ELSEVIER

Contents lists available at ScienceDirect

Journal of Cycling and Micromobility Research

journal homepage: www.sciencedirect.com/journal/journal-of-cycling-and-micromobility-research

E-cargo bikes as a personal transport mode in the UK: Insights from surveys and suburban trials

Ian Philips ^a, Sally Cairns ^{c,*}, Alice De Séjournet ^a, Jillian Anable ^a, Labib Azzouz ^b, Frauke Behrendt ^d, Christian Brand ^b, Noel Cass ^a, Mary Darking ^c, Clara Glachant ^d, Eva Heinen ^e, Nick Marks ^c, Theresa Nelson ^a

- ^a Institute for Transport Studies, University of Leeds, University Road, Leeds LS2 9JT, United Kingdom
- ^b Transport Studies Unit, University of Oxford, South Parks Road, Oxford OX1 3QY, United Kingdom
- ^c School of Humanities and Social Science, University of Brighton, Mithras House, Moulsecoomb BN2 4AT, United Kingdom
- ^d Industrial Engineering and Innovation Sciences, TU Eindhoven, Eindhoven 5612 AE, the Netherlands
- e ETH Zürich, Verkehrs, und Mobilitätsplanung, HIL F 31.3, Stefano-Franscini-Platz 5, Zürich 8093, Switzerland

ARTICLE INFO

Keywords: E-cargo bikes Suburban Personal use E-bikes Micromobility Active travel E-mobility

ABSTRACT

This paper explores the potential of e-cargo bikes as a personal transport mode in the UK, reporting on a series of surveys and trials. Hypothesising that early adoption of this niche mode was geodemographically skewed, we carried out a nationally-representative survey which showed that living in London, being aged 18–34 and being a less frequent car user were associated with e-cargo bike use. Additionally, we used an empirical mixed methods approach to understand what level of usage might be achieved via a supported trial in areas outside London which were relatively car-dependent. 49 households were loaned an e-cargo bike for a month in summer 2023, in suburbs of Leeds, Brighton and Oxford. Eleven of these households borrowed e-cargo bikes again the following winter. By Autumn 2024, 10 trial households had bought e-cargo bikes. High usage was achieved in the trials, with summer trial households cycling approximately 8000 km (38–42 km per household per week) with over 50 % of the distance travelled replacing car use. This work revealed a range of advantages of use as well as issues to address, including purchase costs, theft, negative perceptions of battery safety and a lack of e-cargo-bike appropriate infrastructure. The study demonstrated that there are current non-adopter groups of people in the UK for whom e-cargo bikes represent a realistic and desirable form of mobility, with the potential to reduce car use and associated emissions, and with possible benefits for health and family activities.

1. Introduction

Stabilising the climate will require a change in mobility patterns to cleaner, less energy intensive forms of transport (Jaramillo et al., 2022; Climate Change Committee, 2023). Cycling can help to achieve this, with co-benefits including increasing physical activity and improving local air pollution (Brand et al., 2021; Brand et al., 2022; Bourne et al., 2022). E-cargo bikes are a relatively new form of e-micromobility (Behrendt et al., 2022) that overcome one limitation of conventional cycles, in that they permit the carrying of additional loads (whether shopping, children, tools, waste or other materials) which can be a key cause of car dependence (Mattioli et al., 2016).

To date, the role for such bikes has mostly been considered in relation to their potential to reduce van use in urban logistics. Studies include major European projects (Cyclelogistics Ahead project, 2017; Ploos van Amstel et al., 2018); modelling studies (Melo and Baptista, 2017; Papaioannou et al., 2023; Hoffman et al., 2017; Zhang, 2018); practical trials and guidance (Blazejewski et al., 2020; Clarke and Leonardi, 2017; Department for Transport, 2018; Bicycle Association, 2024; Verlinghieri, 2023); examples of use by logistics companies (Post and Parcel, 2019; Bogdanski, 2017); and various overview assessments (Caggiani et al., 2021; Malik et al., 2023; Cairns and Sloman, 2019; Maes, 2018; Transport for London, 2023). Grant schemes have also been offered for organisation and, in some European countries, individuals (Energy Saving Trust 2022a; Energy Saving Trust 2022b; Cairns and Sloman, 2019; Anderson, 2025).

However, "literature pertaining to e-cargo cycles in private transport is in general very limited" (Narayanan and Antoniou, 2022, p293), and has

^{*} Correspondence to: Sally Cairns & Associates Ltd., Unit 159503, PO Box 7169, Poole, BH15 9EL, UK. *E-mail address:* sally@scairnsa.co.uk (S. Cairns).

largely come from countries with more established cycling cultures, often based on sharing schemes in urban centres (Becker and Rudolf, 2018; Hess and Schuber, 2019; Marincek et al., 2024a; Marincek et al., 2024b; Bissel and Becker, 2024). In the UK, e-cargo bike uptake is very low, with sales of only 4000 e-cargo bikes reported in 2022, compared with 70000 in France and 90000 in Germany (Garidis, 2023).

Given a lack of literature about the potential for e-cargo bikes in the UK context, this paper provides an overview of key findings from a mixed method research project called 'ELEVATE' (Philips et al., 2024), together with a discussion of the background, literature and project methodology. The contribution of this paper is to provide an understanding of the state of domestic e-cargo bike uptake, use and issues in England at present, together with insights into the context and complexities of the issue. To achieve this, it sets out results from a range of quantitative and qualitative data sources, including a national survey, three city surveys and 'proof of concept' trials from car-dependent suburbs of 3 UK cities. It also provides the framing for other papers, which provide more depth on particular aspects of the project. It is supported by a paper which sets out the methodology for the project in more detail (Philips et al., 2024).

Conceptually, e-cargo bikes in the UK are very much a niche innovation (Sherriff et al., 2023). The concept of a 'niche' draws on both niche management theory (Schot and Geels; 2011), which highlights the value of small-scale experiments to test the viability of alternatives to the dominant automobility regime; together with multi-level transitions theory (Geels and Schot, 2007), which highlights the importance of understanding niche-innovation within wider contexts. By fusing findings from both national and city level surveys and small-scale trials, this paper aims to provide multi-level insights into the viability and desirability of domestic e-cargo bike use in the UK. Specifically, it aims to answer the following research questions:

- Based on a survey which is nationally representative of key demographic characteristics and current cycling, what are the features of current uptake and use of e-cargo bikes, and the perceived issues with adoption?
- Based on a research trial, can we observe usage in areas and amongst groups where our national survey suggests usage would be low, but wider literature indicates potential for uptake?
- What are the contextual factors and experiential factors emerging from trials and surveys that may affect domestic e-cargo bike use, and what might be the potential impacts on car use or health?

2. Background and literature review

2.1. E-cargo bike definition

E-cargo bikes are designed to carry loads including shopping, work equipment and passengers (particularly children). They vary in size and carrying capacity, but are larger and heavier than a conventional bike or e-bike. Compared to conventional bicycles, they often have a sturdier frame, smaller wheels and longer wheelbase to increase stability, and a heavy duty stand for easy parking. The most common types for personal use comprise 'longtail' (with an extended rear carrier) and 'long john' (with a large carrier at the front) bikes or trikes. A motor provides optional adjustable electrical assistance when the rider pedals. The ecargo bikes considered in this project fall within the EAPC (electricallyassisted pedal cycle) regulations (DfT and DVSA, 2015), which limit the maximum continuously-rated power output of the motor to 250 Watts, and require electrical assistance to cut off when speed reaches 15.5mph. As such, cargo bikes with higher power or that do not require pedalling were not considered and would be classified in the UK as a different type of vehicle. Although some of the technology that e-cargo bikes typically incorporate is complex, the bikes usually require little day-to-day maintenance, although longer-term servicing is often more challenging than for a conventional bicycle (ELEVATE, 2025). Some of the available literature relates to non-powered e-cargo bikes, or sharing schemes which offer a mix of powered and un-powered cargo bikes, and this is included here, since the prime motivation for using them – namely the additional cargo capacity - is likely to be the same.

2.2. (E-)cargo bike use by private users

Through a travel behaviour change lens, using a threshold accessibility measure (Geurs and van Wee, 2004), the European CycleLogistics project identified 'goods-related trips that could shift to bike or e-(cargo) bike' as being those that involved the transport of 'more than a handbag; less than 200 kg', that were less than 7 km, and that were not part of a complex trip chain requiring a car. Based on survey data, it estimated that, of personal motorised trips in cities, 77 % of shopping trips, 50 % of commuting trips and 44 % of leisure trips could potentially shift to bike or cargo-bike (Wrighton and Reiter, 2016; Kruchten, 2013). As well as such empirical assessments, there is a small, but growing body of information on actual use. Table 1 lists the main primary quantitative data sources in the literature relating to domestic use of (e-)cargo bikes (either from personal ownership, trials or from accessing such bikes via sharing schemes).

A recent overview paper by Carracedo and Mostofi (2022) synthesises some of the key themes emerging from these, including the studies by Riggs (2016), Riggs and Schwartz (2018), Bjørnarå et al. (2019) and Hess and Schuber (2019), together with qualitative literature such as Thomas (2021) and Boterman (2018).

From their synthesis, Carracedo and Mostofi (2022) conclude that in terms of socio-demographic determinants, personal e-cargo bike users are more likely to be upper or middle class, male, in their late thirties or early forties, educated to degree level, existing cyclists, and in households with children and cars. In work post-dating this synthesis, Marincek et al. (2024a) found similar characteristics, but noted that, in Swiss sharing schemes, there were significant proportions of cargo-bike-sharers who were under 30 and had relatively low incomes. In addition, 46 % of their cargo bike owners did not own cars. Bissel and Becker (2024) reported that over half of their German cargo-bike-sharers were in households without cars. Moreover, although many previous studies have found a male bias, the potential appeal of e-cargo bikes to women has also been highlighted- for example, 43 % of e-cargo bike sharers in the survey by Bissel and Becker (2024) were female; Riggs and Schwartz (2018) reported that women were more likely to use cargo bikes for trips with children than men; and Marincek et al. (2024a) noted that, although two-thirds of their survey respondents were male, 79 % of cargo bike owners shared them with other

Table 1Literature sources giving quantitative primary data about personal use of cargo and e-cargo bikes. Data sources are not always clear about whether cargo bikes, e-cargo bikes, or a mix of the two were studied.

