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To enhance the consistency between the quantum descriptions of waves and particles, we quantise
mechanical point particles in this paper in the same physically-motivated way as we previously
quantised light in quantum electrodynamics [Bennett et al., Eur. J. Phys. 37, 014001 (2016)]. To
identify the relevant Hilbert space, we notice that mechanical particles can occupy any position
2 while moving at any velocity v. Afterwards, we promote the classical states (z,v) to pairwise
orthogonal quantum states |z, v) and demand that these evolve according to Newton’s equations of
motion. The resulting quantum theory is mass-independent, when Newton’s equations of motion
are mass-independent, as one would expect. The basic formulation of quantum mechanics emerges
from quantum mechanics in configuration space as a semi-classical approximation when a fixed mass
is imposed and several other adjustments are made.

I. INTRODUCTION

In classical physics, Hamilton’s formulation of the laws
of mechanics specifies the motion of a point particle mov-
ing in one-dimension in terms of two quantities: its po-
sition z and its momentum p [I]. The dynamics of the
position z and the momentum p can be found by solving
Hamilton’s equations of motion [2} 3],
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where H = H(z,p) is the relevant Hamiltonian. When
solving these equations, we obtain a function z(¢) which
defines the trajectory of the particle. As pointed out by
Dirac [4], if the Hamiltonian H of the system is not ap-
propriately defined, Eq. can lead directly to inconsis-
tencies in the theory. Nevertheless, Hamiltonian mechan-
ics lends itself naturally to the quantisation of mechanical
point particles. In canonical quantisation, this is done by
identifying the observables for the position and the mo-
mentum of quantum mechanical point particles with a
pair of canonically conjugate operators which we denote
2 and p [FHI2).

Notice that Hamiltonian mechanics provides just one
formulation of classical mechanics, and other alternative
descriptions are available. One example is the earlier
Newtonian description [3],[12], which we adopt in the fol-
lowing as the starting point for a physically-motivated
quantisation of mechanical point particles that move in
the presence of a non-zero potential V(x) along the z
axis. Newton’s second law states that the force F(z) =
—0V (z)/0z experienced by a particle at position x equals

F(z) = mi (2)

where m and & = §%z/9t? denote its rest mass and its
acceleration respectively. To turn the second order differ-
ential equation into two first order differential equa-
tions, Newton, and also Leibniz, described mechanical
particles by specifying not only their position x but also

their velocity v. The result is Newton’s equations of mo-
tion,
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with the function f(z) representing a position-dependent
force per mass,
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This variable is the key variable which fully determines
the dynamics of a mechanical point particle in a potential
V(x) with given initial conditions, like its initial position
and velocity, z(0) and v(0).

The starting point for the quantisation of mechanical
point particles in the basic formulation of quantum me-
chanics (QM) which we review in Section[[I]is Hamilton’s
formalism. In this paper, we quantise instead Newton’s
equations of motion while taking the whole configura-
tion space and not only a subspace of states of mechani-
cal point particles into account. The term configuration
space is the fundamental space of all possible states that
a physical system can be in. As we shall see below, the
resulting formalism, which we refer to as QM in config-
uration space, has several advantages. For example, its
Schrédinger equation is mass independent, if the same is
true for Newton’s equations of motion in Eq. . This
connection increases the consistency between quantum
and classical mechanics. Moreover, QM in configura-
tion space enhances wave-particle duality, i.e. the con-
sistency between the quantum descriptions of wave and
particles, by quantising mechanical point particles in the
same physically-motivated way as we quantise the elec-
tromagnetic field and its photonic carriers in free space
[13-16].

The first step of physically-motivated quantisation
schemes is to identify the relevant configuration space.
Afterwards, we associate its classical states with pair-
wise orthonormal quantum states. These are the most
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classical quantum states of the physical system and form
a complete basis of its Hilbert space H. In addition, we
assume in the following that all quantum states evolve ac-
cording to the Schrodinger equation based on a dynamical
Hamiltonian Hgayyn. This Hamiltonian can be derived by
demanding that the most classical quantum states evolve
in a way that is consistent with classical physics. As we
have seen already in the case of photons, Hayy is in gen-
eral unbounded from below [I4] [I5]. It therefore does
not coincide with the energy observable of the quantum
system, although there is a close connection between the
energy observable and Hgy, [16]. Notice also that our
quantisation approach [I3] has some similarities with the
quantum reconstruction program [I7, [I8] which already
attracted some attention [I9H22].

As mentioned previously, in Newtonian mechanics we
describe the dynamics of a mechanical point particle by
specifying its position x and its velocity v at all times
t. In fact, the initial position z(0) and the initial ve-
locity v(0) of the particle can be chosen independently.
To ensure that position and velocity are of equal impor-
tance in the corresponding quantum theory, we promote
the distinguishable classical states (z,v) to orthonormal
quantum states |z, v) with

(o]’ W) =8(x—2a")d(v—1"). (5)

These states form a basis in the Hilbert space H, i.e. the
configuration space, of quantum mechanical point par-
ticles. Although the |z,v) states have some similarities
with the coherent states |z) = |z + ip) that represent
the classical phase space in alternative formulations of
QM [23H30]), they are not the same. While the |z,v)
states describe individual particles, the |z) states are
many-body quantum states. An important difference be-
tween basic QM and QM in configuration space is that
the Hilbert space H of the latter is significantly larger
and allows quantum mechanical point particles to be si-
multaneously localised in position and in velocity. As we
shall see below, the momentum and the velocity of a par-
ticle represent two independent physical observables. In
general, the quantum state |1(t)) of a quantum mechan-
ical point particle is a superposition of the |z,v) states
with [(1(t)|z,v)|? representing the probability for find-
ing the particle at time ¢ at position = while moving at
velocity v.

Since the state |z,v) represents the (z,v) state of a
classical point particle in the corresponding quantum
theory, consistency between classical mechanics and QM
in configuration space requires that this state remains
localised at all times. In addition, its position x and
its velocity v must evolve according to Newton’s equa-
tions of motion. In the following, we identify the dy-
namical Hamiltonian Hgy, that generates the above dy-
namics and ensures that the variables z(t) and v(¢)
follow their classical trajectories in configuration space
(cf. e.g. Fig. . Once the dynamical Hamiltonian Hgy,
is known, we also know how all other possible quantum
states |1(t)) evolve in time.
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FIG. 1. The classical phase space trajectories (red) of three
mechanical point particles with energies E,, (n = 1,2, 3) mov-
ing along positions z(t) with velocities v, (t) inside a har-
monic potential. As time progresses, these trajectories form
closed circles. The radius of each circle depends on the energy
E,, of the n-th particle with the more energetic particles be-
ing further away from the origin of the phase space diagram.
In the following, we demand that the “most classical” quan-
tum states |z(¢),v(t)) of quantum mechanical point particles
(represented by the blue dots) remain localised at all times
and evolve along the corresponding classical trajectory. In
this way, any classical experiment with a point particle in-
side a harmonic oscillator can also be described by quantum
physics.

