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Continuous-variable quantum key distribution with a single quadrature
measurement at an arbitrary reference frame
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We propose a simplified measurement scheme for a Gaussian modulated coherent state (GMCS) protocol
for continuous variable quantum key distribution (CV-QKD), utilizing homodyne detection without quadrature
switching. The reference frame of measurement is taken to be at an arbitrary angle, however, reconciliation con-
verges the proposed scheme to GMCS with switching quadrature protocol. The arbitrary frame of measurement
could also include the unknown random thermal drift within Bob’s optical measurement setup. We found this
scheme is advantageous for practical free-space and fiber-based GMCS protocol-based CV-QKD systems as it
does not require a phase modulator for random measurement selection quadrature at Bob.

DOI: 10.1103/g465-pm47

I. INTRODUCTION

Quantum key distribution (QKD) enables two parties to
share a secret key, in the presence of an eavesdropper [1]. The
advantage of QKD over the classical counterpart, is that the
latter relies on the computational hardness of a problem for
security. Whereas, in QKD, information-theoretic security is
provided, which is proven by the laws of physics [2,3]. The
security of QKD relies on no-go theorems, such as, the no-
cloning theorem [4], impossibility in perfectly distinguishing
nonorthogonal states [5], monogamy of entanglement [6], the
uncertainty principle among two noncommuting observables
[7], and so on. The earlier proposals [1,8,9] and demonstra-
tions [10-13] for QKD were based on discrete variables (DV)
using weak coherent states, based on polarization or phase
qubits and single photon detectors. Recently, newer protocols
were developed and demonstrated for longer transmission
distances [14—16].

Continuous variable (CV) QKD protocols [17-19] utilize
amplitude and phase modulation of coherent states to encode
the secure key information and shot noise limited detection for
decoding. Squeezed as well as thermal states-based protocols
have also been proposed for implementing CV-QKD protocols
[17]. Among the various CV-QKD protocols, the Gaussian
modulated coherent state (GMCS) protocol [20,21] has been
thoroughly studied for its security and demonstrated over fiber
as well as free-space channels. The amplitude and phase of the
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coherent state are modulated such that the field quadratures
follow the Gaussian probabilistic distribution.

There are two versions of the GMCS protocol based on
the measurement of the quadratures. In switching quadrature
protocol (GGO02) [20], Bob randomly selects the quadrature
for the measurement using a homodyne detector. In the non-
switching version of the GG02 protocol [22], Bob measures
both quadratures with a heterodyne detector. The nonswitch-
ing protocol has higher information decoding capacity for
shorter distances [23-25], while the switching protocol is
more suitable for long distances CV-QKD demonstrations
[26-28]. At the detectors, the relative phase of 0° or 90°,
between the CV-QKD signal with a strong reference signal,
referred to as the local oscillator (LO), sets the reference frame
for the quadrature measurement.

There are also two variants for CV-QKD protocol imple-
mentation. In the transmitting local oscillator (TLO) scheme,
the LO is transmitted along with the CV-QKD signal [20].
Since both the signal and the LO pass through the same
channel, the phase drift from the channel is negligible. How-
ever, with the local local oscillator (LLO) scheme, only the
reference pulse is sent by Alice to Bob and the LO is locally
generated inside Bob’s station [24].

In theoretical analysis, the reference frames of state prepa-
ration at Alice and that of the state measurement at Bob
are assumed to be fixed and known to Eve. To avoid Eve
replacing the coherent states with squeezed states, either a
random selection of the quadrature or measuring both of them
at the same time is necessary. However, in practice, the frame
of measurement is continuously rotated at an arbitrary rate.
Measurement of quadrature along the arbitrary frame of refer-
ence has been already proposed in Ref. [24], however, this is a
quadrature switching version with the homodyne detector. We
propose the arbitrary frame of measurement scheme without
switching quadratures and using a homodyne detector. We
consider the measurement frame of reference to be dynamic

Published by the American Physical Society
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during the protocol run. The initial angle, the rate of rotation,
and the direction of the rotation of the frame of measurement
are taken to be random as well. We also assume that over the
protocol run, the frame of measurement could be rotated to all
the possible angles. The phase drift can collectively be caused
by: Alice’s preparation setup, Oajice; transmission channel, 8.y ;
and Bob’s measurement setup, 6p,,. We note here that the
current work addresses the phase drift that happens at Bob’s
measurement setup inside his station, and works for both
transmitted/local local oscillator schemes.

