UNIVERSITYW

This is a repository copy of STORM: Scrape-off layer turbulence in tokamak fusion
reactors.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/232939/

Version: Published Version

Article:

Omotani, John, Dickinson, David orcid.org/0000-0002-0868-211X, Dudson, Benjamin
Daniel orcid.org/0000-0002-0094-4867 et al. (9 more authors) (2026) STORM: Scrape-off
layer turbulence in tokamak fusion reactors. Computer Physics Communications. 109893.
ISSN: 0010-4655

https://doi.org/10.1016/j.cpc.2025.109893

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose .
university consortium eprints@whiterose.ac.uk
/,:-‘ Univarsies of Leeds. Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1016/j.cpc.2025.109893
https://eprints.whiterose.ac.uk/id/eprint/232939/
https://eprints.whiterose.ac.uk/

Computer Physics Communications 318 (2026) 109893

Contents lists available at ScienceDirect

COMPUTER PHYSICS
COMMUNICATIONS

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

: : L)
STORM: Scrape-off layer turbulence in tokamak fusion reactors e

J.T. Omotani >~ *, D. Dickinson ", B.D. Dudson “°, L. Easy ", D. Hoare ‘, P. Hill®,
T. Nicholas®", J. Parker?, F. Riva®', N.R. Walkden?, Q. Xia?, F. Militello*

2 United Kingdom Atomic Energy Authority, Culham Campus, Abingdon, Oxfordshire, 0X14 3DB, UK
b York Plasma Institute, Department of Physics, University of York, Heslington, York, YO10 5DD, UK
¢ Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

d Department of Physics, University of Bath, Bath, BA2 7AY, UK

ARTICLE INFO ABSTRACT
The review of this paper was arranged by The scrape-off layer of a tokamak fusion reactor carries the plasma exhaust from the hot core plasma to the
Prof. David W. Walker material surfaces of the reactor vessel. The heat loads imposed by the exhaust are a critical limit on the

performance of fusion power plants. Turbulent transport of the plasma regulates the width of the scrape-off

I;Ie ;'Sl:: :is" layer plasma and must be modelled to understand the intensity of these heat loads.

Tokamak STORM is a plasma turbulence code capable of simulating three dimensional turbulence across the full scrape-
Scrape-off layer off layer of a tokamak fusion reactor, using a drift reduced, collisional fluid model. STORM uses mostly finite
Turbulence difference schemes, with a staggered grid in the direction parallel to the magnetic field. We describe the model,
BOUT++ geometry and initialisation options used by STORM, as well as the numerical methods, which are implemented

using the BOUT++ plasma simulation framework.

BOUT++ has been enhanced alongside the development of STORM, providing better support for staggered grid
methods. We summarise these enhancements, including a detailed explanation of the parallel derivative methods,
which underwent a major update for version 4 of BOUT++.

Program summary

Program Title: STORM

CPC Library link to program files: https://doi.org/10.17632/zm3tdfhp9r.1

Developer’s repository link: https://github.com/boutproject/STORM

Licensing provisions: GPLv3

Programming language: C++

Supplementary material: Configuration and input files and post-processing scripts to run the example code given
in Listings 1, 2, and 3.

Nature of problem: The scrape-off layer region of tokamak fusion reactors carries the plasma exhaust which
escapes from the core, confined plasma and reaches material surfaces along open magnetic field lines. The power
and particle loads on the material surfaces are a critical limiting factor for the performance of fusion reactors,
but are challenging to simulate due to the large fluctuation amplitudes, complex magnetic geometry, and widely
separated time- and length-scales. Three dimensional simulations of plasma turbulence are needed to understand
the particle and energy transport in the scrape-off layer and provide predictive capability for the design of future
reactors.

Solution method: STORM solves a drift reduced, collisional, fluid model for the scrape-off layer plasma. The
model is discretised in space using mostly finite difference methods, combined in some places with Fourier
methods that take advantage of the toroidal symmetry of the tokamak geometry. The fastest dynamics occur
in the direction parallel to the magnetic field, for which a staggered grid is used to avoid the chequerboard
instability associated with advective equations [1, sections 6.2, 6.3]. The time solver is a fully implicit, matrix
free, variable-step, variable-order method provided by the SUNDIALS library [2]. STORM is implemented using
the BOUT++ framework for plasma simulations.

* Corresponding author.
E-mail address: john.omotani@ukaea.uk (J.T. Omotani).
1 Current address: IRSOL, Via Patocchi, 57 6605 Locarno Monti, Switzerland.

https://doi.org/10.1016/j.cpc.2025.109893
Received 16 December 2024; Received in revised form 3 September 2025; Accepted 2 October 2025

Available online 9 October 2025
0010-4655/© 2025 Published by Elsevier B.V.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://orcid.org/0000-0002-3156-8227
https://doi.org/10.17632/zm3tdfhp9r.1
https://github.com/boutproject/STORM
mailto:john.omotani@ukaea.uk
https://doi.org/10.1016/j.cpc.2025.109893
https://doi.org/10.1016/j.cpc.2025.109893
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2025.109893&domain=pdf

J.T. Omotani, D. Dickinson, B.D. Dudson et al.

References

Comp Physics Co ications 318 (2026) 109893

[1]1 S. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, 1980.
[2] A. C. Hindmarsh, P. N. Brown, K. E. Grant, et al., ACM Trans. Math. Softw. 31 (3) (2005) 363-396.