Since we quantise mechanical point particles in this pa-
per in the same physically motivated way as we quantise
light in quantum electrodynamics, QM in configuration
space enhances wave-particle duality [31] which plays an
important role for quantum technology applications [32].
It can be used to model both the dynamics of photons
and the dynamics of non-relativistic quantum mechan-
ical point particles equivalently. The crucial difference
between photons and non-relativistic quantum mechani-
cal point particles is that, while non-relativistic particles
can move at any speed, photons are limited to travelling
at only one speed, namely the speed of light c¢. As we
shall see later in Section [VA] the dynamical Hamilto-
nian of a free particle in configuration space is given by

Hayn = 0p. (6)
In the case of photons, this Hamiltonian simplifies to [16]
den = Z Scﬁ . (7)

s==%1

The summation over the direction of propagation s is
needed as photons may travel left or right along the x
axis. In addition, it has recently been shown that single
photons also have a position representation and can be
assigned a wave function [14] [15].



If an experiment can be modelled using both classi-
cal and quantum physics, both descriptions must yield
the same predictions; otherwise, it would be possible to
contradict quantum physics with classical experiments.
Hence, we usually claim that classical mechanics and QM
are consistent when the position and momentum expec-
tation values, (x(t)) and (p(t)) coincide with z(t) and
p(t) in the classical theory. This criterion became known
as Ehrenfest’s theorem [33, B4]. Tt has been noticed by
several authors [24] 25, [B5H38], however, that in basic
QM this condition only holds in certain situations, such
as free space, i.e. in the absence of a potential V(z). In
particular, it was Ehrenfest who pointed out in Ref. [33]
that consistency applies in general only when we have
very narrow wave packets that remain localised in posi-
tion. Another example where Ehrenfest’s theorem holds
is a point particle inside a harmonic oscillator.

By construction, QM in configuration space is consis-
tent with classical mechanics in the following sense. One
consequence of demanding that the most classical quan-
tum states evolve as in classical mechanics is that the
position and velocity expectation values (x(t)) and (v(t))
of superposition states |1(t)) evolve like the expectation
values of a classical statistical mixture [39]. To show that
this is indeed the case, we now consider a quantum me-
chanical point particle that has been prepared in a state
of the general form

() = > VPalzalt), va(t), (®)

where the P, are probabilities that add up to one. Using
this notation, the expectation values (z(t)) and (v(t)) can
be expressed as

N N
(@)= Paza(t), (wt)) =) Puvalt). (9)

These expectation values coincide with the expectation
values of a classical particle which moves with probability
P, along trajectories x,(t). Hence the above equations
imply that

N

N
(@) = Puia(t), (0(t)) = Pata(t), (10)

n=1

which shows that the quantum states |¢(¢)) and classi-
cal statistical mixtures with the same initial probabil-
ity distributions evolve in the same way. Hence, QM in
configuration space which we introduce here has many
similarities with the mechanics of de Broglie and Bohm
40, 41].

In basic QM, the probability P(x,t) for finding a parti-
cle at a position x at time t will disperse over time, as il-
lustrated in Fig. [2l What is more, for a particle prepared
in an initially localised state |x), P(x,t) is even non-zero
at positions lying outside the relevant light cone, since
|z) contains contributions from all possible momentum
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FIG. 2. (a) The probability density P(z,0) for finding a quan-
tum mechanical point particle at position x at an initial time
t = 0 when localised near z = 0. (b) P(z,t) for the same
particle at a later time ¢ > 0 when the Hamiltonian of the
particle is bound from below. As shown by Hegerfeldt in
Refs. [42] [43], basic QM implies that such a particle can be
found anywhere along the x axis with a non-zero probability
density, even at coordinates (z,t) outside the light cone of
the particle at t = 0. Hence, basic QM is not consistent with
causality or with relativity.

states |p). As shown by Hegerfeldt [42] 43], any system
with a Hamiltonian that is bounded from below causes
an initially localised particle to spread immediately ev-
erywhere. Although this might not constitute a problem
in the non-relativistic regime [42], let us point out here
that superluminal spreading does not necessarily arise in
QM in configuration space, since its dynamical Hamil-
tonian Hgay, has in general positive as well as negative
eigenvalues. By construction, localised wave packets can
remain localised when evolving in time. However, it is
also possible to construct wave packets with infinite dis-
persion.

In addition to a position and a velocity observable, &
and 0, QM in configuration space supports a momentum
operator p. Analogous to the canonical momentum in
basic QM, we define the momentum operator p in the
following as the generator for spatial translations. In
this way, momentum expectation values are automati-
cally conserved in situations with spatial translational
invariance. As we shall see below, both operators ¢ and
p describe different quantities. As in basic QM, the mo-
mentum expectation value of a particle depends on the
shape of its wave packet [I]. Measuring the momentum of
a particle is less straightforward and requires, for exam-
ple, an elastic collision with another particle. The same
does not apply to velocity expectation values which tell
us how much time it takes a particle to travel a cer-
tain distance. For example, Chang [44H46] previously
treated mass in the same way as momentum and energy
to gain a better understanding why mass and energy can
be converted into each other. The difference between mo-
mentum and velocity was also noticed by other authors
[47, 48]

To better illustrate the difference between the momen-
tum and the velocity of a quantum mechanical point par-
ticle, let us have a closer look at the case of free fall. In



this situation, a quantum mechanical point particle expe-
riences a constant acceleration g which is the same at any
height, i.e. independent of where we place our coordinate
system. Spatial translational symmetry implies that the
expectation values of the canonical momentum p must be
conserved, since p is linked to the spatial derivative of the
wave function. The same does not apply to the velocity
expectation values of the particle which increase linearly
in time, since the particle is accelerating. As we shall see
below, this observation is in agreement with the predic-
tions of QM in configuration space. However, basic QM
predicts a momentum dynamics which is not compatible
with spatial translational symmetry. For a discussion of
some of the intricacies involved in defining momentum in
classical mechanics see e.g. Ref. [49].

