KSS ratings were observed between the answering and 

repeating conditions.  

For the middle-aged group, before the countermeasure, there was a main effect of 

countermeasure type on KSS ratings (2(4) = 10.488, p < 0.05), but post hoc analysis 

revealed no significant differences among the five countermeasure types. After the 

countermeasure, the main effect of countermeasure type on KSS ratings was significant 

(2(4) = 21.780, p < 0.001) (see Figure 4). The answering condition (M = 5.821, SE = 

0.468) produced the lowest KSS rating, which was significantly lower than both the 

meaningless listening (M = 7.536, SE = 0.350) and no-countermeasure (M = 7.929, SE 

= 0.245) conditions (p < 0.05 for each comparison).  

3.1.2 Psychomotor vigilance task accuracy 

For the young group, the main effect of countermeasure type on PVT accuracy was 

not significant before the countermeasure (F (4, 56) = 0.822, p = 0.517) nor after the 

countermeasure (F (4, 56) = 1.114, p = 0.359). For the middle-aged group, the main 

effect of countermeasure type on PVT accuracy was not significant before the 

countermeasure (F (4, 65) = 0.926, p = 0.455). However, after the countermeasure, the 

main effect of countermeasure type on PVT accuracy was significant (F (4, 65) = 2.533, 

p < 0.05) (see Figure 4). Post hoc analysis suggested that both the answering (M = 0.651, 

SE = 0.040) and meaningfully listening (M = 0.657, SE = 0.057) conditions resulted in 

significant higher PVT accuracy than the no countermeasure condition (M = 0.425, SE 

= 0.074) (p < 0.05 for each comparison).  
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Figure 4. Means and standard errors of KSS ratings and PVT accuracy for different 

countermeasure types before and after countermeasures (* p < 0.05; ** p < 0.01) 

3.2 Driving performance 

3.2.1 Standard deviation of line position 

Although no main effects of countermeasure type or countermeasure timing on 

SDLP were found, there were significant interaction effects between countermeasure 

type and timing (see Table 3). Figure 5 shows that no significant differences were 

observed on SDLP among the five countermeasure types before the countermeasure. 

However, during the countermeasure, participants had smaller SDLP when repeating 

(M = 0.796, SE = 0.041) than when meaningfully listening (M = 1.018, SE = 0.069) (p 

< 0.01), meaninglessly listening (M = 1.087, SE = 0.059) (p < 0.001), and receiving no 

countermeasure (M = 1.067, SE = 0.087) (p < 0.05). Additionally, SDLP was also 

smaller in the answering condition (M = 0.832, SE = 0.064) than in the meaninglessly 

listening condition (p < 0.01).   
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Table 3. Effects of age group, countermeasure type, and countermeasure timing on 

dependent variables 

Driving behaviors 

 SDLP SDVHA SD-speed 

 F(p) ηp
2  F(p) ηp

2 F(p) ηp
2 

Age group 0.009  < 0.001 0.451  0.016  0.370  0.102  

Countermeasure type 1.200  0.019  1.060  0.017  1.190  0.014  

Countermeasure timing 0.226  0.001  2.661  0.011  27.620 *** 0.019  

Age group × Countermeasure type 0.001  0.008  1.422  0.023  4.308 ** 0.066  

Age group × Countermeasure timing 0.503  < 0.001 0.780  0.003  0.254  0.001  

Countermeasure timing × Countermeasure type 6.917 *** 0.102  8.052 *** 0.117  1.442  0.023  

Age group × Countermeasure timing × Countermeasure type 0.385  0.006  0.423  0.007  0.607  0.010  

Physiological measurements 

 SCL SDNN Breathing rate 

 F(p) ηp
2  F(p) ηp

2 F(p) ηp
2 

Age group 0.007  < 0.001 0.267  0.010  0.047  0.002  

Countermeasure type 9.084 ***  0.130  2.265 +  0.036  2.069  0.033  

Countermeasure timing 
30.998 ***  0.113  

17.266 

***  0.066  0.776  0.003  

Age group × Countermeasure type 1.607  0.026  0.397  0.006  1.181  0.019  

Age group × Countermeasure timing 0.031  < 0.001 0.057  < 0.001 0.660  0.003  

Countermeasure timing × Countermeasure type 5.913 ***  0.089  6.626 ***  0.098  0.648  0.011  