0 /	
Sources	Nature of data available
Riggs, (2016); Riggs and Schwartz, (2018)	A 2015 survey of 2500 individuals owning cargo bikes in the US
Becker and Rudolf, (2018)	A 2016 survey of 931 users of a network of 46 cargo-bike-sharing operators in Germany and Austria
Bjørnarå et al. (2019)	A 9-month randomised control trial in Norway in 2017/18, involving 36 parents, including 18 in a control group, and 18 who were variously equipped with an e-bike with trailer ($n = 6$), a cargo (longtail) bike ($n = 6$) and a traditional bike
Hess and Schuber (2019)	with trailer (n = 6) A 2017 survey of 301 members and non-members of an e-cargo bike sharing scheme ('Carvelo2go') in Basel, Switzerland
Marincek et al. (2024a) and Marincek et al. (2024b) Bissel and Becker, (2024)	A 2022 survey of 696 (e-)cargo bike owners and 259 (e-)cargo-bike-sharers in Switzerland A 2022 survey of 2386 active users of (e-)cargo
	bike sharing schemes in Germany

family members.

Motivations are a further consideration in understanding travel behaviour change. Carracedo and Mostofi (2022) report that motivations for e-cargo bike use include lower total costs of ownership compared with car use; social aspects including physical and mental health benefits; and environmental concerns, and these have also been confirmed in later studies (Marincek et al., 2024b). Becker and Rudolf (2018) specifically found more than 92 % of their cargo-bike-sharers were 'rather' or 'very concerned' about climate change. Others have also highlighted the value of being able to transport children and to cycle as a family (Thomas, 2021).

In terms of e-cargo bike use, Becker and Rudolf (2018) found 57 % of round trips were up to 10 km, and 88 % were up to 25 km, with a relatively long mean distance of 14.6 km (compared to typical unpowered cycle trips). Marincek et al. (2024a, b) found that 91 % of cargo bike *owners* were using them several times a week (including 55 % who were using them every day, or almost every day), for an average of 31 km a week, whilst frequencies of use were lower for cargo bike *sharers*.

Reported purposes for use vary. Marincek et al. (2024a) propose four main types of user, highlighting that even within this relatively specialist transport niche, there is heterogeneity in the types of earliest adopters:

- Cargo transporters young, car-free adults using shared cargo bikes to transport bulky items;
- Enthusiasts who own a cargo bike as their main vehicle to stay active, transport children and replace car trips;
- Multi-modals who use cargo bikes as one travel option; and
- Sustainable parents pre-existing cyclists who acquire a cargo bike to transport children.

2.3. E-cargo bike energy use, emissions and impacts on car use

There is general agreement that e-cargo bikes are more energy efficient, and generate fewer emissions than cars or vans, both when in use, and from their creation and disposal. The European Cyclelogistics Ahead project states that "an electric van can carry 10 times as much payload as a cargo bike, but it weighs 60 times as much. As a result, e-vans require motors delivering more than 80 kW, when a cargo bike does the job with one fourth of a kW (plus a tenth of a kW from the rider)." (Cyclelogistics Ahead project, 2017). A recent review paper (Narayanan and Antoniou, 2022) concludes that, in use, the energy consumption of an e-cargo cycle ranges from 9 to 18 Wh/km while an e-van may consume 200 Wh/km and an e-truck may use 800 Wh/km. A 2020 assessment of lifecycle emissions by the International Transport Forum (Cazzola and Crist, 2020), indicates that, from manufacture, assembly and disposal, emissions for an e-bike (which may be a similar order of magnitude to those of an e-cargo bike) are less than 3 % of those generated for a conventional car, or less than 2 % of those generated for an e-car. Emissions savings from using e-cargo bikes for last mile logistics compared to electric, hybrid or conventional vans are reported by various commentators (Temporelli et al., 2022, Cairns and Sloman, 2019).

Key issues in the domestic context are whether e-cargo bikes do substitute for car or van travel or for more sustainable modes, and whether they modify destination choices, car ownership and travel habits more generally. In his study of US cargo bike owners, Riggs (2016) found that the proportion listing bike or cargo bike as their 'primary' mode of travel increased from $29\,\%$ to $79\,\%$ after purchase (with a 41 %-point reduction in the proportion reporting that it was a car). $69\,\%$ changed their travel behaviour, and, for these people, the

number of car trips made reduced by an average of 1–2 trips per day. In their survey of shared cargo bike users, Becker and Rudolf (2018) found that 46 % said that without the cargo bike, they would have made the journey by car. Bjørnarå et al. (2019) also reported a decrease in frequency of car driving for travelling to the workplace and the kindergarten in their trial (though not to the grocery store). Bissel and Becker (2024) found that car ownership was reduced by 7.4-18.1 % for their cargo-bike-sharing users (with the range reflecting whether deferred purchases were included), and that cargo bikes were rated as superior to cars for various attributes. Marincek et al. (2024b) found that 46 % of e-cargo bike owners indicated that they had previously made at least some of their e-cargo bike trips by car. In addition, 31 % had given up a car (including 25 % going car free and 6 % giving up a second car) and a further 38 % had the same car ownership but were making fewer car trips. Together, these studies suggest that reductions in car use are likely to result from e-cargo bike use.

2.4. Health implications of e-cargo bike use

Work on electrically-assisted bikes has shown that they usually require sufficient exertion to count as moderate or vigorous physical activity, and are therefore likely to provide health benefits for their riders (Simons et al., 2009; Gojanovic et al., 2011; Langford et al., 2017; Bourne et al., 2018). A recent briefing note (Bourne et al., 2022) includes references demonstrating that e-cycling can increase individual physical fitness by up to 10% in both inactive adults and those with chronic disease; that individuals typically ride e-bikes more frequently and for longer periods of time than conventional bicycles; and that the long-term benefits of active travel outweigh the risks of exposure to air pollution in high income countries. There is a lack of specific literature on the health impacts of (e-)cargo bike use, but several schemes involving commercial use of e-cargo bikes have anecdotally reported that their riders value the exercise they get from their jobs (Ploos van Amstel et al., 2018). Meanwhile, physical and mental health benefits are often mentioned as some of the main motivations for using e-cargo bikes in the literature on personal use (Carracedo and Mostofi, 2022; Bissel and Becker, 2024; Marincek et al., 2024a).

This US and EU literature on e-cargo bike use and their energy, car replacement and health impacts, provides the key background for our methodology and findings.

3. Methodology

As highlighted above, full details of the methodology underlying this study are given in Philips et al., (2024). Here, we provide a summary of the key elements and a timeline of activities (see Figs. 1 and 2).

3.1. Surveys

We conducted a series of surveys to investigate interest in e-cargo bikes and other micromobility modes, and to capture existing travel behaviour, opinions and personal characteristics of respondents.

To provide context for the planned trials and to understand the current position of e-cargo bikes in the UK, YouGov Plc (one of the major market research companies in the UK) were commissioned to undertake online surveys designed by the project team. Results were obtained for 2000 adults in England (national survey), together with an additional 400 adults in each of the three UK cities of Brighton, Oxford and Leeds (city surveys). Surveys were conducted between 31st May and 18th July 2023.²

Recruitment and weighting were used to ensure that each survey was

 $^{^1}$ Figures for vehicle and battery manufacture, assembly and disposal (including fluids), plus delivery to point of purchase, comprise 11,339,015 $\rm gCO_2\text{-}eq$ for an electric car; 6,496,825 $\rm gCO_2\text{-}eq$ for a conventional car; and 168,510 $\rm gCO_2\text{-}eq$ for a privately-owned electrically-assisted bike.

² All questions had a 'don't know / prefer not to say' response option. All questions asking about agreement or disagreement with opinion statements also had a 'neither agree nor disagree' option.

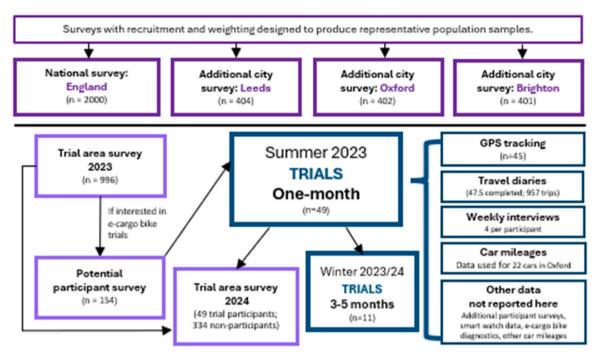


Fig. 1. Overview of the collection of data that are analysed in this paper.

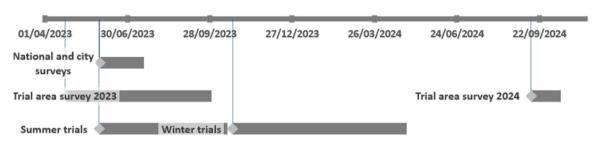


Fig. 2. Timeline of data collection and trials.

representative of the relevant adult population, based on age, gender, ethnicity, social grade,³ and, in the English survey, region. The proportion of respondents cycling at least once a month was also checked against the National Travel Survey (which recorded that 21 % of people did so in 2023), to avoid an over-representation of cyclists. These national and city surveys provided contextual information for 'trial area' surveys run by the project team, which took place between 24th April 2023 and the 30th September 2023 (though with the majority of responses received towards the beginning of this period). These surveys were promoted using a range of methods (including Twitter, Facebook and contact with community groups and schools), to reach as many people as possible. Whilst those completing the surveys were probably more interested in such modes than average, people were advised that we were "keen to hear both positive and negative views" and, from comments, it is clear that some people responded because they wanted to express negative views.

In the trial area surveys, 996 responses were received (312 in Leeds; 422 in Brighton; 262 in Oxford). About half the respondents were somewhat, fairly or very interested in the free loan of an e-cargo bike for a month and 52 % (515 people) expressed an interest in receiving further information about participating in our research project. The majority who did so were sent a link to a 'potential participant' survey,

After the trials (described below), in September/October 2024, a follow-up survey was sent to the lead trial participants (i.e. the person from each household who originally signed up for the trial), and to all those who had completed the earlier trial area surveys and were happy to be contacted again but who had not become participants. In total, all trial participants and 334 (of 611) trial area survey non-participants replied.

A copy of the national survey administered by YouGov (which was the same structure as that used for the city surveys), together with examples of the trial area survey (for Leeds), a potential participant survey (for Leeds) and the 2024 follow-up survey sent to trial participants are given as supplementary material.