1. Introduction

Transport of heat and particles through the region of open magnetic
field lines in the boundary of a tokamak fusion reactor regulates the
loads reaching material surfaces, which limit reactor performance [1].
This region, the scrape-off layer (SOL), is difficult to model as it com-
bines strong plasma-neutral interactions, complex geometry, boundary
conditions at material surfaces and large amplitude plasma fluctuations.

The state of the art in first principles modelling of the saturated,
statistical steady state of SOL plasma turbulence is represented by
codes which implement plasma equations based on collisional fluid
closures [2], restricted to low frequency dynamics using drift order-
ing [3,4]. While the assumptions necessary to construct fluid closures
restrict the applicability of these codes, for example they are not suitable
for modelling the high performance H-mode [5] where collisionality is
low, they are sufficiently tractable computationally for simulation of
the entire SOL of present day tokamaks using realistic parameters [6,7].
STORM (‘Scrape-off layer Turbulence ORiented Model’) is one of sev-
eral such codes that have been developed by the community, others are
FELTOR [8], GBS [9], GDB [10], GRILLIX [11], Hermes [12,13], and
SOLEDGE3X [14]. There is also ongoing progress in gyrokinetic mod-
elling of SOL turbulence [15-18].

As transport in a magnetised plasma is much more rapid in the direc-
tion parallel to the magnetic field than in the perpendicular directions,
turbulent structures tend to be aligned to the magnetic field, having
much smaller parallel gradients than perpendicular gradients. Parallel
derivative operators are often treated specially to take advantage of this
property by allowing one dimension to have its grid spacing increased
by two or three orders of magnitude, giving a correspondingly less re-
strictive Courant-Friedrichs-Lewy (CFL) condition [19,20] and reduced
memory requirement. STORM and Hermes are built using the BOUT++
framework [21-23] and are distinguished from the other SOL turbulence
codes by calculating derivatives parallel to the magnetic field using a
field aligned computational grid. In contrast FELTOR and GRILLIX use
the ‘Flux Coordinate Independent’ (FCI) approach [24] (which has also
been implemented in BOUT++ [25,26]) where parallel derivatives are
calculated in a locally field aligned way but without a globally field
aligned grid; GDB is restricted to limiter configurations without X-points
in the poloidal magnetic field, and calculates parallel derivatives in a
similar way to what BOUT++ calls the ‘shifted metric’ scheme, described
in section 2.3; GBS and SOLEDGE3X use non-aligned derivatives, GBS
on a simple, cylindrical grid and SOLEDGE3X on a flux surface aligned
grid. While STORM and Hermes are both built on BOUT++, STORM uses
a staggered grid in the parallel direction and finite difference operators,
while Hermes uses an unstaggered grid and finite volume operators.

Coherent, field aligned structures known as ‘filaments’ (or ‘blobs’
from their cross section perpendicular to the magnetic field) [27] are
typically observed in the SOL of tokamaks [28-31], and also stellara-
tors [32]. STORM was originally developed to study the dynamics of
filaments using an electrostatic, cold ion, isothermal electron model,
in a simplified curved slab geometry, where the filament was imposed
as an initial condition [33,34], building on earlier filament studies
with BOUT++ [35,36]. After electron temperature evolution was in-
troduced [37], STORM was part of a multi-code validation comparing
to filament measurements from MAST [38] and the effects of interac-
tions with other filaments [39] and with background neutral gas [40,41]
were studied. Electromagnetic effects were introduced to the equa-
tions, and investigated with further filament simulations [42]. A variant,
STORM2D, which simulates a plane perpendicular to the magnetic field,

4.71e+18

4.03e+18

3.36e+18

2.69e+18

2.02e+18

1.34e+18

6.72e+17

0.00

Fig. 1. Density in units of m~3, from a STORM turbulence simulation of MAST
pulse #21712. To smoothly visualise the field-aligned turbulent structures, the
poloidal resolution has been increased by a factor of 16 using interpolation par-
allel to the magnetic field.

using closures for the parallel dynamics (which is common in the litera-
ture, see for example the review [43]), has been used for studies of both
isolated filaments [33,39,44] and turbulence [45-47]. We focus here on
the three dimensional version and so do not discuss STORM2D further,
for more details see [48,49].

Starting with [6,50], STORM has transitioned to focus on studies of
turbulence. Well diagnosed MAST discharges in a suitable regime for
modelling by STORM are available. STORM results, illustrated in Fig. 1,
were compared to pulse #21712 [6], which is a double-null, ohmic
L-mode discharge, providing the first detailed experimental compari-
son of a three dimensional SOL turbulence simulation to a double-null
tokamak experiment. While the fluctuation amplitudes and SOL width
were somewhat underestimated, many of the experimentally measured
statistical properties of the turbulence were well reproduced by the
simulation. Synthetic fast camera signals were constructed from the sim-
ulation data, and compared to a database of experimental results that
exploit the wide field of view of the fast camera in MAST to enable
a detailed characterisation of turbulence localised to the divertor vol-
ume [51]. The simulation can reproduce a range of features observed
across a wide range of conditions in the experimental database. In addi-
tion, by disabling several types of turbulence drive in simulations their

J.T. Omotani, D. Dickinson, B.D. Dudson et al.

relative effect and importance could be observed. For example it was
possible to identify the contrasting role of magnetic curvature in driv-
ing flux into the PFR in the inner divertor leg where curvature is aligned
with the average pressure gradient, while suppressing flux into the PFR
in the outer divertor leg where curvature is in the opposite direction to
the average pressure gradient. Other studies have looked at aspects of
SOL turbulence using a curved slab geometry [45,50,52].