In this paper, we aim to validate that the GGO2 protocol can
be performed using homodyne detection and without actively
switching the quadratures as originally proposed and demon-
strated over the last two decades. We prove that our scheme
retains the characteristics of the GG02 protocol and, thus
does not create any new security loopholes. Specifically, the
aspect of security that is considered here is for the collective
attack by the eavesdropper Eve and we show that the protocol
is secure in the asymptotic limit. We also show an optimal
intercept and resend attack by Eve, and highlight that it is
different from the one in GG02-like protocols. Additionally,
our proposed scheme works not only with a TLO setup, but
with a LLO setup as well. In the LLO variant of the proposed
protocol, all the quantum parts would remain same as in a
standard LLO protocol. The only difference would be that Bob
sets his LO to a random quadrature in the phase space and then
correlates to the reference pulse sent by Alice.

The paper is structured as follows. The Sec. II provides
the outline of Gaussian modulated CV-QKD protocol GGO02.
In Sec. III, we describe the arbitrary rotation of the frame of
reference in Bob’s measurement and prove its equivalence to
GGO2. Finally, discussion and conclusion of our results is in
Sec. IV.

II. GAUSSIAN MODULATED COHERENT
STATE PROTOCOL

A brief introduction to conventional GMCS protocols is
given below. These protocols utilize coherent states, |o) =
|Ga +ipa), as the information carriers, wherein the state
quadratures, §ga and pa, are randomly modulated by Al-
ice such that the quadratures follow Gaussian distribution,
N(0, Vy), of variance V, and mean at zero. Along with
the signal states, Alice also sends the LO pulses and thus
involves them of being suitably multiplexed by Alice and
demultiplexed by Bob. The signal states undergo attenuation
and noise is added to it during the transmission from Alice to
Bob. At Bob, the quadratures of the modulated coherent states,
gs and pg, are measured with a shot noise (vacuum noise)
limited homodyne (switching protocol) or heterodyne detector
(nonswitching protocol). The variance of the measurement at
Bob can be written as Vg = T % V + &, in which T is the
transmittance of the channel and & is the total noise variance
added to the quadratures.

During the classical post-processing, Bob publicly an-
nounces the chosen quadrature for measurement and Alice
chooses the respective variance. Additionally, Bob also an-
nounces the variance Vg of a fraction of transmitted states,
to Alice for quantifying error in the channel. The remaining
data is used for secure key generation after error correction

and privacy amplification. In the switching version of the
protocol, Bob has to disclose the quadrature he measures
(not the measurement outcomes) as well and that forms the
sifting. The noise variance term &, comprises of the shot noise
variance, electronic noise variance of the detector, noise from
eavesdropping among others. One can assume that the channel
transmittance 7', along with the excess noise, is controlled by
Eve.

The feature that prevents the possibility of CV-QKD with
fixed quadrature measurement is the following. By knowing
the frame of Bob’s measurement, Eve can launch the intercept
and resend (IR) attack, during which she can resend a suitable
squeezed state along the frame of quadrature measurement
and hides her presence. Given Bob’s selection of quadrature
for the measurement (among gg and pg) is unknown to Eve,
she has 50% chance to hide her attack with squeezed states.
To prevent Eve from using a squeezed state, one has to either
switch between the quadratures randomly [20] or measure
both quadratures [22].

Therefore, both versions of the CV-QKD protocol offers
security against individual attacks by Eve. In case of collective
attack such as Eve using an entangled cloner, she entangles
her own n-mode squeezed states with the state sent by Alice.
In the switching version of the protocol, she waits for Bob
to announce his choice of quadrature to and measures her n-
mode state (stored in the quantum memory). In no-switching
version, Eve does not need to wait for Bob’s announcement.
However, as in the case of individual attack, the action of
entangling |o) with her own n-mode squeezed state increases
the excess noise [29].

For the switching protocol, a specific quadrature for mea-
surement at Bob is chosen at random, by suitably selecting
the phase of the LO. The relative phase of LO at Bob with
respect to the initial phase during the coherent state prepara-
tion defines the chosen quadrature for measurement, which is
conventionally taken to be 0° for ga quadrature and 90° for pa
quadrature. However, in practice, the relative phase between
signal and LO inside Bob’s station is continuously drifting due
to thermal fluctuations and relative frequency drift. Primarily,
the fluctuations could be due to the different paths that the
signal and LO take after demultiplexing within Bob’s mea-
surement setup. Additionally, in the case of the LLO scheme,
it can happen due to the frequency drift of the laser at Bob’s
station. Limiting our arguments in the rest of the paper to
phase drift inside Bob’s station g, alone, we attribute this
relative phase drift to the signal. If the phase drift is relatively
slow compared to the QKD repetition rate, which is a require-
ment for our scheme to work, this can be associated to phase
noise [24]. However, if the repetition rate is slower than that of
the phase drift then it requires heterodyne detection for phase
estimation. Also, the key rate would significantly drop, as the
correlation between Alice and Bob would reduce. This phase
drift is unknown to Bob, but he could easily estimate it after
measurement. In principle, Eve could probe this phase drift
with a very high intense beam but there are countermeasures
to prevent such attacks [30]. Also, high-intensity probe beams
saturate the measurements and can be detected as well [31].
The phase drift creates an additional postprocessing routine,
as either Bob or Alice has to rotate their frame of reference to
compensate for the drift and match reference frames with each
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FIG. 1. CV-QKD with the homodyne detection setting. Alice
prepares two mode squeezed vacuum states (TMSVS) and sends one
of the modes to Bob. Bob’s setup interferes the signal (S) with the
local oscillator (LO) pulses using a beam splitter (BS) and performs
homodyne measurements using photodiodes (D1 and D2). There
could be a relative phase drift between signal and LO inside Bob’s
station (from the blue marker, A, to the BS) represented by 6g,, (see
text below), that is independent from the phase drift in the channel
and Alice’s station. Contrary to standard homodyne measurement,
we do not use a phase modulator (PM) in our scheme. ip is the
quadrature output of the homodyne along the measurement angle
Osob. The eavesdropping by Eve is characterized by reduced trans-
mittivity 7', and excess noise from the channel &.

