1 A Circadian Morning Complex Modulates Far-Red Light Signaling

2 in Arabidopsis

3

- 4 Chen Su^{1,2}, Yumei Qin^{1,2}, Yingjun Yu^{1,2}, Yan Wang^{1,2}, Yuqing He^{1,2}, Seth J. Davis^{3,4*},
- 5 Lei Wang^{1,2,5,6*}

6

- ⁷ Key laboratory of Plant Molecular Physiology, Institute of Botany, Chinese
- 8 Academy of Sciences, Beijing, 10093, China
- ⁹ University of Chinese Academy of Sciences
- ³ University of York, Department of Biology, Heslington, York YO10 5DD, UK
- ⁴ State Key Laboratory of Crop Stress Biology, School of Life Sciences, Henan
- 12 University, Kaifeng 475004, China
- ⁵ China National Botanical Garden, Beijing 100093, China
- River Delta, National Center of Technology Innovation for Comprehensive Utilization
- of Saline-Alkali Land, Dongying 257300, China
- *Corresponding author: seth.davis@york.ac.uk and wanglei@ibcas.ac.cn
- Running title: Clock Morning Complex feedback regulates far-red light signaling

Abstract

The plant circadian clock coordinates internal processes with daily and seasonal environmental changes by interacting with prevalent light cues. However, how the circadian clock feedback regulates light signals remain largely elusive. Here, we identify that the clock regulator TIME FOR COFFEE (TIC), which interacts with the core clock components CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) to form a "Morning Complex" in the nucleus and co-repress numerous genes, particularly at dawn. Intriguingly, the MC inhibits *PHYA* and other phyA signaling components at dawn through binding to their promoters. Mutants lacking CCA1 and LHY show increased sensitivity to far-red light, similar to *tic* mutants, highlighting the cooperative role of TIC, CCA1, and LHY in regulating light-inhibited hypocotyl growth. Altogether, these findings indicate that the circadian MC is a key complex, feedback regulates light signal and mediates multiple biological processes at dawn to ensure plant fitness.

Keywords: circadian morning complex, transcriptional inhibition, far-red signaling, hypocotyl growth

Introduction

38

39 Plants face significant challenges during growth and development as they cannot move to escape environmental changes, which requires them to evolve more 40 41 complicated mechanisms to adapt. Light is one of the predominant external stimuli for 42 plant growth, while the circadian clock acting as an endogenous timekeeper has multiple crosstalk with it ¹⁻⁴. There are multiple interplays between the clock and 43 far-red (FR) light signaling ⁵. phytochrome A (phyA), one of five phytochromes, 44 45 mediates the perception of FR light input to the circadian clock under FR/dark cycles and alters clock periodicity ^{6,7}. In turn, both the transcript and protein abundance of 46 phyA are repressed during the day, accumulating during the night, with transcript 47 peaks late at night and protein peaks just before dawn ⁸⁻¹⁰. Furthermore, the clock 48 49 regulator TIME FOR COFFEE (TIC) acts as a negative factor for phyA to regulates PHYA transcription, phyA protein stability, and photobody formation, thus mediating 50 hypocotyl growth ^{11,12}. Therefore, the feedback regulations are crucial for plants to 51 synchronize growth. 52 TIC is a clock regulator, peaking in activity before dawn ^{11,13}. Its mutation shows a 53 significantly shortened clock period and causes expression defects in morning genes, 54 including LHY 13. In addition to its role in regulating the circadian clock, TIC also 55 plays roles in development and stress responses ¹⁴⁻¹⁶. For example, we have reported 56 57 that nuclear localized TIC interacts with the co-repressor TOPLESS (TPL) to inhibit the expression of a subset of genes, including PHYA and other far-red light signaling 58 components like FHY1 and FHL 12,13. The transcription factors recruited by TIC to 59 participate in this process are still unknown, and the mechanism by which TIC 60 61 regulates other far-red light signaling components remains unclear. In Arabidopsis, two dawn-expressed Myb-like transcription factors, CIRCADIAN 62 CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY), 63 are reported as morning components of the circadian clock ^{17,18}. CCA1 and LHY, 64 which colocalize in the nucleus, can form homodimers and heterodimers ^{19,20}. They 65 66 bind a promoter element called the evening element (EE) to repress genes expression, including PSEUDO-RESPONSE REGULATOR (PRR), GIGANTEA (GI) and the 67

members of the evening complex (EC) ²¹⁻²⁴. ccal lhy seedlings display shorter 68 hypocotyl regardless of photoperiod, possibly due to the alternation of PIF4 and PIF5 69 expression patterns ²⁵. In addition, the expression of *CCA1* and *LHY* can be induced 70 by light to initiate the rhythmic pace ^{19,26,27}. Recently, FAR-RED ELONGATED 71 HYPOCOTYL3 (FHY3) and its paralog FAR-RED IMPAIRED RESPONSE1 (FAR1) 72 have been found to be essential for activating CCA1 expression through binding to its 73 promoter ^{19,28}. Conversely, CCA1 inhibits the transcriptional activity of FHY3 on 74 FHY1 and disrupts the downstream far-red signaling pathway, resulting in the 75 shortened hypocotyl phenotype of *cca1* mutants in constant far-red light ²⁹. 76 While CCA1/LHY function as parts of a larger protein complex in plants, other 77 components have remained unidentified ¹⁹. For example, DE-ETIOLATED 1 (DET1), 78 79 a transcriptional co-repressor, can interact with CCA1/LHY to bind and repress CCA1/LHY target genes at dawn ³⁰. Nevertheless, the *det1-1* mutant could not restore 80 proper circadian oscillation of TOC1 and GI, which were suppressed by CCA1-OX. 81 This has been interpreted that other not yet identified co-repressors contribute to the 82 transcriptional repression activities of CCA1/LHY 30. Additionally, the cca1 tic and 83 lhy tic double mutants exhibit shorter circadian periods under both diurnal and 84 constant light conditions, similar to the tic mutants 13. Hence, there are genetic 85 interactions between TIC and CCA1/LHY in clock regulation. 86 87 In this study, we found that TIC interacts with CCA1 and LHY, forming a "morning complex" that coordinately co-represses genes involved in clock regulation, growth, 88 and stress responses. This complex specifically inhibits PHYA and its signaling 89 90 components at dawn through CCA1/LHY directly binding to their promoters. This 91 works to regulate hypocotyl growth under far-red light. Our results reveal a key complex in which the clock feedback regulates light signals, enhancing plant fitness 92 93 by matching adaptive growth responses with the optimal phototransduction timing.

96

TIC physically interacts with CCA1 and LHY

Our previous study found TIC negatively regulates *PHYA* at the transcriptional level, 97 98 but the transcription factors recruited by TIC involved in this process were not reported ¹². Given that CCA1/LHY are the morning-phased clock components that 99 genetically interact with TIC 13, we explored whether they are the key factors 100 101 recruited by TIC. First, we tested for physical interactions between TIC and CCA1/LHY proteins. Using transient co-expression of GFP-TIC and CCA1-HA or 102 103 LHY-HA in N. benthamiana leaves, we detected the co-immunoprecipitation of CCA1-HA or LHY-HA with GFP-TIC (Fig. 1a). Next, we performed bimolecular 104 105 fluorescence complementation assays (BiFC) in N. benthamiana leaves to examine 106 the subcellular localizations and interactions between TIC and CCA1/LHY. As expected, we observed strong nuclear yellow fluorescence protein signals in nuclear 107 in the presence of TIC-nYFP and CCA1-cYFP or LHY-cYFP (Fig. 1b). Next, we used 108 109 the split-luciferase (SLC) imaging analysis confirmed the interaction between TIC and 110 CCA1/LHY in tobacco leaves. (Fig. 1c). Hence, we validated the interaction between TIC and CCA1/LHY in *Arabidopsis*. The use of CCA1 endogenous antibody enables 111 the detection of weak band in the IP from TICpro:GFP-TIC seedlings, while the HA 112 113 antibody also allowed band detection in IP from TICpro:GFP-TIC/LHYpro:LHY-HA hybrid seedlings(Supplementary Fig. 1). These results indicate that TIC interacts with 114 CCA1 and LHY under native condition. To further define the domains of TIC 115 mediating the interaction. we conducted co-immunoprecipitation assays by 116 co-expressing GFP-TIC-N or GFP-TIC-C with CCA1-HA or LHY-HA in N. 117 benthamiana leaves. The results showed a strong interaction between GFP-TIC-N and 118 CCA1-HA or LHY-HA (Fig. 1d). Slightly different from the co-IP results, BiFC and 119 120 SLC assays showed that both TIC-NT and TIC-CT could interact with CCA1/LHY, 121 with a stronger interaction observed for TIC-NT in the BiFC assay (Supplementary 122 Fig. 2). Taken together, these results indicate that TIC seems to preferentially interact 123 with CCA1 and LHY in the nucleus through its N-terminus, distinct from its