This paper describes the capabilities of STORM and gives a fuller
description of the numerical methods used than is possible in papers
focused on simulation results, including upgrades that were made to
BOUT++ in support of STORM development. We begin section 2 with
a brief overview of the BOUT++ framework to set the scene for the
rest of the paper, then in section 2.2 we outline upgrades to the sup-
port for staggered grids in BOUT++ so that they are correct in non-
slab geometry, and in section 2.3 give an explanation of the various
methods used to treat parallel derivatives using field aligned numerical
schemes in BOUT++ version 4 on flux surface aligned grids (i.e. exclud-
ing the FCI scheme). Section 3 describes STORM, beginning with the
model equations and boundary conditions in section 3.1. The numeri-
cal methods used in STORM are detailed in section 3.2, with methods
for initialising simulations in section 3.3 and the source terms used to
sustain background profiles and drive turbulence in section 3.4. The
implementation of synthetic Langmuir probe diagnostics is discussed in
section 3.5. We summarise in section 4. Appendix A briefly introduces an
alternative syntax provided by BOUT++ to allow more efficient thread-
based parallelism, Appendix B presents the normalised model equations
as implemented in STORM, Appendix C is a brief note on simplifica-
tion of the curvature operator in a ‘slab’ geometry, the parallel scaling
performance of STORM is discussed in Appendix D, the post process-
ing libraries xBOUT and xSTORM are briefly introduced in Appendix E,
and some features for provenance tracking of simulation results are de-
scribed in Appendix F.

2. BOUT++ updates supporting STORM

BOUT++ is a framework for writing physics codes that provides a
general purpose, three dimensional partial differential equation solver
in curvilinear coordinates, with specialised features targeted at repre-
senting magnetised plasmas in toroidal geometry, especially using drift
reduced fluid models. The productivity of physicists developing codes is
enhanced by an operator syntax that allows time evolution equations to
be expressed in a very similar form to their mathematical expressions,
while the underlying library is well optimised to provide efficient per-
formance up to several thousand cores on high performance computing
(HPC) clusters. Next we give a very brief overview of BOUT++ to pro-
vide context for the rest of the paper; for more detail see [21-23] and
the online documentation [53]. In the rest of this section we detail two
upgrades to the BOUT++ framework, to staggered grids in section 2.2
and new options for field aligned derivatives in section 2.3, which were
critical to the development of STORM.

The primary use case for BOUT++, on which we focus in this paper,
is in simulating the edge and SOL region of tokamak fusion reactors.
Tokamaks are toroidally symmetric to a good approximation, and so
their geometry can be described fully by a two dimensional ‘poloidal’
cross section. The option to use fully three dimensional geometry to bet-
ter support cases with no symmetry direction, such as stellarators, has
been added to the version 5.0.0 major release of BOUT++ [54], but will
not be discussed further here. This paper focuses on the version 4 series
of BOUT++ releases which began with version 4.0.0 in 2017 [55], but
the methods described are still used in version 5. A grid file provides
geometrical information such as the magnetic field strength, metric co-
efficients for a locally field aligned geometry (see section 2.1), etc. on
a grid such as that shown in Fig. 2. The example shown in Fig. 2 is a
connected double-null configuration; BOUT++ also supports single-null
and disconnected double-null topologies. The non-trivial topology of the
grid is handled by representing physical variables on a globally rectan-

ications 318 (2026) 109893

2.0 4 upper outer
target

7

Comp Physics Co

inner 7
1.5 1 target /////g;;//
1.0 A
0.5

—0.5 1

—1.0 1
lower
—1.57 nner
target
lower outer
—2.0 target
T T T T
0.0 0.5 1.0 1.5

Fig. 2. Example BOUT++ grid for double-null configuration. For clarity, this
example grid is much coarser than those usually used for simulations. Tar-
gets where the magnetic field intersects material surfaces are shown with thick
black lines. The branch cut locations shown in Fig. 3 are highlighted with thick
coloured lines. Cell centre grid points are black dots, while cell faces are thin
black lines.

gular, block structured mesh, as shown in Fig. 3, which has branch cuts
to match the connectivity of the physical mesh. The mesh can be di-
vided into: a ‘core’, closed flux surface region; one or two SOL regions
of open flux surfaces that share a radial edge with the core region; and
private flux regions (PFRs), open flux surface regions that share radial
edges only with SOL regions. The choice of a globally rectangular mesh
in the poloidal plane restricts the number of radial grid points in the in-
ner SOL to be equal that in the outer SOL, and the number in the PFR to
be equal to the number in the core for the PFR adjacent to the primary X-
point, or number in the core plus the inter-separatrix region for the PFR
adjacent to the secondary X-point in a disconnected double-null config-
uration. More general poloidal-plane grids, which relax this restriction
and could support more topologies, for example snowflake or X-point
target, might be implemented in future work. The third, toroidal, direc-
tion of the grid is taken to be periodic. BOUT++’s naming convention
is that the radial direction, which uses the poloidal magnetic flux func-
tion y as its coordinate, is x; the poloidal direction, whose coordinate
will be aligned to the magnetic field B, is y; and the (shifted) toroidal
direction is z. Simpler geometries, such as a Cartesian slab, can also be
defined and are often useful for testing. The coordinates and geometry
are discussed further in section 2.1.

