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DCAF: Dynamic Cross-Attention Feature Fusion from Robotic

Anomaly Detection to Position Accuracy Modeling

Hui Liu1, Guixiu Qiao3, Pavel Piliptchak3, James Moore4, Daniela Sawyer4, Yingyan Zeng2, Ran Jin1

AbstractÐ In robotic operations, heterogeneous computation
tasks and sensor configurations pose significant challenges to
analyze different modalities of data for data sharing and
collaborative learning in robotic Artificial Intelligence (AI)
tasks. The lack of historical data in new scenarios or new
computation tasks complicates model training and limits the
applicability of existing AI methodologies. Current transfer
learning approaches heavily rely on static feature extraction,
which fail to dynamically adjust to specific feature relationships
between different samples or modalities. In the literature,
these methods struggle to capture inter-modal associations
effectively, resulting in insufficient information sharing and
poor modeling performance. Motivated by these challenges,
this paper proposes a Dynamic Cross-Attention Feature Fusion
(DCAF) approach to map the features from one robotic AI task
to another. By calculating attention weights tailored to each
target domain sample, DCAF extracts the most relevant source
domain features and generates dynamic fused representations.
The proposed approach enables sample-specific feature selec-
tion and fine-grained domain alignment, effectively enhancing
the modeling performance compared with traditional transfer
learning and model training based on the local data source.
It is particularly suited for a new robotic AI training task
with limited sample size and new data modalities. Experimental
results for feature fusion from a robotics anomaly detection
dataset to a position accuracy modeling data set demonstrate
the effectiveness of DCAF, providing an efficient solution for
domain adaptation and multimodal fusion.

Index TermsÐCross-attention, Feature fusion, Robotic

anomaly detection

I. INTRODUCTION

Manufacturing Industrial Internet integrates AI and au-

tomation with broad applications of industrial robots for

various manufacturing tasks, such as material handling,

manufacturing operations (e.g., welding, additive manufac-

turing, and assembly), and quality inspection. As robotic

tasks become more complex, AI methods become more

important in those robotic tasks, including perception and
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multimodal data fusion [1], motion planning and control [2],

anomaly detection and self-healing [3], human-robotics col-

laborations [4], etc. For example, robotic anomaly detection

is essential for ensuring safety, minimizing downtime, and

improving robotic availability and operational efficiency [3].

For another example, predicting the accuracy of the position

is the foundation to reduce the discrepancy between the

actual positions and the target [5] to control robotic motion.

The position error assesses performance and detects robotic

failures, such as sensor drift, mechanical wear, or control

system anomalies, which is critical in robotic operations.

The data quality plays a foundational role to train ade-

quate AI models for robots [3]. Given robots and tasks in

a new context, limited annotated data and the commonly

encountered class imbalance pose significant challenges [6].

Therefore, it is important to leverage datasets from other

similar data sources, which may improve the performance

and generalization of the AI models. However, heterogeneous

sensor types, data formats, and measurement methods may

cause inconsistencies in the data modalities [1]. It will

complicate direct data transfer and limit the adaptability of

AI models in a new AI context. Additionally, AI tasks in

new contexts may also become different.

Fig. 1. An Example of Information Transfer Between Two Robotic AI
Tasks (Redrawn from [5] and [7] with Authors’ Permission)

Figure 1 illustrates an example of this discrepancy be-

tween the data modality and AI tasks of two robotic AI

tasks. While the more comprehensive dataset [7] has more

samples (n=9888) to train a multi-class classification model

for robotic anomaly detection, the contextualized dataset [5]

has much fewer samples (n=108) to predict the accuracy of

robot system’s tool center position (TCP). Our objective is



to create an adequate position accuracy prediction model and

evaluate whether bringing in the more comprehensive dataset

from the data owner to the data receiver will significantly

improve modeling performance. It requires us not only

to tackle the challenges of incompatible data formats or

modalities, but also to use the information transfer effectively

in heterogeneous AI tasks.