Age group × Countermeasure timing × Countermeasure type 0.159  0.003  0.392  0.006  0.668  0.011  

Eye movement indicators 

 Pupil diameter PVRC Blink rate 

 F(p) ηp
2  F(p) ηp

2 F(p) ηp
2 

Age group 0.008  < 0.001 2.123  0.073  0.493 0.018  

Countermeasure type 9.571 ***  0.136  0.613  0.010  1.669 0.027  

Countermeasure timing 29.240 ***  0.107  4.115 *  0.017  0.756 0.003  

Age group × Countermeasure type 0.974  0.016  0.499  0.008  0.965 0.016  

Age group × Countermeasure timing 0.695  0.003  0.762  0.003  0.011 < 0.001  

Countermeasure timing × Countermeasure type 12.349 ***  0.169  2.901 *  0.046  0.262 0.004  

Age group × Countermeasure timing × Countermeasure type 0.354  0.006  0.406  0.007  0.364 0.005  

Note: F(p) indicates the F values and significance signs, suggesting * p < 0.05; ** p < 0.01; *** p < 0.001; ηp
2 indicates the partial eta 

square, namely, determines the effect size; SDLP- standard deviation of lane position; SDVHA- standard deviation of vehicle heading 

angular; SDSpeed- standard deviation of driving speed; SCL- skin conductance level; SDNN- standard deviation of normal-to-normal 

intervals; PVRC- proportion of visit duration on the road center. 
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Figure 5. Means and standard errors of dependent variables for different 

countermeasure types before and during countermeasures (* p < 0.05; ** p < 0.01; 

*** p < 0.001) 

3.2.2 Standard deviation of vehicle heading angular  

 Table 3 shows that there were significant interaction effects between 

countermeasure type and countermeasure timing, although the main effects of 

countermeasure type and countermeasure timing were not significant. Simple effect 

analysis suggests that before the countermeasure, no significant differences were 

observed on SDVHA (F (4, 112) = 1.620, p = 0.174) (see Figure 5). However, during 

the countermeasure, the five countermeasure types produced significant differences (F 

(4, 112) = 10.74, p < 0.001). Participants’ SDVHA when answering (M = 0.563, SE = 

0.052) was significantly lower than accepting no countermeasure (M = 0.755, SE = 

0.080) (p < 0.05) and meaninglessly listening (M = 0.828, SE = 0.089) (p < 0.01). 

Moreover, SDVHA in the repeating condition (M = 0.522, SE = 0.047) was also lower 
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than that in the no countermeasure (p < 0.01), meaninglessly listening (p < 0.001), and 

meaningfully listening (M = 0.678, SE = 0.073) (p < 0.05) conditions.  

3.2.3 Standard deviation of driving speed 

 There was a main effect of countermeasure timing on SD-speed (see Table 3). 

Participants’ SD-speed during the countermeasure (M = 4.897, SE = 0.632) was 

significantly larger than that before the countermeasure (M = 3.528, SE = .643) (p < 

0.001). Although the interaction effects between age group and countermeasure type 

were significant, comparisons of different countermeasure types within each age group 

were not reported when countermeasure timing was not considered. 

3.3 Physiological measurements 

3.3.1 Skin conductance level  

 There was a significant main effect of countermeasure type on SCL (see Table 3). 

Post hoc analysis results suggested that the answering condition (M = 1.575, SE = 0.131) 

resulted in higher SCL than the meaninglessly listening (M = 1.088, SE = 0.084) and 

no countermeasure (M = 1.059, SE = 0.073) conditions (p < 0.001 for each comparison). 

The SCL in the repeating condition (M = 1.443, SE = 0.142) was also higher than in 

the meaninglessly listening (p < 0.05) and no countermeasure (p < 0.01) conditions. 