The main parallelisation strategy for BOUT++ is domain decompo-
sition using MPI. The two dimensional grid is split between MPI ranks,
and the array representing each variable includes a halo of ‘guard cells’
whose values are set by communicating with neighbouring processes.
The branch cuts are required to be on processor boundaries so that their

J.T. Omotani, D. Dickinson, B.D. Dudson et al.

upper inner target

Comp Physics Co ications 318 (2026) 109893

upper outer target

inner SOL

outer SOL

lower inner target

olofo|eMe|e|e|o]o]o]e|eBe]e]

ofefefie|e|oe|o]o]o]e|e|e|eMe]o]e]e|e]e

lower outer target

olofo|eMe]| oo eBe]e]

ofofefie| oo oMe]e]e]|e|e]e

X T_lower PFR inner core
y

upper PFR

outer core lower PFR

Fig. 3. Logical grid with same structure as Fig. 2. The x-direction is radial and the y-direction is poloidal. For clarity fewer cells in the y-direction are shown here
than in Fig. 2. As in Fig. 2 the targets are shown with thick black lines. Branch cuts are shown with thick coloured lines; grid cells adjacent to edges of the same
colour communicate with each other, as they are physically adjacent with both coloured edges being located at the single line with the same colour in Fig. 2. Cell

centre grid points are black dots, while cell faces are thin black lines.

#include <bout/physicsmodel.hxx>
class SimpleWave : public PhysicsModel {
int init (bool UNUSED (restarting)) ({

solver-sadd(f, "f");
solver->add(g, "g");

return 0;

}

int rhs(BoutReal UNUSED(t)) {
mesh->communicate (£, g);

ddt (£) = Grad par(g);
ddt (g) = Grad_par(f);

return 0

}

Field3D f£;
Field3D g;

T

BOUTMAIN (SimpleWave) ;

Listing 1: BOUT++ program implementing wave equations.

handling can be delegated to the communication routines. The toroidal
direction is not decomposed, in order to allow efficient fast Fourier
transforms (FFT) in this periodic dimension. BOUT++ does implement
thread based parallelism using OpenMP, in part to compensate for the
lack of domain decomposition in the toroidal direction. For technical
reasons described in Appendix A, efficient use of thread based paral-
lelism requires a less convenient syntax for the physics code. STORM
uses the usual, compact BOUT++ syntax and therefore does not rou-
tinely use thread based parallelism.

Codes that are built with BOUT++ define a subclass of the
PhysicsModel abstract base class. For example, a simple set of wave
equations

9
a{ =Vig W
J

where the parallel gradientis V| = b-V and b = B/ B is the unit vector in
the direction of the magnetic field, can be implemented with the code?
in Listing 1, which defines a SimpleWave subclass of PhysicsModel.

2 Configuration and input files to compile this code and those in the subse-
quent listings, linked to BOUT++, and run them on a one dimensional, periodic
grid are provided in the supplementary material.

The scalar variables f and g are represented by Field3D objects
f and g, which are included as member variables of SimpleWave.
PhysicsModel subclasses are required to implement two methods:
init (), which performs any initialisation needed before the time
loop starts; and rhs (), which evaluates the time derivatives of the
evolving variables. Here init () declares to the time solver object
solver that £ and g should be advanced in time. rhs () first calls
mesh->communicate (£, g) to fill the guard cells of £ and g on each
process by communicating with its neighbours, as is necessary before
calculating derivatives. Then the evolution equations (1) and (2) are
transcribed into C++ code using operators provided by BOUT++: ddt ()
is a convenience macro that fetches the Field3D member variable
where the time derivative is stored; Grad par () is a finite difference
discretisation of the V|, operator. The final part of the code is the macro
BOUTMAIN (), which provides a standard main () function that handles
library initialisation and finalisation, and runs the simulation.

Different types of variable are represented by different subclasses
of the Field abstract base class. Field3D, as seen above, is used to
represent evolving plasma variables. Field2D represents toroidally-
symmetric quantities, such as metric coefficients or magnetic field
strength. FieldPerp represents a slice of a Field3D at constant y,
which can be useful for certain operations such as inversion of the Vi
operator or applying boundary conditions at the y-boundaries.

2.1. Coordinates and geometry

The standard, toroidally symmetric, tokamak geometry is defined in
BOUT++ using locally field aligned flux coordinates [53], which we
outline here for completeness. The major radius R, toroidal angle ¢
(increasing anticlockwise as seen from above) and vertical position Z
define a right handed, cylindrical coordinate system {R,({,Z} whose
axis is the symmetry axis of the tokamak. A right handed flux coordi-
nate system is given by {y, 6,{} where y is the poloidal magnetic flux
divided by 2z (which we assume here increases from the magnetic axis
to the separatrix), 0 is some angle-like coordinate which parameterises
the poloidal position on each flux surface (increasing in the clockwise
direction on an R-Z plane), and ¢ is the toroidal angle (the same as
for the cylindrical coordinate system). The exact definition of 6 is arbi-
trary, and is decided by the grid generator. A field aligned coordinate
system [21,56,57] is defined by

X=Y¥ =Yy 3

y=0 ©)]
0

—¢_ [BV

z=¢ /B-Vedg' 5)
0o

This choice ensures, although we do not prove it here, that x and z are
constant along magnetic field lines, so that y is a ‘field aligned coordi-

J.T. Omotani, D. Dickinson, B.D. Dudson et al.