There are gaps to transfer useful data, information, or

knowledge from one AI task to another. For example, transfer

learning is a machine learning paradigm that uses knowledge

from a source domain to enhance model performance in

a relatedtarget domain [8]. However, most of the transfer

learning methods rely on fixed feature alignment strategies

(e.g., MMD, CORAL [9], [10]), which fail to dynami-

cally adapt feature representations across different scenarios,

thereby reducing model adaptability and performance [3].

Additionally, most transfer learning approaches assume that

all the source domain features are relevant to the target

domain, lacking a sample-level feature selection mechanism

to further improve the transfer effectiveness [8]. In the data

modality-inconsistent settings, global alignment strategies in-

troduce redundant features and limiting information sharing.

Furthermore, these methods often assume task similarity

or direct correspondence between domains, making them

insufficient for handling task inconsistency.

To address these challenges, this paper proposes a Dy-

namic Cross-Attention Feature Fusion (DCAF) method for

robotic position accuracy prediction problems by leverag-

ing information from anomaly detection. Unlike traditional

transfer learning approaches, the proposed method computes

attention weights for each sample in the target context,

extracting the most relevant features from the more compre-

hensive dataset, and generating fused feature representations

dynamically. This enables sample-level feature selection and

fine-grained domain alignment, ensuring that only the most

relevant information contributes to the final prediction. By

adopting the cross-attention mechanisms [11] the method ef-

fectively captures associations between different modalities,

enhances feature sharing, and overcomes the limitations of

static feature alignment. The proposed method is validated

through a case study using datasets from the AMRC [7]

and the National Institute of Standards and Technology

(NIST) [5]. Experimental results on the anomaly detection

and the position accuracy prediction model demonstrate

that the proposed method outperforms existing approaches,

exhibiting superior adaptability and robustness in an envi-

ronment of multiple robots, different sensor configurations,

and heterogeneous AI task.

The remainder of this paper is organized as follows: Sec-

tion 2 reviews related work; Section 3 details the proposed

method; Section 4 presents experimental validation results

and explanations; and Section 5 concludes the study with

discussions on future research directions.

II. RELATED WORK

A. Robotic Anomaly Detection

Robotic anomaly detection plays a crucial role in industrial

automation, ensuring equipment reliability [7]. Traditional

approaches primarily rely on predefined rules and expert

input, making them rigid and less effective in handling

complex, dynamic industrial settings [3].

With the advancement of machine learning, data-driven

anomaly detection methods have become the dominant ap-

proach. Supervised learning models like deep neural net-

works (DNNs) have been widely applied in anomaly clas-

sification tasks [12]. However, the class imbalance due to

less frequent anomalies results in modeling effectiveness

of supervised learning approaches. Unsupervised and semi-

supervised methods attempt to address this issue by modeling

normal operational patterns and identifying deviations [13].

Nevertheless, these approaches often struggle with feature

selection and domain adaptation, particularly in the presence

of heterogeneous sensors and data modalities.

B. Transfer Learning and Attention Mechanism

Transfer learning plays a crucial role in robotic anomaly

detection where annotated data are limited. Existing methods

primarily include feature alignment, adversarial training, and

parameter fine-tuning. Feature alignment techniques achieve

transfer learning by minimizing the distribution discrepancy

between the source and target domains [10]. Adversarial

training methods, such as Domain-Adversarial Neural Net-

works (DANN), learn domain-invariant features through a

domain discriminator [12]. However, transfer learning cannot

be directly applied when there is modality inconsistency [1].

Due to variations in sensor types, data formats, and mea-

surement methods across different robots, traditional trans-

fer learning approaches cannot transfer features effectively,

leading to reduced modeling performance. Additionally, con-

ventional methods employ fixed feature mapping strategies,

preventing dynamic feature adaptation to diverse task re-

quirements.