The meaningfully listening also showed increased SCL when compared with the no 

countermeasure condition (p < 0.05). 

The main effect of countermeasure timing on SCL was significant. Participants’ 

SCL during the countermeasure (M = 1.520, SE = 0.151) was higher than that before 

the countermeasure (M = 1.129, SE = 0.088) (p < 0.001). The interaction effect between 

countermeasure type and countermeasure timing was also significant. Figure 5 shows 

there were no significant differences among countermeasure types in SCL (F (4,112) = 

0.913, p = 0.459) before the countermeasure was presented. However, the five 

countermeasure types differed on SCL (F (4,112) = 12.035, p < 0.001) during the 

countermeasure. Specifically, SCL was higher in the answering condition (M = 1.990, 

SE = 0.140) compared to the meaninglessly listening (M = 1.147, SE = 0.085) and no 
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countermeasure (M = 1.022, SE = 0.066) conditions (p < 0.001 for each comparison). 

The repeating condition (M = 1.798, SE = 0.165) also produced higher SCL than the 

meaningfully listening (M = 1.643, SE = 0.187) and no countermeasure conditions. The 

meaningfully listening condition resulted in higher SCL than the no countermeasure 

condition (p < 0.05).  

3.3.2 Standard deviation of normal-to-normal intervals  

The main effect of countermeasure timing on SDNN was significant (see Table 3). 

Post hoc analysis suggested that participants had higher SDNN during the 

countermeasure (M = 1.361, SE = 0.110) than before the countermeasure (M = 1.121, 

SE = 0.074) (p < 0.001). Significant interaction effects between countermeasure type 

and timing on SDNN were observed.  

Figure 5 shows that there were no significant differences in SDNN among the five 

countermeasure types before the countermeasure was implemented. However, during 

the countermeasure, SDNN was significantly smaller in the no countermeasure 

condition (M = 1.013, SE = 0.054) compared to the meaninglessly listening (M = 1.348, 

SE = 0.098) (p < 0.05), meaningfully listening (M = 1.314, SE = 0.084) (p < 0.05), 

repeating (M = 1.650, SE = 0.130) (p < 0.01), and answering (M = 1.481, SE = 0.132) 

(p < 0.05) conditions. 

3.3.3 Breathing rate 

 No significant main effects nor interaction effects of age group, countermeasure 

type, and countermeasure timing on breathing rate were found (see Table 3).  

3.4 Eye movement variables 

3.4.1 Pupil diameter 

 Table 3 shows that there was a significant main effect of countermeasure type on 

participants’ PD. Participants had a significant larger PD in the answering condition (M 

= 1.062, SE = 0.019) than in the meaningfully listening (M = 1.003, SE = 0.013), 

meaninglessly listening (M = 1.005, SE = 0.013), and no countermeasure (M = 0.999, 

SE = 0.013) conditions (p < 0.01 for each comparison).  
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The main effect of countermeasure timing on PD was also significant. Participants 

generally had larger PD during the countermeasure (M = 1.042, SE = 0.018) than before 

the countermeasure (M = 1.00, SE = 0.012) (p < 0.001). The interaction effects between 

countermeasure type and countermeasure timing were also significant. Figure 5 shows 

that there were no significant differences in the impact of the five countermeasure types 

on PD before the countermeasure was presented. During the countermeasure, however, 

the answering condition (M = 1.124, SE = 0.018) resulted in significantly larger PD 

than the meaningfully listening (M = 1.009, SE = 0.015), meaninglessly listening (M = 

0.999, SE = 0.014), and no countermeasure conditions (M = 0.997, SE = 0.014) (p < 

0.001 for each comparison). The repeating condition (M = 1.078, SE = 0.015) also 

resulted in a larger PD than the other three conditions, except for the answering 

condition (p < 0.01 for each comparison). 

3.4.2 Proportion of visit duration on the road center  

 There was a main effect of countermeasure timing on PVRC (see Table 3). 