nate’. y is an arbitrary constant, and 6, defines the poloidal position
where the x-z grid is orthogonal. Finally we define a set of locally field
aligned coordinate systems where for each x-z grid plane at a given 6,,
the local coordinate system is

X=y -y (6)
y==0 7
(4
B-V
0,

The way that the different local coordinate systems are connected to-
gether is discussed below in section 2.3. Once the coordinate system
is defined, the geometrical quantities required to evaluate differen-
tial operators in terms of coordinate derivatives are defined in the
usual way, such as the reciprocal basis vectors Vx' (where i € {x, y,z},
x¥ =x, x¥ =y, x* = z), the Jacobian J = (Vx - Vy x Vz)~!, basis vectors
e =Y ik JEiji Vx/ x Vxk (where ¢; jk is an alternating symbol, or Levi-
Civita symbol, with e, ,, = 1), contravariant components of the metric
tensor g/ = Vx' - Vx/, and covariant components of the metric tensor
gij = e; - e;. These geometrical quantities are calculated by the grid gen-
erator and provided to BOUT++ as input in a grid file.

Many codes built with BOUT++ assume that the x- and y- coor-
dinates are orthogonal, e, - e, = 0 as this simplifies some differential
operators. This is not required by BOUT++ or the grid generator hyp-
notoad [58], but is supported as the default option.

Note that in these field aligned coordinates, the y and z coordinates
are very much not orthogonal, e,-e 0, as the basis vector in the y-
direction is parallel to the magnetic field e, « b while the basis vector
in the z-direction points in the toroidal direction e, « V{. At X-points
the coordinate system is singular (as the poloidal magnetic field vanishes
there, so B- V0 =0) and e, and e, are parallel. The grid is constructed so
that X-points are at cell corners, where no quantity is evaluated, in order
to avoid this singularity; nevertheless metric components may take ex-
tremely large or small values on grid points close to the X-points, which
has the potential to compromise the accuracy or stability of simulations
in this region.

2.2. Staggered grids

To construct staggered finite difference stencils, variables may be
defined at different locations within a grid cell, either at the centre
(the default) or one of the cell faces. BOUT++ represents these differ-
ent locations with an ‘enum class CELL_LOC’ type, whose values can
be CELL_CENTRE for the cell centres, or CELL_XLOW, CELL_YLOW, or
CELL_ZzLOW for the cell faces in the x-, y- or z-dimensions respectively.
A Field object has a location member variable of type CELL LOC
specifying the location within a grid cell where its values are defined.
Differential operators have a ‘CELL_LOC outloc’ argument to specify
where within a grid cell the result should be calculated; the combination
of outloc and the location of each Field argument to the differen-
tial operator determines the staggered or unstaggered finite difference
stencil to be used for that operator.

When computing operations on staggered grids, it is necessary to
evaluate geometrical quantities, such as metric coefficients, on the stag-
gered grids, usually at the location of the output of the operation. Before
version 4, support for staggered grids in BOUT++ was experimental and
geometrical quantities were only available at cell centre locations. This
caused an inconsistency which in principle limited the convergence to
first order in the grid spacing, regardless of the numerical scheme be-
ing used. In practice the effect of the inconsistency was probably limited,
since the plasma variables generally have short length scale fluctuations
with much steeper gradients than the gradients of the magnetic equilib-
rium that determines the geometrical quantities. Simulations using slab
geometry have constant geometrical coefficients and were therefore un-
affected. In the version 4 series of releases the handling of geometrical

Comp Physics Co ications 318 (2026) 109893

#include <bout/physicsmodel.hxx>
class SimpleWaveStaggered : public PhysicsModel {
int init (bool UNUSED (restarting)) ({

g.setLocation (CELL_YLOW) ;

solver->add (£, "f");
solver->add(g, "g");

return O;

int rhs (BoutReal UNUSED(t)) {

mesh->communicate (£, g);

ddt (£) = Grad par (g, CELL_CENTRE) ;
ddt (g) = Grad par(f, CELL_YLOW) ;
return O;

1

Field3D f£;

Field3D g;

I
BOUTMAIN (SimpleWaveStaggered) ;

Listing 2: BOUT++ program implementing wave equations with a stag-
gered grid.

quantities was refactored so that they could be provided at the cell face
locations, as we now describe.

Before version 4, the Mesh class in BOUT++ handled both the log-
ical structure of the grid (communication, etc.) and the geometrical
quantities (metric, Jacobian, etc.). In version 4.0.0 [55] the geometrical
quantities were moved into a separate Coordinates class, and from
version 4.2.0 [59] a new Coordinates object is created for each cell
location being used. When the grid file provides only cell centre informa-
tion, the geometrical quantities at the cell face locations are computed
by interpolating from the cell centres. From version 4.3.0 [60] it is also
possible to read geometrical quantities at cell faces from the grid file, if
they are present. A new grid generator, hypnotoad version 2 [58], which
creates grid files including geometrical quantities at cell faces, was writ-
ten from scratch in Python (replacing the older IDL hypnotoad). With
these upgrades, the handling of staggered variables is consistent and
evaluation of geometrical quantities on staggered grids does not limit
the convergence order of the numerical schemes in BOUT++, as long
as the geometrical quantities are calculated accurately enough by the
grid generator. Version 4.3.0 also made the ParallelTransform sub-
classes which implement parallel derivatives (discussed in section 2.3)
aware of cell location, so that they could correctly handle staggered
variables.