One prominent feature of quantum physics is Heisen-
berg’s uncertainty principle which states that the posi-
tion £ and the momentum p of a quantum mechanical
point particle cannot be known simultaneously to an ar-
bitrarily high precision. The observables & and p are
canonical variables and, in particular,

[#,5] = ih. (11)

As we shall see below, this commutator relation also ap-
plies in configuration space as long as we identify the mo-
mentum operator p with the generator for spatial transla-
tions. Using this momentum definition, momentum ex-
pectation values are automatically conserved when the
same physics applies everywhere. Moreover, it implies
that £ and p are related via a Fourier transform. In
contrast to this, the position and the velocity of quan-
tum mechanical point particles can be localised simulta-
neously, and we have

[#,4] = 0. (12)

In configuration space, velocity and momentum are rep-
resented by two very different commuting observables. A
possible test of QM in configuration space is therefore to
compare uncertainties of position, momentum and veloc-
ity measurements. While Heisenberg’s uncertainty rela-
tions restrict the precision of momentum measurements,
the same is no longer true for velocity measurements.
Needless to say, over the last century QM has success-
fully modelled a wide range of experiments. An early ex-
ample is the calculation of the emission spectrum of the
hydrogen atom to a very high precision [50]. It is there-
fore important to show that basic QM emerges from QM
in configuration space under certain approximations, as
illustrated in Fig. |3l The main difference between basic
QM and QM in configuration space is that the former
lacks a velocity operator ©. As we shall see below, ba-
sic QM emerges from the formalism which we introduce
here when we replace ¢ with p/m where m is fixed. Here
the mass m is an intrinsic property of the particle and
can therefore be represented by a scalar. In addition, we
need to replace the dynamical Hamiltonian Hgy, with

Newton’s mechanics

Complexity

Basic QM

QM in configuration space

Emergence

FIG. 3. Physics often offers different theories for modelling
the same situation. Those theories must be consistent with
each other in the sense that less complex theories emerge from
more complex ones, when certain approximations are applied.
For example, as well shall see below, basic QM emerges from
QM in configuration space when we restrict ourselves to a
fixed mass m and approximate the canonical momentum p by
m. In addition, the Hamiltonian of the system needs to be
adjusted (cf. Eq. ) such that expectation values evolve as
expected. Classical physics emerges from QM in configura-
tion space when its quantum states are replaced by classical
statistical mixtures (cf. Eq. (I0). The formalism which we
present here is nevertheless non-classical; for example, simul-
taneous measurements are limited by uncertainty relations.

the standard Hamiltonian in basic QM [I]

3 i .

HBQM = om +V(x) (13)
of non-relativistic particles as this is the only way to en-
sure that the position and momentum expectation values
(z(t)) and (p(t)) evolve according to Hamilton’s equa-
tions of motion (cf. Eq. (I)).

Despite considering different observables and different
equations of motion, there are many similarities between
basic QM and QM in configuration space. For exam-
ple, as we shall see below, by construction both theories
predict exactly the same physical trajectories of the posi-
tion expectation values {x(t)) of mechanical point parti-
cles. Nevertheless, the formalism we introduce here offers
clear advantages, avoiding some pitfalls highlighted in
earlier approaches (cf. e.g. Refs. [38] [51] for more details).
Notably, certain areas of quantum physics—such as
quantum electrodynamics and condensed matter physics
[52]—often rely on phenomenological models to recon-
cile experimental results with theoretical predictions. In-
deed, previous successes of these models [16, 63H55] have
inspired the formalism we introduce here.

Another advantage of modelling quantum mechanical
point particles in configuration space is that it offers a
much wider range of possible initial states due to the
increased size of its Hilbert space H. It also provides
more clarity regarding the physical meaning of its vari-
ables and the origin of its equations. Although further
investigations are needed, we suspect that our approach
might shine new light on situations which range from
quantum transport problems to situations that we cur-
rently approach using non-Hermitian quantum physics
[56, 57). Our theory also might provide new insights into
quantum relativity [58] and into the emergence of chaotic



behaviour in the quantum theory of mechanical systems
due to its improved consistency between quantum and
classical physics [59].

The paper is organised as follows. In Section [T, we
review the basic formalism of QM using Dirac nota-
tion, thereby also introducing the notation that we use
throughout the remainder of the paper. We then con-
struct wave functions and the basic observables of QM in
configuration space in Section[[T]} In addition, it is shown
here that momentum and position expectation values are
still subject to Heisenberg’s uncertainty relation. After-
wards, in Section m we take a closer look at the non-
relativistic case and derive the dynamical Hamiltonian
Hgyy of quantum mechanical point particles in the pres-
ence of a non-zero potential V(z). Moreover, we have a
closer look at the emergence of the basic quantum me-
chanics from our configuration space formulation and at
the implications of our approach for wave-particle dual-
ity. Finally, we review our findings in Section [V]

II. THE BASIC FORMULATION OF
QUANTUM MECHANICS

After the conceptual and mathematical foundations of
quantum mechanics were laid about a century ago [2] [5-
7], quantum mechanics established itself as an indepen-
dent branch of physics, and a large number of popular
textbooks have been written about it [I, 8HI2] [51]. In this
section, we review the main findings of basic QM and in-
troduce the notation that is used throughout the remain-
der of this paper. The state of a quantum mechanical
point particle at time ¢ is represented by a complex state
vector |1(t)) which belongs to a complex Hilbert space H.
For simplicity, we only study the one-dimensional case of
a single particle that moves in the presence of a potential
V(z) along the z-axis. In the following, we consider both
the position and momentum representations. Finally, we
have a closer look at uncertainty relations.

A. A single particle in position space

Wave-particle duality tells us that a quantum mechan-
ical point particle can be at different positions x at the
same time. Its state vector [¢(t)) is therefore, in general,
a superposition of localised states |x). To ensure that a
localised particle with a well-defined position x cannot be
found at a position x # 2/, the states |x) and |z’) must
be orthogonal to each other. In addition, they must be
normalised. Hence, we require that

(zl2") = d(z =), (14)

with the Dirac delta-function §(z — z’) given by

1 . ,
S(x—2') = %/dee‘p(m_m )/ (15)

Here R = (—o00,00) denotes the real numbers. Since
the states |x) form a complete orthonormal basis in the
Hilbert space H of quantum mechanical point particles,

P- /Rdx|x><x| (16)

is the identity operator. Taking into account that
I|(t)) = |¥(t)), we find that the state vector [¢(t))
can be written as

(t) = / d |) (1), (17)

with the complex wave function ¢ (z, t) given by ¢ (z,t) =
{(x|(t)). By definition, |¢(x,t)|? dx represents the prob-
ability to find the particle at time ¢ between x and x+dx.
Since the probability of finding the quantum mechanical
point particle anywhere along that axis must equal one,
we require that

/dx|z/)(x,t)|2 = 1. (18)
R

This condition applies when the state vector [¢(t)) is
normalised and (¥ (¢)|¥(t)) = 1.