To address these issues, attention mechanisms have been

introduced to dynamically allocate feature weights, en-

hancing feature selection and adaptability [14]. Attention

mechanisms allow models to identify the most relevant

features for a given task while filtering out irrelevant in-

formation [11]. Self-attention has been widely applied in

time series analysis, capturing long-term dependencies within

data [8]. Meanwhile, cross-attention facilitates more effective

feature interaction between the source and target domains,

improving knowledge transfer efficiency [11]. In robotic

anomaly detection tasks, cross-attention enables dynamic

feature selection and fine-grained feature alignment by com-

puting the correlation between target domain samples and

source domain features, extracting only the most relevant

information for fusion [11]. Furthermore, cross-attention

allows models to adapt feature representations dynamically

to varying data distributions, improving generalization across

multiple devices and heterogeneous modalities.



III. METHODOLOGY

This study proposes a robotic AI modeling method based

on a cross-attention mechanism for feature fusion from one

data source to another. In our problem formulation, we

refer the source domain as the data owner, with its dataset

termed the shared dataset, while the target domain is referred

to as the data receiver, with its original dataset termed

the local dataset. Figure 2 illustrates the data sharing and

feature fusion framework based on DCAF, which consists of

two key components: (1) Feature extraction. The framework

extracts features from both the shared dataset and the local

dataset, employing adaptive feature extraction methods tai-

lored to different data modalities. These extracted features

encapsulate critical information from multiple robots and

data modalities, ensuring comprehensive data representation.

(2) Cross-attention mechanism. The extracted features go

through a cross-attention operation, where the local dataset

features serve as queries (Q), while the shared dataset fea-

tures function as keys (K) and values (V). The fused features

are then processed by a feed-forward network (FFN) and

utilized for downstream AI tasks. This process ensures that

only the most relevant and informative features from the data

owner contribute to the AI model at the data receiver, thereby

enhancing the adaptability and robustness of DCAF in het-

erogeneous data and AI task environments. This approach

effectively addresses the challenges of heterogeneous data

integration, enhancing model adaptability, and providing an

efficient solution for robotic analytics.

Fig. 2. The Proposed DCAF Method

The major contribution of this method lies in the dynamic

feature fusion mechanism based on cross-attention. It enables

the model to calculate the attention weight for each sample

of the data receiver, extract the most relevant shared features,

and achieve sample-level feature selection and fine-grained

domain alignment. Therefore, it improves feature sharing

efficiency and reduces the impact of redundant information.

But it also addresses the limitations of traditional static

feature alignment, captures the association between different

modalities through the cross-attention mechanism, and dy-

namically adjusts the feature representation to improve the

AI modeling performance for the data receiver.

A. Feature Extraction

The feature extraction process integrates Fast Fourier

Transform (FFT) and wavelet transform to obtain time-

frequency domain features and compute statistical metrics.

This approach captures both local and global signal char-

acteristics, enhancing the accuracy of anomaly detection,

position accuracy prediction, and state recognition. In robotic

systems, signals such as acceleration, force, and torque are

collected to monitor performance and detect anomalies. FFT

identifies spectrum patterns related to mechanical wear or

control issues, while wavelet transform captures transient

anomalies through multi-resolution analysis.

For time-domain features, raw time-domain signals (e.g.,

acceleration, force, torque) are decomposed by using wavelet

transform, which provides multi-resolution analysis capa-

bilities, capturing local signal features in both time and

frequency (scale) domains [15]. This approach is sensitive

to transient or localized anomalies and features in different

frequency bands, improving the accuracy of fault detection

and state recognition. The signal is decomposed into four

levels (Level 1±4) of wavelet coefficients. Then, at each level,

statistical metrics includes mean, standard deviation, energy

(E =
∑N

i=1
x2

i ), maximum and minimum values, skewness,

and kurtosis are computed. Energy reflects the overall power

of the signal, while skewness and kurtosis provide insight

into signal symmetry and tail distribution, respectively.

For frequency-domain features, the Fast Fourier Transform

(FFT) is used to obtain the amplitudes of each harmonic [16],

and the total harmonic distortion (THD) is calculated to

quantify signal distortion and energy distribution across

different harmonic orders. THD is defined as:

THD =

√

∑

∞

n=2
A2

n

A1

(1)

where A1 is the amplitude of the fundamental frequency,

and An represents the amplitudes of higher-order harmon-

ics. Additional frequency-domain features include harmonic

mean, entropy-based measures (H(x) = −∑

p(x) log p(x)),
root mean square (RMS), peak values, and differences be-

tween maximum and minimum values. Entropy quantifies the

complexity of the signal, while RMS provides an estimate

of its magnitude.