As an illustration, our example program from Listing 1 can be ex-
tended to use staggered grids by changing the location of g and passing
an output location to the two Grad_par () calls, as shown in Listing 2.

2.3. Field aligned derivatives

The extreme anisotropy between parallel and perpendicular trans-
port in magnetised plasmas makes a grid aligned to the magnetic field
very beneficial numerically. Since parallel derivatives are small, an
aligned grid allows the grid spacing in one dimension to be signifi-
cantly increased, reducing memory usage and relaxing time step con-
straints [56,61]. However magnetic shear is always present in realistic
tokamak configurations and presents problems when calculating radial
derivatives using a globally field aligned grid [61,62], at least when us-

J.T. Omotani, D. Dickinson, B.D. Dudson et al.

X

Fig. 4. Two flux tubes formed by extending a grid cell (rectangular at the out-
board mid-plane) along the magnetic field. Black squares show the grid cell at
different values of the poloidal/parallel coordinate y. The flux tube in the SOL
has the field lines through its inner and outer corners shown in blue and orange,
respectively, while green and red are the same for the flux tube in the core re-
gion. The flux tubes are plotted only until they approach near the X-points, as
after that the shear would be too extreme to distinguish the grid cells in the fig-
ure. Flux tubes that are closer to the separatrix than those shown would shear
notably more strongly as they approach near the X-points; the flux tubes shown
are further from the separatrix than the grid for a SOL turbulence simulation
would typically extend as their more moderate shear makes the figure clearer.
The grey surfaces show the separatrix of this equilibrium, with a segment re-
moved for clarity. (For interpretation of the colours in the figure(s), the reader
is referred to the web version of this article.)

ing non-spectral methods. The perpendicular planes in a globally aligned
grid will be strongly distorted in some regions, as illustrated in Fig. 4,
so that the ‘radial’ direction on the grid deviates by a large angle from
the flux surface normal. There is a tension between parallel derivatives,
where the most natural grid is field aligned (called an ‘aligned grid’ from
now on), and radial derivatives, where the most natural grid follows the
normals to flux surfaces (called a ‘toroidal grid’ from now on).

Several methods are or have been available in BOUT++ to resolve
this tension. The methods discussed in this paper exploit the toroidal
symmetry of the equilibrium, which allows FFT based methods to be
used for very efficient interpolation in the toroidal direction. An al-
ternative, the flux coordinate independent (FCI) method [24], which
has also been implemented in BOUT++, is similar in approach to the
‘shifted metric’ method described in section 2.3.1, but does not align
its grid to flux surfaces so that the interpolation is two dimensional.
FCI methods usually choose the toroidal angle as the parallel coordi-
nate, and construct a grid on poloidal planes for the two ‘perpendicular’
directions, which results in a quite different implementation from the
methods discussed below. The additional flexibility of the FCI approach
enables support for three dimensional geometries such as stellarators as
well as avoiding discretisation issues near X-points, and the BOUT++
implementation is discussed in detail elsewhere [25,26].

In version 4 and above, the standard representation of variables in
BOUT++ is on the toroidal grid, so operations involving radial deriva-
tives are straightforward. Parallel derivatives require special handling,
which is provided by various implementations of the ParallelTrans-
form abstract base class. For slab-like simulations ParallelTrans-
formIdentity can be used, which assumes the standard grid is itself
field aligned so that parallel derivative stencils can be applied on it di-
rectly, without any ‘transform’. There is an FCI implementation, which
as mentioned above is discussed elsewhere. The ShiftedMetric
implementation supports the ‘shifted metric’ and ‘aligned transform’
schemes which we now describe.

Comp Physics Co ications 318 (2026) 109893
2.3.1. Shifted metric

The ‘shifted metric’ procedure introduced by Scott (2001) [62] uses
a field aligned coordinate system defined locally around the x-z grid
plane at each poloidal position (planes of constant y in the coordinates
used here), as described in section 2.1. The local coordinate system is
defined so that on each x-z grid plane, the radial x and toroidal z direc-
tions are orthogonal. The poloidal y coordinate is field aligned, but the
grid points at different poloidal positions are defined in different local
coordinate systems. When a parallel derivative needs to be calculated
at a grid point, the magnetic field is followed to the adjacent poloidal
positions, where it will intersect the x-z plane at points that are in gen-
eral not grid points. The radial coordinate x is the poloidal magnetic
flux function, so the planes of constant x are the flux surfaces on which
magnetic field lines lie and the field line does not change its position in
x; the field line is offset from the grid only in the z-direction, as shown
in Fig. 5. Interpolation must be used to calculate the values of the vari-
able at the points on the magnetic field line in order for the derivative
to be calculated. BOUT++ takes advantage of the periodicity and sym-
metry of the grid in the toroidal z-direction to use FFT based methods
for the interpolation.

The shifted metric approach, in the form just described, was intro-
duced to BOUT++ in version 4.0.0 [55]. The ShiftedMetric sub-
class of ParallelTransformhandles the necessary interpolation. The
toroidal displacement of magnetic field lines relative to an arbitrary ref-
erence poloidal location is calculated by the grid generator and stored
in an array called zshift to be used by ShiftedMetric.