We know that any physical observable A of a quan-
tum mechanical point particle can be represented by a
Hermitian operator A. By construction

(A@) = WO)IAR(?) (19)

coincides with the expectation value of A at time ¢ when
measured on systems prepared in the state [¢)(¢)). The
above equations can be used to show that

((t) = / dox (e, t)? (20)

is the expectation value of the position of a quantum
mechanical point particle at time ¢. Hence its position
operator & must equal

T = /Rdx|x>x<a?| (21)

When applied to the state vector |¢(t)), this operator
multiplies the wave function ¥(z,t) with x since

D) = / dz |) 2 (. ). (22)

Eq. moreover shows that |z) is an eigenvector of &
with x being the corresponding eigenvalue. This is not
surprising since the eigenvectors of any observable A are
the states that reveal the corresponding eigenvalue upon
measurement with maximum probability.

In the following, we assume that the momentum op-
erator p of a quantum mechanical point particle is the
generator of spatial translations. By defining momentum
in this way, it is clear that momentum expectation values



are conserved in situations that have spatial translational
invariance [16, [60, 6I]. As we will see at the end of this
section when we discuss Weyl’s commutator relation, this
approach implies that

b= —ih/ﬂ{dwkc)%(nd. (23)

Consequently, applying p to the state vector |¢(t)) re-
places the wave function i (z, t) with its spatial derivative
and

plo®) = <in [ dele) o). (20

According to Eq. , the momentum expectation value
(p(t)) therefore equals ((t)|p|1(t)). The above momen-
tum definition is analogous to the definition of energy.
While momentum expectation values are conserved in sit-
uations with spatial translational symmetry, the conser-
vation of energy expectation values occurs in situations
with time translational invariance.

B. A single particle in momentum space

One way of generating an alternative basis for the po-
sition states |x) is to relate them through a Fourier trans-
form to the states |p) with p € R. More concretely, we
assume in the following that

- z P/ |
= o= [ M) 9

Like the |z) states, the |p) states also form a complete
orthonormal basis of the Hilbert space H of a quantum
mechanical point particle since

@'lp) = op—1). (26)

As the identity operator I can also be expressed as

i= / dplp) (o], (27)

the state vector [¢(t)) can now be written as
w) = [ dpioit)lp) (28)
R

with the complex wave function 1 (p, t) given by ¥ (p,t) =
(p|¥(t)). To identify the physical meaning of this new
wave function, we now have a closer look at the momen-
tum representation of p.

Since the position states |z) are pairwise orthogonal
and normalised, a closer look at Eq. shows that

= ipz/h (29)

(o) = =

while (p|z) = (z|p)*. Using the above equations and the
fact that I pI = p, we can now show that

p = /de Ip) p(p| - (30)

This equation confirms that p and |p) are the eigenvalues
and the eigenstates of the momentum operator p. In
addition, the above equations can be used to show that
the wave function ¥ (p, t) relates to ¥ (x, t) via the inverse
Fourier transform,

~ 1

Since Fourier transforms preserve the normalisation of
wave functions,

dze= /M yp(z,t).  (31)

/ D@ P = 1, (32)
R

and 1 (p, t) is also normalised. By definition, |t/ (p,t)|? dp
is the probability for finding that the momentum of a
quantum mechanical point particle with wave function
Y(p,t) lies between p and p + dp.

For completeness, we finally also have a look at the mo-
mentum representation of the position operator . Since
the above equations can be used to show that

(Pl2[y(t)) = iho-b(p,t), (33)

ap
we know that applying the position operator & in mo-
mentum space is equivalent to taking the p derivative of
the momentum space wave function t(p,t). Hence, the
position operator  equals

& = ih /R dp |p>a%<p|7 (34)

in momentum space.

C. Uncertainty relations

A feature that highlights the fundamental difference
between quantum and classical mechanics is Heisenberg’s
uncertainty principle. In quantum physics, any two
physical observables A and B cannot be measured si-
multaneously unless their operators A and B commute.
More concretely, Heisenberg’s uncertainty relation sug-
gests that

1 .
AA-AB = 5 [WOI[ABllw@)|  (5)
for simultaneous measurements of A and B on quantum

states [1(t)). The uncertainties (AO)? with O = A, B,
which are defined as

(A0)2 = (DO — (0N [(t),  (36)



represent mean square deviations. Setting A = 3 and
B = p and using Egs. and to determine the
commutator of the position and momentum operators &
and p, it is relatively easy to check that

mmz—mémuwﬂi—iy>m,@n

which leads to Eq. after applying the product rule.
Eq. therefore yields the position-momentum uncer-
tainty relation

St

Az -Ap > 3 (38)
This equation implies that it is not possible to simulta-
neously measure both the position and the momentum
of a quantum mechanical point particle with unlimited
accuracy. In other words, a quantum mechanical point
particle cannot be simultaneously localised in position
and in momentum. However, it can be localised in posi-
tion and velocity.
To illustrate more clearly that the momentum operator
p in Eq. represents the generator for spatial transla-
tions, let us define the unitary translation operator 7'(€)
in position space as

T(€) = e ep/h (39)

where £ denotes a distance. This operator is also known
as the displacement operator, since its action on a lo-
calised state |z) is given by

7)) = |z +¢), (40)

demonstrating that T(§ ) changes the position of quantum
mechanical particles. Showing that this is the case can be
done by applying the Taylor expansion to T'(§) in Eq.
before applying the operator to |z). Using Eq. , it is
relatively straightforward to verify Weyl’s relation [62]

e 1€p/h o—ind/h _  i&p/h (—ipd/h —iEP/h (41)
where 4 is a constant. Both sides have the same effect on
an initial state |z). Comparing both sides of the above
equation while taking the Baker—Campbell-Hausdorff
formula into account, we see that Weyl’s commutator
relation fully encapsulates the canonical commutation re-

lation in Eq. .

III. QUANTUM MECHANICS IN
CONFIGURATION SPACE

As we shall see below, when quantising classical point
particles in a physically motivated manner, analogous
to the quantisation of light in quantum electrodynamics
[13H16], we obtain an alternative formulation of quan-
tum mechanics, namely in configuration space. This sec-
tion, closely follows the structure of Section[[ll Again, we

start by identifying the relevant Hilbert space of quan-
tum mechanics by first having a closer look at the con-
figuration space, i.e. the fundamental space of all pos-
sible states, of classical mechanical point particles. Af-
terwards, we introduce a wave function for the particles
as well as their position, momentum and velocity ob-
servables. In addition, we consider both the position-
velocity and momentum-velocity representations. As in
basic QM, the position operator is diagonal in the po-
sition representation, while the momentum operator is
diagonal in the momentum representation. We conclude
this section by showing that our generalised description
of quantum mechanical point particles does not violate
Heisenberg’s uncertainty relations despite the fact that
the particle wave function ¥ (z,v,t) now also depends on
the velocity v.