other. Therefore, even assuming that Eve controls the drift in
the channel, she would still have no knowledge of the phase
drift inside Bob’s (or Alice’s) station. There are proposals to
use machine learning algorithms for estimating the phase drift
in the channel [32], however, this is beyond the scope of the
current work.

In the case where Bob actively compensates for phase drift
in real time, a fixed choice of phase enables Eve to launch
IR attack as the frame of measurement at Bob matches with
that of state preparation at Alice. But, in the case where Alice
compensates her quadrature data for the phase drift during
the postprocessing and thereby matches with Bob’s frame of
measurement, a single (fixed) quadrature measurement can be
implemented without switching the quadrature. In the next
section, we provide evidence that no switching GMCS proto-
col with single quadrature measurement at an arbitrary choice
of Opp 1s equivalent to GGO2 protocol.

III. ARBITRARY ROTATION IN MEASUREMENT
FRAME OF REFERENCE

Continuing with the discussions of GMCS protocol given
in the previous section, we follow the prepare and measure
(PM)-based description of the protocol. The unconditional
security of the PM-based protocols can be verified by mapping
it to an equivalent of the entanglement-based (EB) protocol. In
the EB scheme, Alice prepares two-mode squeezed vacuum
states (TMSVS), keeps one of the modes with herself, and
sends the other to Bob as in Fig. 1. The covariance matrix
formalism helps to find the respective mutual information
quantities between Alice and Bob, as well as that of Eve
with Alice or Bob. Here, the covariance matrix is obtained by
finding the expectation values of the respective quadratures.
Since Alice’s quadratures are ga and pa, we find the first
entry in the matrix as, (c}i) — (ga)? and similarly for the other

@ ()
Ys x Pa
R . o
. Xg
" Ogob
qA

FIG. 2. (a) Rotated frame of measurement by the receiver Bob.
He always measures along the quadrature % = cosOpen(gp) +
sin O (P ), Where Og, is the angle of the rotation with respect to
gg (as well as ga). (b) After Bob’s announcement of the angle gy,
Alice rotates her frame to coincide with Xg.

elements. The covariance matrix of the TMSVS is,

JVZ— laz>

Vi,

s Vi,
T \WV2 1o,

where 1, o, are the respective Pauli matrices, V is the vari-
ance of the squeezed states. This is for the case wherein
channel transmittivity 7 = 1 and noise & = 0. The corre-
sponding rows (and columns) here represent the variances of
Alice’s quadratures, §a, pa of mode-1, Bob’s quadratures, §g
and pg, of mode-2, such that [§a, pal = [¢B, Ps] = i/2. The
respective quadratures can be perfectly correlated during post-
processing, such that g = gg and py = pg. Bob measures
either both the quadratures of mode-2 simultaneously with a
heterodyne detector, or one of them at random with a homo-
dyne detector. We find that the variance, V(4g) = V(ps) =V,
identical to that of Alice’s quadratures.

Consider the case wherein Bob chooses to perform single
quadrature measurement of the mode-2 throughout the pro-
tocol, at an arbitrary angle of measurement 6, thanks to the
phase drift, as shown in Fig. 2. For convention, we take that he
chooses to measure in the g = cos Opo,(gp) + sin Ogep(PB)
quadrature. While the other quadrature would be y5, with
[*g, ¥B] = 2i, we shall restrict the case to Bob always choos-
ing quadrature X for measurement. In other words, Bob only
acquires the homodyne detector outcome and refers to it as
xg. After Bob’s announcement of the angle 8.y, Alice rotates
her frame to coincide with Xg. However, there could be a
small phase mismatch between Alice and Bob as the phase
is drifting continuously at Bob’s station, which is addressed
in Figs. 3 and 4. In the following, we consider three different
scenarios in which the measurement frame of reference, 0g,p,
is (i) fixed and known to Eve, (ii) fixed and unknown to Eve,
and (iii) varying and unknown to both Eve and Bob.

