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DCAF: Dynamic Cross-Attention Feature Fusion from Robotic
Anomaly Detection to Position Accuracy Modeling

Hui Liu'!, Guixiu Qiao®, Pavel Piliptchak®, James Moore*, Daniela Sawyer?, Yingyan Zeng?, Ran Jin'

Abstract— In robotic operations, heterogeneous computation
tasks and sensor configurations pose significant challenges to
analyze different modalities of data for data sharing and
collaborative learning in robotic Artificial Intelligence (AI)
tasks. The lack of historical data in new scenarios or new
computation tasks complicates model training and limits the
applicability of existing AI methodologies. Current transfer
learning approaches heavily rely on static feature extraction,
which fail to dynamically adjust to specific feature relationships
between different samples or modalities. In the literature,
these methods struggle to capture inter-modal associations
effectively, resulting in insufficient information sharing and
poor modeling performance. Motivated by these challenges,
this paper proposes a Dynamic Cross-Attention Feature Fusion
(DCAF) approach to map the features from one robotic Al task
to another. By calculating attention weights tailored to each
target domain sample, DCAF extracts the most relevant source
domain features and generates dynamic fused representations.
The proposed approach enables sample-specific feature selec-
tion and fine-grained domain alignment, effectively enhancing
the modeling performance compared with traditional transfer
learning and model training based on the local data source.
It is particularly suited for a new robotic Al training task
with limited sample size and new data modalities. Experimental
results for feature fusion from a robotics anomaly detection
dataset to a position accuracy modeling data set demonstrate
the effectiveness of DCAF, providing an efficient solution for
domain adaptation and multimodal fusion.

Index Terms—Cross-attention, Feature fusion, Robotic
anomaly detection

I. INTRODUCTION

Manufacturing Industrial Internet integrates Al and au-
tomation with broad applications of industrial robots for
various manufacturing tasks, such as material handling,
manufacturing operations (e.g., welding, additive manufac-
turing, and assembly), and quality inspection. As robotic
tasks become more complex, Al methods become more
important in those robotic tasks, including perception and
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multimodal data fusion [1], motion planning and control [2],
anomaly detection and self-healing [3], human-robotics col-
laborations [4], etc. For example, robotic anomaly detection
is essential for ensuring safety, minimizing downtime, and
improving robotic availability and operational efficiency [3].
For another example, predicting the accuracy of the position
is the foundation to reduce the discrepancy between the
actual positions and the target [5] to control robotic motion.
The position error assesses performance and detects robotic
failures, such as sensor drift, mechanical wear, or control
system anomalies, which is critical in robotic operations.

The data quality plays a foundational role to train ade-
quate Al models for robots [3]. Given robots and tasks in
a new context, limited annotated data and the commonly
encountered class imbalance pose significant challenges [6].
Therefore, it is important to leverage datasets from other
similar data sources, which may improve the performance
and generalization of the AI models. However, heterogeneous
sensor types, data formats, and measurement methods may
cause inconsistencies in the data modalities [1]. It will
complicate direct data transfer and limit the adaptability of
Al models in a new AI context. Additionally, Al tasks in
new contexts may also become different.
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Fig. 1. An Example of Information Transfer Between Two Robotic Al
Tasks (Redrawn from [5] and [7] with Authors’ Permission)

Figure 1 illustrates an example of this discrepancy be-
tween the data modality and Al tasks of two robotic Al
tasks. While the more comprehensive dataset [7] has more
samples (n=9888) to train a multi-class classification model
for robotic anomaly detection, the contextualized dataset [5]
has much fewer samples (n=108) to predict the accuracy of
robot system’s tool center position (TCP). Our objective is



to create an adequate position accuracy prediction model and
evaluate whether bringing in the more comprehensive dataset
from the data owner to the data receiver will significantly
improve modeling performance. It requires us not only
to tackle the challenges of incompatible data formats or
modalities, but also to use the information transfer effectively
in heterogeneous Al tasks.