3.2. Trials

In specific areas of the three cities of Brighton, Oxford and Leeds, 49

which 154 people completed. The drop-out between expressing interest and completing this survey primarily occurred because the second survey highlighted that participants would be required to provide researchers with a significant volume of information, and, for insurance reasons, needed to have somewhere secure to store the bikes.

³ Social grade is a way of grouping people by type, which is mainly based on their social and financial situation (ONS, 2023)

⁴ Some people did not provide a valid email address, and a few respondents were not sent a link towards the end of the survey period, since it would not have been possible for them to become a trial participant

households were lent e-cargo bikes for one month each during the summer of 2023, together with cycle training and other support.

The trials were focused in three different types of suburban areas with high levels of car ownership, but viable trip lengths for cycle use, in order to assess the potential to reduce car use (Table 2).

Specifically, the project was focused on:

- Preston Park and Hove Park high density inner suburbs of the coastal city of Brighton.
- Yeadon, Guiseley and Otley satellite towns on the edge of the northern conurbation of Leeds.
- Kennington a village on the outskirts of the southern city of Oxford.

For survey purposes, areas were defined by postcode geographies, which were more familiar to the general public than Census zones or council ward administrative geographies. The geodemographic characteristics of the areas were assessed using secondary data sources, and site selection was discussed with stakeholders from the areas.

The 49 trial households were selected from the 154 people who completed the 'potential participant' survey. Selection was largely based on practical considerations - including storage arrangements, availability in relevant time windows and clarity about desire to participate. During their one-month loan, households completed a travel diary with details of every round trip made using their e-cargo bike, including an estimate of distance, trip purpose, and how they would have otherwise travelled. Diary data were completed for 47.5 of the loans, with information for 957 trips. Information was missing about riders and passengers (10 trips), trip purpose (2 trips) and alternative mode (6 trips). These trips have been excluded from relevant calculations. In addition, the e-cargo bikes were fitted with GPS trackers and analysed using R code, with full data available for 45 loans. For both data sources, data cleaning and gap filling was required, and neither fully captured all travel. For the travel diaries, it is unclear whether all trips were logged, and there were gaps in the records (some of which were subsequently filled by cross-referencing with interview or GPS data). In one case, the travel diary was not completed, and in another, it was only completed for 2 of 4 weeks (i.e. 0.5 of the loan period). For the GPS data, data were cleaned to remove travel used to reposition the bikes between households and adjustment was needed to allow for when signal quality was low.

In addition to surveys, households completed four interviews during the course of their participation. Interviews were conducted using semistructured interview guides, with subsequent transcription, coding and

Table 2Key characteristics of trial locations.

Characteristics of neighbourhoods chosen for trials	Preston Park/ Fiveways and Hove Park (Brighton)	Yeadon, Guiseley and Otley (Leeds)	Kennington (Oxford)	English average
Postcodes for survey participation	BN1, BN3	LS18, LS19, LS20, LS21, LS29	OX1, OX4, OX14	n/a
Population	188,000	152,000	171,000	n/a
% of households without cars	10	11	10	24
Population density (people per km ²)	8970	2158	4033	434
% of people living in flats, maisonettes, apartments or terraced housing	26	10	18	45
% of people aged 9 or under	9	11	10	11
% of people aged 65 +	15	23	15	18

Data taken from the 2021 Census, www.ons.gov.uk

analysis using NVivo software. Four researchers were involved in the coding, with specific processes for developing and standardising the codes used and ensuring their consistent application. This is described in more detail in Philips et al. (2024).

Data was also gathered via household car mileage readings; smart watch (or equivalent) supplied by some participants about their health; and uploads of comments, pictures and video of their experience. The car mileage readings (only) are reported briefly in this paper.

Between October 2023 and April 2024, 11 of the original 49 households who expressed particular interest in a longer loan were lent an e-cargo bike for a further 3–6 months and completed additional interviews and surveys.

4. Findings from the national and city-surveys

4.1. Existing levels of e-cargo bike ownership and use in England

The nationally-representative online survey of 2000 adults showed that e-cargo bikes are a relatively niche transport mode in England. Overall, 3 % of the respondents were using an e-cargo bike at least once a month; 2 % were part of households that owned an e-cargo bike; and 6 % had ridden an e-cargo bike at least once. 5 % stated that they knew someone personally who regularly uses an e-cargo bike and 6 % of respondents said that they were aware of opportunities to hire an e-cargo bike within walking distance of their home.

4.2. Interest in, and perceptions of, e-cargo bikes

Of those who had not used an e-cargo bike in the last month, 11 % of respondents somewhat or strongly agreed that they could see themselves as being the kind of person who might regularly ride an e-cargo bike. 21 % also somewhat or strongly agreed that people who were important to them would approve of them doing so; and 42 % somewhat or strongly agreed that they would find it easy to ride an e-cargo bike if they wanted to. From the full sample, 5 % of respondents said that their household was somewhat or very likely to buy an e-cargo bike (or another e-cargo bike) in the next 12 months, whilst 26 % of respondents were 'somewhat', 'fairly' or 'very interested' in the free loan of an e-cargo bike for a month. Interest in e-cargo bikes, therefore, suggests that there may be potential for considerably higher usage than at present.

All respondents were asked about their perceptions of e-cargo bikes: 66 % somewhat or strongly agreed that they are better for the environment than driving (whilst 9 % somewhat or strongly disagreed); 56 % somewhat or strongly agreed that they can be a realistic alternative for some car journeys (whilst 20 % somewhat or strongly disagreed), and 41 % somewhat or strongly agreed that the Government should do more to support their use (whilst 19 % somewhat or strongly disagreed).

4.3. Variation in findings by location

Table 3 indicates that these national findings varied in Leeds, Brighton and Oxford, given their differing contexts. In particular, high levels of cycling in Oxford were accompanied by higher levels of e-cargo bike ownership and use. Figures for Leeds were similar to those for England as a whole, whilst Brighton represented an interim case between Oxford and Leeds.

4.4. Current use of e-cargo bikes and associated characteristics

The survey data were also analysed to compare e-cargo bike users and non-users, defining a user as someone using an e-cargo bike at least once a month. This was the case for 55 people in the English national survey, 12 in Leeds, 22 in Oxford and 11 in Brighton. Consequently, a pooled sample of 100 'users' was created, and compared to the data from the main national sample about those who did not use an e-cargo bike at

Table 3Results from the contextual surveys undertaken. Data weighted to represent the population of the respective areas. Non-users defined as those not using an ecargo bike at least once a month.

	England	Additional sample: Brighton	Additional sample: Leeds	Additional sample: Oxford
Sample size	2000	401	404	402
% owning at least one e-cargo bike	2	1	2	4
% using an e-cargo bike at least once a month	3	3	3	7
% knowing someone who regularly uses an e-cargo bike	5	7	6	17
% of non-users who could see themselves as someone who might regularly ride an e-cargo bike	11	14	10	20
% somewhat, fairly or very interested in the free loan of an e-cargo bike for a month	26	29	26	33
% who somewhat or strongly agree that e-cargo bikes can be a realistic alternative for some car journeys	56	68	56	71
% who cycle at least once a month	18	20	15	42

least once a month (n=1901), see Table 4. Percentages in the table were calculated after excluding missing values or 'don't know/prefer not to say'. Chi-square results are given that compare users and non-users for most metrics except average METs per week, when the Wilcoxen rank sum test was used.

The results provide some interesting corroboration of the literature, and some contradictions. E-cargo bike users emerged as usually being young (with a high proportion aged 18–34), often having children in their household and living in urban areas (with an over-representation of e-cargo bike users based in London). There was a surprisingly high representation from ethnic groups other than white (which might be partly due to the ethnic diversity of London) and of people with disabilities (which might indicate use of specially-adapted trikes). The gender bias was similar to that for general cycling. Users were more likely to have a degree and to be employed than non-users, though were from a spread of income groups.

Unsurprisingly, users were more likely to be cycling at least once a

month than non-users. There was no significant difference in car ownership levels, but there was a statistically significant difference in frequent car use, with e-cargo bike users being less likely to use a private car at least 3 times a week.

Data on self-reported weight and height (as held by YouGov), together with inclusion in the national and city surveys of the World Health Organisation's Global Physical Activity Questionnaire (GPAQ) questions on physical activity and sedentary behaviour (World Health Organisation undated) were used to provide information relevant to health including BMI and energy expenditure from key physical activities. A significantly higher proportion of e-cargo bike users were meeting UK physical activity guidelines (compared with non-users) and they were undertaking, on average, more minutes of active travel. Differences in the shares with a healthy BMI, or who were sedentary for up to 8 hours a day, were in keeping with these findings, but were not statistically significant (at the 95 % confidence level).

People in households *owning* an e-cargo bike (with a pooled sample of 64 people 8) were also considered. Most of the distinctive characteristics of the owners were similar to those of users. The greatest differences related to income – where only 22 % of owners were in households with an income of £ 50,000 + (compared to 34 % of users, and 31 % of non-owners) and were less likely to be in employment than users (78 % compared to 86 %). These findings contradict the narrative that e-cargo bikes are a toy for the wealthy.

5. Findings from one-month summer trials in Brighton, Oxford and Leeds

5.1. Participant characteristics

Lead trial participants were more likely to be cyclists, with children in their households, educated to degree level and in employment (compared to the national non-user sample), see Table 4. Not least due to the neighbourhoods chosen, car ownership and use were very high, most participants were white, two-thirds were aged 35–49 and households were relatively wealthy. Although more lead participants were male, other household members could also sign up to ride the bikes and of the 56 people who signed up to ride the bikes in total, 34 (60 %) were female.

5.2. E-cargo bike usage by trial participants

All trial households used the e-cargo bikes at least once during their one-month loan. According to the travel diaries, the number of days of use per loan ranged from 2 to 29, with a mean of 13 days per household (equivalent to about 3 days per week per household). Participants made between 2 and 50 trips during their loan period, averaging 20 trips per loan, or 5 trips per week. Trip length ranged from less than 1 km to as high as 76 km, though the majority (98 %) of trips were under 25 km, with a mean trip length of 7.8 km (SD 7.2). Trip lengths were slightly higher in Leeds (mean 9.9, SD 8.9) and slightly lower in the two other cities (Brighton mean 7.0, SD 7.0; Oxford mean 6.7, SD 5.1). Average trip lengths were relatively high compared to those typically reported for cycle trips, in keeping with the findings of Becker and Rudolf (2018), although this may partly relate to how participants defined trips.