124

125

TIC functions with CCA1 and LHY at dawn

To further investigate whether TIC and CCA1/LHY function together, we analyzed 126 previously reported datasets. By overlapping ChIP-seq data of CCA1 or LHY with 127 RNA data of ccal lhy ^{22,31}, we obtained 104 CCA1-suppressed genes, 10 128 129 CCA1-activated genes, 147 LHY-suppressed genes, and 9 LHY-activated genes 130 (Supplementary Fig. 3). These results indicated that CCA1/LHY in Arabidopsis primarily act as transcriptional inhibitors in the morning. We compared our up-DEGs 131 132 of tic-2 at pre-dawn with CCA1 and LHY directly repressed targets, and found that over 61% (64/104) of CCA1-repressed genes and 55% (81/147) of LHY-repressed 133 genes were markedly increased in tic-2 at pre-dawn ¹². Moreover, 44 genes were 134 co-inhibited by CCA1/LHY and TIC, indicating that CCA1 and LHY synergistically 135 regulate a large set of genes with TIC, while also having distinct functions (Fig. 2a). 136 To support the specificity within this regulation, we compared RNA-seq data of tic-2 137 with MYC2 direct binding targets ^{32,33}; MYC2 is a transcription factor that can also 138 139 interact with TIC ¹⁶. These Venn diagrams showed that only 15.5% (13/84) or 7.1% (6/84) of MYC2 direct repressed genes were induced in tic-2 at pre-dawn or post-dusk, 140 and 5.2% (12/231) or 4.8% (11/231) of MYC2 direct induced genes decreased in tic-2 141 142 at pre-dawn or post-dusk (Supplementary Fig. 4). This provided support that CCA1 and LHY, rather than MYC2, are the primary transcription factors recruited by TIC to 143 form a functional complex. 144 Gene ontology (GO) analysis of these 44 co-repressed genes demonstrated that the 145 terms "circadian rhythm" and "rhythmic process" were significantly enriched (Fig. 146 2b). These are consistent with previous findings indicating genetic interactions 147 between TIC and CCA1/LHY in regulating clock ¹³. Additionally, the biological 148 processes "response to temperature stimulus", "response to light stimulus", and 149 150 "response to stress" were also enriched (Fig. 2b), supporting that TIC and CCA1/LHY 151 are coordinately involved in regulating light signaling and stress response. Heat map 152 analysis specifically revealed the degree to which 44 co-inhibited genes increase in

both ccal lhy and tic-2, including clock components PRR5, PRR7, EARLY FLOWERING 4 (ELF4), GI, and others ², growth regulator CCG-BINDING PROTEIN 1 (CBP1) 34, COLD REGULATED GENE 27 (COR27) 35, COR28 36, and others, photoreceptor FLAVIN-BINDING, KELCH REPEAT, F BOX 1 (FKF1) 37, stress regulators DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN 2 (DREB2A) 38, DREB2B 39, and others (Fig. 2c). Next, we confirmed the expression changes of several genes in the cca1-1 lhy-20 and tic-2 mutants using quantitative reverse transcription PCR (qRT-PCR). We found that the transcript levels of PRR5, PRR7, CBP1, DREB2A, DREB2B, and FKF1 at ZT0 were consistent with those in Fig. 2 C (Fig. 2d), whereas the changes of these genes expression at ZT12 in the cca1-1lhy-20 and tic-2 mutants were not concordant (Supplementary Fig. 5), further implying that the three form a complex mainly at dawn to co-suppress targets expression.

The morning complex inhibits PHYA and its signaling components through

binding to their promoters

To understand the physiological role of CCA1 and LHY in TIC regulating *phyA* negatively, we measured the hypocotyl growth response of *cca1-1*, *lhy-20*, *cca1-1 lhy-20* mutants under constant far-red light or constant dark conditions. The *cca1-1*, *lhy-20* single or double mutants showed slightly shortened hypocotyls under a range of continuous far-red (FRc), but not in continuous darkness (Fig. 3a, b and Supplementary Fig. 6a, b), similar to *tic* mutants. We also generated their over-expressing lines in Col-0 background to test the hypocotyl phenotypes. And CCA1-OE and LHY-OE transgenic seedlings displayed longer hypocotyls under a range of continuous far-red (FRc), but not in continuous darkness (Fig. 3c, d and Supplementary Fig. 6c, d), which is consistent with previous investigation ²⁹. Taken together, CCA1 and LHY positively regulates far-red light-mediated hypocotyl growth. Meanwhile, we examined the expression of *PHYA* in *cca1-1*, *lhy-20* single or double mutants, and found that transcript levels of *PHYA* in the double mutant were significantly increased compared to the single mutants (Fig. 4a), suggesting functional

182 redundancy in transcriptional inhibition of PHYA by CCA1 and LHY. Moreover, the 183 expression of PHYA was significantly induced in mutants at pre-dawn, not post-dusk (Fig. 4a), which is also what is seen in *tic* mutants ¹², implying that the morning 184 complex, consisting of TIC, CCA1 and LHY, functions together in repressing PHYA, 185 186 thus regulating hypocotyl growth under FRc. 187 To further substantiate our hypothesis that TIC function in FR signaling necessitates CCA1 and LHY action, we further analyzed the S4, S5, and S6 regions of the PHYA 188 promoter, with which TIC associates ¹², identifying an EE-like element (AAAATATC) 189 or a MYB element (ATATCT) in the S4 or S5 region of the PHYA promoter, directly 190 bound by CCA1 and LHY (Fig. 4b, upper panel). Electrophoretic mobility shift assay 191 (EMSA) showed that both purified GST-tagged CCA1 and LHY proteins, but not the 192 193 GST alone, bound to the EE-like element in vitro within the S4 region of the PHYA promoter, and GST-CCA1 also can bind to the MYB element in the S5 region (Fig. 4b, 194 lower panel). Unlabeled probes could compete with the binding efficiently (Fig. 4b, 195 lower panel), supporting that CCA1 and LHY directly bind to the promoter of PHYA. 196 197 Chromatin immunoprecipitation (ChIP)-qPCR assays using GFP-CCA1/LHY transgenic materials at pre-dawn verified these results. And the results, normalized 198 199 using APX3 as a control, demonstrated that the amplicons containing EE-like element or MYB element within PHYA promoter could be prominently enriched by 200 201 GFP-CCA1/LHY, but not in the Col-0 control (Fig. 4c). Perhaps the subtle differences 202 between ChIP-qPCR data and EMSA results are due to the heterodimers formed by CCA1 and LHY in vivo, thus co-regulating downstream targets ^{19,20}. 203 Additionally, TIC was reported to repress other far-red light-signaling components 204 including FHY1 and FHL 12. Whether CCA1 and LHY are also involved in this 205 process, we first examined the transcript levels of FHY1 and FHL in cca1-1, lhy-20, 206 and cca1-1 lhy-20 mutants at pre-dawn and post-dusk. In this, we found that the 207 expression of FHY1 and FHL also increased in the double mutant and predominantly 208 increased at pre-dawn, not post-dusk (Supplementary Fig. 7a), implying CCA1 and 209 210 LHY worked redundantly with TIC in repressing other far-red light signaling factors. Furthermore, the analysis of FHY1 and FHL promoters were conducted and several 211