There are gaps to transfer useful data, information, or
knowledge from one Al task to another. For example, transfer
learning is a machine learning paradigm that uses knowledge
from a source domain to enhance model performance in
a relatedtarget domain [8]. However, most of the transfer
learning methods rely on fixed feature alignment strategies
(e.g., MMD, CORAL [9], [10]), which fail to dynami-
cally adapt feature representations across different scenarios,
thereby reducing model adaptability and performance [3].
Additionally, most transfer learning approaches assume that
all the source domain features are relevant to the target
domain, lacking a sample-level feature selection mechanism
to further improve the transfer effectiveness [8]. In the data
modality-inconsistent settings, global alignment strategies in-
troduce redundant features and limiting information sharing.
Furthermore, these methods often assume task similarity
or direct correspondence between domains, making them
insufficient for handling task inconsistency.

To address these challenges, this paper proposes a Dy-
namic Cross-Attention Feature Fusion (DCAF) method for
robotic position accuracy prediction problems by leverag-
ing information from anomaly detection. Unlike traditional
transfer learning approaches, the proposed method computes
attention weights for each sample in the target context,
extracting the most relevant features from the more compre-
hensive dataset, and generating fused feature representations
dynamically. This enables sample-level feature selection and
fine-grained domain alignment, ensuring that only the most
relevant information contributes to the final prediction. By
adopting the cross-attention mechanisms [11] the method ef-
fectively captures associations between different modalities,
enhances feature sharing, and overcomes the limitations of
static feature alignment. The proposed method is validated
through a case study using datasets from the AMRC [7]
and the National Institute of Standards and Technology
(NIST) [5]. Experimental results on the anomaly detection
and the position accuracy prediction model demonstrate
that the proposed method outperforms existing approaches,
exhibiting superior adaptability and robustness in an envi-
ronment of multiple robots, different sensor configurations,
and heterogeneous Al task.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews related work; Section 3 details the proposed
method; Section 4 presents experimental validation results
and explanations; and Section 5 concludes the study with
discussions on future research directions.

II. RELATED WORK
A. Robotic Anomaly Detection

Robotic anomaly detection plays a crucial role in industrial
automation, ensuring equipment reliability [7]. Traditional
approaches primarily rely on predefined rules and expert
input, making them rigid and less effective in handling
complex, dynamic industrial settings [3].

With the advancement of machine learning, data-driven
anomaly detection methods have become the dominant ap-
proach. Supervised learning models like deep neural net-
works (DNNs) have been widely applied in anomaly clas-
sification tasks [12]. However, the class imbalance due to
less frequent anomalies results in modeling effectiveness
of supervised learning approaches. Unsupervised and semi-
supervised methods attempt to address this issue by modeling
normal operational patterns and identifying deviations [13].
Nevertheless, these approaches often struggle with feature
selection and domain adaptation, particularly in the presence
of heterogeneous sensors and data modalities.

B. Transfer Learning and Attention Mechanism

Transfer learning plays a crucial role in robotic anomaly
detection where annotated data are limited. Existing methods
primarily include feature alignment, adversarial training, and
parameter fine-tuning. Feature alignment techniques achieve
transfer learning by minimizing the distribution discrepancy
between the source and target domains [10]. Adversarial
training methods, such as Domain-Adversarial Neural Net-
works (DANN), learn domain-invariant features through a
domain discriminator [12]. However, transfer learning cannot
be directly applied when there is modality inconsistency [1].
Due to variations in sensor types, data formats, and mea-
surement methods across different robots, traditional trans-
fer learning approaches cannot transfer features effectively,
leading to reduced modeling performance. Additionally, con-
ventional methods employ fixed feature mapping strategies,
preventing dynamic feature adaptation to diverse task re-
quirements.