(D

A. Oy, is fixed and known to Eve

Here we consider the reference frame of measurement is
rotated by a fixed angle 8, and Eve has the knowledge about
the rotation. She is also aware that Bob will be measuring
only one of the quadratures () throughout the protocol run.
In this scenario, Eve can successfully perform a trivial IR
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FIG. 3. Secret key fraction as a function of distance. Here the
angle of rotation is chosen to be 6g,, = 90°. Blue (orange) line
corresponds to the noise £ = 0.0001 (§ = 0.0107, for a phase drift
of 5°).

attack without introducing any error in Bob’s measurement.
Though the variance of the other quadrature (y5) increases
due to eavesdropping, since it is never measured, the pro-
tocol becomes completely insecure. This would be identical
to Eve knowing Bob’s choice of quadrature for each pulse
in the homodyne based conventional CV-QKD protocol. The
requirement of g, being unknown to Eve makes the single
quadrature measurement strategy interesting and secure. We
will analyze this case in the following section.

B. O, is fixed and unknown to Eve

Here, we consider Bob’s reference frame of measurement
is rotated by a fixed angle Ogop, as in the previous case.
Additionally, we take that Eve does not have knowledge of
the angle 6Op,, until the announcement by Bob via public
channel, as in the case of GGO2 of Eve not knowing the
chosen quadrature until announcement. We also assume that
there are proper countermeasures implemented to prevent Eve
from probing the angle, such as an optical isolator at Bob’s
input. So we limit our arguments to a trusted device sce-
nario, and this assumption is equivalent to the one in GG02

_ 1=5km
0.8
1=10 km
, 1=50 km
0.6
, _ 1=100 km
@
<04
0.2
0.0
0 50 100 150

0=|6A-6B| (deg)

FIG. 4. Mutual information between Alice and Bob, as a function
of the relative angle of the frame of references.

protocol, of using countermeasures to check for Trojan-horse-
like attacks [33]. We find the covariance matrix considering
Bob measuring with angle 6., and choosing only X all the
times. The matrix elements Xy, 212, X2, 2o are identical
to that in Eq. (1). However, other entries are different, in that
Y33 = (£3) — (p)?, and so on. Thus the covariance matrix is
found to be,

S = Vi, JVZ 1P )
BEAWIZIPT Vi, + YRR )
as we find that V(g)=V(pg)=V, and where

P = {{cos Ogp, 0}, {— sin Ogop, —1}} and R =
{{0, sin Bgop}, {sin Bgop, 0}}. Also, keeping 6O, =0, we
get Eq. (1).

Since g is unknown to Eve, an IR attack will not be
successful, as the interception would increase the variance
with a high probability, when Bob measures. Thus the excess
noise induced by the attack would lead to termination of
the protocol. Here we consider Eve’s collective attack via
an entangled cloner, wherein she entangles her probe with
mode-2 of the TMSVS sent by Alice to Bob. Eve’s cloner
could be n-mode, and use one of the modes to entangle with
mode-2. However, this can be reduced to Eve using a TMSVS
and using one of the modes to entangle, due to monogamy
of entanglement. Thus we consider Eve’s TMSVS and the
covariance matrix of her entangling cloner, similar to that of
Alice-Bob in Eq. (2), is

Wi, VW2 —10 ) 3)

g =
E («/Wz—lQT Wi, + WHs

where Xg = Xg,g, corresponds to the Eve’s TMSVS
(with E;, representing the respective mode), Q =
{{cos ¢, 0}, {—sin¢g, —1}} and S = {{0, sin ¢}, {sin ¢, 0}},
and ¢ being the angle of measurement by Eve. Assuming that
Eve replaces the lossy quantum channel with a beam splitter
(BS) of transmission T, the symplectic BS [34] acting on the
mode-2 and E; is represented by,

1, 0 0 0

Tas — 0 JT1, J1=T1, 0 @
0 —J/1-T1, JT1, 0
0 0 0 1,

The action of the BS on the joint system of Alice, Bob, and
Eve is described by,

¥ = SpsTape g 6))

with X agg = Xap @ Xg corresponding to the joint system of
Alice, Bob, and Eve.

Using ¥’ in Eq. (A1), we find the reduced covariance
matrix of Alice-Bob as

, (VI AP
Yap = <X+PT Z, ), (6)
and that of Eve is
r 22 erQ

where X, V., Z;, Z, are given in Appendix A.