A. A single particle in position-velocity space

Newtonian mechanics [3 [12] describes mechanical
point particles by stating their position z and their ve-
locity v. For example, if we know the initial position
x(0) and the initial velocity v(0) of a particle, we can
predict its dynamics at all times ¢. As mentioned before,
we therefore assume in the following that the positions
and the velocities of a quantum mechanical point parti-
cle can be chosen independently. In addition, we promote
the classical states (z,v) of mechanical point particles to
distinguishable localised quantum states |z, v) with x and
v specifying positions and velocities respectively. These
states are the “most classical” quantum states of QM
in configuration space and form a basis in the Hilbert
space H of quantum mechanical point particles. This is
in contrast to the position representation of basic QM,
which we reviewed in Section [[TA] For example, we now
consider a Hilbert space that is significantly larger than
the one we had before. As we shall see below, the state
[t)(t)) of a quantum mechanical point particle at time
t is, in general, a superposition of all possible localised
|z, v) states.

Since the |x,v) states correspond to distinguishable
particle states, they must be pairwise orthogonal as
stated in Eq. . Hence, the identity operator I act-
ing on the extended Hilbert space H is now given by

I = //R2 dz dv |z, v){z,v]|. (42)

Here the double integrals are taken over the parameter
set R? = {(x,v)} with z,v € R. After defining the wave
function ¥(z,v,t) as Y(x,v,t) = (z,v[(t)), the state
vector [¢(t)) can be written as

|mm=/Wmmm@um%w. (43)

The only difference to Eq. is that the basis vectors
and the wave function now depend on the position z and



on the velocity v of the quantum mechanical point parti-
cle. Since |1 (z,v,t)|? represents the probability density
for finding the particle at position x and moving with
velocity v at time t, we can conclude that

//R dz do [z, v, )2 = 1. (44)

This condition guarantees the normalisation of the state
vector | (t)).

As mentioned above, |z,v) describes a quantum me-
chanical point particle at position x moving with exactly
velocity v. Hence, the observables for the position and
the velocity of the particle, Z and 0, are given by

& / dz dv |z, v) x (x,v],
R2

<
I

/ dz dv |z, v) v (z,v]. (45)
R2

Hence, applying the position operator & and the velocity
operator ¥ to a state vector |1(t)) of a quantum mechan-
ical point particle multiplies its wave function ¢ (x,v, )
with z and with v respectively. Moreover, the above defi-
nitions ensure that the position and velocity expectation
values (z(t)) and (v(t)) can be calculated using Eq. (19).

As we shall see below, to construct the dynamical
Hamiltonian Hgyn of a quantum mechanical point par-
ticle in the presence of a potential V(z), we moreover re-
quire operators that generate changes in position and in
velocity. The first is the momentum operator p which is
the generator of spatial translations and has many sim-
ilarities with the momentum operator p in basic QM.
More concretely, we define p in the following as

p = —ih/Azdxdv|x,v>%

in analogy to Eq. . In addition, it is useful to also in-
troduce an operator a which is the generator for changes
in the velocity v of a moving quantum mechanical point
particle. In analogy to Eq. , we define a as

a = —1ﬁ// dz dv |z, v) <x v|. (47)
R2

The factor —ih has been added to ensure that a is a
self-adjoint operator and that ¢ and a satisfy the same
commutation relation as & and p. As we shall see in Sec-
tion[[V] in the presence of a force, a changes the velocity
of a quantum mechanical point particle. We therefore
refer to this operator in the following as the acceleratum.
Analogously, as we shall see below, the momentum oper-
ator p changes the position of a particle with a non-zero
velocity v.

(x,v], (46)

B. A single particle in momentum-velocity space

In the previous subsection, we replaced the position
basis states |z) of basic QM with the new basis states

|z, v). Analogously, we now replace the momentum ba-
sis states |p) of basic QM with the states |p,v) which
describe quantum mechanical point particles with mo-
mentum p moving with velocity v. Since we want the
|p, v) states to have the same properties as the |p) states
in basic QM, like diagonalising the momentum operator
p, we define them such that

—— PP 5y — ), (48)

!
z,v|p,v') =
< P} v2rh

in analogy to Eq. with (p, v|z,v) = (z,v|p,v)*. Since
all we have done is add the label v to the position and mo-
mentum basis states, it is straightforward to check that
many of the equations in Section [T still apply. For exam-
ple, the basis states |p,v) form a complete orthonormal
basis and

<p7 U|p/a U/> = 5(]7 - p/)5(v - 1)/) ) (49)
in analogy to Eq. .

_ In the expanded Hilbert space H, the identity operator
I can now also be written as

_ //R dpdo |p, v)(p, ] . (50)

In this representation, the state vector |¢(t)) is defined
as

— [[ avaviope. 6y
R:
with
U(pvt) = (poly(t)). (52)
This wave function is normalised when

[ avaviiwonp = 1. (53)

The wave function sz)v(p7 v,t) relates to the wave function
Y(x,v,t) via the Fourier transform

P(x,0,t) = dpe'P* /M ap(p,v,t),  (54)

F

with the inverse transformation given by the inverse
Fourier transform.

As in the previous section, we find that the momentum
operator p simplifies to

= //111{2 dpdv|p,v)p(p,v|, (55)

in the expanded momentum-velocity representation, in
analogy to Eq. . However, the acceleratum a in
Eq. . does not simplify and equals

N ) 0
a = —1h/R2 dpdv |p,v) E» (p,v], (56)



in the basis of the |p,v) states. When transforming
the position operator Z in Eq. into the momentum-
velocity representation, we find that it can also be written
as

0
;%:ih//ddv ,U) — (p,v o7
L |p>8p<p| (57)

in analogy to Eq. . Moreover, the velocity operator
in Eq. becomes

5 = //]R dpdvlp, v} v (p, ] (58)

Before having a closer look at the dynamics of the quan-
tum states and the expectation values of quantum me-
chanical point particles in Section [[V] let us comment on
the uncertainty relations for position, momentum, veloc-
ity, and acceleratum measurements.