To address these issues, attention mechanisms have been
introduced to dynamically allocate feature weights, en-
hancing feature selection and adaptability [14]. Attention
mechanisms allow models to identify the most relevant
features for a given task while filtering out irrelevant in-
formation [11]. Self-attention has been widely applied in
time series analysis, capturing long-term dependencies within
data [8]. Meanwhile, cross-attention facilitates more effective
feature interaction between the source and target domains,
improving knowledge transfer efficiency [11]. In robotic
anomaly detection tasks, cross-attention enables dynamic
feature selection and fine-grained feature alignment by com-
puting the correlation between target domain samples and
source domain features, extracting only the most relevant
information for fusion [11]. Furthermore, cross-attention
allows models to adapt feature representations dynamically
to varying data distributions, improving generalization across
multiple devices and heterogeneous modalities.



III. METHODOLOGY

This study proposes a robotic AI modeling method based
on a cross-attention mechanism for feature fusion from one
data source to another. In our problem formulation, we
refer the source domain as the data owner, with its dataset
termed the shared dataset, while the target domain is referred
to as the data receiver, with its original dataset termed
the local dataset. Figure 2 illustrates the data sharing and
feature fusion framework based on DCAF, which consists of
two key components: (1) Feature extraction. The framework
extracts features from both the shared dataset and the local
dataset, employing adaptive feature extraction methods tai-
lored to different data modalities. These extracted features
encapsulate critical information from multiple robots and
data modalities, ensuring comprehensive data representation.
(2) Cross-attention mechanism. The extracted features go
through a cross-attention operation, where the local dataset
features serve as queries (Q), while the shared dataset fea-
tures function as keys (K) and values (V). The fused features
are then processed by a feed-forward network (FFN) and
utilized for downstream Al tasks. This process ensures that
only the most relevant and informative features from the data
owner contribute to the Al model at the data receiver, thereby
enhancing the adaptability and robustness of DCAF in het-
erogeneous data and Al task environments. This approach
effectively addresses the challenges of heterogeneous data
integration, enhancing model adaptability, and providing an
efficient solution for robotic analytics.
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Fig. 2. The Proposed DCAF Method

The major contribution of this method lies in the dynamic
feature fusion mechanism based on cross-attention. It enables
the model to calculate the attention weight for each sample
of the data receiver, extract the most relevant shared features,
and achieve sample-level feature selection and fine-grained
domain alignment. Therefore, it improves feature sharing
efficiency and reduces the impact of redundant information.
But it also addresses the limitations of traditional static
feature alignment, captures the association between different
modalities through the cross-attention mechanism, and dy-
namically adjusts the feature representation to improve the
Al modeling performance for the data receiver.

A. Feature Extraction

The feature extraction process integrates Fast Fourier
Transform (FFT) and wavelet transform to obtain time-
frequency domain features and compute statistical metrics.
This approach captures both local and global signal char-
acteristics, enhancing the accuracy of anomaly detection,
position accuracy prediction, and state recognition. In robotic
systems, signals such as acceleration, force, and torque are
collected to monitor performance and detect anomalies. FFT
identifies spectrum patterns related to mechanical wear or
control issues, while wavelet transform captures transient
anomalies through multi-resolution analysis.

For time-domain features, raw time-domain signals (e.g.,
acceleration, force, torque) are decomposed by using wavelet
transform, which provides multi-resolution analysis capa-
bilities, capturing local signal features in both time and
frequency (scale) domains [15]. This approach is sensitive
to transient or localized anomalies and features in different
frequency bands, improving the accuracy of fault detection
and state recognition. The signal is decomposed into four
levels (Level 1-4) of wavelet coefficients. Then, at each level,
statistical metrics includes mean, standard deviation, energy
(F = Z@A; mf), maximum and minimum values, skewness,
and kurtosis are computed. Energy reflects the overall power
of the signal, while skewness and kurtosis provide insight
into signal symmetry and tail distribution, respectively.

For frequency-domain features, the Fast Fourier Transform
(FFT) is used to obtain the amplitudes of each harmonic [16],
and the total harmonic distortion (THD) is calculated to
quantify signal distortion and energy distribution across
different harmonic orders. THD is defined as:

22 AR

THD =
Ay

(1)

where A; is the amplitude of the fundamental frequency,
and A,, represents the amplitudes of higher-order harmon-
ics. Additional frequency-domain features include harmonic
mean, entropy-based measures (H (z) = — >_ p(x) log p(z)),
root mean square (RMS), peak values, and differences be-
tween maximum and minimum values. Entropy quantifies the
complexity of the signal, while RMS provides an estimate
of its magnitude.