042406-4



CONTINUOUS-VARIABLE QUANTUM KEY DISTRIBUTION ...

PHYSICAL REVIEW A 112, 042406 (2025)

From Eq. (6), the respective mode variances are, Va =
VI=V(@a) =V(pa)l and Vg =TV + (1 = T)W[=V(Zp)].
For T =1, we obtain Eq. (1). As expected, we find that
V(gs) = V(ps) = V(xs)[= V(Is)]. Since the rotation in the
frame of measurement is a unitary operation on mode-2, the
variance does not change. Thus Bob measures as much vari-
ance in a rotated frame as he would have for the standard §
or p quadrature. After the announcement of 6g,, via public
channel by Bob and establishing the correlation with Alice’s
quadrature data values, they estimate their mutual information
as follows. By choosing Eve’s variance to be W =1 + %
[34], we find Vg = T(V — 1) + 1 + &. Therefore, the signal
variance at Bob’s station is given by, V, = T(V — 1) and the
noise variance is V,, = 1 4 £. Thus, we find the mutual infor-
mation between Alice and Bob to be [35]

1 Vi 1 TV -1
I(A:B) = EIng (1—}-7) = Elogz (1+(1T§))’
3

where £ is the excess noise. Here, we note that the mutual
information between Alice and Bob is identical to that in the
case when Bob performs homodyne measurements along the
conventional (§ or p) quadratures [34].

To quantify the information leaked to Eve, Alice, and Bob
need to estimate x = Sg — Sgjg, Where S(,) = —Tr[xlog(x)]
corresponds to the von Neumann entropy. Given pagg rep-
resents the joint state of Alice, Bob, and Eve, let pag =
Tre(pape) and pg = Trag(pape). Since the von Neumann
entropy depends only on the coefficients of the Schmidt
decomposition (which are found to be identical for pap
and pg [35]), we find that x =Sg — Sgp = SaB — SajB-
To find Spag, we find the symplectic eigenvalues of the
covariance matrix X,5. Similarly, we find Sy by the
symplectic eigenvalues of the covariance matrix Eng, tak-
ing the partial measurements on the covariance matrix as
given in Eq. (B2). The elucidation of the same is given in
Appendix B.

The secret key fraction is thus found to be,

r=BIA:B)—x

TV -1
= glng <1 + (ng)) —8(vy) —gv-) +g(v), (9)

where v, , v_, v are the respective symplectic eigenvalues of
Sap and Sap, given in Eq. (B3) and Eq. (B4). The Fig. 3,
corresponds to the secret key fraction after the public an-
nouncement of 6go, by Bob to Alice. Here the frame of
reference is kept along the pg quadrature. We also include
the possible key rate for a potential phase drift of 5°, that
corresponds to an excess noise of £ = 0.0107 [36]. We note
that this phase drift is assumed to be happening within Bob’s
station. This phase error could be due to inaccurate phase
estimation by Bob, which is fundamentally limited by the shot
noise with the pattern signal measurements. In TLO scheme,
the phase drift is estimated using the pattern signals, which are
comparatively at higher intensity than the QKD signals and
are sent with each block of QKD signals [37-39]. However,
the residual phase mismatch is common in any CV-QKD
system, independent of the receiver architecture and protocol.

In Fig. 4, we plot the mutual information between Alice
and Bob with the variation in the angle of rotation in their
frame of measurements prior to the public announcement of
Ogob by Bob. In particular, similar to Bob, Alice also measures
the variance with rotating her frame of measurement to 6a,
which is independent of Bob’s rotation. The mutual informa-
tion then is found to be

(10)

I(A:B):%logz <1+M>,

1+¢&

similar to the earlier case in Eq. (8), but where V' =
(V, cosOpep)/ cos B is Bob’s variance and V, is Alice’s vari-
ance along 6. We get maximum information for the relative
angle of the frame of references § | Ogop — 04 |= 0, show-
ing perfect coinciding of Alice’s and Bob’s quadratures after
the public announcement. Various distances are considered
that also provides the upper bound on the respective mutual
information.

C. Og,p is drifting, and unknown to Bob and Eve

The practical implementation of CV-QKD experiences ran-
dom drift in 6.}, which is unknown before the measurement
but can be monitored by Bob. The aspect of quantifying
the phase drift in Bob’s measurement is already explored
in various works [24,27,28,40,41]. This rotation is typically
slow compared to the CV-QKD signal generation and de-
tection rate. Specifically, the phase drift inside Bob’s station
could be due to various factors, including thermal effects.
If the phase drift is relatively slow and/or the linewidth
of the laser is narrow, the phase noise within the QKD
data postprocessing blocks is minimal [24]. However, if the
phase drift is quick and impulsive, the phase noise plays
a role in limiting the achievable transmission distance in
CV-QKD [42,43].