C. Uncertainty relations

Given the formal similarities between the set of op-
erators £ and p and the set of operators v and a, it is
not surprising that the commutator relation between the
position and the momentum operator and between the
velocity and the acceleratum are the same. More con-
cretely, one can now show that

[#,p] = [0,a] = ih, (59)

in our expanded description of quantum mechanical point
particles. All other operators commute. Using, for ex-

ample, Eqs. —, we can confirm that
[i‘a@] = [ﬁv d] = ['i’d] = [ﬁv 'O] = 0. (60)

This means that we still have Heisenberg’s uncertainty
relations, but their interpretation has changed. The de-
scription which we present here allows us to simultane-
ously specify, for example, the position and the veloc-
ity expectation values (z(t)) and (v(t)) of a quantum
mechanical point particle. Similarly, we can measure
its momentum and its velocity expectation values (p(t))
and (v(t)) and so on simultaneously with arbitrarily high
precision. However, using the commutator relations in
Eq. , we again obtain the position-momentum uncer-
tainty relation in Eq. for position and momentum
measurements on an ensemble of quantum mechanical
point particles which have all been prepared in the same
state. Analogously, the commutator relation in Eq.
implies the velocity-acceleratum uncertainty relation

h
Av-Aa > 3 (61)
This means that the position and the momentum are
still canonical variables. In addition, we now have a new
set of canonical variables for quantum mechanical point
particles, namely ¢ and a.

To illustrate that the acceleratum a which we intro-
duced in Eq. represents the generator for velocity
changes, we now proceed as in Section [[TC] and define a
unitary translation operator R(«) in position space as

R(a) = e~ioa/h (62)

where o denotes a velocity. Using again a Taylor expan-
sion, we now find that the action of this operator on a
velocity eigenstate state |x,v) is given by

R(a)|z,v) = |z,v+a), (63)

in analogy to Eq. . This equation demonstrates that
R(«) generates changes in the velocity without affecting
the position of quantum mechanical particles. Moreover,
by applying both sides of the equation below to a velocity
eigenstate state |z, v) while using Eq. , one can check
the validity of Weyl’s relation [62]

o—iad/h o —iBo/h _ iaB/h o—iBb/h —iaa/h (64)
in analogy to Eq. , where 3 is a constant. Notice

that this equation encapsulates the canonical commuta-
tion relation [9,a] = ih in Eq. (59).

IV. FROM CONSISTENCY AND EMERGENCE
TO WAVE-PARTICLE DUALITY

In the previous section, we introduced the state vector
|t(t)), the basic observables & and ¢ and the operators
p and a of a quantum mechanical point particle which
moves along the z axis. The main purpose of this section
is to identify the equation of motion for [¢(t)) in the
presence of a potential V(z). Let us assume that the
time derivative of [¢)(¢)) can, as usual, be specified by
the Schrodinger equation of basic QM [I],

ih S 100) = Hagn [9(0) (65)

where H’dyn denotes the dynamical Hamiltonian of the
particle. An equation of this form should apply since
the dynamics of physical objects with no memory effects
depend only on their current state |¢(t)) and its fully de-
termined by its time derivative. As Eq. shows, the
dynamical Hamiltonian fldyn is by definition the gener-
ator for temporal translations. As we shall see in the
following, it is therefore also closely related to the energy
of the quantum mechanical point particle [60} 61].

In Section [[VA] we first have a closer look at the dy-
namics of the “most classical” quantum states |z, v). As
discussed in the Introduction, these states have a well-
defined position z and a well-defined velocity v and can
be used to describe classical experiments. Hence, they
must remain localised in x and in v and their parame-
ters (t) and v(t) must evolve as in classical mechanics,
namely according to Eq. . This observation allows



us to identify the dynamical Hamiltonian fldyn of quan-
tum mechanical point particles in Eq. . Moreover,
since the |z,v) states form a complete basis in the ex-
tended Hilbert space of quantum mechanical point par-
ticles, we also automatically know how general quantum
states, i.e. superpositions of the |z, v) basis states, evolve
in time. Afterward, in Section [[VB] we show that the
basic formulation of QM is essentially a semi-classical
approximation of QM in configuration space. Finally, in
Section [[V.C] we revisit wave-particle duality and high-
light that it is enhanced in the description that we present
here.

A. The dynamical Hamiltonian

Suppose a quantum mechanical point particle has been
prepared in an initial state |(0)) with a known wave
function ¥ (x, v,0). Without restrictions, the time deriva-
tive of the wave function ¥ (x,v,t) of the particle at a
later time ¢ can be shown to be of the general form

)
ot Ox

ov 0 0

gy <[22 00
vt = ot ov ' ot

pr Y(x,v,t).(66)

Since the |x,v) states evolve as in classical physics, the
partial derivatives Oz/0t and Jv/0t must be the same
as in Eq. . Moreover, the fact that probability am-
plitudes move around configuration space, but do not
change in time, implies that

% (z,v,t) = 0. (67)
This equation ensures that the probability for a particle
to have the coordinates (z,v) at time ¢ is the same as the
probability to have the coordinates (x4 vAt, v+ f(z)At)
at time ¢ + At. It also removes a constant term from the
Hamiltonian of the QM system, which has no physical
consequences. Consequently, we find that

G = o+ 1@ 2] . (@)

Eqs. ([45)-(7) therefore suggest that the dynamical
Hamiltonian Hgy, must be given by

Hagn = 09+ f(#)a. (69)

One can check that this is indeed the case by substi-
tuting Eq. into the Schrodinger equation while
considering the position-velocity representation of state
vectors. The above Hamiltonian is automatically self-
adjoint, since v and p as well as & and a commute.
It is worth mentioning that both terms in the dynam-
ical Hamiltonian Hgy, have units of energy. Moreover,
Eq. simplifies to Eq. @ in free space when the po-
tential V(z) = 0.

Notice that the dynamical Hamiltonian ﬁdyn in

Eq. differs from the energy observables H s Of
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quantum mechanical point particles that are obtained
when applying the correspondence principle to the ex-
pression for the energy of a point particle in classical me-
chanics. More concretely, the correspondence principle
suggests that H.j.ss equals

N mo?

Hclass = T +V(i') (70)

where m denotes a constant parameter, namely the re-
spective mass of the particle. Fortunately, using Eq. ,
one can show that

|:HclaSS7 ﬁdyn} = 0. (71)

Hence, the expectation values of the above energy ob-
servable are always conserved, and QM in configuration
space does not contradict classical mechanics. Finally, let
us point out that the expectation values of Hj,ss would
not be conserved if we were to replace the observable mv
in Eq. with p. Moreover, we do not yet know the
physical meaning of the expectation values of the terms
that appear in the dynamical Hamiltonian, namely o p
and f(Z)a, which might explain why we usually do not
consider these quantities in classical mechanics.