For environmental features such as temperature, the mean
and standard deviation are used to represent the overall
temperature level and fluctuations under operating condi-
tions [16].

By combining both time-domain and frequency-domain
features, a more accurate representation of the signals is
obtained, facilitating system operating condition analysis and
fault pattern recognition.

B. Cross-Attention mechanism

Cross-Attention is used to learn the relationship between
local and sharing features, dynamically selecting the most
valuable shared features based on local features for fusion,



thereby enhancing the predictive capability of the regres-
sion task. Through the Query-Key-Value mechanism, Cross-
Attention maps local and sharing features into a unified space
and selects the most relevant shared features via adaptive
attention weights, rather than simply concatenating or av-
eraging all features [11]. This approach not only improves
feature alignment, making data from different sources more
compatible, but also effectively filters redundant information,
ensuring the model focuses on the most valuable features to
enhance prediction accuracy. Additionally, Cross-Attention
improves the model’s generalization ability, making it more
robust across different data distributions, thereby leveraging
shared data more effectively to optimize regression perfor-
mance. A linear mapping projects the local feature into
a query vector, while the shared feature is projected into
the Key and the Value vectors [11]. Specifically, the query
vector is obtained as Qjocal = Xiocal W, While the key and
value vectors are computed as Kgnaed = Xshared W and
Vihared = XsharedWv, respectively. where Wo, Wi, Wy, are
trainable transformation matrices mapping features into a
unified space, with Xjocy as local sample features and Xpared
as sharing sample features.

Next, cross-attention is applied to compute attention
weights and extract dynamic features [11], which generates
a larger weight for the sharing features with high similarity
to the local features:

T

A = softmax (W) ,and 2)
k

Fshared = A‘/shareda (3)

where A is the attention weight matrix, and Fyp,eq represents
the extracted dynamic features from the sharing for each
local sample. Finally, feature fusion is performed to integrate
the extracted features:

Fiusea = FFN (concat(thared, Xlocal))y 4)

where FFN represents a feed-forward network applied to the
concatenated features.

To train the FNN, the mean squared error (MSE) loss is
used for regression task:

LN
L= N;@i — )%, )

where ¢; is the model prediction for sample %, and y; is the
ground truth label. By optimizing this loss using the Adam
optimization method [17], the model learns to highlight the
most relevant shared features, effectively integrating local
and shared information for improved regression accuracy.

IV. CASE STUDY
A. Experiment Description

This study uses an anomaly detection dataset from the
ARMC as the shared dataset and a position accuracy predic-
tion dataset from NIST as the local dataset to evaluate the
DCAF method. The objective is to improve the position accu-
racy prediction with the help of the shared anomaly detection

dataset and dynamic feature fusion. This is primarily because
the shared dataset has much larger sample size with more
complete sensor networks to measure more variables, which
may enhance the position accuracy prediction performance.
The regression model used in both Concat-FFN and DCAF
consists of a feed-forward neural network with one hidden
layer of 32 units and ReLU activation. The two datasets differ
in data modalities and sample sizes. Detailed information is
shown in Table I below.

The shared dataset originates from the AMRC and con-
tains signals collected during fingerprint routines [7]. Eachin-
cludes isolated motions of one joint at speeds of 10%, 50%,
and 100% of the maximal speed. The features recorded in
each routine include acceleration or vibration (six channels
at 25,600 Hz), current of the motors (three channels at
1,000 Hz), temperature (three channels at 1 Hz), as well as
the elapsed times. After data pre-processing, there are 9888
samples and 224 features as predictors.