212 cis-elements were discovered (Supplementary Fig. 7b). EMSA assays demonstrated 213 that GST-CCA1 and GST-LHY, but not GST control, directly bound to the promoters 214 of FHY1 and FHL, containing EE element (EE, AAAATATCT), EE-like element (EEL, AATATCT) and CCA1-binding site (CBS, AAAAATCT) (Supplementary Fig. 215 216 7c). ChIP-qPCR assays with GFP-CCA1/LHY transgenic seedlings collected at ZT0 validated these results. The relative enrichments normalized by APX3 data displayed 217 218 significant enrichment at the amplicons of EE elements or CBS in the FHY1 and FHL 219 promoters by GFP-CCA1/LHY (Supplementary Fig. 7d). 220 Given that CCA1 and LHY exhibit transcriptional inhibition and binding to PHYA and other far-red light signaling components in the morning, we further investigated the 221 222 roles of TIC-CCA1/LHY complex using a transient expression assay in Nicotiana 223 benthamiana leaves. PHYApro:LUC co-expressed with GFP-CCA1/LHY or GFP-TIC and GFP-CCA1/LHY in 5-week N. benthamiana leaves, with pGUS-HA as a 224 reference plasmid, found that the expression of GFP-CCA1/LHY can repress the 225 promoter activity of PHYA relative to GFP control (Fig. 4d-f). Moreover, 226 227 bioluminescence signals of the PHYA promoter were further weakened by co-infiltrating GFP-TIC and GFP-CCA1/LHY (Fig. 4d-f). To validate these findings 228 229 in Arabidopsis, we performed similar transient expression assays using protoplasts derived from Col-0 and the tic-2 mutant. Expression of CCA1-HA and LHY-HA in 230 231 Col-0 protoplasts markedly repressed *PHYA* transcription, whereas these repressions 232 were attenuated in tic-2 protoplasts (Supplementary Fig. 8). These results suggest that 233 TIC may enhance the transcriptional repression of *PHYA* by CCA1/LHY. To further explore how TIC and CCA1/LHY functionally contribute to each other's 234 235 repression of PHYA transcription, we employed a transient expression system in 236 Nicotiana benthamiana to assess whether co-expression of GFP-TIC could affect the 237 binding of CCA1/LHY to the PHYA promoter. The results showed that both experimental groups exhibited clear enrichment at the S4 and S5 regions of the PHYA 238 promoter compared to the control, which is consistent with our earlier observations. 239 240 However, the binding of LHY-HA to the PHYA promoter in the presence of GFP-TIC was comparable to that observed when co-expressed with the negative control 241

GFP-TOC1 (Supplementary Fig. 9a). To ensure the validity of the results, we confirmed comparable protein expression levels across these samples, thereby minimizing potential bias due to differential protein accumulation (Supplementary Fig. 9b). Based on these findings, we propose that TIC is unlikely to enhance CCA1/LHY-mediated repression of *PHYA* solely by increasing their recruitment to the PHYA promoter. Conversely, we performed ChIP assay in Arabidopsis using the TGT/lhy-20 seedlings to evaluate whether CCA1/LHY are required for TIC association with the PHYA promoter. The results showed that TIC enrichment at the S5 region was not significantly altered in the absence of LHY (Supplementary Fig. 9c), suggesting potential functional redundancy between CCA1 and LHY. Nonetheless, we cannot rule out the possibility that TIC may still associate with the PHYA promoter independently of both CCA1 and LHY, as TIC might function as a scaffold protein that recruits many other transcription factors.

TIC is epistatic to CCA1/LHY in mediating FR-repressed hypocotyl elongation

Our findings demonstrated that CCA1 and LHY can interact with TIC to negatively regulate *PHYA* and other far-red light-signaling components by binding to their promoters. Since the *cca1-1 lhy-20* double mutant demonstrated a modestly shortened hypocotyl length under far-red light, which is similar to *tic* mutants, we sought to investigate the genetic relationship between TIC and CCA1/LHY. Therefore, we obtained *cca1-1 lhy20 tic-2* triple mutant after genetic crossing and then examined the hypocotyl growth of *cca1-1 lhy-20*, *tic-2*, and *cca1-1 lhy-20 tic-2* in response to FRc. Consistent with our previous report, *tic-2* mutant seedings displayed significantly shortened hypocotyls under FRc ¹², while *cca1-1 lhy-20* showed slightly shorter hypocotyls than Col-0 (Fig. 5a, b). Importantly, the hypocotyl length of *cca1-1 lhy-20 tic-2* in FRc was comparable to that of *tic-2* mutant (Fig. 5a, b), suggesting TIC is epistatic to CCA1/LHY in mediating FR-repressed hypocotyl elongation. Moreover, we examined the hypocotyl phenotypes of these relevant mutants under continuous light, long-day, and short-day conditions at a light intensity of 40 μmol m⁻² s⁻¹. The *cca1-1 lhy-20 tic-2* triple mutant exhibited a significantly shortened hypocotyl under

271 all tested light conditions, without showing an additive effect (Supplementary Fig. 10). 272 Notably, under short-day condition, its phenotype closely resembled that of the ccal-1 273 lhy-20 double mutant (Supplementary Fig. 10). These results suggest that the Morning Complex may act through a distinct mechanism to coordinately regulate hypocotyl 274 elongation in a photoperiod-independent manner. Finally, we examined the transcript 275 levels of PHYA, FHY1, and FHL in cca1-1 lhy20 tic-2 at ZT0 and ZT12. As 276 277 previously detected, PHYA and FHY1 transcripts markedly increased in cca1-1 lhy-20 278 and tic-2 mutants at ZTO, and FHL showed a modest rise in cca1-1 lhy-20, roughly one-fold higher than in Col-0 at ZT0 (Fig. 5c). Such alterations were restricted to ZT0 279 and were absent at ZT12 (Fig. 5c). These transcript levels in cca1-1 lhy-20 tic-2 triple 280 mutants at ZT0 were also significantly increased, which were consistent with those in 281 282 tic-2 (Fig. 5c). Notably, FHY1 expression in the triple mutant was more similar to that in tic-2 than to the higher levels seen in cca1-1 lhy-20, suggesting that TIC may play a 283 more dominant role than CCA1/LHY in regulating genes involved in far-red light 284 285 signaling. Furthermore, FHY1 expression at ZT12 was significantly reduced in both 286 tic-2, implying that TIC may also facilitate gene activation at certain time points, possibly through the recruitment of other transcription factors or chromatin-modifying 287 288 components. Collectively, these results suggested that the transcriptional inhibition of these genes by TIC and CCA1/LHY are in the same pathway at pre-dawn. The 289 290 inference was further confirmed by the expression of other genes co-regulated by the 291 complex in the cca1-1 lhy-20 tic-2 triple mutants, such as PRR7, CBP1, DREB2A, 292 DREB2B, and FKF1 (Supplementary Fig. 11). In contrast, PRR5 expression level in 293 cca1-1 lhy-20 tic-2 triple mutants displayed an additive patter at ZT0 (Supplementary 294 Fig. 11), which supports that TIC and CCA1/LHY play different roles in inhibiting a 295 subset of given gene targets. Overall, we concluded that TIC-CCA1/LHY functions as a "morning complex", 296 repressing the expression of many genes involved in key biological processes, notably 297 those in morning-related light perception. PHYA and its signaling pathway 298 299 components are the main targets of the morning complex, providing the mechanism of 300 circadian gating of FR regulation at dawn, thereby functioning as negative regulators

of hypocotyl photomorphogenesis under constant far-red light (Fig. 5d). To explore whether the morning complex might function in a broader range of plant species, we conducted further investigations The evolutionary relationships analysis of TIC, CCA1, and LHY revealed that all three genes originated early in land plant evolution, and these genes are highly conserved among angiosperms and exhibit clear divergence between monocot and dicot lineages (Supplemental Fig. 12a and b). Then we found CCA1/LHY showed a conserved dawn peak in Arabidopsis, alfalfa, maize, and rice, whereas TIC displayed relatively constant expression levels throughout the day (Supplemental Fig. 13). These patterns suggest a conserved co-expression and potential functional association between TIC and CCA1/LHY in diverse plants. Although it remains unclear whether TIC possesses conserved functional domains, some of its functions appear conserved in crops. For instance, TIC regulates jasmonic acid (JA)-mediated biotic stress responses in Arabidopsis, and this role is maintained in monocot species. Moreover, the structural domains of CCA1 and LHY are highly conserved across diverse plants and remain functionally involved in circadian regulation and related biological processes ^{40,41}. Collectively, these findings suggest that TIC and CCA1/LHY likely participate in a conserved circadian clock-mediated light signaling pathway across species.