Now that the Hamiltonian Hqyy has been identified, we
can predict the dynamics of arbitrary initial states and
analyse the dynamics of expectation values of physical
observables A. Using Schrodinger’s equation, one can
show that

d i PN
S(Aw) = 5 ([A Ha]) - (72)
Using Egs. and —, we therefore find that
d d

3 &) = (), ) = (f(2)) (73)

in agreement with Eq. (3). For example, when (f(z)) =
f({x)), these two equations form a closed set of differen-
tial equations which means that we only need to consider
position and velocity to predict the trajectory of a quan-
tum particle in configuration space for any given initial
state [¢(0)). However, in general, we also need to have a
closer look at the dynamics of the expectation values of
the momentum p and the acceleratum a of the particle.
Using again the above equation, one can moreover show
that

G001 == (U L) =, @

To show that this is the case, we write f(x) without
restrictions as a Taylor expansion,

oo
f(@) =) end” (75)
n=0
where the ¢, are real coefficients, and notice that

F@)0 = S enld il = - ne, "t (76)
n=0 n=0



For example, in free space, we have V(z) = f(z) = 0 and
hence one can easily check that both the velocity and the
momentum of the particle are conserved in time. Next we
consider a mechanical point particle in free fall. In this
case, V(x) = —mgx where  denotes the initial height of
the particle and where g denotes the gravity acceleration
constant. Consequently, f(x) = g which implies that

d d

Sl =g, L) =0. (77)
As noted previously in the Introduction, the velocity of
the particle increases linearly in time while its momentum
is conserved due to the spatial translational invariance of
the situation. Independent of where we place the coor-
dinate system, the particle experiences the same physics,
i.e. the same acceleration g.

B. The emergence of basic quantum mechanics

The basic formulation of QM has already been used
successfully to explain experiments in many areas of
physics, from quantum optics to condensed matter
physics. It is therefore important to show that basic QM
emerges from QM in configuration space, as illustrated in
Fig. [3l when certain approximations are applied. As we
shall see below, basic QM is essentially a semi-classical
approximation of QM in configuration space. As we have
seen in Section [[I} basic QM only considers one set of
canonical variables, & and p. To reduce the four observ-
ables &, 0, p and a of QM in configuration space to & and
p requires three simplifications:

1. Since the Hilbert space of the basic formulation
of QM is much smaller than the Hilbert space H
of QM in configuration space, we decompose H
as shown in Fig. {4| into subspaces H,,. Each of
these subspaces contains all |p,v) states satisfying
|p/v| = m as illustrated by the red lines in the di-
agram. In basic QM, a quantum mechanical point
particle of a given mass m can only occupy super-
position states within H,,. This means, p and v
cannot be chosen independently and every particles
has a well-defined mass m which is a real parame-
ter.

2. We need to replace the velocity operator v of QM
in configuration space such that

b = p/m, (78)

where p is the canonical momentum operator and
m denotes the mass of the respective particle. In
addition, we need to discard a. There is no accel-
eratum in basic QM.

3. The main observables of the basic framework of
QM are the position x and the momentum p with
the intrinsic assumption that p = mo, as stated in
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Eq. . In other words, basic QM needs to ensure
that

Sl = ), Tlo) = mi@)  (19)

in analogy to Eq. in order to be in agree-
ment with Eq. (3). Since the commutators [, 9]
and [, p|, however, are not the same (cf. Egs. (11)
and ), we also need to replace the dynamical
Hamiltonian den in Eq. 1@' with the standard
Hamiltonian ﬁBQM in Eq. 1) while retaining the
Schrédinger equation, i.e. Eq. .

As we have discussed in detail in Section [[TI} in QM in
configuration space, the momentum and the velocity of
a quantum mechanical point particle correspond to com-
muting observables p and © but nevertheless describe two
different physical properties. To measure the velocity ex-
pectation value (v(t)) of a particle, we need to measure,
for example, the distance that it travels in a certain time
interval. In contrast to this, the momentum expectation
value (p(t)) can be measured, for example, by colliding
the particle with another object while observing momen-
tum conservation. The independence of the momentum
and the velocity of quantum mechanical point particles
is well reflected in QM in configuration space by the fact
that the momentum depends only on the x distribution
of the wave function ¢ (x, v, t), but not on its velocity dis-
tribution. In contrast to this, the velocity of a quantum
mechanical point particle does not depend on its position
distribution.

C. Wave-particle duality

As indicated by the title of this paper, the main moti-
vation for the introduction of QM in configuration space
is to fully realise the duality between the trajectories of
classical point particles and the evolution of QM wave
functions, which is not fully realised in basic quantum
physics. For example, a photonic wave packet can be
of any shape. Nevertheless, the photon only travels at
one speed, namely the speed of light ¢. In contrast to
this, the motion of quantum mechanical point particles
in basic QM depends strongly on the shape of their wave
packets. To illustrate the duality of particles and waves
brought out in QM in configuration space, we show in the
following that QM in configuration space also applies to
photons. Although photons are carriers of electromag-
netic fields, we ignore the presence of these field observ-
ables in the following discussion. A detailed account of
how to obtain the electric and magnetic field observables
of light through physically-motivated field quantisation
schemes, and how to link those to monochromatic waves
and local photon excitations, can be found in Refs. [13-
16].

For simplicity, we consider a single photon of a given
polarisation A which travels along the z axis in the s
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FIG. 4. The momentum representation of the Hilbert space H
of quantum mechanical point particles. In QM in configura-
tion space, the state vector |1 (t)) is in general a superposition
of all basis states |p,v). These can each be represented by a
point in the diagram. In contrast to this, basic QM restricts
the states of a quantum mechanical point particle of a given
mass m effectively to |p,v) states with |p/v| = m, thereby
reducing the total Hilbert space H to a subspace H.,. The
subspace Hn, of particles of equal mass m can be represented
by two lines through the origin of the (p,v)-space diagram
(red). As in classical physics, the mass m is a parameter
which identifies the type of particle that is being considered.
When allowing for particles of any mass m, the Hilbert spaces
of QM in configuration space and basic QM become the same.

direction, with s = 4+1. As already mentioned above,
photons move at only one speed, the speed of light c.
For the mechanical point particles, the basic building
blocks of the system are localised excitations prepared
in states |z,v) with a well-defined position 2 and veloc-
ity v. Analogously, the basis states of the wave packets
of single photons with polarisation A which travel in the
s direction along the x axis are states |z, s¢) with

z,s¢) = al,(x)]0) (80)

with |0) denoting the vacuum state of the electromagnetic
field. Moreover, asx(x) and al \(z) are locally-acting
bosonic single-photon annihilation and creation opera-
tors that were introduced in Refs. [14] [15]. Alternatively,
we can decompose the wave packets of single photons into
monochromatic field excitations. In this case, their basis
states |p, sc) are given by

Ip,sc) = al\(k)[0) (81)

with p = fik. Here asy (k) and dl)\ (k) are the annihilation
and creation operators of monochromatic photons which
relate to the agsy (z) and the al/\(m) operators via a Fourier
transform. This means that the quantum states of sin-
gle photons occupy the same Hilbert space as quantum
mechanical point particles in QM in configuration space,
but with their velocities v restricted to v = *£ec.