Participants travelled an average of 38 km (travel diary figure) to 42 km (GPS figure) per week. In total, the GPS trackers for 45 loans

⁵ People who did not complete the question about how often they use an ecargo bike, or who indicated 'Don't know/prefer not to say' as their response, were excluded from the samples. Weighted data have not been used in this section, given analysis suggesting that use of weights in this context might skew results.

⁶ One minute of moderate activity = 4 METS whilst 1 min of vigorous activity = 8 METS (WHO, undated). UK guidelines are for physical activity equivalent to 600METS per week. MET figures are potentially high for all groups compared to other sources of data like the Active Lives Survey (Sport England, 2024), due to differences in survey methodology and administration, but should be internally comparable. Trial participant figures for exercise participation were generated in a different way (see Section 5.5).

 $^{^7}$ NTS table NTSQ05005a indicates that 37 % of males and 24 % of females aged 5 + cycle at least once a month, implying that perhaps 60 % are male; data accessed on the Ad-hoc National Travel Survey analysis page.

Our assumption is that e-cargo bike users whose households did not own an e-bike were borrowing an e-cargo bike, using a sharing scheme or using one for work.

 $^{^{9}\,}$ Loan periods ranged from 18 to 43 days, with the majority between 27 and 29 days (including bike handover days).

Participants varied in whether they recorded trips as one-way or round trips.

Table 4 Characteristics of e-cargo bike users, non-users and trial participants 'For gender, only male versus female characteristics are compared, given low count for 'Other'; \sim for London versus non non-London, only-cargo bike users from the national survey used (n = 55); #for METS active travel, Wilcoxen rank sum test used instead of Chi-square.

Characteristic	% of all e-cargo bike users	% of e-cargo bike non-users	p value for 2-sample Chi-square result	Household lead trial participants		
Sample size	n = 100	n = 1901		49		
Female	35 (35 %)	960 (50 %)	0.006^	20 (41 %)		
Male	60 (60 %)	907 (48 %)		29 (59 %)		
Other	5 (5.0 %)	34 (1.8 %)		0 (0 %)		
18–34	73 (73 %)	495 (26 %)	< 0.001	7 (14 %)		
35–49	23 (23 %)	482 (25 %)		33 (67 %)		
50–64	2 (2.0 %)	476 (25 %)		5 (10 %)		
65 +	2 (2.0 %)	448 (24 %)		4 (8.2 %)		
White	69 (69 %)	1680 (88 %)	< 0.001	42 (91 %)		
Other than white	31 (31 %)	221 (12 %)		4 (9 %)		
Child under 10 in household	56 (58 %)	229 (12 %)	< 0.001	31 (63 %)		
No child under 10 in household	41 (42 %)	1646 (88 %)		18 (37 %)		
Child (under 18) in household	73 (74 %)	404 (22 %)	< 0.001	37 (76 %)		
No child (under 18) in household	26 (26 %)	1473 (78 %)		12 (24 %)		
Rural	5 (5.0 %)	385 (20 %)	< 0.001	NA		
Urban	95 (95 %)	1516 (80 %)		NA		
London~	18 (33 %)	272 (14 %)	< 0.001	NA		
Non-London~	37 (67 %)	1629 (86 %)		NA		
Income $<$ £20,000	25 (34 %)	348 (25 %)	0.063	0 (0 %)		
Income £ 20,000-49,999	23 (32 %)	630 (45 %)		12 (27 %)		
Income £ 50,000 +	25 (34 %)	434 (31 %)		32 (73 %)		
Employed	85 (86 %)	1073 (58 %)	< 0.001	38 (84 %)		
Not employed	14 (14 %)	763 (42 %)		7 (16 %)		
Activities limited a little or a lot by disability	46 (47 %)	557 (30 %)	< 0.001	5 (10 %)		
Activities not limited by disability	52 (53 %)	1277 (70 %)		44 (90 %)		
Degree or equivalent	71 (73 %)	968 (53 %)	< 0.001	42 (86 %)		
No degree or equivalent	26 (27 %)	870 (47 %)		7 (14 %)		
Use a private car at least 3 times a week	33 (35 %)	1017 (54 %)	< 0.001	34 (69 %)		
Use a private car less than 3x a week but at least once a month	42 (44 %)	467 (25 %)		13 (27 %)		
Use a private car less often than once a month	20 (21 %)	384 (21 %)		2 (4 %)		
Cycle at least once a month	62 (62 %)	298 (16 %)	< 0.001	41 (84 %)		
Cycle less often than once a month	38 (38 %)	1574 (84 %)		8 (16 %)		
No car household	20 (21 %)	362 (19 %)	0.9	1 (2 %)		
Household owns 1 car	43 (45 %)	884 (47 %)		25 (51 %)		
Household owns 2 + cars	32 (34 %)	639 (34 %)		23 (47 %)		
Healthy BMI	41 (48 %)	618 (39 %)	0.11	NA		
Unhealthy BMI	44 (52 %)	947 (61 %)		NA		
Sedentary for up to 8hrs a day	65 (80 %)	1010 (70 %)	< 0.050	N/A		
Sedentary for more than 8 hrs a day	16 (20 %)	433 (30 %)		N/A		
Average METs for active travel per week	6154	1663	< 0.001 #	N/A		
Achieve 600 METs per week	81 (96 %)	1299 (78 %)	< 0.001	31 (63 %)		
Don't achieve 600 METs per week	3 (3.6 %)	346 (21 %)		18 (37 %)		

indicated a total distance travelled during the trial of $8137~\rm km$. Travel diaries recorded a slightly lower distance - $7468 \rm kms$ - though some trips were known to be missing. Together, these imply participants cycled in the order of at least $8000~\rm km$ during the trials.

5.3. Purposes of e-cargo bike usage

Whilst our study does not allow for corroboration of the e-cargo user types proposed by Marincek et al. (2024a), it was the case that some people borrowing e-cargo bikes replaced a regular trip (such as a nursery run), whilst others used the e-cargo bikes on a more ad hoc basis.

In the potential participant survey (n = 154), respondents were asked what they thought they might use an e-cargo bike for (with multiple responses possible). In all three cities, shopping was most frequently chosen. Carrying children was the second most chosen, with the figure being lower in Leeds, which is arguably the most car dependent location, and where social media comments on our project often focused on the safety issues of using e-cargo bikes in traffic. Meanwhile, the proportion of respondents choosing commuting was higher in Oxford, where cycling is a more mainstream activity than the other two locations. Other activities indicated included exercise; carrying tools or

materials for work; travel during work; trips to the tip, recycling centre or charity shops; leisure trips, including to the gym, beach or park; transporting a dog; considering training to be a delivery rider; servicing fountains; and working as a nanny.

During the trials, 54 % of trips and 49 % of distance cycled involved more than one person on the bike – i.e. the cyclist transported other people, usually children (with these figures being highest in Oxford – 62 % trips/53 % distance – and lowest in Leeds – 44 % trips/42 % distance). There were 9 households (19 %) who did not make any trips with passengers.

In terms of trip purpose, escorting children (either to school, nursery or other activities), shopping, commuting and entertainment (including going to a child's activity such as the park, swimming or playgroup) accounted for the majority of trips, either individually or combined (see Table 5). 11 % of trips were made for multiple purposes – with the most common combination being commute + school/nursery trip.

Whilst the majority of households (34 out of 48) had made trips only for fun or exercise or to try out the bike, these accounted for less than 8 % of all trips made, and the majority were practical journeys enabling participants to reach destinations (although many people indicated fun, exercise or trying the bike were also motivations when choosing to use

Table 5
Purpose of e-cargo bike trips. Trip definitions aligned with those in the UK National Travel Survey (Department for Transport, 2024).

Trip purpose	Brighton		Leeds	Leeds		Oxford		Total		
	Count	%	Count	%	Count	%	Count	%	No of households	
	301	100 %	300	100 %	354	100 %	955	100 %		
Escort education (i.e. taking children to school or college)	55	18.3 %	33	11.0 %	54	15.3 %	142	14.9 %	19	
Shopping	47	15.6 %	39	13.0 %	52	14.7 %	138	14.5 %	35	
Commuting	33	11.0 %	55	18.3 %	49	13.8 %	137	14.3 %	26	
Entertainment or public activity	37	12.3 %	43	14.3 %	51	14.4 %	131	13.7 %	37	
Other escort (i.e. taking children to other activities)	29	9.6 %	16	5.3 %	48	13.6 %	93	9.7 %	24	
Personal business	26	8.6 %	24	8.0 %	25	7.1 %	75	7.9 %	28	
For fun, exercise or to try the bike (only)	22	7.3 %	14	4.7 %	37	10.5 %	73	7.6 %	34	
Visiting friends or relatives	16	5.3 %	12	4.0 %	16	4.5 %	44	4.6 %	20	
Travel during work	1	0.3 %	8	2.7 %	0	0.0 %	9	0.9 %	3	
Day trip	0	0.0 %	3	1.0 %	4	1.1 %	7	0.7 %	3	
Multiple: escort education + commute	6	2.0 %	31	10.3 %	3	0.8 %	40	4.2 %	8	
Multiple: escort + other	11	3.7 %	10	3.3 %	7	2.0 %	28	2.9 %	17	
Other multiple purposes	18	6.0 %	12	4.0 %	8	2.3 %	38	4.0 %	24	

Table 6How participants would otherwise have travelled (kms replaced by e-cargo bike trips).

Alternative mode that would have been used	Brighton		Leeds		Oxford		Total	
	Kms	100.0 %	Kms 2956.7	% 100.0 %	Kms 2387.2	% 100.0 %	Kms 7442.2	% 100.0 %
	2098.3							
Car/van	1246.8	59.4 %	1175.1	39.7 %	1368.2	57.3 %	3790.0	50.9 %
Pedal cycle (including e-bike)	287.1	13.7 %	829.8	28.1 %	448.0	18.8 %	1564.9	21.0 %
Bus or train	60.2	2.9 %	339.6	11.5 %	24.6	1.0 %	424.4	5.7 %
Walk	204.0	9.7 %	55.5	1.9 %	87.1	3.6 %	346.6	4.7 %
Would not have travelled	216.8	10.3 %	253.5	8.6 %	265.1	11.1 %	735.3	9.9 %
Multiple options given	83.5	4.0 %	303.3	10.3 %	194.2	8.1 %	581.0	7.8 %

the bike for these trips). Concerns about routes, security, and parking at unfamiliar destinations emerged as barriers to use. Some participants reported using the e-cargo bikes less than expected because they had unrealistic expectations - for example, they hoped to do some relaxed leisure trips on the e-cargo bike but found themselves too short of time.