Participants had higher PVRC during the countermeasure (M = 0.997, SE = 0.063) than 

before the countermeasure was presented (M = .922, SE = 0.060) (p < 0.01).  

The interaction effects between countermeasure type and countermeasure timing 

on PVRC were also significant. Figure 5 shows that the five countermeasure conditions 

produced no significant differences on the PVRC before the countermeasure was 

presented. During the countermeasure, the repeating condition (M = 1.124, SE = 0.053) 

led to a higher PVRC than the no countermeasure condition (M = 0.878, SE = 0.079) 

(p < 0.05).  

3.4.3 Blink rate 

 No main effects or interaction effects of age group, countermeasure type, and 

countermeasure timing were found on blink rate (see Table 3). 

3.5 Heterogeneity  

 This study further explored heterogeneity of participant in the effect of overall 

countermeasures by adopting causal processing methods (Bolger et al., 2019; 
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Goodridge et al., 2024). A rule of thumb indicates that causal effect heterogeneity is 

noteworthy if its standard deviation is 0.25 (i.e., relative size) or greater relative to the 

fixed effect (Bolger et al., 2019). The overall countermeasures (see Table 4), therefore, 

demonstrated notable causal heterogeneity effect of participant on SDLP, SCL, SDNN, 

and the breathing rate. 

Table 4. Heterogeneity of participant on the effects of overall countermeasures. 

 Parameter estimates    
 Fixed effect SD   Relative size 

Driving performance    

SDLP 0.125  0.057   0.457  

SDVH 0.149  0.030   0.201  

SD-speed 0.946 0.154   0.163  

Physiological indicators    

SCL 0.844  0.241   0.285  

SDNN 0.356  0.103   0.289  

Breathing rate 0.105  0.053   0.501  

Eye movement indicators    

PVRC 0.150  0.009   0.058  

Pupil Diameter 0.126  0.019   0.149  

Blink rate 0.180  0.002   0.010  

Note: SD: standard deviation; relative size = SD/ Fixed effect. 

Furthermore, given that age was more variable in the middle-aged group (SD = 

8.026) than in the young group (SD = 2.615), this study explored whether age could 

predict between-participant heterogeneity in SDLP, SCL, SDNN, and the breathing rate. 

By adding the effects of age and its interaction effects with countermeasures in LMM 

models, the results suggested that age accounts for 78.27%, 25.05%, 17.67%, and 35.97% 

of the between-participants heterogeneity in the causal effects of countermeasures on 

SDLP, SCL, SDNN, and breathing rate, respectively. As shown in Figure 6, what is 

particularly interesting is the relationship between age and the total implied 

heterogeneity of the countermeasures on the physiological indicators. Namely, the 
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effects of the countermeasures on all measures of physiological activation were more 

variable for the middle-aged drivers than the young ones. Hence whilst there were no 

interaction effects in physiological activation as a function of age and countermeasures, 

it seems that middle-aged drivers tended to be more variable in physiological activation.  

 

 

Figure 6. Relationship between the implied total heterogeneity of dependent variables 

and mean centered age. The vertical line on the x axis denotes mean age. The horizontal 

line on the y axis denotes the average effect of overall countermeasures on SDLP, 

SDNN, SCL, and breathing rate, respectively.  

 

3.6 Subjective ratings 

3.6.1 Mental workload 

The main effect of countermeasure type was significant on the NASA-TLX score. 

Post hoc test results suggested that the repeating condition (M = 37.334, SE = 4.841) 

resulted in a significant lower workload score than the no countermeasure condition (M 

= 44.828, SE = 4.710) (p < 0.05). 

There was a marginal significant three-way interaction effects among age group, 

countermeasure type, and workload dimension. For the young group, the interaction 

effects between countermeasure type and dimension were significant (F (20, 406) = 
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1.891, p < 0.05). Figure 7 shows, that the answering condition (M = 58.667, SE = 7.784) 

produced a higher score of mental demand than the meaninglessly listening condition 

(M = 29.333, SE = 5.873) (p < 0.05). However, the answering condition (M = 18.333, 

SE = 3.984) resulted in a lower workload score on frustration dimension compared to 

the meaninglessly listening condition (M = 46.667, SE = 8.247) (p < 0.05). For the 

middle-aged group, the interaction effects between countermeasure type and workload 

dimension were not significant (F (20, 377) = 0.745, p = 0.779).  