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

Discussion

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Circadian clocks are evolutionarily conserved molecular mechanisms that synchronize physiology and metabolism with the external environment. The crosstalk between circadian components and light signaling is critical for plants growth. Here, we demonstrated that there is a morning complex that co-regulates various biological processes, and plays a crucial role in regulating light response at dawn. PHYA and its signaling components are major repressive targets of the morning complex that mediates its activation of FR-inhibited hypocotyl growth. The morning complex, together with light, PIFs, and other regulatory factors, coordinates a rhythmic transcriptional pattern in which PHYA mRNA levels are subsequently downregulated during the day, and gradually rise to a peak just before dawn, thereby enabling PHYA to act as a dawn and photoperiod receptor. Our study showed that CCA1 and LHY possess transcriptional inhibitory ability on numerous targets (Fig. 2). However, it has been debated whether CCA1/LHY act as the transcriptional repressors or activators. The phenotypes of CCA1-SRDX which produce a dominant negative transcriptional repressor and CCA1-OE transgenic plants are not exactly the same ⁴³, and in rice, OsCCA1 has been reported to induce ABA signaling components through binding to their promoters 44. Consistent with this complexity, our results show that loss of TIC alone has a stronger impact on PRR7 than the loss of CCA1/LHY or all three factors combined (Supplementary Fig. 11). This observation raises the intriguing possibility that, although CCA1/LHY normally repress PRR7 at ZT0, they may act as positive regulators of PRR7 at the same time independent of TIC. Thus, while the mechanism underlying the transcriptional function of CCA1/LHY remains unclear, we propose that their activities may depend on the partners within the transcriptional complex. It was reported that CCA1/LHY are components of a 440 kD complex in plants ¹⁹. Here, we reported that CCA1 and LHY interact with TIC (Fig. 1), which also interact with co-repressor TPL ^{12,45,46}. As TIC is about 165 kD by itself, and that CCA1 and LHY would be dimers of ~140 kD, and TPL is about 125 kD, thus a TIC/TPL/CCA1/LHY-complex is very close to 440 kD.

Although CCA1 and LHY do not contain the EAR (ethylene-responsive element binding factor-associated amphiphilic repression) motif (LxLxL) which can be an interaction motif to interact with TPL ⁴⁵, we could readily detected their interactions through Co-IP assays (Supplementary Fig. 14). One possibility is that TIC functions as a bridge the two parts to constitute a complete co-inhibitory complex that functions at dawn (Fig. 5c). In that, TIC coordinates transcriptional repression, akin to the role of ELF3 in the evening complex. Moreover, we observed that H3K9 acetylation at the MC-binding regions of the PHYA promoter was significantly elevated in ccal lhy and tic mutants compared to Col-0 (Supplementary Fig. 15a), suggesting that the recruitment of TPL may render histone acetylation dynamics essential for the transcriptional repression activity of the morning complex. We next examined the effects of TSA treatment on PHYA transcript levels at pre-dawn and hypocotyl elongation under far-red light. In Col-0, TSA significantly induced PHYA expression and suppressed hypocotyl growth. Although similar trends were observed in ccal-1 lhy-20 and tic-2, both the induction of PHYA and the inhibition of hypocotyl elongation were markedly weaker (Supplementary Fig. 15b, d and e), possibly due to inherently higher histone acetylation levels leading to saturated regulation, or it may indicate that the morning complex partially relies on HDAC activity to regulate pre-dawn PHYA transcription and far-red light-mediated hypocotyl growth. Regardless, TPL plays an important role in this process, as the elevated pre-dawn PHYA expression and shortened hypocotyl phenotype under far-red light in the tpl-1 mutant were not significantly affected by TSA treatment (Supplementary Fig. 15c, f and g), indicating that TPL, the MC component, is essential for HDAC-mediated transcriptional repression and hypocotyl regulation. Previous studies have suggested that regulators such as HY5, JAZ1, and CCA1 modulate downstream far-red light signaling indirectly by interfering with FHY3's transcriptional activation of FHY1/FHL^{29,47,48}. In contrast, our findings reveal that CCA1/LHY can directly bind to the promoters of PHYA, FHY1, and FHL to repress their transcription, indicating a direct regulatory role that was previously unrecognized. Besides, both CCA1/LHY and phyA can interact with TIC, although

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

the interaction regions are different. And it is unknown whether CCA1/LHY is involved in TIC regulation of phyA abundance and photobodies formation. Hence, the significant reduction of phyA-GFP photobodies in CCA1-OE etiolated seedlings may not only because of decreased FHY1 level caused by FHY3 ²⁹. Collectively, it will be a fascinating work to analyze the composition and formation of phyA photobody like phyB, which could help to further understand this interaction network between light and the clock. Flowering is a vital physiological process in plants. The early-flowering phenotypes of ccal lhy double mutants imply that CCA1 and LHY play negative factors in flowering regulation ⁴⁹, while TIC positively regulates flowering, due to the late-flowering phenotypes of tic mutants ^{12,14}, suggesting that they play opposite roles in regulation of flowering. However, decreased expression of LHY in tic mutant provides a possibility for TIC to mediate flowering through positive regulation of CCA1/LHY ¹³, which may not be a direct transcriptional pathway, but by affecting CCA1/LHY protein stability. The self-inhibition of CCA1/LHY makes this hypothesis reasonable. The materials of GFP-CCA1/LHY expressed in tic mutant are crucial to examine their genetic relationship in flowering regulation. Given that the morning complex has been shown to participate in regulating circadian rhythms, modulating light signaling, coordinating growth and development, and mediating stress responses (Fig. 2b), it will be critical to investigate how these processes are balanced in diverse environmental contexts. For example, MdTIC is essential for apple trees to tolerate freezing by mediating cold-responsive gene expression and fatty acid composition 50, and the biochemical role of TIC in mediating disease resistance to biotrophs is conserved in grasses through the precise modulation of jasmonate signaling ⁵¹. Considering that the morning complex may be conserved across different plant species (Supplemental Fig. 12 and 13), there is great potential to characterize the TIC-CCA1/LHY regulatory module in various crops. This module could act as a central cellular hub, integrating external signals to fine-tune growth and enhance stress tolerance. Future research on this complex may provide the foundation for innovative crop design strategies aimed at significantly

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

- 409 enhancing environmental adaptation, improving stress resilience, and increasing yield
- 410 in changing climates

Materials and methods

411

434

435

436

437

438

439

412 **Plant Materials and Growth Conditions** The Columbia (Col-0) ecotype was used as the wild type (WT) in this study. The tic-2 413 mutant was a T-DNA insertion mutant described previously ¹³, and *tic-3* was a 1bp 414 deletion mutant generated by CRISPR/Cas9 12. The cca1-1, lhy-20 single and double 415 mutants 52, were obtained from Xiaodong Xu (Henan university), with cca1-1 in a Ws 416 background ⁵³, backcrossed six times with *lhy-20* in a Col-0 background ³. The *cca1-1* 417 lhy-20 tic-2 triple mutant was generated by crossing tic-2 to cca1-1 lhy-20 and 418 confirmed genotypically. 419 The normal growth condition was 12-h light/12-h dark, white light (200 µmol m⁻² s⁻¹) 420 and 22 °C. Hypocotyl length assays were conducted according to a previous study ¹². 421 422 Seeds placed on half strength of Murashige and Skoog (MS) medium (Phytotech M524) containing 1% sucrose after surface sterilizing, and stratified at 4 °C for 3 days. 423 After germination induction with 7-9 h white light (200 µmol m⁻² s⁻¹) exposure, seeds 424 were transferred to constant far-red light conditions (FR~0.1, 0.3, 0.5, and 1 μmol 425 426 m⁻² s⁻¹) for 5 days. Hypocotyl phenotypes were captured by a camera (Canon) and measured through NIH ImageJ software (http://rsbweb.nih.gov/ij/)54. 427 **Constructs** 428 The constructs of 35S:GFP-TIC, 35S:GFP-TIC-NT, 35S:GFP-TIC-CT, 2YN-TIC, and 429 *PHYApro:LUC* were described previously ¹². 430 To produce 35S:GFP-CCA1 and 35S:GFP-LHY transgenic plants, the respective PCR 431 432 fragments were subcloned into the Kpn I and Xho I sites of the pENTB2B vector, then 433 subcloned into the 35S:GFP-MDC45 vector by LR reaction (11791020, Invitrogen &