BOUT++ refers to the set of interpolated values of a Field3D that
are offset by a certain number of grid points along the magnetic field
from the toroidal grid as a ‘parallel slice’; in the locally field aligned co-
ordinate system associated with each grid point (for example the central,
red cross in Fig. 5), each point along the magnetic field (red asterisks in
Fig. 5) comes from a separate parallel slice. Each parallel slice is a three
dimensional array of values, one for each point on the toroidal grid, and
is stored as a Fie1d3D object. In version 4.0.0 only two parallel slices
were calculated, one in each direction along the magnetic field; from
version 4.3.0 it is possible to calculate an arbitrary number, allowing
the use of derivatives with larger stencils (although at present BOUT++
only allows derivatives with up to two points either side of the central
point in the stencil). The number of parallel slices calculated in each di-
rection along the magnetic field is the same as the number of guard cells
used in the y-direction, MYG.

Staggered grids in the y-direction are not currently supported when
using shifted metric parallel derivatives. As shown in Fig. 5, to allow
parallel derivatives to be calculated on the staggered grid from a cell
centre variable, or to interpolate the variable between centred and stag-
gered grids, an extra set of interpolated values (the purple triangles in
the figure) would have to be calculated and cached. The extra com-
putational cost and implementation complexity mean that the aligned
transform approach described in section 2.3.2 is recommended when
using staggered grids.

The implementation of shifted metric derivatives is mostly hidden
when writing implementations of PhysicsModel. When ShiftedMet -
ric isin use, calling mesh->communicate (£) calculates the parallel
slices and caches them in two std: : vector<Field3D> private mem-
bers of £, one for ‘y-up’ points ‘up’ the magnetic field from each grid
point, and one for ‘y-down’ points ‘down’ the magnetic field. Differen-
tial operators automatically use these cached parallel slices to populate
the stencils for y-derivatives. If no parallel derivatives of some variable
are required, it is possible as an optimisation to skip calculating the par-
allel slices by using the method mesh->communicateXz(£); as the
name suggests, this method is intended for cases where communication
is required only in the x-z plane (at present this method does still swap
guard cells in the y-direction, but this is an implementation detail which
may change in future).

Parallel boundary conditions can be applied in two ways. The
method most suited for simulations using the shifted metric method is

J.T. Omotani, D. Dickinson, B.D. Dudson et al.

3 L2 k-1
X X X
O O
X Xk
O O
X X
S
—_ O O
S
Z *%
[}
2,
b e SED €3
] o o

toroidal, ¢

Zk

X

O

X

)

Comp Physics Co ications 318 (2026) 109893
e+l T2 Ckt3
)R kK KKk V2
Yij+3r2
X XK ok Vs
O Yij+i172
X
O Yj-172
*¥X KX XV
O O O Vi3
XXX v
O O O Yj-572

Fig. 5. Sketch to illustrate the interpolations needed for the shifted metric procedure. The grid shown is a zoom in on part of a flux surface (a surface at constant
x) around some arbitrary grid point (y;, z,) which is a cell centre point shown by the red cross XK. The other cell centre grid points are shown as black crosses X.
Magnetic field lines through the centre row of grid points are grey lines, with the line through (y;, z,) highlighted in red. Interpolated points at y,,, y;.,, shown as
red stars K, are needed to calculate parallel derivatives at (y i Z)- The corresponding interpolated points for other grid points on the y; row are shown as black stars
. y-staggered grid points at y /12> €te. are shown as squares [J, with a chosen staggered point (y;_; 5, z,) highlighted in purple M. The magnetic field line through
the staggered point (y i—1/2 z,) is shown in purple, and interpolated points needed to evaluate a derivative at (y =120 z,) from input values on the cell centre grid are

shown as purple triangles A.

to apply the boundary condition directly to the cached parallel slices, al-
though only a subset of the BOUT++ boundary conditions are currently
supported. The full range of boundary conditions provided by BOUT++
can be applied by transforming a variable to the aligned grid, applying
the boundary condition, then transforming back to the toroidal grid; this
is more expensive than the first method described because extra FFT in-
terpolations are required.

A reasonable way to calculate the cost of the parallel derivative
schemes is to count the number of FFT interpolations required, as they
are expected to be the most computationally expensive part of the calcu-
lation. Also, the computational cost of applying finite difference stencils
should be similar between different methods, although it is possible that
there could be differences due to the different memory access patterns
causing, for example, changes in vectorisation or cache use. For the
shifted metric approach, the number of FFT interpolations per variable
is the number of parallel slices that are needed, which is 2xMYG. If a
y-staggered grid were supported a second set of parallel slices would be
needed, corresponding to the purple triangles in Fig. 5, so twice as many
FFT interpolations would be needed, 4XMYG per variable.

2.3.2. Aligned transform

The ‘aligned transform’ scheme described in this section is a variation
of the shifted metric procedure. Variables are represented on the toroidal
grid using a set of locally field aligned coordinate systems in the same
way. The difference is in how the parallel derivatives are calculated.
For the aligned transform scheme, a variable is transformed from the
toroidal grid to the globally field aligned grid, using FFT interpolations.
Parallel derivatives or interpolations are calculated on the aligned grid,
as sketched in Fig. 6, and the results of these operations are transformed
back to the toroidal grid.

As mentioned in section 2.3.1, using the poloidal flux function y for
the radial coordinate means each magnetic field line, as it lies on a flux
surface, has a single value of x = y and so interpolation is only needed in
the z-direction to shift from the toroidal grid to the aligned grid. zshift
contains the toroidal angular position of a field line relative to a refer-
ence poloidal location (equal to 9(; %de, see equation (5)). To in-
terpolate a Field3D variable f(x,y, z) from the toroidal to the aligned
grid we Fourier transform the z-dimension to wavenumber k, space,
giving f;(x,y,k,), then multiply by a phase exp(ik,zshift), and in-
verse Fourier transform back to a spatial grid giving f(x,y,z+zShift)

which gives the values of f on the aligned grid. To transform back from
the aligned to the toroidal grid, we follow the same process but shifting
in the opposite direction using —zShift instead of zShift.