In Fig. 5, we plot the graph showing the phase drift inside
Bob’s station (from point A to BS in Fig. 1) being random and
slow. This is experimentally measured, with the data taken
from an asymmetric Mach-Zehnder interferometer, having
100 ns delay between the paths of signal and LO. This in
principle mimics the phase drift inside Bob’s station. We can
see the change in the quadrature values, wherein the output is
measured for certain intervals, as shown. One can think of this
as effectively restarting the measurement afresh at the begin-
ning of each measurement interval. We notice that the phase
drift is random in nature. Additionally, it is also evident from
the figure that the variation of phase drift is slow. In particular,
compared to the QKD repetition rate (MHz), the frequency of
phase drift is happening on the scale of ms (kHz). Therefore,
over a short period of time (< ms), 8., can be treated as con-
stant for a block of quadrature measurements. In other words,
in order to estimate the phase drift by Bob, the clock rate must
be comparatively higher than the rate of the phase drift for
our scheme to work. Bob later discloses 6g.p, for each block
of samples to Alice. This is then equivalent to the previous
case in which the frame of measurement is fixed but unknown
to Eve.
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FIG. 5. Experimentally measured phase drift 0., inside Bob’s
station, from the point A to BS in Fig. 1. The figure shows the
randomness in the phase drift fluctuations along with the fre-
quency of phase drift. We have taken the data with an asymmetric
Mach-Zehnder interferometer, having 100 ns delay between the
two paths: of signal and LO. This in principle emulates the phase
drift due to thermal fluctuations inside Bob’s station in a CV-QKD
implementation.

IV. DISCUSSIONS AND CONCLUSIONS

The GMCS CV-QKD enables Alice and Bob to share se-
cret keys using the amplitude- and phase-modulated coherent
states. Bob randomly switches between the quadratures to
monitor the variance of them. This prevents Eve from eaves-
dropping as she will have to necessarily increase the variance
along certain angle even for the most optimal attack. Here,
we have proposed a modified scheme, wherein the measure-
ment of a single quadrature is performed by Bob along an
arbitrary angle 0o, in the phase space. Bob estimates the
angle 6., and later, during the postprocessing, discloses it
over the authenticated classical channel to Alice. By knowing
the angle of rotation of the frame of measurement, Alice
can apply an equivalent counterrotation (—fp,p), and obtain a
single quadrature value that coincides with that at Bob. The
security of this single quadrature measurement scheme lies in
the fact that Eve (as well as Alice) has no knowledge of the
arbitrary angle 0o, during the quantum states transmission
period. We also show that the eventual key rates with the
proposed modification would yield identical results to that
of GGO2 protocol, specifically when g, is fixed. This is
essentially due to the fact that when Alice’s and Bob’s ref-
erence frames are correlated, the maximum yield is same as
GGO2 protocol. However, as seen in Fig. 3, a phase drift of
5° would correspond to excess noise of & = 0.0107 resulting
in a reduced key. In the simplest case of intercept and resend
attack [44], Eve necessarily would have to squeeze along a
certain angle of the intercepted signal, as she would introduce
noise and increase the variance along that angle. And this will
be observed by Bob as excess noise, and hence cannot evade
her detection.

We consider the case of collective attack by Eve using an
entangled cloner, wherein she entangles an ancillary mode

to the coherent state sent by Alice. Her best strategy would
be to measure her ancilla after the public announcement of
the measurement basis, here the angle 6go,. The announce-
ment of 6., by Bob is equivalent to his announcement of
choice of quadrature for the measurement in GG02 protocol.
Here we map our scheme to an entanglement-based one, such
that Alice prepares a TMSVS state and Eve entangles one
of her modes of squeezed vacuum state with it to extract
information. We notice that the reduction in entanglement
between mode-1 and mode-2 of the TMSVS is correlated
with the difference between the variances of the Alice’s
and Bob’s quadratures, as given in Eq. (6). Thus, any such
attack by Eve would change the variance of mode-2, and
which is quantifiable for estimating the information leakage
to Eve.

Another possible attack by Eve would be having multi-
mode entanglement with mode-2, instead of using TMSVS of
Eq. (3). In this case, Eve would necessarily use an entangled
cloner of higher dimension, so that she can measure along all
the possible values of 0gp. This would be similar to Eve using
multimode in the case of a typical GMCS QKD protocol and
measure along both the quadratures [45]. This would enable
her to get the information before Bob’s announcement of the
measurement quadrature (6g,}, in our case). However, she will
have to squeeze the state along a certain angle and the foot-
print of Eve’s entanglement in mode-2 is inevitable, observed
as the increase of variance V (i) in Eq. (6). Thus, any entan-
glement from Eve would necessarily increase the variance and
this is inevitable. The primary advantage of using multimode
entanglement would be to overcome the hurdle of waiting
for Bob’s announcement. Note that though Eve is enabled
to have a cloner of higher dimension, it is still the collective
attack.