The local dataset provides advanced TCP position error
for robots along with detailed information about controller-
level components. Data were collected at 125 Hz, com-
paring nominal positions with measured (actual) positions.
Additional controller-level sensor data for each joint were
also collected to analyze the impact of factors, such as
temperature, payload, and speed on position degradation.
This includes information on actual positions, speed, current,
acceleration, torque, and temperature. The dataset consists
of 108 samples and 280 features as predictors. The data
analysis will provide insights to diagnose the root causes of
robot performance degradation, supporting a comprehensive
understanding of anomaly in robotic systems.

TABLE I
COMPARISON OF THE SHARED DATASET AND THE LOCAL DATASET

Variables Shared Dataset Local Dataset
from the AMRC at NIST
Data

Current v v
Acceleration v

Velocity v
Force v
Temperature v

Speed v

Elapsed Time v v
Response Variable Five Robotic Health Position Error

Classes
Sample Size 9888 108

B. Results and Discussion

The AI task for the data receiver in this experiment is a
regression task, where the predictor variables are detailed in
the Experiment Description section. The response variables
are Mean Absolute Error (MAE) and the logarithm of the
variance of the errors (In S?), which are predicted separately.
The experiment employs Normalized Root Mean Square Er-
ror (NRMSE) as the evaluation metric to measure prediction
error normalized by the range of the response variables. The
NRMSE ensures comparability of performance comparison



across different scales, mitigating the impact of unit differ-
ences and maintaining consistency in modeling performance
evaluation across datasets.

Given the high dimensionality of features, L1 regulariza-
tion (R(0) = A>%_, |0;) is applied for feature selection
to enforce sparsity and eliminate features with minimal
contribution to the regression task [18]. We compare the
DCAF with several well-known benchmark methods:

Adaptive Intermediate Class-Wise Distribution Alignment
(AICDA) develops an adaptive intermediate distribution as
the alignment goal for multiple source and target domains.
It aligns both global and class-wise distributions effec-
tively [19].

Transfer learning-based data anomaly-detection (TLBDA)
leverages the similarity of anomalous patterns across differ-
ent bridges and utilizes a deep neural network to achieve
high-accuracy anomaly identification for bridge groups [13].

For the baseline logistic regression (LR) model based on
the local dataset alone, Lasso feature selection is applied
beforehand with the same parameters as DCAF. For the
benchmark methods AICDA and TLBDA, which require
identical feature dimensions across datasets, Principal Com-
ponent Analysis (PCA) is first used to reduce the channels
of the shared dataset from six channels to one. This ensures
alignment with the local dataset, facilitating a consistent
feature representation across datasets. Subsequently, each
method’s built-in feature selector is applied for further re-
finement. The experiments are conducted on the Torch 2.4.1
platform with a learning rate of 0.001. As an additional
baseline, the FFN method directly concatenates the features
from the shared and local datasets, followed by a feed-
forward network for regression.

The performance on the test set is evaluated using five-fold
cross-validation. The experimental results are summarized
in Table III, which shows that the DCAF model achieves
smaller NRMSE for both responses (MAE and In S2) than
other benchmark methods. DCAF performs better in local

TABLE II
MODEL PERFORMANCE OF DIFFERENT METHODS

Shared Domain  Methods NRMSE (In S2) NRMSE (MAE)
NA LR 0.0844 4+ 0.0192 0.0956 + 0.0285
AICDA 0.0752 4+ 0.0135 0.0887 £ 0.0162
Total TLDBA 0.0979 £+ 0.0229 0.0842 4+ 0.0196
DCAF 0.0450 +0.0079 0.0556 + 0.0180

Al modeling, primarily because it adaptively captures the
correlations between the shared dataset (classification task)
and the local dataset (regression task). By leveraging a
dynamic weighting mechanism, it amplifies the influence of
key features while suppressing irrelevant or redundant ones.
Unlike static feature transformation methods such as AICDA
and TLBDA, which apply the same feature mapping for all
samples, cross-attention allows each regression sample in
the local dataset to selectively emphasize the most relevant
features from the shared dataset based on its similarity to all
classification samples. This adaptive feature selection process

ensures that the most informative features are utilized for
each prediction, enhancing the model’s ability to generalize
across datasets with different distributions. As a result,
DCAF outperforms conventional methods, demonstrating its
superior effectiveness and robustness.
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Fig. 4. Feature weight value for Ins?