 

Figure 7. Means and standard errors of subjective rating of mental workload for 

countermeasure types and age groups (* p < 0.05) 

3.6.2 Acceptance 

For the young group, the Friedman test indicated a significant main effect of 

countermeasure type on usefulness ratings (2(3) = 24.147, p < 0.001) (see Figure 8 a)). 

Post-hoc analysis suggested that answering (M = 1.587, SE = 0.111) was perceived as 

the most useful countermeasure, with score significantly higher than those for 
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meaningfully listening (M = 0.160, SE = 0.331) (p < 0.05) and meaninglessly listening 

(M = -0.733, SE = 0.267) (p < 0.01). Repeating (M = 1.120, SE = 0.258) was rated as 

the second most useful method. It was also significantly more useful than meaninglessly 

listening (p < 0.05). The main effect of countermeasure type on satisfaction ratings was 

also significant (2(3) = 19.468, p < 0.001) (see Figure 8 c)). Compared to the 

meaninglessly listening condition (M = -0.683, SE = 0.208), the answering (M = 1.083, 

SE = 0.190) (p < 0.01) and repeating (M = 0.750, SE = 0.234) (p < 0.05) conditions 

were rated as more satisfying. 

For the middle-aged group, the Friedman test results suggested a significant main 

effect of countermeasure type on usefulness ratings (2(3) = 14.614, p < 0.01). Figure 

8 b) shows that both answering (M = 1.329, SE = 0.262) and repeating (M = 1.143, SE 

= 0.243) were perceived more useful than meaninglessly listening (M = -0.057, SE = 

0.315) and meaningfully listening (M = 0.686, SE = 0.276) (p < 0.05 for each 

comparison). Although the main effect of countermeasure type on satisfaction ratings 

was not significant (2(3) = 4.357, p = 0.225). The paired-t tests indicated that 

participants rated answering (M = 0.750, SE = 0.277) as more satisfying than 

meaninglessly listening (M = -0.036, SE = 0.250) (p < 0.05) (see Figure 8 d)).  
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Figure 8. Means and standard errors of usefulness and satisfaction ratings for 

countermeasure types and age groups (* p < 0.05; ** p < 0.01). 

4 Discussion 

This study investigated the effects of different countermeasure type on alerting 

young and middle-aged drivers. Drivers’ drowsiness was induced by monotonous 

driving at night and was detected by drivers’ KSS ratings and PVT responses. The 

results of KSS ratings and PVT accuracy before the countermeasure suggested no 

significant differences among the five countermeasure types for both driver groups. It 

indicated that the drowsy state of drivers was consistent before the countermeasure was 

implemented.  

4.1 Effects of different countermeasures by adopting voice assistants 

It was found that the countermeasures involving more stages of resources provided 

greater alertness for drowsy drivers. The first hypothesis (H1) of this study was 

supported. Specifically, compared to the no countermeasure and listening conditions, 

the repeating and answering conditions were the two most effective countermeasures. 

It was reflected by drivers’ more stable lane keeping performance, higher physiological 

arousal levels, greater attentions to the road, lower self-reported sleepiness, and higher 

PVT accuracy in repeating and answering conditions.  