The primary assumption in our scheme is that Bob needs
an arbitrary angle of rotation in his frame of reference, which
Eve has no knowledge of it beforehand. This is similar to
the assumption of having random measurement of one of
the quadrature, which Eve could not possibly influence. The
proposed scheme is shown to be as feasible and secure as
GMCS protocol, under the collective attack by Eve. Also,
the proposed scheme is different from unidimensional CV-
QKD protocols [46—49], in that, the state preparation in these
protocols involve modulation of a single quadrature. Alice
modulates only one quadrature in these protocols, but Bob
measures both the quadratures to verify the uncertainty be-
tween them. In contrast, the Alice setup in our case remains
to be identical to the GG02 protocol, and so is the proposed
scheme more closer to it.

We note here that the single quadrature measurement
scheme in this work is close to that in Ref. [50]. However,
the basis of choice by Bob is continuously drifting for every
hundreds of measurements in the former. In particular, Bob
chooses g, € [0, 277] such that it is continuously chang-
ing. Whereas, in the current work, it can be kept constant
for the whole run. In the GMCS protocol with homodyne
measurement, for the case when Bob always measures in sin-
gle quadrature and later announces the choice, Eve’s success
probability to hide her attack is 50%. One can think of a
similar attack in the present case as well, wherein Eve too
randomly chooses her rotated frame of measurement to be
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FIG. 6. The blue line indicates the normalized information of
Eve with respect to the choice of her measurement angle. The orange
line indicates the normalized probability of Bob finding about Eve’s
presence. Here the normalization is based on the phase space splicing
by Bob, with the angle of measurement is taken to be 60°.

an arbitrary angle. But this is a nonoptimal attack, as Eve’s
success rate reduces with the increase in the resolution of
the phase space of Bob’s apparatus. Ideally, the probability
to detect Eve’s presence is

1
Pgob = — ) pi, (11)
= Ny 2

where p; is the respective probability of the phase space
resolutions and Ny, is the resolution-dependent normalization
factor. We note that Eve is unaware of Bob’s angle of rota-
tion in frame of reference (and the phase drift), until Bob’s
public announcement of the same. Let the arbitrary angle of
measurement by Eve be 6g. Thus, only at the angle 6., = 6,
pj = 0. As |0gop — Og| increases, Eve’s information decreases
and Bob’s probability to detect her increases.

Note that the above-mentioned attack is neither optimal
nor realistic. Eve could further reduce Py if she performs
this nonoptimal attack probabilistically. In particular, only on
a fraction f of the total transmissions, she could do this attack
along a random angle. The primary advantage of this attack
is that the footprint that she leaves is a fraction of the earlier
case. That is, the probability of detection by Bob in this case
would be Py, = f - Pgob. However, the information that she
gets is also reduced by the same factor, as ideally the success
probability is equal for all the pulses. Below we quantify the
normalized information that Eve would get and the corre-
sponding probability of Bob finding about Eve’s presence, for
f=1L

In the above case, let the resolution in the phase space be
% for both Bob (and Eve). We find that the corresponding
coefficient of the quadrature value for Eve is a function of
cos (g £ Opop), With £ indicating the relative angle. Thus,
the correlation between information leakage due to Eve’s
measurement and Bob’s probability of finding squeezing by
Eve is given in blue in Fig. 6. Here the normalization is
due to the resolution in phase space. Let us consider the
usual squeezing parameter quantifying the reduced variance

v 4
with V = 101" = =2 Also, x = re» is the squeezing

parameter along the direction of 6go,. Thus, if we consider
a total squeezing of Vgg = 10 dB by Eve, which corresponds
to the squeezing parameter being x = 1.15¢" . Thus, we find
the probability of detecting Eve’s presence to be,

o 2o
Pr=— , (12)
27 | [cos( + (0 + Opob)/2)]
where Vg is the limiting factor for shot-noise measurement
of Bob’s detector. This is given in orange in Fig. 6. Thus,
the success probability of Eve would be much lower in this
case, and is quantified by the resolution of phase space and the
respective weightages. Here we note that as the resolution of
the phase space becomes finer, Eve’s probability of concealing
her presence decreases.