For environmental features such as temperature, the mean

and standard deviation are used to represent the overall

temperature level and fluctuations under operating condi-

tions [16].

By combining both time-domain and frequency-domain

features, a more accurate representation of the signals is

obtained, facilitating system operating condition analysis and

fault pattern recognition.

B. Cross-Attention mechanism

Cross-Attention is used to learn the relationship between

local and sharing features, dynamically selecting the most

valuable shared features based on local features for fusion,



thereby enhancing the predictive capability of the regres-

sion task. Through the Query-Key-Value mechanism, Cross-

Attention maps local and sharing features into a unified space

and selects the most relevant shared features via adaptive

attention weights, rather than simply concatenating or av-

eraging all features [11]. This approach not only improves

feature alignment, making data from different sources more

compatible, but also effectively filters redundant information,

ensuring the model focuses on the most valuable features to

enhance prediction accuracy. Additionally, Cross-Attention

improves the model’s generalization ability, making it more

robust across different data distributions, thereby leveraging

shared data more effectively to optimize regression perfor-

mance. A linear mapping projects the local feature into

a query vector, while the shared feature is projected into

the Key and the Value vectors [11]. Specifically, the query

vector is obtained as Qlocal = XlocalWQ, while the key and

value vectors are computed as Kshared = XsharedWK and

Vshared = XsharedWV , respectively. where WQ,WK ,WV are

trainable transformation matrices mapping features into a

unified space, with Xlocal as local sample features and Xshared

as sharing sample features.

Next, cross-attention is applied to compute attention

weights and extract dynamic features [11], which generates

a larger weight for the sharing features with high similarity

to the local features:

A = softmax

(

QlocalK
T
shared√

dk

)

, and (2)

Fshared = AVshared, (3)

where A is the attention weight matrix, and Fshared represents

the extracted dynamic features from the sharing for each

local sample. Finally, feature fusion is performed to integrate

the extracted features:

Ffused = FFN
(

concat(Fshared, Xlocal)
)

, (4)

where FFN represents a feed-forward network applied to the

concatenated features.

To train the FNN, the mean squared error (MSE) loss is

used for regression task:

L =
1

N

N
∑

i=1

(ŷi − yi)
2, (5)

where ŷi is the model prediction for sample i, and yi is the

ground truth label. By optimizing this loss using the Adam

optimization method [17], the model learns to highlight the

most relevant shared features, effectively integrating local

and shared information for improved regression accuracy.

IV. CASE STUDY

A. Experiment Description

This study uses an anomaly detection dataset from the

ARMC as the shared dataset and a position accuracy predic-

tion dataset from NIST as the local dataset to evaluate the

DCAF method. The objective is to improve the position accu-

racy prediction with the help of the shared anomaly detection

dataset and dynamic feature fusion. This is primarily because

the shared dataset has much larger sample size with more

complete sensor networks to measure more variables, which

may enhance the position accuracy prediction performance.

The regression model used in both Concat-FFN and DCAF

consists of a feed-forward neural network with one hidden

layer of 32 units and ReLU activation. The two datasets differ

in data modalities and sample sizes. Detailed information is

shown in Table I below.

The shared dataset originates from the AMRC and con-

tains signals collected during fingerprint routines [7]. Eachin-

cludes isolated motions of one joint at speeds of 10%, 50%,

and 100% of the maximal speed. The features recorded in

each routine include acceleration or vibration (six channels

at 25,600 Hz), current of the motors (three channels at

1,000 Hz), temperature (three channels at 1 Hz), as well as

the elapsed times. After data pre-processing, there are 9888

samples and 224 features as predictors.

The local dataset provides advanced TCP position error

for robots along with detailed information about controller-

level components. Data were collected at 125 Hz, com-

paring nominal positions with measured (actual) positions.