Driving is a cognitively demanding task, requiring drivers’ perceptual abilities, 

attention abilities, memory, executive functions, etc. (Anstey et al., 2005). In drowsy 

states, drivers’ perception ability, cognitive processing, and responses to driving-related 

stimuli are inhibited due to reduced physiological states and brain activation levels 

(Khan & Hong, 2015; Wörle et al., 2019). The listening tasks normally engage drivers’ 

auditory perception only. Repeating and answering tasks, on the other hand, can induce 

a combination alert effect by animating drivers’ auditory perception, working memory, 

and verbal responses through their active involvement. As a result, the combination of 

alerting effects leads to a more alert physical and mental state. This makes drivers to 

focus their attention better on the road and maintain more stable vehicle control. In 
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addition, higher usefulness and satisfaction scores for the repeating and answering 

conditions were found than the two listening conditions. This implies that participants’ 

subjective acceptance ratings aligned with the objective findings. The present results 

were consistent with previous findings of the advantages of verbal processes (Atchley 

et al., 2014; Large et al., 2017; Mahajan, 2021; Orsini et al., 2024; Takayama & Nass, 

2008) and listening tasks (Atchley et al., 2014; Takayama & Nass, 2008) in enhancing 

alertness of drowsy drivers. The current study further emphasized the underlying 

mechanisms for the superiority of verbal interactions based on resource stages, rather 

than simply comparing different countermeasure methods. This is an advancement 

beyond the previous studies. 

A comparison between the answering and repeating conditions showed that 

increasing drivers’ cognitive load led to the potential effect of achieving a more alert 

state of drivers. This supports our second hypothesis (H2). It is noticeable that among 

the five countermeasure conditions, the answering condition led to the highest mental 

workload young drivers. The increased mental workload, however, reduced the 

frustration levels for this group. Additionally, the answering condition produced a more 

alert state than the repeating condition. This was verified by the lower KSS ratings, 

higher SCL and PD, and smaller SDLP and SDVHA in answering condition, although 

the differences were not statistically significant. These findings were inconsistent with 

those of Saxby et al. (2017). Their study claimed that the increasing drivers’ cognitive 

load by recalling of past events and their personal impacts failed to counter the 

subjective automation-induced fatigue and the objective loss of performance. This 

discrepancy may be due to the difference of the cognitive load between the two studies.  

The cognitive load in Saxby et al. (2017), induced by a close-call incident recall task, 

was believed to be higher than the poem recitation in our study. 

Listening conditions, no matter the listening content was meaningless or 

meaningful, had limited effects on alerting drowsy drivers. The meaninglessly listening 

and meaningfully listening conditions did not significantly counter drowsiness beyond 



 36 

minor increases in SCL and SDNN compared to the no countermeasure condition. This 

finding was inconsistent with those of Orsino et al. (2024)’s and Amirah and Puspasari 

(2019), who found listening countermeasures led to a significant reduction in driving 

drowsiness. This inconsistency could be attributed to facts that the participants in Orsini 

et al. (2024) were allowed to select the music they were familiar. Amirah and Puspasari 

(2019), on the other hand, adopted pop music. The familiarity and melody of the music 

may provide additional benefits in physiological (Gabrielsson & Wik, 2003) and motor 

responses (Vuong et al., 2023). Although the rhythmic poems adopted in the current 

study could also elicit emotional arousal (Wassiliwizky et al., 2017), they may not be 

as enjoyable as listening to familiar music. Nevertheless, it is noteworthy that listening 

to poems did not adversely affect driving performance nor aggregate drowsiness, which 

is consistent with the findings from a previous research (Ünal et al., 2013). 

4.2 Effects of different countermeasures for age groups 

The third hypothesis (H3) of this study claims that young drivers may benefit more 

from stronger countermeasures that involve more resource stages and higher cognitive 

load, while middle-aged drivers may suit better with lighter countermeasures. However, 

the young and middle-aged participants were not significantly different in response to 

different countermeasures. Despite varying levels of drowsiness susceptibility and 

cognitive abilities, participants in the two groups exhibited similar responses to 

countermeasures in terms of driving behavior, physiological measures, and eye 

movement patterns. Our hypothesis was not supported. This finding was inconsistent 

with that in Song et al. (2017), who claimed that young drivers benefited more from a 

verbal alert maintain task while older drivers’ performance was less affected by fatigue. 