pCsVMV:-HA-1300 vector ⁴⁵. To generate CCA1:CCA1-HA and LHY:LHY-HA constructs, the respective full-length coding sequence were amplified and inserted the Kpn I and BamH I sites of the no-promoter pHA-1300 vector. The fragments of CCA1

trade). Then transformed into plants through the floral dip method ⁵⁵. To generate the

pCsVMV:CCA1-HA and pCsVMV:LHY-HA constructs, the two fragments were

amplified by PCR and subcloned into the Pst I and Kpn I sites of the

- promoter (-1134 to -1 bp, upstream of the start codon) and LHY promoter (-1676 to -1
- bp, upstream of the start codon) were subcloned into EcoR I and Kpn I sites or Sal I
- and Kpn I sites of the vectors conducted before, using T4 DNA ligase (EL0011,
- 443 Thermo Fisher), respectively.
- To conduct 35S:CCA1-nYFP, 35S:LHY-nYFP, 35S:CCA1-cYFP, 35S:LHY-cYFP,
- 445 35S:TIC-N-cYFP, and 35S:TIC-N-cYFP for BiFC assays, the respective PCR
- fragments were amplified and inserted into the *Pac I* and *Spe I* sites of the *2YC_pBI*
- and 2YN_pBI vectors.

448 Co-immunoprecipitation (Co-IP) assays

- For Co-IP assays, Agrobacteria harboring CCA1:CCA1-HA and LHY:LHY-HA were
- 450 transiently expressed individually or co-expressed with 35S:GFP-TIC, 35S:
- 451 GFP-TIC-NT, or 35S:GFP-TIC-CT respectively in the 4-week-old N. benthamiana
- leaves, and the samples were harvested after 3 days, Protein extraction was conducted
- on the basis of the method described previously 45. Protein A agarose beads
- 454 (15918014, Lablead) with GFP Monoclonal Antibody (A-11120, Thermo Fisher
- Scientific) were used for immunoprecipitation. The protein supernatant was incubated
- with the beads for 1 h at 4°C on a rotator, then washed at least 4 times with low-speed
- centrifugation. The washed beads were re-suspended with protein loading buffer and
- elute with vigorous shaking several times.
- For Co-IP assays of TPL-FLAG with CCA1-HA or LHY-HA, plus GFP-TIC, the
- infiltrated leaves were cross-linked with 1% formaldehyde for 5 min before grinding.
- 461 HA-Nanobody-Magarose Beads (KTSM1335, AlpaLifeBio) were used for incubating
- with the protein supernatant for at least 2 h at 4°C on a rotator. And washed beads 5
- times. The rest is consistent with the above method.
- Immunoblot was detected with GFP (ab6556, Abcam), HA (11867423001, Roche),
- FLAG (M20008L, Abmart), and CCA1 (PHY7501S, PhytoAB) antibodies.

Split-luciferase (SLC) assays

- The full-length coding sequence of TIC, truncated TIC-NT and TIC-CT fragments
- were amplified and inserted into the *pCAMBIA1300-cLUC* vector with *Kpn* I and *Sal*

- I sites, and the sequences of CCA1 and LHY were cloned into pCAMBIA1300-nLUC
- vector with the same sites. Pairwise constructs were co-infiltrated into 4-week-old N.
- benthamiana leaves transiently. After 3 days, these leaves were immersed into the
- luciferin buffer for 1 min, and the luminescence signals were captured by a CCD
- camera (LN/1300-EB/1, Princeton Instruments).

Bimolecular fluorescence complementation (BiFC) assays

- For the BiFC assays, Agrobacterium containing the indicated plasmids were
- co-infiltrated into 4-week-old *N. benthamiana* leaves, and *H2B-mCherry* was used as
- a nuclear marker. After incubation 3 days, the signals were captured by a confocal
- 478 microscope (Olympus FV1000MPE).

474

479

491

RNA Extraction and quantitative reverse transcription PCR (qRT-PCR) assays

- Samples were collected at the indicated time, placed into the liquid nitrogen, and
- ground into powder before extracting. RNA extraction and qRT-PCR were performed
- as described previously ⁵⁶. Briefly, total RNA was extracted by using TRIzol reagent
- 483 (Invitrogen). PrimeScript®RT reagent Kit (TaKaRa) was used to reverse-transcribe
- 484 RNA into cDNA. qRT-PCR was conducted with Real-time PCR SYBR Green Master
- 485 Mix (Toyobo, Japan). The parameters of PCR cycling were: 95°C for 2 min, followed
- by 40 cycles of 95°C for 15 s, 55°C for 15 s, and 72°C for 15 s, followed by melting
- curve analysis. Gene expression levels were normalized by the geometric mean of
- 488 ACTIN2 (AT3G18780) and PP2A (AT1G69960) expression. Experiments were
- repeated with at least two biological and two technical replicates. Primers used in
- 490 the assays are listed in Supplementary Table 1.

Transcriptional repression activity assays in tobacco

- 492 Agrobacteria carrying various fusion expression vectors were co-infiltrated into
- 5-week-old *N. benthamiana* leaves via syringe infiltration, with *p35S:GUS-HA* as the
- reference plasmid. Bioluminescence signals were detected after 3 days with a CCD
- camera (LN/1300-EB/1, Princeton Instruments). Bioluminescence intensities of the
- 496 LUC signals were measured by MetaMorph Software (Molecular Devices).

Purified GST-tagged CCA1 and LHY proteins

497

506

513

514

515

516

517

518

519

520

521

522

523

524

525

498 The GST-CCA1 and GST-LHY fusion proteins were expressed in Escherichia coli strain BL21 and purified according to the published protocol ⁵⁶. Briefly, all of the 499 500 fused proteins and GST protein alone used in these assays were induced overnight at 501 16°C with 1 M isopropyl-β-d-thiogalactopyranoside (IPTG), and the GST-tag Purification Resin (P2251, Beyotime) was used to incubate these sonicated proteins at 502 503 4°C for 3 h. The GST-resin was washed with washing buffer at least 4 times and 504 eluted with a reduced glutathione solution, thus GST-CCA1 or GST-LHY protein 505 solution obtained.

Electrophoresis mobility shift assays (EMSA)

- 507 The EMSA assays were conducted with the LightShfit Chemiluminescent EMSA kit
- 508 (Thermo Fisher Scientific) according to its instructions. 6-μL-purified GST-CCA1 or
- 509 GST-LHY or GST protein mingled with 0.5 μL of each biotin-labeled probe into a
- 510 20 μL reaction and incubated at 4°C for 1 h. A 100x unlabeled probe (0.5 μL)
- 511 functioned as a competitor was superadded in each reaction. Probes sequence used in
- 512 EMSA are listed in Supplementary Table 1.

ChIP-qPCR assays

All ChIP experiments were performed following established protocols as previously described ⁵⁷. Two-week-old seedlings, grown on MS medium supplemented with 3% sucrose and 0.8% agar at 22 °C under 12-hour light/12-hour dark conditions, were harvested at ZT0 (pre-dawn) for Arabidopsis ChIP assays. GFP-Nanobody Magnetic Beads (GNM-25-1000, Lablead) were used for immunoprecipitation in experiments involving Col-0, GFP-CCA1, and GFP-LHY lines. H3 (ab1791, Abcam) and H3K9ac (ab10812, Abcam) antibodies were used assess histone acetylation levels at the *PHYA* promoter binding regions in Col-0, *cca1 lhy*, and *tic-2* backgrounds. The ChIP assay with *N. benthamiana* leaves was performed based on published study⁵⁸, HA antibody (ab9110, Abcam) was used for immunoprecipitation. Input and ChIPed DNA were used for qPCR. The methods for calculating relative enrichment were provided in the corresponding figure legend. All the primers used in the assays are listed in

Supplementary Table 1.