Additional controller-level sensor data for each joint were

also collected to analyze the impact of factors, such as

temperature, payload, and speed on position degradation.

This includes information on actual positions, speed, current,

acceleration, torque, and temperature. The dataset consists

of 108 samples and 280 features as predictors. The data

analysis will provide insights to diagnose the root causes of

robot performance degradation, supporting a comprehensive

understanding of anomaly in robotic systems.

TABLE I

COMPARISON OF THE SHARED DATASET AND THE LOCAL DATASET

Variables Shared Dataset

from the AMRC

Data

Local Dataset

at NIST

Current ✓ ✓

Acceleration ✓

Velocity ✓

Force ✓

Temperature ✓

Speed ✓

Elapsed Time ✓ ✓

Response Variable Five Robotic Health
Classes

Position Error

Sample Size 9888 108

B. Results and Discussion

The AI task for the data receiver in this experiment is a

regression task, where the predictor variables are detailed in

the Experiment Description section. The response variables

are Mean Absolute Error (MAE) and the logarithm of the

variance of the errors (lnS2), which are predicted separately.

The experiment employs Normalized Root Mean Square Er-

ror (NRMSE) as the evaluation metric to measure prediction

error normalized by the range of the response variables. The

NRMSE ensures comparability of performance comparison



across different scales, mitigating the impact of unit differ-

ences and maintaining consistency in modeling performance

evaluation across datasets.

Given the high dimensionality of features, L1 regulariza-

tion (R(θ) = λ
∑p

j=1
|θj |) is applied for feature selection

to enforce sparsity and eliminate features with minimal

contribution to the regression task [18]. We compare the

DCAF with several well-known benchmark methods:

Adaptive Intermediate Class-Wise Distribution Alignment

(AICDA) develops an adaptive intermediate distribution as

the alignment goal for multiple source and target domains.

It aligns both global and class-wise distributions effec-

tively [19].

Transfer learning-based data anomaly-detection (TLBDA)

leverages the similarity of anomalous patterns across differ-

ent bridges and utilizes a deep neural network to achieve

high-accuracy anomaly identification for bridge groups [13].

For the baseline logistic regression (LR) model based on

the local dataset alone, Lasso feature selection is applied

beforehand with the same parameters as DCAF. For the

benchmark methods AICDA and TLBDA, which require

identical feature dimensions across datasets, Principal Com-

ponent Analysis (PCA) is first used to reduce the channels

of the shared dataset from six channels to one. This ensures

alignment with the local dataset, facilitating a consistent

feature representation across datasets. Subsequently, each

method’s built-in feature selector is applied for further re-

finement. The experiments are conducted on the Torch 2.4.1

platform with a learning rate of 0.001. As an additional

baseline, the FFN method directly concatenates the features

from the shared and local datasets, followed by a feed-

forward network for regression.

The performance on the test set is evaluated using five-fold

cross-validation. The experimental results are summarized

in Table III, which shows that the DCAF model achieves

smaller NRMSE for both responses (MAE and lnS2) than

other benchmark methods. DCAF performs better in local

TABLE II

MODEL PERFORMANCE OF DIFFERENT METHODS

Shared Domain Methods NRMSE (ln S2) NRMSE (MAE)

NA LR 0.0844± 0.0192 0.0956± 0.0285

Total

AICDA 0.0752± 0.0135 0.0887± 0.0162

TLDBA 0.0979± 0.0229 0.0842± 0.0196

DCAF 0.0450± 0.0079 0.0556± 0.0180

AI modeling, primarily because it adaptively captures the

correlations between the shared dataset (classification task)

and the local dataset (regression task). By leveraging a

dynamic weighting mechanism, it amplifies the influence of

key features while suppressing irrelevant or redundant ones.

Unlike static feature transformation methods such as AICDA

and TLBDA, which apply the same feature mapping for all

samples, cross-attention allows each regression sample in

the local dataset to selectively emphasize the most relevant

features from the shared dataset based on its similarity to all

classification samples. This adaptive feature selection process

ensures that the most informative features are utilized for

each prediction, enhancing the model’s ability to generalize

across datasets with different distributions. As a result,

DCAF outperforms conventional methods, demonstrating its

superior effectiveness and robustness.