The heatmaps shown in Figures 3 and 4 illustrate the abso-
lute weight values of selected features from the classification
problem based on the shared dataset to the samples in the two
regression tasks based on the local dataset (i.e., predicting
MAE and In(S?)).

The horizontal axis represents the classification features
selected after searching for the optimal threshold using the
Support Vector Machine (SVM model), which include eight
features. All features are derived from accelerometer signals
recorded six distinct channels. Each feature corresponds
to energy measurements obtained from the detailed levels
of wavelet decomposition, thereby capturing high-frequency
signals. These features were chosen to maximize classifica-
tion accuracy and were subsequently incorporated into the re-
gression model to enhance its predictive performance. These
features were selected to maximize classification accuracy
and were subsequently applied to the regression model to
enhance its predictive performance.

The color in the heatmap represents the importance of each
feature, where red indicates high weights and blue indicates
low weights. In Figure 3 (MAE heatmap) and Figure 4
(In(S?) heatmap), certain two features from accelerometer
signals exhibit high weights in specific samples, indicating
their significance in MAE prediction. These features show
high weights across multiple samples, suggesting their strong
influence on this regression task.

The results demonstrate that DCAF effectively selects and
integrates shared features to enhance local model predictions.
Within a single prediction objective, DCAF dynamically
assigns feature weights based on the similarity between local
and shared samples, ensuring that the most relevant infor-
mation is utilized for prediction. Furthermore, for different



prediction objectives, the model prioritizes distinct feature
subsets to adapt to specific task requirements. This variation
in feature importance is evident in the two heatmaps, where
different patterns highlight how the model selectively inte-
grates shared information to improve predictive accuracy and
robustness. This highlights DCAF’s ability to not only tailor
feature selection at the sample level, but also to adaptively
reweigh shared information depending on the specific task
objective.

V. CONCLUSIONS

The growing adoption of robotics in industrial settings
requires high-performance Al models in various robot tasks,
such as anomaly detection and position accuracy control.
While using the local data source may be insufficient to
train adequate Al models due to limited sample size and class
imbalance, using external data sources from other robots with
heterogeneous computation tasks and sensor configurations
poses additional challenges. Specifically, different modalities
of data and heterogenous Al tasks make it difficult to di-
rectly apply conventional knowledge transfer methods. This
paper studies a cross-attention-based dynamic feature fusion
method (DCAF) to address feature sharing and information
transfer challenges in heterogeneous data environments. The
method leverages a cross-attention mechanism to adaptively
capture feature correlations between sharing samples and
local samples, dynamically adjusting feature weights to en-
hance key feature influence, while suppressing redundant or
irrelevant ones. Compared to traditional static feature trans-
formation methods, such as AICDA and TLBDA, DCAF
enables each local sample to adaptively select the most
relevant sharing features, thereby improving generalization
across datasets. Experimental results demonstrate that DCAF
consistently achieves high prediction accuracy on two regres-
sion tasks and excelling in NRMSE metrics for MAE and
ln S2, validating its effectiveness and robustness.

Despite its strong adaptability in feature selection and
information transfer, the applicability of DCAF remains
subject to certain prerequisites. First, a strong association and
similarity between the shared dataset and the local dataset is
required; otherwise, cross-dataset feature sharing may not
provide meaningful information. Additionally, the method
relies on feature space alignment, meaning that the shared
dataset and local dataset must share a degree of feature
similarity for the weighting mechanism to be effective.
Future research will further enhance DCAF’s adaptability to
low-correlation datasets and extend its applicability to non-
aligned feature spaces, increasing its practical value in more
complex industrial intelligence tasks.

NIST Disclaimer: Specific commercial products or equip-
ment are described in this paper to adequately specify the
experimental procedure. In no case does such identification
imply recommendation or endorsement by the National In-
stitute of Standards and Technology, nor does it mean that
using the best available for the purpose is necessary.
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