One possible explanation for this discrepancy is that, although drivers’ resistance to 

drowsiness increases with age, this resistance might result from their greater mental 

efforts to avoid falling asleep (Lowden et al., 2009). The current study adopted 

countermeasures based on the same high drowsiness level for both age groups, the 

additional mental effort of middle-aged drivers might not be enough to compensate 



 37 

their drowsiness. This resulted in similar effects of countermeasures for the two age 

groups. Nevertheless, the countermeasures in Song et al. (2017) were applied based on 

the same driving time period. In this condition, the drowsiness level between young and 

older drivers at the time of the countermeasure might be different. In addition, all the 

middle-aged participants in the current study were experienced drivers. They were less 

likely to increase their high-risk attention to secondary tasks over time during driving 

compared to less experienced drivers (Klauer et al., 2014). Therefore, although middle-

aged drivers may have inferior attention allocation abilities than young drivers, their 

extensive experiences with dual-task management could compensate for this deficit. As 

a result, increasing resource stages and cognitive load did not diminish the 

countermeasure effects for middle-aged drivers. 

Whilst there were no average differences of different countermeasures between age 

groups. The results of the heterogeneity analysis revealed that physiological activation 

attributed to the countermeasures was more variable for middle-aged drivers than young 

drivers. It has long been established that the whilst the central tendency of datasets can 

be the same, the spread of the data may differ (Anscombe, 1973; Friedman, 1937). A 

similar phenomenon may appear here. The heterogeneity results could imply that the 

countermeasures may not have the same physiological effect for different driving 

groups. The variability could manifest itself as middle-aged drivers having much higher 

physiological activation (i.e., SCL, SDNN, and breathing rate) to countermeasures than 

other demographics in certain instances. This pattern might be attributed to the greater 

physiological shifts of middle-aged drivers when transitioning from the sleepy state to 

countermeasure state. On the one hand, during drowsiness, age-related declines in 

autonomic nervous system function and associated physical states tended to result in 

lower physiological activation (Doberenz et al., 2011; Luebberding et al., 2014). For 

example, epidermal hydration decreases with age (Cho et al., 2019), reducing skin 

conductance level (Fowles & Venables, 1970) and skin elasticity (Lee et al., 2022). On 

the other hand, when countermeasures were applied, the middle-aged drivers might pay 
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more efforts than young drivers in responding to countermeasures while driving, to 

compensate their decreased cognitive abilities. This process could result in a relatively 

greater physiological arise from their drowsy baseline. These findings align with 

previous studies that older adults exhibit higher levels of cardiovascular reactivity (Hess 

& Ennis, 2012) and prefrontal cortex activation (Ohsugi et al., 2013) in response to 

cognitive engagement compared to young adults. 

4.3 Practical implications 

Findings of this experiment have practical implications for the design of in-vehicle 

voice assistants as real-world drowsiness countermeasures. First, to maintain the 

effectiveness of drowsiness countermeasures while minimizing potential adverse 

effects, voice-assistant-based countermeasures should be tailored to drivers’ cognitive 

characteristics and physiological limitations. For young drivers, it is recommended to 

implement voice assistants that encourage them to speak and to think. These are 

effective in countering drowsiness by involving more resource stages and cognitive 

engagement. Nevertheless, countermeasures with excessive cognitive load should be 

avoided as they may lead to detrimental driving performance if they are manifested as 

distraction (D’Addario & Donmez, 2019). For middle-aged drivers, although they were 

also benefited from speaking and thinking, the design and implementation of voice-

assistant-based countermeasures should be more cautious due to their higher variability 

in physiological activation to countermeasures. While the increased physiological 

activation is generally associated with improved alertness (Oken et al., 2006; Yang et 

al., 2017), it may also exacerbate declines in working memory (Riediger et al., 2014) 

and increase susceptibility to distraction (Öztürk et al., 2023), potentially threatening 

driving safety. Moreover, sudden increases in physiological arousal should be carefully 

managed for some middle-aged adults, given their higher susceptibility to 

cardiovascular diseases (Shih et al., 2011).  