Meanwhile, participants indicated that about 10 % of trips would not otherwise have been made without the e-cargo bike, and that the bikes had enabled new trips, often facilitating travel 'as a family'. Some felt it had made a substantial difference to their opportunities, with one describing how "it's allowed us to do more things outdoors than... we would have done previously and to go to places that we wouldn't have gone to together", (male 35–39 Oxford).

5.4. Impacts of borrowing an e-cargo bike on car travel

98 % of the trial households owned at least 1 car, including 40 % who owned 2 cars and 8 % who owned three or more cars, meaning that there was considerable scope for reducing car use. Travel diary data about how participants would otherwise have made e-cargo bike journeys is shown in Table 6. For the 89 trips where multiple options were chosen, 41 mentioned car. If distance travelled is assigned to the modes on the basis of the number of modes mentioned – e.g. for trips with 2 choices where one was car, 50 % of the distance is allocated to car – this implies that 184.1 km, or another 2.5 % of the distance cycled, might have been done by car where multiple options were given. Taken together, then, the data indicates that over half of all distance travelled by e-cargo bike (51–53 %) would otherwise have been made by car, equivalent to 18–19 km per household per week. 11

Participants were also asked to record the mileages for all cars in their households on a weekly basis. A reasonable dataset was collected for 14 of the Oxford households, with odometer readings for 22 cars. Comparing mileage in the week before the trial, with mileage during the trial suggested an average reduction of 22.5 km per household per week, which is relatively similar to the value from the travel diaries. However, there was considerable heterogeneity in car use trajectories underlying the average figures, not least because one long car journey in a week considerably alters average values, and because many of these households made different journeys each week.

The interview data provided corroboratory evidence that the e-cargo bikes did affect car use – though again highlighting variability. Some saw e-cargo bikes as a mode that would be useful from time to time. For example, one participant anticipated that it would "revolutionise my approach to short journeys, which, right now, is driving a diesel estate that's forever hauled 2 miles away, multiple times a week", (female_40–44_Leeds). After the trial, others reported that it had been transformative, and might enable them to forego a (second) household car. For example, one participant said it had "massively reduced our mileage... I've barely driven these last 4 weeks at all... I think I've been averaging around 20, 23 miles a week. so that's... 100 miles of car travel that I haven't done", (male_30–34_Oxford).

5.5. Impacts of e-cargo bike trial use on health

When attracting trial participants, one consideration was whether only highly fit, existing cyclists would be interested (which would mean the health benefits of encouraging greater take-up of e-cargo bikes would be limited). However, of the 515 local survey respondents who expressed interest in receiving further information about our trial, 34 % were cycling less than once a month, and 42 % self-reported that they were doing less than 2.5 hours of physical activity per week (the nationally recommended guideline). Of the 49 lead trial participants, before the trial, 8 were cycling less than once a month and 18 were doing

Here, data are averaged across the sample, rather than using the mean of household averages (used to calculate average weekly mileages).

 $^{^{12}}$ This was assessed using a simple question, rather than the WHO GPAQ questions, due to the need to minimize questionnaire length.

less than the nationally recommended amount of physical activity.

In the interviews, trial participants often spontaneously mentioned the health benefits of using the e-cargo bike, both physical and mental. At least one keen cyclist commented that their fitness hadn't suffered from using the e-cargo bike as they had chosen to cycle more. Another, with two young children, explained how "it isn't always possible to do a regular exercise, because you're running around after children" and appreciated "being able to just go on like a 15 minute cycle ride, and choose whether I'm going to put the extra effort in, or just stick it in turbo and let it go", (female_30–34_Brighton). Another participant particularly valued the social opportunities enabled, highlighting that using the e-cargo bike has meant "we spend time together, we interact together, we have fun, we laugh together, that helps with our bond, helps socially, we meet other people doing it" and that "definitely has improved our mental health", (male 35–39 Oxford).

5.6. Motivations

Some of our trial participants were keen to be involved because they had already considered buying an e-cargo bike and welcomed the opportunity to see whether it suited them. Many valued the initial help from the research team with adapting the bikes to their particular needs, and the training provided on using and locking the bikes. Most participants had particular journeys, involving shopping, children or other purposes, that they were keen to try.

Environmental motivations were also important. In our national survey, 77 % of all English adults indicated being 'very', 'fairly' or 'somewhat' concerned about climate change¹³ and 65 % of drivers indicated that they 'try to minimize their car use'. ¹⁴ In contrast, all trial participants defined themselves as very, fairly or somewhat concerned about climate change, and 95% of those driving were trying to minimize their car use. Environmental issues were also discussed in the interviews. For example, one participant commented that "anything that you can do to tackle the climate emergency helps to alleviate some sort of anxiety and stress. And I think this is a really, really good example", (male_35–39_Brighton). Potential health benefits were also mentioned, together with the opportunities to cycle as a family, both for social and instructional reasons, with one parent arguing: "It just normalises it for them... that it's acceptable to go out on a bike and use that as a mode of transport", (female_40–44_Leeds).

5.7. Experiences of use

Although others have reported that cargo bike users can generate negative reactions (Boterman, 2018), this was not commonly reported by trial participants (even though, particularly in Oxford, general animosity between drivers and cyclists was mentioned). Instead, people largely reported positive experiences. For example, one father felt transporting his children by e-cargo bike increased the tolerance of other road users:

"Riding on this, I feel people do actually give you a lot of space compared to when I'm in lycra on my road bike ... when somebody sees that it's a bloke stood upright with two kids in the front clearly doing a chore rather

than a pleasure ride, I think people do give you more space and patience" (male 40–44 Leeds)

This was often compounded by high levels of interest in the bikes, with one parent reporting:

"...people wanting to come and talk to me, children wanting to get in it. We've constantly got visitors in the bike, parents at nursery wanting to come and ask questions about it... riding past pubs, people cheering for me, which is totally random, but that's happened maybe three or four times... people stopping and smiling and waving... drivers passing me and smiling, generally, lots of cyclists, of course, giving me the cycle nod, pulling up alongside us and having conversations with [my daughter]" (female 40-44 Leeds)

Parents also enjoyed being able to interact with their children whilst cycling. For example, some described how they could talk to their children about the rules of the road and what the child would need to be aware of when they cycled independently, as well as being able to socialise with them. Children's attitudes to use were often a key determinant of whether bikes got used – some were endlessly keen, whilst others couldn't see the attraction or refused to use them. The ability to travel with other family members also meant that more trip chaining was possible – for example, dropping a child off before shopping – a benefit commonly associated with car use.

Participants also reported riding the e-cargo bike as if it were a car (in terms of keeping to the middle of a lane), a tendency encouraged by the cycle trainer, and that this was also positive:

"You feel safer because it's a larger road presence, it's a more dominant road presence, it's much smoother and better controlled, it's smoother off the line, it keeps up, you know, it doesn't get... in the way of traffic so much." (male_45-49_Brighton)

Meanwhile, compared to the positive riding experiences, many trial participants found storing the bike at home awkward if they did not have an obvious space. In some cases, a household car was described as being 'in the way' of getting the bike out. Finding parking away from home was also a challenge, as one participant described:

"You can't just leave it outside a shop because it's going to take up the whole pavement, so you do need to find the designated bike parking spots. Those bike parking spots aren't always big enough - well, they are big enough, but you feel like you're taking over. But it's way easier to park something like that in Otley than it is to park a car..." (male_40-44_Leeds)

Several smaller female participants found the particular bike borrowed was too heavy and cumbersome or were unable to lower the saddle sufficiently, leading them to conclude that it was not for them, and at least one participant also felt uncomfortable with the image they projected. Other issues mentioned included usual cycling concerns such as theft, traffic, weather and poor cycle infrastructure.

5.7.1. Findings from longer term winter trials and surveys

A subset of the 1-month trial participants (n = 11) were lent bikes for a further period of 3–6 months between October 2023 and April 2024. Evidence from these winter trials was that the e-cargo bikes were usually still used (despite the change in weather), and several households reported that being able to try more than one type of e-cargo bike, or being able to trial an e-cargo bike for a longer period of time, were important for enabling their household to make a decision about whether they would buy one.

By Autumn 2024, 10 of the 49 trial households (20 %) had bought ecargo bikes (with one buying both an electric and an unpowered cargo bike) and the number of households owning at least one e-bike had

¹³ Respondents were asked: 'On a scale of 1–5, how concerned are you about climate change, sometimes referred to as global warming?' with answer options being 5 - very concerned; 4- fairly concerned; 3-somewhat concerned; 2-Not very concerned; 1-Not at all concerned. Don't know/prefer not to say. Percentages given here are calculated to include the 'don't know/prefer not to say' option.

¹⁴ This was asked as part of a wider question, with two options for non-drivers, two options for drivers: 'I drive and am not interested in reducing my car use' and 'I drive but try to minimise my car use' and a 'Don't know/ None of the above/Prefer not to say'. Percentages given here are for the balance of the two car driver options.

increased by 5. In total, 18 households (37 %) were estimated to have increased their adult cycle ownership (taking into account ownership of e-bikes, e-cargo bikes and conventional pedal cycles¹⁵). In addition, at least one household had got rid of a second car. Eighteen households (including 9 of those whose household adult cycle ownership had already increased) indicated that their household was very or somewhat likely to buy an e-cargo bike or e-bike in the next 12 months. Thirty-four lead participants (69 %) said that an e-cargo bike seemed 'somewhat' or 'much' better value for money since participating in the trial (with 2 saying somewhat or much worse value) and 32 (65 %) said that participating in the trial had made their household 'somewhat' or 'much' more likely to buy an e-cargo bike (with 6 saying somewhat or much less likely). Thirty-three (67 %) somewhat or strongly agreed that cost is "a very important factor in whether my household will buy an e-bike or e-cargo bike in the next 12 months".

This tendency for the opportunity to trial micromobility modes affecting purchase has been found in other studies. For example, Becker and Rudolf (2018) found that 35 % of cargo bike sharers were planning to buy one in the medium to longer term. In the recent evaluation of the UK's national e-cycle programme, 7 % of those loaned an e-bike for 1 month had acquired one by the end of the loan period and many were keener to buy one in the future than before the loan (Steer, 2024).

5.7.2. Wider UK context

The research has also highlighted wider structural issues that affect e-cargo bike use and cycling more generally.