In free space, the photon does not experience any po-
tentials, and V(z) = 0. As shown in Refs. [T4HI6], in
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this case the dynamics of light of polarisation A can be
described by the dynamical Hamiltonian

- . 0
Hayn = —ihe Z /Rdxal/\(x)%as,\(x). (82)

s==+1

When restricting the quantum state of the electromag-
netic field to a single photon, this Hamiltonian simplifies
to

Hipn = —ihe 3 / dm|x,sc><o|§\o><x,sc|,(83)
s==+1 R r

since asyx(x) = |0)(z, sc| in this case. One can then easily
check that

f{dyn = —ihc Z/

dz |z, sc) 9 (x,sc] (84)
s=+1/R Oz

if the vacuum state is normalised and (0/0) = 1. Com-
paring this operator with the momentum operator p in
Eq. , we see that the dynamical Hamiltonian Hgayn
of light can indeed be written as in Eq. in the In-
troduction. In principle, single photons can also experi-
ence non-zero potentials V(z) and change their velocity.
This requires the presence of an inhomogeneous dielectric
medium with a changing refractive index n(x), which can
produce novel optical effects and is still a topic of ongoing
research 16} [63]. In conclusion, we can use QM in config-
uration space to describe the dynamics of single photons,
as implied by wave-particle duality.

V. CONCLUSIONS

There is no unique way of defining the momentum p
of a particle, even in classical physics [49]. For example,
the momentum of a mechanical point particle could be
defined as p = mv, where m and v denote its mass and its
velocity, respectively. Another possible definition of the
momentum p is to demand that it is a conserved quantity
for systems with spatial translational symmetry [60]. In
free space, where the potential V(z) = 0, both defini-
tions are consistent with each other. Consider, however,
the situation of a particle in free fall which experiences
a constant acceleration. In this case, the same physics
applies everywhere, which implies spatial translational
invariance and hence momentum conservation. Unfortu-
nately, this is not the case when we assume that p = muv,
since the velocity of the particle and therefore also its
momentum increase linearly in time. One reason why
the definition of the momentum of particles is elusive,
is that it does not make an appearance in the dynamical
equations of mechanical particles, cf. e.g. Eq. but also
Eq. . In fact, the basic formalism of QM confuses mo-
mentum and velocity while imposing mass as a particle
property (cf. Eq. (79). However, quantum physics offers
a way of defining the momentum of particles in a unique
way [16].



In this paper, we therefore quantise mechanical point
particles in a physically-motivated way. To do so, we
first identify the variables that are needed to characterise
the dynamics of particles in classical mechanics, namely
their position = and their velocity v. Afterwards, we pro-
mote all possible distinguishable classical states (z,v) to
pairwise orthonormal quantum states |x,v). In this way,
any classical experiment can be mapped onto a quantum
state. To ensure that the quantum dynamics of these
states are consistent with the dynamics of the associated
classical system, we demand that the parameters = and
v of the “most classical” quantum states |z,v) evolve
according to Newton’s equations of motion (cf. Eq. )
and choose the dynamical Hamiltonian ﬁdyn accordingly.
When preparing a quantum system in a superposition of
|x,v) states, i.e. in a general quantum state |1), expec-
tation values can be shown to evolve in the same way as
the expectation values of a classical particle prepared in
(x,v) with its probability distribution given by |{z, v|1)|?
(cf. Egs. —). Nevertheless, QM in configuration
space is not a classical hidden variable theory [40] [41],
but a quantum theory that contains basic QM as a semi-
classical approximation.

In QM in configuration space, a quantum mechanical
point particle has a position and momentum operator, &
and p. In addition, we obtain a velocity operator v and
an acceleratum a. Having a closer look at the dynamical
Hamiltonian Hgy, in Eq. 1@’ we see that the momen-
tum p generates spatial translations whenever states with
non-zero velocity 0 are populated. By construction, its
expectation values are conserved in case of spatial trans-
lational symmetry. Analogously, the acceleratum a in-
duces changes of velocity for states which experience a
force. In good agreement with Heisenberg’s uncertainty
relation, we find that Z and p do not commute. The same
applies to © and a. As one can see from Egs. and
, the momentum and the velocity observables p and
v of QM in configuration space commute and represent
independent physical properties. Since the formalism of
basic QM only considers position and momentum observ-
ables, it is essentially a semi-classical approximation of
QM in configuration space.

As mentioned already above, momentum expectation
values are conserved in all situations with spatial trans-
lational invariance. Similarly, energy expectation values
should be conserved in all situations with time transla-
tional invariance. As one can see from Eq. , the dy-
namical Hamiltonian ﬁdyn is the generator for temporal
translations. This suggests that its expectation values of
Hgyn are conserved when the potential V'(x) remains con-
stant in time [60]. However, the dynamical Hamiltonian
has positive and negative eigenvalues [14, [15], while the
the energy of particles should be always positive. Sup-

13

pose

Ao = Y [AB BN BB (59)
n=0

represents the dynamical Hamiltonian in diagonal form.
Then the energy observable of quantum mechanical point
particles can be defined as [16]

foe = > [ABL BN BB (36)
n=0

In this way, energy is always positive but it is also con-
served, since Hgy, in Eq. and Hepg in Eq.
commute by construction. Classical mechanics, however,
suggests a different definition of the energy observable,
namely the operator H..ss in Eq. ) Fortunately,

this does not create any problems, since ﬁdyn and Hjass
commute as well (cf. Eq. (71))). The predictions of QM in
configuration space are therefore always consistent with
the predictions of classical mechanics.

In addition, the formalism of QM in configuration
space enhances wave-particle duality in comparison to
the formalism of basic QM. In fact, this paper treats
quantum mechanical point particles in exactly the same
way as we treat photons in quantum electrodynamics [14-
16]. The only difference between both types of particles
is that photons can travel only at one speed, namely
the speed of light ¢, while quantum mechanical point
particles can move at any speed. This is important,
since wave-particle duality is the cornerstone of quan-
tum physics. In addition, we expect that QM in configu-
ration space has applications in the modelling of chaotic
systems and the modelling of quantum systems with non-
Hermitian Hamiltonians with complex eigenvalues [57].
Other areas of quantum physics, like Condensed Matter,
already routinely employ phenomenological Hamiltoni-
ans, such as the Hubbard Hamiltonian [52], with positive
and negative eigenvalues in order to match experimental
findings. Our hope is that applying QM in configuration
space to such situations will help us gain a better un-
derstanding of complex quantum systems and will offer
new tools for designing new devices with potential ap-
plications in quantum technology. In addition, we might
gain new insight into relativistic quantum information
54, B3].
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