Second, it is recommended to personalize the features of voice assistants to 

encourage drivers to adopt them as drowsiness countermeasures. In practice, drivers 
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may avoid voice assistants due to low trust and satisfaction, influenced by design factors 

like voice characteristics, familiarity, anthropomorphism, and visual appeal (Lee & 

Jeon, 2022; Liu et al., 2023; Park et al., 2024). Furthermore, middle-aged adults differ 

significantly from young adults in their smart voice assistant usage requirements, 

preferences, and acceptance (Zhong et al., 2024; Gollasch et al., 2021). Although both 

driver groups in the current study showed high acceptance for overall countermeasures, 

they may have been partly driven by the novelty of the experimental context and their 

cooperation to “test” the system (Large et al., 2018). Therefore, personalizing voice 

assistant features to meet drivers’ individual needs and preferences is essential to refine 

drowsiness countermeasures, ensuring positive user experiences and improving 

effectiveness in countering drowsiness. 

4.4 Limitations and future works 

This study has several limitations. First, this study utilized the “Wizard of Oz” 

(WoZ) method to simulate the voice interaction by asking the participants to repeat and 

to answer rhythmic poems instead of interacting with a real voice assistant. Although 

these poems were familiar enough for participants to engage listening and speaking 

processes, the simulated interaction may not fully reflect the dynamics of a natural real-

world conversation. Considering the benefits of verbal engagement in counteracting 

drowsiness, future research should explore more naturalistic dialogues to enhance 

drivers’ willingness to engage with voice assistants.  

Second, this study compared the effectiveness of countermeasures only between 

young (18–35 years) and middle-aged drivers (36–64 years). The older drivers aged 65 

and above were not included. The results of these countermeasures may not be 

generalizable to the older drivers due to the age-related decrease in physiological states 

(Luebberding et al., 2013) and cognitive capabilities (Anstey et al., 2005; Murman et 

al., 2015). Considering that many individuals aged 65 and above continue to drive 

despite moderate cognitive decline (Shimada et al., 2016), future research should 

investigate the effectiveness of these countermeasures for older drivers.  
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Third, due to a device limitation, certain sensitive eye movement indicators, such 

as PERCLOS (i.e., the percentage of time that the eyes are more than 80% closed), were 

not recorded. As PERCLOS is a highly validated drowsiness indicator (Abe, 2023), 

future studies should incorporate this parameter alongside other measures for a more 

robust drowsiness detection and countermeasure framework.  

Fourth, countermeasure effects might be transient. Orsini et al. (2024) found that 

the effects of listening to self-selected music in countering drowsiness lasted for 12-25 

mins. However, the current study focused only on the immediate effect of different 

countermeasures. How long alertness might be maintained by using our 

countermeasures remains unclear. As the superiority of repeating and answering 

countermeasures was confirmed in our findings, the duration of alertness associated 

with these countermeasures deserves further exploration. 

 

5 Conclusion 

 This study conducted a simulated driving experiment to investigate the effects of 

five different countermeasures using voice assistants on countering drowsiness for 

young and middle-aged drivers. Results suggested that countermeasures involving 

more resource stages were more effective in alerting drowsy drivers. This finding was 

evidenced by lower self-reported sleepiness, more stable lane keeping, higher 

physiological arousal level, greater attention to the road, and higher PVT accuracy. In 

addition, drivers also had higher acceptance for the repeating and answering conditions 

compared to the no countermeasure and listening conditions. Moreover, the increased 

cognitive load of the answering condition may achieve a higher level of alertness than 

that of the repeating condition. Listening tasks had limited effects on alerting drowsy 

driver but did not adversely impact driving performance or drowsiness. In terms of age, 

young and middle-aged drivers did not differ on average in response to different 

countermeasures. Nevertheless, considering individual differences in drivers’ 

physiological activation in reacting to countermeasures, drowsiness countermeasures 
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should be tailored to the individual needs, particularly for middle-aged drivers. Our 

findings not only clarify drowsiness countermeasure mechanisms but also offer 

practical guidance for vehicle designers to use in-voice assistants as anti-drowsiness 

tools.  
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