Fig. 3. Feature weight value for MAE

Fig. 4. Feature weight value for lns2

The heatmaps shown in Figures 3 and 4 illustrate the abso-

lute weight values of selected features from the classification

problem based on the shared dataset to the samples in the two

regression tasks based on the local dataset (i.e., predicting

MAE and ln(S²)).

The horizontal axis represents the classification features

selected after searching for the optimal threshold using the

Support Vector Machine (SVM model), which include eight

features. All features are derived from accelerometer signals

recorded six distinct channels. Each feature corresponds

to energy measurements obtained from the detailed levels

of wavelet decomposition, thereby capturing high-frequency

signals. These features were chosen to maximize classifica-

tion accuracy and were subsequently incorporated into the re-

gression model to enhance its predictive performance. These

features were selected to maximize classification accuracy

and were subsequently applied to the regression model to

enhance its predictive performance.

The color in the heatmap represents the importance of each

feature, where red indicates high weights and blue indicates

low weights. In Figure 3 (MAE heatmap) and Figure 4

(ln(S²) heatmap), certain two features from accelerometer

signals exhibit high weights in specific samples, indicating

their significance in MAE prediction. These features show

high weights across multiple samples, suggesting their strong

influence on this regression task.

The results demonstrate that DCAF effectively selects and

integrates shared features to enhance local model predictions.

Within a single prediction objective, DCAF dynamically

assigns feature weights based on the similarity between local

and shared samples, ensuring that the most relevant infor-

mation is utilized for prediction. Furthermore, for different



prediction objectives, the model prioritizes distinct feature

subsets to adapt to specific task requirements. This variation

in feature importance is evident in the two heatmaps, where

different patterns highlight how the model selectively inte-

grates shared information to improve predictive accuracy and

robustness. This highlights DCAF’s ability to not only tailor

feature selection at the sample level, but also to adaptively

reweigh shared information depending on the specific task

objective.

V. CONCLUSIONS

The growing adoption of robotics in industrial settings

requires high-performance AI models in various robot tasks,

such as anomaly detection and position accuracy control.

While using the local data source may be insufficient to

train adequate AI models due to limited sample size and class

imbalance, using external data sources from other robots with

heterogeneous computation tasks and sensor configurations

poses additional challenges. Specifically, different modalities

of data and heterogenous AI tasks make it difficult to di-

rectly apply conventional knowledge transfer methods. This

paper studies a cross-attention-based dynamic feature fusion

method (DCAF) to address feature sharing and information

transfer challenges in heterogeneous data environments. The

method leverages a cross-attention mechanism to adaptively

capture feature correlations between sharing samples and

local samples, dynamically adjusting feature weights to en-

hance key feature influence, while suppressing redundant or

irrelevant ones. Compared to traditional static feature trans-

formation methods, such as AICDA and TLBDA, DCAF

enables each local sample to adaptively select the most

relevant sharing features, thereby improving generalization

across datasets. Experimental results demonstrate that DCAF

consistently achieves high prediction accuracy on two regres-

sion tasks and excelling in NRMSE metrics for MAE and

lnS2, validating its effectiveness and robustness.

Despite its strong adaptability in feature selection and

information transfer, the applicability of DCAF remains

subject to certain prerequisites. First, a strong association and

similarity between the shared dataset and the local dataset is

required; otherwise, cross-dataset feature sharing may not

provide meaningful information. Additionally, the method

relies on feature space alignment, meaning that the shared

dataset and local dataset must share a degree of feature

similarity for the weighting mechanism to be effective.

Future research will further enhance DCAF’s adaptability to

low-correlation datasets and extend its applicability to non-

aligned feature spaces, increasing its practical value in more

complex industrial intelligence tasks.

NIST Disclaimer: Specific commercial products or equip-

ment are described in this paper to adequately specify the

experimental procedure. In no case does such identification

imply recommendation or endorsement by the National In-

stitute of Standards and Technology, nor does it mean that

using the best available for the purpose is necessary.
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