The first issue is theft. In the national survey, 65 % of non e-cargo bike owners somewhat or strongly agreed that "if I owned an e-cargo bike, I would worry about it getting stolen (at home or when out)". During the trial, one of the e-cargo bikes was stolen and taken to London, and the differing attitude of the police forces involved highlighted the challenges faced by owners. Security measures used during the trial included GPS trackers, providing 'Sold Secure Gold' bike locks and most bikes also featured a front wheel lock. In Brighton, additional locks with an alarm were fitted to brake discs. It is clear that there is more scope for technical innovation (ELEVATE, 2025), and for police support with recovering stolen bikes.

The second issue is the misrepresentation of what are classed as ebikes in the UK. This seems to be a particularly significant issue in the UK (compared to elsewhere). Frequently, press reports refer to e-bikes when talking about motorised 2 wheelers which do not meet the legal definition of an e-bike (DfT and DVSA, 2015). This creates a narrative that e-bikes are a fire risk, are ridden dangerously on roads above the 15mph speed limit and are associated with criminal behaviour. UK industry representative 'The Bicycle Association' contests this view and has collated evidence that fire risk is very low amongst reputable e-bike suppliers (Bicycle Association, 2023; The Electric Bike Alliance, 2024; Eland, 2025) but refers to this narrative as an 'existential threat' to e-bike and e-cargo bike uptake (Sutton, 2024). During our trials, we observed the practical implications of this narrative: one participant was not allowed to park his e-cargo bike within the work car park due to concerns about fire, and Leeds University banned the storage and charging of bicycle batteries in any university building.

Third, as with all cycling, and reported in many previous studies (e.g. Narayanan and Antoniou, 2022; Marincek et al. 2024a; Carracedo and Mostofi, 2022; Becker and Rudolf, 2018 Hess and Schuber, 2019), the need for safer cycling conditions and better infrastructure was highlighted. Trial participants identified particular issues, such as the need for larger cycle parking, wider cycle lanes, and challenges with access routes blocked with anti-motorcycle barriers. At least some of these issues will also affect those wheeling double buggies, or using mobility scooters, or other forms of 'wide' micromobility. Cass, 2024 considers a

range of issues, including speed limits and geofencing, as mechanisms that might facilitate the inclusion of e-cargo bikes within existing mobility regimes. Meanwhile, Darking et al. (2024) consider how the experience of trials like this one can affect the perceptions of decision makers and local communities in terms of adapting infrastructure for innovative transport modes like e-cargo bikes.

6. Discussion and conclusions

E-cargo bikes can help to address one of the drawbacks of cycling – namely the ability to carry goods and passengers – but there has been limited research on their domestic use, or their potential in suburban areas, particularly in the UK. This paper aims to address this research gap, via insights from a range of surveys, and a series of real world trials, which included short and long term loans, backed with cycle training and other support.

Our first research objective was to understand the current take-up and use of e-cargo bikes in the UK. Nationally, our survey showed that current adoption is dominated by younger age groups and people based in London, with 60 % being male. This is a somewhat different profile to that of our trial participants, where participation by older age groups was greater than either extrapolation from the surveys or the current literature would have suggested. In addition, of all those who signed up to ride the bikes, 60 % were female – reinforcing previous findings by Riggs and Schwartz (2018) showing that women were more likely to use cargo bikes for trips with children than men, and by Marincek et al. (2024a) showing intra-family sharing of e-cargo bikes. More generally, Marincek et al.'s typology of e-cargo bike users and work by Wu et al. (2023) on e-bikes highlight that even for relatively specialist transport options, there are likely to be different types of early adopters.

In terms of the future potential of e-cargo bikes as a personal transport mode in the UK, our national survey highlighted that while only 2 % of households in England own an e-cargo bike and 3 % of English adults were using one at least once a month, 11 % of non-users see themselves as someone who might regularly ride one, and 26 % of all respondents were interested in trying one out. The figures were higher in Oxford, which already has a strong culture of cycling. We were readily able to recruit participants to trial e-cargo bikes, and most of our 49 households reported positive experiences, with relatively frequent use by those who found the bikes convenient; usage for a variety of purposes; and, on average, relatively long average cycle trips (based on participant trip definition). By Autumn 2024, 10 trial households had bought e-cargo bikes. This indicates, then, that in the right conditions, for particular people, e-cargo bikes do offer an attractive and practical personal transport mode whose take-up could be significantly greater than has occurred to date.

However, for a few trial participants, the e-cargo bike they were loaned was too big and heavy. Other issues discouraging take-up included awkward storage at home, difficulties parking at end destinations, purchase price, theft, battery safety and lack of infrastructure. A key implication for policy and industry, then, is that although there is scope for e-cargo bike take-up to be considerably greater than at present, there are some key barriers to be addressed.

The research also provided insights into the potential impacts on car use and health for those using e-cargo bikes. Household usage varied considerably, but, in total, participants collectively cycled about 8000 km, averaging 38–42 km per week, and indicated that over half of the distance travelled would otherwise have been made by car. Trial participants often highlighted mental or physical activity benefits from use during interviews. In the national and city surveys, compared to non-users, existing e-cargo bike users had typical levels of car ownership, but lower levels of frequent car use, and were more likely to be undertaking the recommended amount of weekly physical activity. These findings chime with literature from other countries which suggest use of e-cargo bikes can lead to reductions in car use and/or health benefits (see Riggs, 2016; Becker and Rudolf, 2018; Bjørnarå et al. 2019;

¹⁵ Where respondents had chosen '3 or more' for any of these categories, the number was conservatively assumed to be three.

Carracedo and Mostofi, 2022; Bissel and Becker, 2024; Marincek et al. 2024b). The implication is, of course, not that encouraging everyone to have an e-cargo bike would result in these savings – but rather that for the group for whom they are an attractive option, these savings might occur.

Many of the motivations and experiences that our trial participants reported were similar to those reported for e-cargo bike users in other countries (see Carracedo and Mostofi, 2022; Becker and Rudolf, 2018; Thomas, 2021; Marincek et al. 2024b), reinforcing the contention that there is nothing inherently different about people's reaction to them in the UK. However, at the same time, it is clear that a favourable policy climate for cycling is key to addressing barriers such as theft and infrastructure, and that the misrepresentation of e-bikes in the UK represents a specific issue for UK policymakers to address. The availability of longer-term data in this study, and the dramatic increase in cycle ownership by households involved in our trials, is one of the unique features of the work, and potentially shows the value that trials can play in enabling people to try out unfamiliar and relatively expensive cycle innovations.

Through our work, we have also identified a number of areas which could be usefully investigated in greater detail. We found that approximately $10\,\%$ of trips were new trips that did not substitute for other modes. Understanding why this trip generation occurs, its motivations and the implications of such induced demand is important for understanding the overall impacts of e-cargo bikes (Azzouz et al., 2025).

Both qualitative and quantitative results from our trials suggested possible health benefits from e-cargo bike use, in line with findings for e-bikes. Potential useful areas of further work would include examining the subjective well-being and mental health effect of e-cargo bike use as well as quantitative work examining the level of exercise achieved (De Sejournet et al., 2024).

Car use reductions from e-cargo bike use have been a theme of both this investigation and much previous literature (e.g. Marincek et al., 2024b; Bissel and Becker, 2024). Building on work on car dependent practices (Mattioli et al. 2016), a social-practice-based analysis of the ways in which e-cargo bikes could recruit people away from automobility practices could add additional understanding (Cass, 2024; Cass et al. 2025). Understanding e-cargo bike use through the lens of cultural identity, demonstrating how it challenges existing perceptions of cycling as individualistic and abnormal, is also relevant for understanding how it might affect the dominant automobility regime (Glachant et al. 2025a).

The national surveys collected information on perceived barriers to uptake and use of e-cargo bikes, which was then augmented with participant experiences of trying to address those barriers, thereby providing the scope to understand barriers to use in more depth (Glachant et al. 2025b).

Meanwhile, the work also has various limitations. For example, due to resource constraints, the nationally-representative survey only covered England and not the UK. The implied number of e-cargo bikes in England also seems high, given sales figures. However, the main insight from the survey – namely that levels of interest are considerably higher than current take-up – is likely to be robust.

Our trials were only undertaken in three locations, and people self-selected into them - so cannot be considered 'representative' of wider populations. As highlighted by a realist evaluation perspective (Pawson and Tilley, 1997), not everything works for everyone everywhere. Instead, the value of the trial experience was to demonstrate that there is a group of potential adopters with interest in this innovative technology in the UK, which may be different in nature to current early adopters. Further, their revealed behaviour during trials suggests e-cargo bikes do have the potential to deliver health and environmental benefits for this group.

In brief, the study demonstrated that, even in the UK context where cycling levels are relatively low, 11~% of non-users in our national survey would consider using one. 49 households from 3 city suburbs who

tried them then cycled on them for an average of 38–42 km per week, and over half of the e-cargo bike mileage ridden during trials substituted for car use. Less frequent car use was also observed for existing e-cargo bike users in the national survey. By Autumn 2024, 20 % of the trial households had bought e-cargo bikes. This suggests that e-cargo bikes in the UK could play a valuable role in the necessary transition to more sustainable mobility patterns and that achieving the levels of usage seen in some parts of Europe could be achieved with policies that address barriers (including enabling try-before-you-buy) and that promote a positive cycling culture more generally.

CRediT authorship contribution statement

Christian Brand: Writing – review & editing, Supervision, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Conceptualization. Jillian Anable: Writing – review & editing, Supervision, Project administration, Methodology, Funding acquisition, Conceptualization. de Sejournet Alice: Writing – review & editing, Writing - original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Theresa Nelson: Writing – review & editing, Visualization, Project administration, Methodology, Investigation, Conceptualization. Sally Cairns: Writing - review & editing, Writing - original draft, Validation, Supervision, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Conceptualization. Nick Marks: Writing - review & editing, Project administration, Methodology, Investigation, Formal analysis, Conceptualization. Ian Philips: Writing - review & editing, Writing - original draft, Validation, Supervision, Resources, Project administration, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Eva Heinen: Writing - review & editing, Supervision, Project administration, Methodology, Funding acquisition, Conceptualization. Clara Glachant: Writing - review & editing, Methodology, Formal analysis, Conceptualization. Mary Darking: Writing - review & editing, Supervision, Project administration, Methodology, Investigation, Conceptualization. Noel Cass: Writing - review & editing, Project administration, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Frauke Behrendt: Writing - review & editing, Supervision, Project administration, Methodology, Funding acquisition, Conceptualization. Labib Azzouz: Writing - review & editing, Validation, Project administration. Methodology, Investigation, Formal analysis. Conceptualization.