526

527

534

543

546

Phylogenetic analysis

- 528 Full-length protein sequences of TIC and CCA1/LHY homologs from representative
- 529 green plant species (Arabidopsis thaliana, Oryza sativa, etc.) were retrieved from
- NCBI. These homologues were aligned by MUSCLE. The phylogenetic tree was
- constructed using MEGA7.0, and evolutionary distances were estimated with a
- neighbor-joining algorithm. The robustness of each branch was assessed by 1,000
- bootstrap replicates. *Physcomitrella patens* homologous protein was used as outgroup.

Quantification and Statistical Analysis

- Quantitative data values are defined in the corresponding figure legends, and
- statistical analysis were performed through SPSS (Statistical Package for the Social
- Sciences) software (https://www.ibm.com/products/spss-statistics). The paired t-test
- was used for significance analysis between two sets of data, while one-way ANOVA
- (Analysis of Variance) followed by Tukey's HSD (honestly significant difference) test,
- was applied for comparisons among multiple groups, as indicated in figure legends. In
- all analysis, p value ≤ 0.05 represents statistical significance, and ns means no
- significance.

Data availability

- All other quantitative data generated in this study are published as source data with
- this article. Source data are provided with this paper.

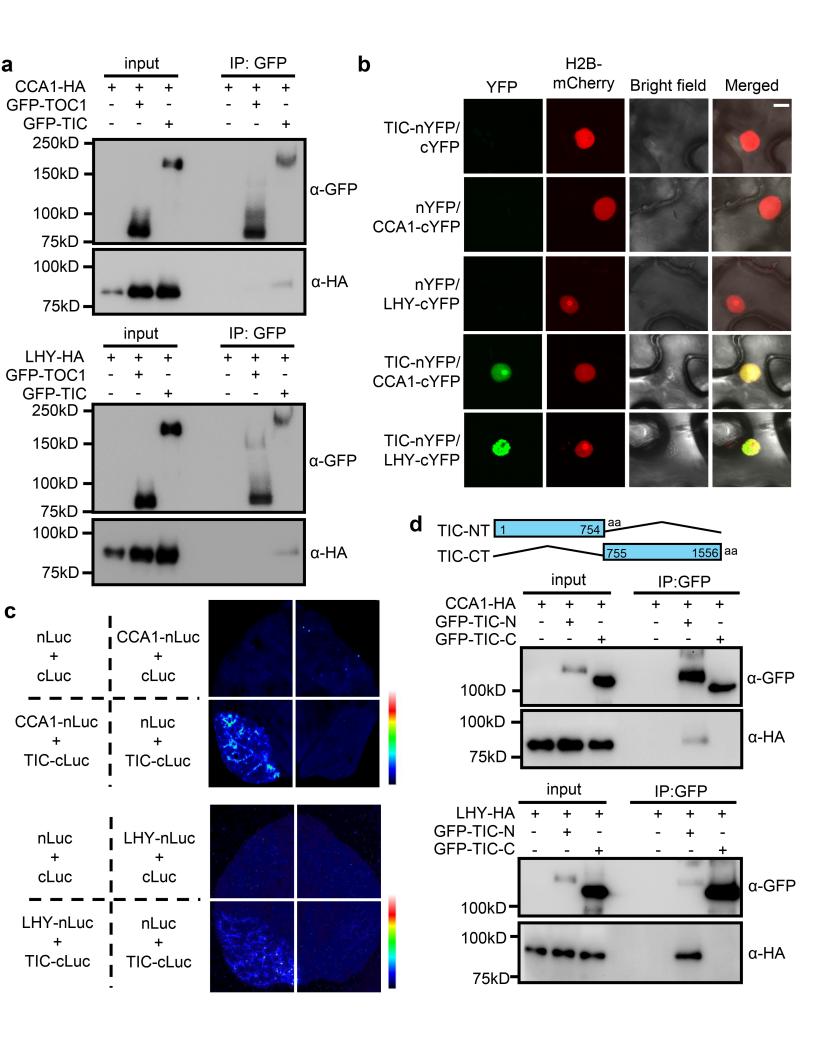
References

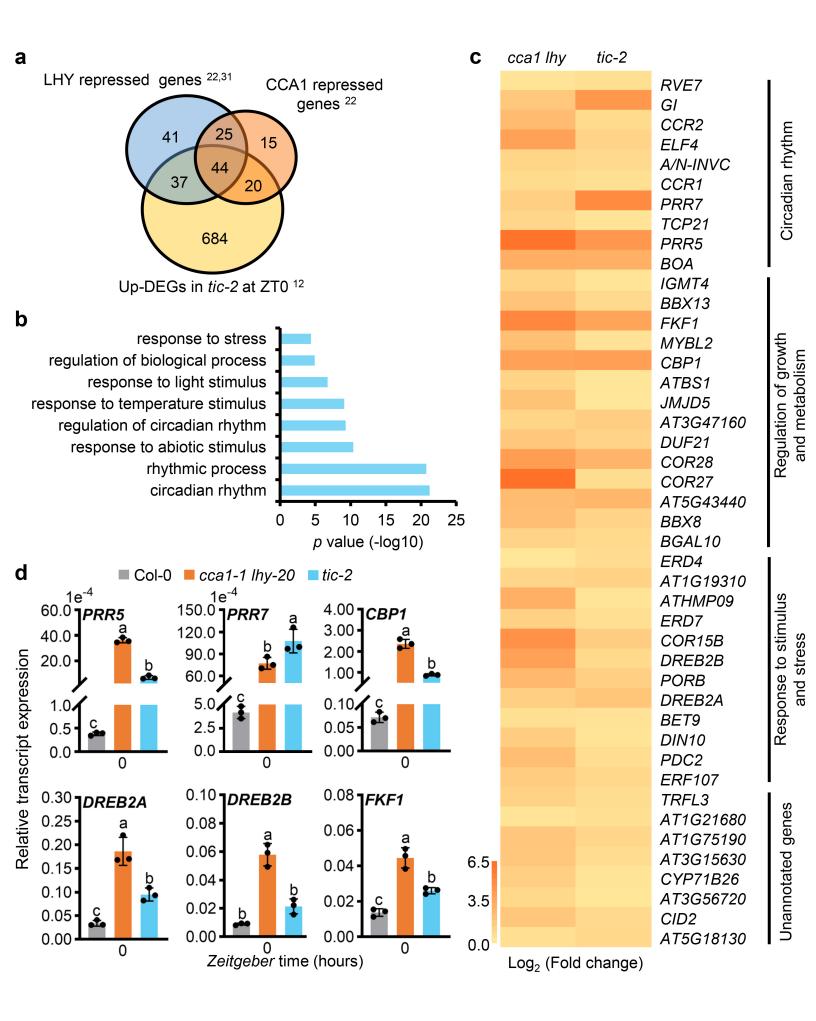
- 547 1 Shalit-Kaneh, A., Kumimoto, R. W., Filkov, V. & Harmer, S. L. Multiple feedback loops of the
- Arabidopsis circadian clock provide rhythmic robustness across environmental conditions.
- 549 *Proc Natl Acad Sci U S A* **115**, 7147-7152 (2018).
- 550 2 McClung, C. R. The Plant Circadian Oscillator. *Biology (Basel)* **8**, (1):14 (2019).
- 551 3 Michael, T. P. *et al.* Enhanced fitness conferred by naturally occurring variation in the circadian clock. *Science* **302**, 1049-1053 (2003).
- Dodd, A. N. *et al.* Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. *Science* **309**, 630-633 (2005).
- 555 Sanchez, S. E., Rugnone, M. L. & Kay, S. A. Light Perception: A Matter of Time. *Mol Plant* **13**, 363-385 (2020).
- Wenden, B. et al. Light inputs shape the Arabidopsis circadian system. Plant J 66, 480-491