The current work limits its arguments and results to the
Gaussian distribution-based protocol. The necessity of switch-
ing between the two quadratures is relaxed in a homodyne
detection scheme and the protocol is shown to be identical
to GGO2 protocol [20]. The announcement of the angle of
rotation by Bob is similar to that of announcement of chosen
quadrature in the latter protocol. This works for the LLO-
based systems as well as the TLO-based system used in this
analysis. Conventionally, for LLO scheme, a homodyne de-
tection setting is used for signal and heterodyne for reference
pulses [24]. In TLO scheme, the phase drift is estimated
using the pattern signals, which are comparatively at higher
intensity than the QKD signals and are sent with each block
of QKD signals [37-39]. The homodyne detection of signal in
LLO scheme is particularly for reaching maximum transmis-
sion distance, however, it still involves switching between the
two quadratures. Thus, our scheme avoids the use of phase
modulator for homodyne detection of the signal, in GG02-
like protocols, regardless if a TLO or LLO is implemented.
Thus the proposed modification simplifies the protocol for
CV-QKD systems that have homodyne detection setting as it
overcomes the necessity of a randomly varying phase mod-
ulator at Bob’s station. This is highly beneficial for practical
implementation, especially in free-space CV-QKD with Gaus-
sian modulation protocol.

ACKNOWLEDGMENTS

The authors thank Frédéric Grosshans for the useful dis-
cussions. VN.R, T.S, and R.K acknowledge the funding
support from EPSRC Quantum Communications Hub (Grant
No. EP/T001011/1). E.T.H.M. thanks the School of Physics,
Engineering and Technology, University of York for PhD
funding.

DATA AVAILABILITY

The data that support the findings of this article are openly
available [1].

APPENDIX A: COVARIANCE MATRIX

To find the covariance matrix of a two-mode squeezed vac-
uum states (TMSVS), we follow the standard formalism. In
particular, each element of the covariance matrix at different
stages are found as the follows. The diagonal ones are found
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using (92) — (Q,)%, where Q is the quadrature chosen for
measurement in mode n. The off-diagonal elements are simi-
larly found, except it is the average of the expectation values
of the product of the modes as 1/2((Q, Oy} + (D On)).

We find that the joint matrix of system ABE after Eve’s
entanglement with mode-2 to be,

Vi, X,P  XP 0
;a2 =z V.0
Y= Xx_PT z Z, y+Q , (Al
0 Yo" Yo' Wi+ 530S
where,

X =T(V2-1)
Xo=—/0-T)V2-1),
Yo =/a-T)Ww2-1),
Vi =VTW2-1),

Z=yT(1-T)[Wl, — V1, +R)],
Z=TVIL+R)+ 1 -T)WI»),
Z, =1 -=-T)VI,+R)+TWI,).

APPENDIX B: QUANTIFYING EVE’S INFORMATION

Given Alice prepares TMSVS and keeps one mode to
herself while sending another to Bob, we find that the com-
mutation relation between them would be,

(X, £kl = 202, B1)
where Q = &{{0, 1}, {—1,0}} is a 4x4 standard antisym-

metric matrix, and X = (¢a, Pa, 4B, B )T is the displacement
vector. When the covariance matrix is of the form

V=<$~§) (2)

with A = AT and B = BT, the symplectic eigenvalues are
given by,

\/u,:l:,/,uz — 4 (detV)
V4 = )

(B3)

where p := (detA) + (detB) + 2(detC) and det(-) is the deter-
minant. Thus, the von Newmann entropy of X} is given by
Sap = g(v3) + g(v_), where

o= (F)om (5 (5)(5),

Similarly, we find Sz by the symplectic eigenvalues of
the covariance matrix X} p, taking the partial measurements
on the covariance matrix of Eq. (B2). In particular, for a
homodyne detection at Bob’s station, we define the partial
measurement of mode-2 transforming mode-1 as,

s =A—C(ILBI,)"'C", (B4)

where I1, = {{cos@, 0}, {0, sinf}} being the measurement
setting of Bob and (-)~! indicating the pseudoinverse. Thus,
we find the symplectic eigenvalue v of X, and Sajp = g(v).

APPENDIX C: GENERALIZED CASE

All the earlier cases involves Alice measuring in standard
quadratures and Bob in his rotated frame of measurement.
However, in principle, Alice too might measure in an arbi-
trary rotated angle and later establish the correlation of the
angle with Bob. This would be a general case, wherein the
measurement of TMSVS is 04 for mode-1 and 65 for mode-2.
The covariance matrix for such a system is

_— v, + YR VIR n
BTN WESIPT v 4+ YR, )

where R| = {{0,sinfa}, {sin6,, 0}}, P = {{CS, —sinba},
{—sin0Bg, —1}}, and R; = {{0, sin 6}, {sin g, 0}}, withCS =
cos 04 cos g — sin B sin Og. The consequent joint system of
ABE would be similar to Eq. (A1), but with different vari-
ances. However, after the announcement of 0z and Alice
rotating her frame to match, the respective mutual information
and leaked information would be identical to the earlier case.
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