Ethics approval

The study has ethical approval from the Business, Environment, Social Sciences Faculty Research Ethics Committee (FREC) of the University of Leeds, UK. Reference FREC 2023–0477–1198.

Funding

This project is funded by the Engineering and Physical Sciences Research Council/UKRI, grant reference: UKRI EP/S030700/1.

Declaration of Competing Interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: All authors have previously done a range of research work on cycling and micromobility, which has been funded by a variety of sources, including some pro-cycling organisations. The work has only ever been funded to provide objective insights and advice. External funders have had no role in the design of this study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results. EH is an editor of this journal. SC's activities have been partially supported by a 20 % contribution from her (one person)

consultancy, in line with the standard academic convention of funding 80 % of costs.

Acknowledgements

Grateful thanks to Pirjo Johnson (Leeds University project administration); Gavin Ellison from YouGov; SmartSurvey; national and local stakeholders; and to all those involved in the surveys and trials reported, including the bike shops, cycle trainers, local residents and trial participants.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jcmr.2025.100093.

Data availability

Anonymised data will be archived at https://archive.researchdata. leeds.ac.uk/ in 2026, given that cross-referencing and validation checks will be taking place until project end.

References

- Anderson T. (2025) National grants for e-bikes and e-cargo bikes. Presentation at an ELEVATE finance workshop 14/5/25. Available at: https://bpb-eu-w2.wpmucdn.co m/blogs.brighton.ac.uk/dist/5/11075/files/2025/05/ELEVATE-Finance-and-Acce ss-Workshop-1-Presentations_reduced.pdf.
- Azzouz, L., Brand, C., Cass, N., and Philips, I. (2025). Miles with smiles: the role of ecargo bikes in facilitating new personal and family-oriented travel and relevant beyond-utility motivations. Submitted paper.
- Becker, S., Rudolf, C., 2018. Exploring the potential of free cargo-bikesharing for sustainable mobility. GAIA Ecol. Perspect. Sci. Soc. 27, 156–164. https://doi.org/ 10.14512/gaia.27.1.11
- Behrendt, F.; Heinen, E.; Brand, C.; Cairns, S.; Anable, J.; Azzouz, L. Conceptualizing Micromobility. Preprints 2022, 2022090386 (https://www.preprints.org/manuscrip
- Bicycle Association (2023) Bicycle Association statement on e-bike battery fire safety. Bicycle Association (2024) Cargo bikes & cycle logistics. Webpage, accessed 30/3/24 https://bicycleassociation.org.uk/pages/cargo-bikes-cycle-logistics.
- Bissel, M., Becker, S., 2024. Can cargo bikes compete with cars? Cargo bike sharing users rate cargo bikes superior on most motives – especially if they reduced car ownership. Transp. Res. Part F Traffic Psychol. Behav. 101, 218–235. https://doi.org/10.1016/j. trf.2023.12.018
- Bjørnarå, H., Berntsen, S., J te Velde, S., Fyhri, A., Deforche, B., Andersen, L., Bere, E., 2019. From cars to bikes the effect of an intervention providing access to different bike types: a randomized controlled trial. PLoS ONE 14 (7), e0219304. https://doi.org/10.1371/journal.pone.0219304.
- Blazejewski, L., Sherriff, G. and Davies, N. (2020) Delivering The Last Mile: Scoping the Potential for E-cargo Bikes, (https://usir.salford.ac.uk/id/eprint/59007).
- Bogdanski R. (2017) Cycle logistics solutions in the 2017 sustainability study of the German parcel and express association (BIEK) Presentation at the 2017 ECLF conference, Vienna, March.
- Boterman, W.R., 2018. Carrying class and gender: cargo bikes as symbolic markers of egalitarian gender roles of urban middle classes in Dutch inner cities. Soc. Cult. Geogr. 21, 245–264. https://doi.org/10.1080/14649365.2018.1489975.
- Bourne J., Levine J.G., Landeg-Cox C. & Bartington S.E. (2022). Environmental and Health Impacts of E-cycling, TRANSITION Clean Air Network Policy Briefing Note No.4, pp1-7, Birmingham, UK. https://doi.org/10.25500/epapers.bham.00004119.
- Bourne, J.E., Sauchelli, S., Perry, R., Page, A., Leary, S., England, C., et al., 2018. Health benefits of electrically-assisted cycling: a systematic review. Int. J. Behav. Nutr. Phys. Act. 15 (1). https://doi.org/10.1186/s12966-018-0751-8.
- Brand, C., Dekker, H.-J., Behrendt, F., 2022. Chapter eleven cycling, climate change and air pollution. Adv. Transp. Policy Plan. 10, 235–264. https://doi.org/10.1016/bs. atpp.2022.04.010.
- Brand, C., Dons, E., Anaya-Boig, E., Avila-Palencia, I., Clark, A., de Nazelle, A., Gascon, M., Gaupp-Berghausen, M., Gerike, R., Götschi, T., Iacorossi, F., Kahlmeier, S., Laeremans, M., Nieuwenhuijsen, M.J., Orjuela, J.B., Racioppi, F., Raser, E., Rojas-Rueda, D., Standaert, A., Stigell, E., Sulikova, S., Wegener, S., Int Panis, L., 2021. The climate change mitigation effects of daily active travel in cities. Transp. Res. Part D Transp. Environ. 93. https://doi.org/10.1016/j. trd.2021.102764.
- Caggiani, L., Colovic, A., Prencipe, L.P., Ottomanelli, M., 2021. A Green logistics solution for last-mile deliveries considering e-vans and e-cargo bikes. Transp. Res. Procedia 52, 75–82. https://doi.org/10.1016/j.trpro.2021.01.010.
- Cairns S. & Sloman L. (2019) Potential for e-cargo bikes to reduce congestion and pollution from vans in cities. Report for the Bicycle Association (https://transportforqualityoflife.com/wp-content/uploads/2023/11/potential-for-e-cargo-bikes-to-reduce-congestion-and-pollution-from-vans.pdf).

- Carracedo, D., Mostofi, H., 2022. Electric cargo bikes in urban areas: a new mobility option for private transportation. Transp. Res. Interdiscip. Perspect. 16. https://doi. org/10.1016/j.trip.2022.100705.
- Cass N. (2024) E-cargo bikes: how does a bike-car hybrid negotiate velomobility and automobility geographies and infrastructures in the UK? Geographies of vélomobility I: Planning, Mobilities and Infrastructure, Nordic Geographers meeting, Copenhagen University, 25/6/24. Also submitted journal paper under review. Available at: https://eprints.whiterose.ac.uk/id/eprint/219045/.
- Cass, N., Philips, I., Azzouz, L., Marks, N. (2025) E-cargo biking in the UK: a social practice analysis. Paper in review.
- Cazzola, P. and Crist, P. (2020). Good to Go? Assessing the Environmental Performance of New Mobility. Paris. Available at: (https://www.itf-oecd.org/sites/default/files/ docs/environmental-performance-new-mobility.pdf).
- Clarke S. and Leonardi J. (2017) Final Report: Multi-carrier consolidation Central London trial. GLA, London. Available at: https://www.london.gov.uk/sites/default/ files/gla-agile1-finalreport-02.05.17.pdf.
- Climate Change Committee (2023) Progress in reducing UK emissions 2023 Report to Parliament Climate Change Committee, London, ISBN: 978-1-5286-4092-3.

 Available at: https://www.theccc.org.uk/wp-content/uploads/2023/06/Progress-in-reducing-UK-emissions-2023-Report-to-Parliament-1.pdf.
- Cyclelogistics Ahead project (undated, c2017) CycleLogistics Moving Europe Forward. Final EU project report.
- Darking M., Behrendt F., Marks N. and Philips I. (2024) Engaged micro-mobility research as pragmatist mobility innovation strategy: experimenting with household e-cargo bike use in 3 UK cities. European Association for the Study of Science and technology (EASST) 2024 quadrennial meeting. Amsterdam, Netherlands, 16/7/24. Available at: https://bpb-eu-w2.wpmucdn.com/blogs.brighton.ac.uk/dist/5/11075/files/2024/08/Darking-et-al.-Amsterdam-2024-FINAL.pdf.
- De Sejournet A., Philips I., Huang Y. (2024). Does an electric-cargobike provide cyclists with some physical activity? Study protocol to compare rides with an e-cargobike and a regular bike. Paper submitted for consideration.
- Department for Transport (2018) The Last Mile: A Call for Evidence on the opportunities available to deliver goods more sustainably, report on Sainsburys trial on p13. Available at: https://assets.publishing.service.gov.uk/media/5b5b0d52ed915d0b66bc374c/last-mile-call-for-evidence.pdf.
- Department for Transport (2024) National Travel Survey 2023: Technical Report, DfT, London. Available at: https://www.gov.uk/government/statistics/national-travel -survey-2023-technical-report.
- Eland, P., 2025. BA complains to BBC about panorama e-bike misrepresentation. Press release. Bicycle Association.
- DfT and DVSA (2015). Electrically assisted pedal cycles (EAPCs) standards and legal requirements. Available at: https://www.gov.uk/government/publications/electrically-assisted-pedal-cycles-eapcs/electrically-assisted-pedal-cycles-eapcs-in-great-britain-information-sheet.
- ELEVATE (2025) E-cargo bike design and tech concerns. Stakeholder Consultation Document, Leeds.
- Energy Saving Trust (2022a) eCargo Bike Grant Fund 2021/2022 Local authority scheme evaluation Report for DfT. Available at: https://assets.publishing.service.gov. uk/media/66f1744c554440e6da17e293/e-bike-grant-fund-la-scheme-evaluation.
- Energy Saving Trust (2022b) eCargo Bike Grant Fund 2021/22 National scheme evaluation Report for DfT. Available at: https://assets.publishing.service.gov.uk/ media/654cd277014cc9000d67733a/e-cargo-bike-grant-fund-national-scheme-ev aluation.pdf.
- Garidis, S., 2023. Bicycle association UK ebike market results, e-bike summit 05 September 2023. Blavatnik school of government. University of Oxford. (https://www.ebikesummit.org/agenda).
- Geels, F.W., Schot, J., 2007. Typology of sociotechnical transition pathways. Res. Policy 36 (3), 399–417. https://doi.org/10.1016/j.respol.2007.01.003.
- Glachant, C., Cass, N., Marks, N., Azzouz, L., 2025a. Between or beyond bicycles and cars? Navigating e-cargo bike citizenship in the transition to sustainable urban mobility. Geoforum 166, 104416. https://doi.org/10.1016/j. geoforum.2025.104416.
- Glachant, C., de Séjournet, A., Philips, I., Behrendt, F., Cairns, S., 2025b. Experienced and imagined barriers to E-Cargo bike adoption: findings from trial loans in the UK. Preprints, 2025080437. https://doi.org/10.20944/preprints202508.0437.v1.
- Geurs, K.T., van Wee, B., 2004. Accessibility evaluation of land-use and transport strategies: review and research directions. J. Transp. Geogr. 12 (2), 127–140. https://doi.org/10.1016/j.jtrangeo.2003.10.005.
- Gojanovic, B., Welker, J., Iglesias, K., Daucourt, C., Gremion, G., 2011. Electric bicycles as a new active transportation modality to promote health. Med Sci. Sports Exerc 43 (11), 2204–2210. https://doi.org/10.1249/mss.0b013e31821cbdc8.
- Hess, A., Schuber, I., 2019. Functional perceptions, barriers, and demographics concerning e-cargo bike-sharing in Switzerland. Transp. Res. Part D. 71, 153–168. https://doi.org/10.1016/j.trd.2018.12.013.
- Hoffman et al. (2017) A Simulation Tool To Assess The Integration Of Cargo Bikes Into An Urban Distribution System. The 5th International Workshop on Simulation for Energy, Sustainable Development & Environment, Barcelona, Spain. Available at: https://www.researchgate.net/publication/320434207_A_Simulation_Tool_to_Assess_the_Integration_of_Cargo_Bikes_into_an_Urban_Distribution_System.
- Jaramillo, P., Kahn Ribeiro, S., Newman, P., Dhar, S., Diemuodeke, O.E., Kajino, T., Lee, D.S., Nugroho, S.B., Ou, X., Hammer Strømman, A., Whitehead, J., 2022. In: Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., Belkacemi, M., Hasija, A., Lisboa, G., Luz, S., Malley, J. (Eds.), Transport. In IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment

- Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA. https://doi.org/10.1017/9781000157026.012
- Kruchten Z. (2013) Shift to Cycling: CycleLogistics Baseline Study Reports on Impressive Potential European Federation Cyclists website, accessed 11/05/24.
- Langford, B.C., Cherry, C.R., Bassett, D.R., Fitzhugh, E.C., Dhakal, N., 2017. Comparing physical activity of pedal-assist electric bikes with walking and conventional bicycles. J. Transp. Health 6, 463–473. https://doi.org/10.1016/j.jth.2017.06.002.
- Maes J. (2018) The potential of cargo bicycle transport as a sustainable solution for urban logistics Velo-City June 12-15 2018, Rio. Available at: https://medialibrary.uantwerpen.be/oldcontent/container2629/files/PhD%20Jochen%20Maes%20 FINAL%20The%20potential%20of%20cargo%20bicycle%20transport.pdf.
- Malik, F.A., Egan, R., Dowling, C.M., Caulfield, B., 2023. Factors influencing e-cargo bike mode choice for small businesses. Renew. Sustain. Energy Rev. 178. https://doi.org/ 10.1016/j.rser.2023.113253.
- Marincek, D., Rérat, P., Lurkin, V., 2024a. Cargo bikes for personal transport: a user segmentation based on motivations for use. Int. J. Sustain. Transp. 18 (9). https://www.tandfonline.com/doi/full/10.1080/15568318.2024.2402753).
- Marincek, D., Rérat, P., Lurkin, V., 2024b. V. Cargo bikes and their modal shift effects: from substitution to car renunciation. Transportation (2024). https://doi.org/ 10.1007/s11116-024-10569-3.
- Mattioli, G., Jillian Anable, J., Vrotsou, K., 2016. Car dependent practices: findings from a sequence pattern mining study of UK time use data. Transp. Res. Part A Policy Pract. 89, 56–72. https://doi.org/10.1016/j.tra.2016.04.010.
- Melo, Baptista, 2017. Evaluating the impacts of using cargo cycles on urban logistics: integrating traffic, environmental and operational boundaries. Eur. Transp. Res. Rev. 9, 30. (https://link.springer.com/article/10.1007/s12544-017-0246-8).
- Narayanan, S., Antoniou, C., 2022. Electric cargo cycles a comprehensive review. Transp. Policy 116, 278–303. https://doi.org/10.1016/j.tranpol.2021.12.011.
- ONS (2023). Approximated Social Grade data. Census 2021 definition. Available at: https://www.ons.gov.uk/census/aboutcensus/censusproducts/approximatedsocialgrade
- Papaioannou, E., Iliopoulou, C., Kepaptsoglou, K., 2023. Last-Mile logistics network design under E-Cargo bikes. Future Transp. 3 (2), 403–416. https://doi.org/ 10.3390/futuretransp3020024.
- Pawson, R., Tilley, N., 1997. Realistic evaluation. Sage Publications Ltd.
- Philips, I., Azzouz, L., de Séjournet, A., Anable, J., Behrendt, F., Cairns, S., Cass, N., Darking, M., Glachant, C., Heinen, E., Marks, N., Nelson, T., Brand, C., 2024. Domestic use of E-Cargo bikes and other E-Micromobility: protocol for a Multi-Centre, mixed methods study. Int. J. Environ. Res. Public Health 21 (12), 1690. https://doi.org/10.3390/jierph21121690.
- Ploos van Amstel, W., et al., 2018. City logistics: light and electric. LEFV-LOGIC:
 Research on light electric freight vehicles. Amsterdam University of Applied
 Sciences. (http://www.citylogistics.info/research/city-logistics-light-and-electric/).
- Post and Parcel (11/3/19) DPD to transform London. Website accessed 11/05/24. (htt ps://postandparcel.info/103277/news/infrastructure/dpd-to-transform-delivery-in-london/).
- Riggs, W., 2016. Cargo bikes as a growth area for bicycle vs. Auto trips: exploring the potential for mode substitution behavior. Transp. Res. F. 43, 48–55. https://doi.org/ 10.1016/j.trf.2016.09.017.
- Riggs, W., Schwartz, J., 2018. The impact of cargo bikes on the travel patterns of women. Urban Plan. Transp. Res. 6 (1), 95–110. https://doi.org/10.1080/21650020.2018.1553628, 2018.

- Schot J. and Geels F.W. (2011) Strategic niche management and sustainable innovation journeys: theory, findings, research agenda, and policy, in Geels FW et al (2011) 'The Dynamics of Sustainable Innovation Journeys', Routledge, London, https://doi. org/10.4324/9781315873445
- Sherriff, G., Blazejewski, L., Davies, N., 2023. Why would you swap your nice warm van, where you can eat your butties and listen to the radio?' mainstreaming a niche of cycle logistics in the United Kingdom. Energy Res. Soc. Sci. 99, 103062. https://doi.org/10.1016/j.erss.2023.103062.
- Simons, M., Van Es, E., Hendriksen, I., 2009. Electrically assisted cycling: a new mode for meeting physical activity guidelines? Med Sci. Sports Exerc 41 (11), 2097–2102. https://doi.org/10.1249/mss.0b013e3181a6aaa4.
- Sport England, 2024. Active lives adult survey November 2022-23 report. Sportengland.
- Steer (2024) National E-Cycle Programme Evaluation Report. Department for Transport, London. Available at https://assets.publishing.service.gov.uk/medi a/672a0434abb279b2de1e8b8e/national-e-cycle-programme-evaluation-report. pdf#:~:text=This%20evaluation%20report%20was%20prepared%20in%20Februar y%202024%2C,gathering%20evidence%20to%20inform%20decisions%20on%20fu ture%20funding.
- Sutton, M., 2024. Call for Government to up pace on dangerous kit imports or face 'existential' risk to cycling industry. Cycling Electric article reporting on a session of the All Party Parliamentary Group for Cycling and Walking. https://www.cycling electric.com/news/call-for-government-to-up-pace-on-dangerous-kit-imports-or-fac e-existential-risk-to-cycling-industry.
- Temporelli, A., Brambilla, P.C., Brivio, E., Girardi, P., 2022. Last mile logistics life cycle assessment: a comparative analysis from diesel van to E-Cargo bike, 2022 Energies 15 (20), 7817. https://doi.org/10.3390/en15207817.
- The Electric Bike Alliance (2024) Be E-bike Positive Campaign website. Available at: https://ebikepositive.co.uk/the-electric-bike-alliance/.
- Thomas, A., 2021. Electric bicycles and cargo bikes—Tools for parents to keep on biking in auto-centric communities? Findings from a US metropolitan area. Int. J. Sustain. Transp. 16 (7), 637–646. https://doi.org/10.1080/15568318.2021.1914787.
- Transport for London, 2023. Cargo bike action plan transport for London. Available at: https://content.tfl.gov.uk/tfl-cargo-bike-action-plan-2023-acc.pdf.
- Verlinghieri, E., 2023. Supporting cargo bike managers to scale up the sector. Cargo-bikes-follow-up-policy-briefing-note. University of Westminster, London. https://blog.westminster.ac.uk/ata/wp-content/uploads/sites/60/2023/09/Cargo-bikes-follow-up-policy-briefing-note-University-of-Westminster-EV-1.pdf.
- World Health Organisation (undated) Global physical activity questionnaire (GPAQ)
 Analysis Guide. WHO Switzerland. Available at: https://www.who.int/docs/default-source/ncds/ncd-surveillance/gpag-analysis-guide.pdf.
- Wrighton, S., Reiter, K., 2016. CycleLogistics moving Europe forward! Transp. Res. Procedia 12, 950–958. https://doi.org/10.1016/j.trpro.2016.02.046.
- Wu, J., Lei, S., Zhou, J., Wang, X., Tao, Z., 2023. Towards niche market for shared mobility: identifying heterogeneity of potential early adopters to use shared electric bikes in a Chinese mega city. Trans. Urban Data Sci. Technol. 2 (4), 241–256. https://doi.org/10.1177/27541231231189003.
- Zhang, et al., 2018. Simulation-based assessment of cargo bicycle and Pick-up point in urban parcel delivery. Procedia Comput. Sci. 130, 18–25. https://doi.org/10.1016/j. procs.2018.04.007.