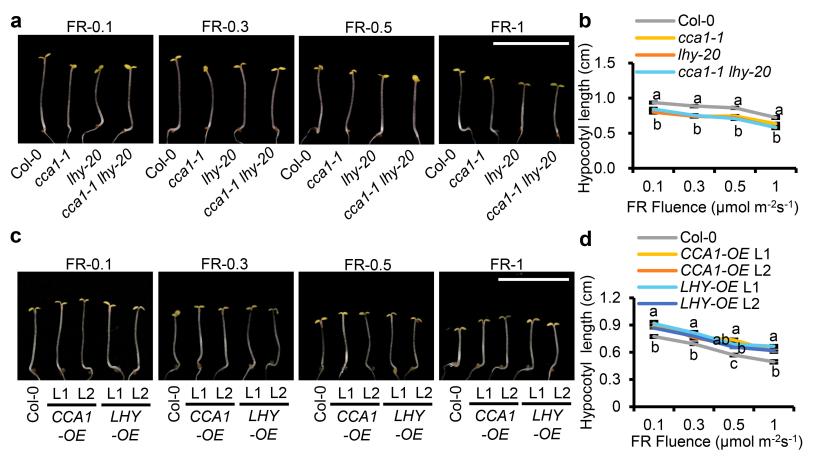
- 558 (2011).
- 559 7 Somers, D. E., Devlin, P. F. & Kay, S. A. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. *Science* **282**, 1488-1490 (1998).
- Sharrock, R. A. & Clack, T. Patterns of expression and normalized levels of the five Arabidopsis phytochromes. *Plant Physiol* **130**, 442-456 (2002).
- 563 9 Seaton, D. D. *et al.* Dawn and photoperiod sensing by phytochrome A. *Proc Natl Acad Sci U S*564 A **115**, 10523-10528 (2018).
- 565 10 Casal, J. J., Candia, A. N. & Sellaro, R. Light perception and signalling by phytochrome A. *J* 566 *Exp Bot* **65**, 2835-2845 (2014).
- Hall, A. *et al.* The TIME FOR COFFEE gene maintains the amplitude and timing of Arabidopsis circadian clocks. *Plant Cell* **15**, 2719-2729 (2003).
- Wang, Y. *et al.* TIME FOR COFFEE regulates phytochrome A-mediated hypocotyl growth through dawn-phased signaling. *Plant Cell* **34**, 2907-2924 (2022).
- 571 13 Ding, Z., Millar, A. J., Davis, A. M. & Davis, S. J. TIME FOR COFFEE encodes a nuclear regulator in the Arabidopsis thaliana circadian clock. *Plant Cell* **19**, 1522-1536 (2007).
- 573 14 Sanchez-Villarreal, A. *et al.* TIME FOR COFFEE is an essential component in the maintenance of metabolic homeostasis in Arabidopsis thaliana. *Plant J* **76**, 188-200 (2013).
- 575 15 Hong, L. W., Yan, D. W., Liu, W. C., Chen, H. G. & Lu, Y. T. TIME FOR COFFEE controls 576 root meristem size by changes in auxin accumulation in Arabidopsis. *J Exp Bot* **65**, 275-286 577 (2014).
- 578 Shin, J., Heidrich, K., Sanchez-Villarreal, A., Parker, J. E. & Davis, S. J. TIME FOR COFFEE represses accumulation of the MYC2 transcription factor to provide time-of-day regulation of jasmonate signaling in Arabidopsis. *Plant Cell* **24**, 2470-2482 (2012).
- 581 17 Mizoguchi, T. *et al.* LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. *Dev Cell* **2**, 629-641 (2002).
- Alabadi, D., Yanovsky, M. J., Mas, P., Harmer, S. L. & Kay, S. A. Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis. *Curr Biol* **12**, 757-761 (2002).
- 585 19 Lu, S. X., Knowles, S. M., Andronis, C., Ong, M. S. & Tobin, E. M. CIRCADIAN CLOCK 586 ASSOCIATED1 and LATE ELONGATED HYPOCOTYL function synergistically in the 587 circadian clock of Arabidopsis. *Plant Physiol* **150**, 834-843 (2009).
- Yakir, E. *et al.* Posttranslational regulation of CIRCADIAN CLOCK ASSOCIATED1 in the circadian oscillator of Arabidopsis. *Plant Physiol* **150**, 844-857 (2009).
- 590 21 Alabadi, D. *et al.* Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. *Science* **293**, 880-883 (2001).
- 592 22 Kamioka, M. *et al.* Direct Repression of Evening Genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis Circadian Clock. *Plant Cell* **28**, 696-711 (2016).
- Nagel, D. H. *et al.* Genome-wide identification of CCA1 targets uncovers an expanded clock network in Arabidopsis. *Proc Natl Acad Sci U S A* **112**, E4802-4810 (2015).
- 596 24 Lu, S. X. *et al.* CCA1 and ELF3 Interact in the control of hypocotyl length and flowering time in Arabidopsis. *Plant Physiol* **158**, 1079-1088 (2012).
- Niwa, Y., Yamashino, T. & Mizuno, T. The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana.

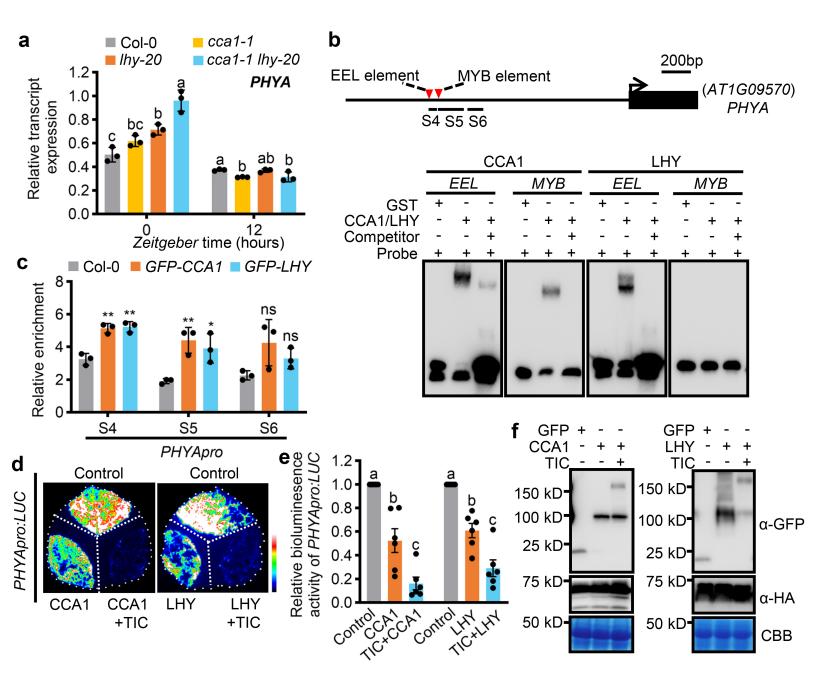
 Plant Cell Physiol **50**, 838-854 (2009).
- Wang, Z. Y. et al. A Myb-related transcription factor is involved in the phytochrome regulation

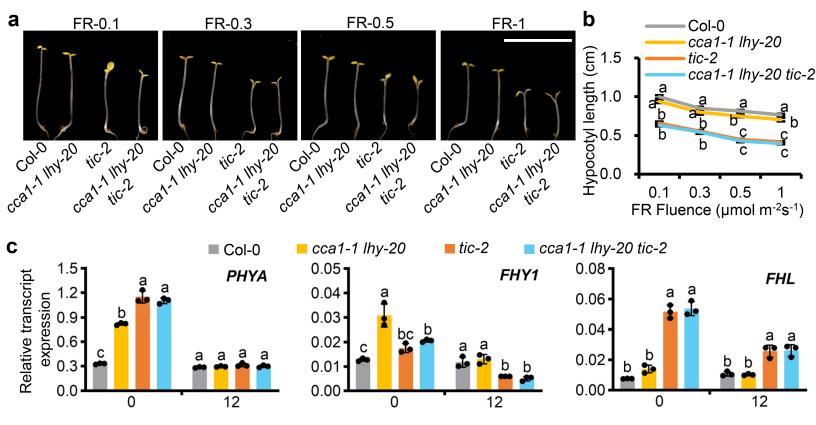
- of an Arabidopsis Lhcb gene. *Plant Cell* **9**, 491-507 (1997).
- Kikis, E. A., Khanna, R. & Quail, P. H. ELF4 is a phytochrome-regulated component of a
- 604 negative-feedback loop involving the central oscillator components CCA1 and LHY. *Plant J* 605 **44**, 300-313 (2005).
- Liu, Y. *et al.* Transcription Factors FHY3 and FAR1 Regulate Light-Induced CIRCADIAN CLOCK ASSOCIATED1 Gene Expression in Arabidopsis. *Plant Cell* **32**, 1464-1478 (2020).
- 608 29 Liu, Y. *et al.* Arabidopsis Circadian Clock Repress Phytochrome a Signaling. *Front Plant Sci* 13, 809563 (2022).
- 610 30 Lau, O. S. *et al.* Interaction of Arabidopsis DET1 with CCA1 and LHY in mediating transcriptional repression in the plant circadian clock. *Mol Cell* **43**, 703-712 (2011).
- Adams, S. *et al.* Circadian control of abscisic acid biosynthesis and signalling pathways revealed by genome-wide analysis of LHY binding targets. *New Phytol* **220**, 893-907 (2018).
- Lopez-Vidriero, I. *et al.* DNA features beyond the transcription factor binding site specify target recognition by plant MYC2-related bHLH proteins. *Plant Commun* **2**, 100232 (2021).
- Deng, L. *et al.* 3D organization of regulatory elements for transcriptional regulation in Arabidopsis. *Genome Biol* **24**, 181 (2023).
- 618 34 Li, H. J. *et al.* Arabidopsis CBP1 Is a Novel Regulator of Transcription Initiation in Central Cell-Mediated Pollen Tube Guidance. *Plant Cell* **27**, 2880-2893 (2015).
- Zhu, W. *et al.* COLD-REGULATED GENE27 Integrates Signals from Light and the Circadian Clock to Promote Hypocotyl Growth in Arabidopsis. *Plant Cell* **32**, 3155-3169 (2020).
- 622 36 Li, X. *et al.* COR27 and COR28 Are Novel Regulators of the COP1-HY5 Regulatory Hub and Photomorphogenesis in Arabidopsis. *Plant Cell* **32**, 3139-3154 (2020).
- Demarsy, E. & Fankhauser, C. Higher plants use LOV to perceive blue light. *Curr Opin Plant Biol* **12**, 69-74 (2009).
- Sakuma, Y. et al. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. *Proc Natl Acad Sci U S A* 103, 18822-18827 (2006).
- 629 39 Nakashima, K. *et al.* Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression.


 631 *Plant Mol Biol* **42**, 657-665 (2000).
- Wang, K. *et al.* Two homologous LHY pairs negatively control soybean drought tolerance by repressing the abscisic acid responses. *New Phytol* **229**, 2660-2675 (2021).
- 41 Yamaura, S., Yamauchi, Y., Makihara, M., Yamashino, T. & Ishikawa, A. CCA1 and LHY
 635 contribute to nonhost resistance to Pyricularia oryzae (syn. Magnaporthe oryzae) in
 636 Arabidopsis thaliana. *Biosci Biotechnol Biochem* **84**, 76-84 (2020).
- 637 42 Millar, A. J. & Kay, S. A. Integration of circadian and phototransduction pathways in the 638 network controlling CAB gene transcription in Arabidopsis. *Proc Natl Acad Sci U S A* **93**, 639 15491-15496 (1996).
- 640 43 Kawamura, M., Ito, S., Nakamichi, N., Yamashino, T. & Mizuno, T. The function of the 641 clock-associated transcriptional regulator CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) in 642 Arabidopsis thaliana. *Biosci Biotechnol Biochem* **72**, 1307-1316 (2008).
- 643 44 Wei, H., Xu, H., Su, C., Wang, X. & Wang, L. Rice CIRCADIAN CLOCK ASSOCIATED1 644 transcriptionally regulates ABA signaling to confer multiple abiotic stress tolerance. *Plant* 645 *Physiol* **190**,1057-1073 (2022).


- Wang, L., Kim, J. & Somers, D. E. Transcriptional corepressor TOPLESS complexes with
- pseudoresponse regulator proteins and histone deacetylases to regulate circadian transcription.
- 648 *Proc Natl Acad Sci U S A* **110**, 761-766 (2013).
- 649 46 Long, J. A., Ohno, C., Smith, Z. R. & Meyerowitz, E. M. TOPLESS regulates apical embryonic fate in Arabidopsis. *Science* **312**, 1520-1523 (2006).
- Liu, Y. & Wang, H. JA modulates phytochrome a signaling via repressing FHY3 activity by JAZ proteins. *Plant Signal Behav* **15**, 1726636 (2020).
- Li, J. *et al.* Arabidopsis transcription factor ELONGATED HYPOCOTYL5 plays a role in the feedback regulation of phytochrome A signaling. *Plant Cell* **22**, 3634-3649 (2010).
- 655 49 Mizoguchi, T. *et al.* Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. *Plant Cell* **17**, 2255-2270 (2005).
- 50 Zhao, C. *et al.* Apple TIME FOR COFFEE contributes to freezing tolerance by promoting unsaturation of fatty acids. *Plant Sci* **302**, 110695 (2021).
- Della Coletta, R., Lavell, A. A. & Garvin, D. F. A Homolog of the Arabidopsis TIME FOR COFFEE Gene Is Involved in Nonhost Resistance to Wheat Stem Rust in Brachypodium distachyon. *Mol Plant Microbe Interact* **34**, 1298-1306 (2021).
- Ding, Z., Doyle, M. R., Amasino, R. M. & Davis, S. J. A complex genetic interaction between Arabidopsis thaliana TOC1 and CCA1/LHY in driving the circadian clock and in output regulation. *Genetics* **176**, 1501-1510 (2007).
- Green, R. M. & Tobin, E. M. Loss of the circadian clock-associated protein 1 in Arabidopsis
 results in altered clock-regulated gene expression. *Proc Natl Acad Sci U S A* **96**, 4176-4179
 (1999).
- Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. *Nat Methods* **9**, 671-675 (2012).
- 670 55 Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. *Plant J* **16**, 735-743 (1998).
- 672 56 Li, N., Zhang, Y., He, Y., Wang, Y. & Wang, L. Pseudo Response Regulators Regulate 673 Photoperiodic Hypocotyl Growth by Repressing PIF4/5 Transcription. *Plant Physiol* **183**, 674 686-699 (2020).
- Bowler, C. et al. Chromatin techniques for plant cells. Plant J 39, 776-789 (2004).
- 58 Zhu, T. *et al.* Ethylene-induced NbMYB4L is involved in resistance against tobacco mosaic virus in Nicotiana benthamiana. *Mol Plant Pathol* **23**, 16-31 (2022).


Acknowledgments


- We thank Dr. Xiaodong Xu (Henan University) for seeds of cca1-1, lhy-20, and
- 680 cca1-1 lhy-20 mutants. We thank Ms. Jingquan Li from Key Laboratory of Plant
- Molecular Physiology and Plant Science Facility of the Institute of Botany, CAS for
- their technical assistance of confocal microscopy assays. The work was supported by
- National Natural Science Foundation of China (No. 32430079, 32370307 to L.W., and
- 684 32300294 to Y.Q.H) and National Key Research and Development Program of China
- 685 (2022YFF1003201 to L.W.).


686	Contributions
687	C.S., Y.M.Q, Y.Y.J., Y.W., and Y.Q.H. performed the experiments, C.S., S.J.D, and
688	L.W. designed the project, C.S. analyzed the data and wrote the article, S.J.D. and
689	L.W. revised the article. S.J.D. and L.W. agree to serve as the co-author responsible
690	for contact and ensure communication.
691	Ethics declarations
692	Competing interests
693	The authors declare no competing interests.
694	
695	