Using a grid aligned to the magnetic field when computing parallel
derivatives or interpolations has several advantages. Using a y-staggered
grid is simple to implement, avoiding the complications associated with
the shifted metric approach described in section 2.3.1, and the aligned
transform scheme is computationally cheaper for staggered grids, as
shown below. It is also straightforward to implement conservative nu-
merical schemes, since each cell face through which the parallel fluxes
pass is perfectly aligned with the face of a single adjacent cell, unlike in
the shifted metric scheme where each of those cell faces would have
a partial overlap with the faces of two neighbouring cells; standard
flux-calculation methods can therefore be used, while the FFT interpo-
lation used to transform between toroidal and aligned grids preserves
the toroidal average, and therefore toroidally integrated conservation,
to machine precision.

The aligned transform scheme has been implemented by adding ex-
tra functionality to the ShiftedMetric implementation of Parallel-
Transform; this was the most efficient approach due to the many com-
monalities between the aligned transform and shifted metric schemes,
and because the ShiftedMetric class was already implemented.

Aligned transform derivatives were available in BOUT++ version
4.0.0, but in that version were intended primarily as a fall back for
cases when the argument to a differential operator had no precalculated
parallel slices. For example when computing Grad_par (A+B), even if
both A and B have cached parallel slices, the operation (A+B) returns
a result which does not have parallel slices. In that version, the paral-
lel slices were calculated as part of the communication routine, while
transforming to and from the aligned grid did not and does not trig-
ger communication. To avoid unnecessary communication, the aligned
transform method was used rather than calculating parallel slices within
the parallel derivative operator.® Full support for the aligned transform
scheme was added in BOUT++ version 4.3.0, when an option was added
to disable calculation of parallel slices by the ShiftedMetric class, so

3 From version 4.2.0 it was possible to get the ParallelTransforminstance
using public methods, and therefore to calculate parallel slices without com-
municating, and from version 4.3.0 this was simplified by providing a method
Field3D::calcParallelSlices().

J.T. Omotani, D. Dickinson, B.D. Dudson et al.

X

| |

Comp Physics Co ications 318 (2026) 109893

Zk-3 k-2 k-1 Tk Lkl Tk+2
X X X X X X X V2
I} 5} I} = =} =} =} Yi+3/2
X X X X X X Vi
a A o a g Ytz

X X X X X X X

poloidal, 8

toroidal, ¢

o X
o X
o o
0 X

7| o o a Yjiir
X X X Y
& a8 Y
X Yj2

Fig. 6. Sketch of globally field aligned grid. Cell centre X and y-staggered O grid points correspond to the toroidal grid shown in Fig. 5. The central grid point is
highlighted in red X. The magnetic field is shown as grey lines, with the line through the central grid point highlighted in red. Parallel derivatives at points on both
central and staggered grids can be calculated using values on the globally aligned grid.

that all parallel operations are done by transforming variables to the
aligned grid. In 4.3.0 the operation of the parallel derivative and inter-
polation operators was clarified by making them return their output on
the same grid (aligned or toroidal) as the input argument; previously
even if a field aligned input was given, the output would have been on
the toroidal grid.

The aligned transform scheme can be enabled by using ShiftedMet -
ric with calculation of parallel slices disabled, with no special modi-
fications to PhysicsModel code. In this case the transformation to
and from the field aligned grid is implicit, and is applied automat-
ically within each parallel derivative operator. Boundary conditions
are applied similarly, by transforming to the aligned grid, applying the
boundary condition, and then transforming back to the toroidal grid.

The implementation just described can lead to variables being trans-
formed from the toroidal to the aligned grid multiple times, if more than
one parallel derivative or interpolation is calculated for each variable,
and also when applying parallel boundary conditions. For a code using
y-staggered grids, the inefficiency can be significant, as typically at least
one parallel derivative, plus an interpolation between cell centre and cell
face grids, are needed for each variable. A more optimised implementa-
tion can be achieved, at the cost of extra variables and lines of code in
the PhysicsModel implementation, by defining a separate Field3D
object to hold the transformation of each variable to the aligned grid,
which can be calculated once, have boundary conditions applied, and
be passed to several operations. This is the approach taken in STORM.
This optimised approach can be applied to the example wave equation
program, using staggered grids, as shown in Listing 3.

The optimised version of the aligned transform scheme requires one
FFT interpolation per variable to calculate the aligned version, plus one
FFT interpolation per parallel operation to transform the result back
to the toroidal grid, so in total 1 + Ny, interpolations per variable,
where Ny, is the average number of parallel operations per variable.
The number of parallel operations for each variable depends on the par-
ticular set of model equations being solved. For a staggered grid code
Nopar.op ~ 2 — 3 would be typical, allowing for one parallel interpolation
between centred and staggered grids plus one or two derivative opera-
tions for the parallel first and second derivative.

Which of the shifted metric or aligned transform methods has lower
computational cost depends on the situation. When using second order
central finite difference methods, which have only three points in their
stencils, on an unstaggered grid for parallel derivatives, only one guard
cell in the y-direction is needed, MYG = 1, so the shifted metric method
requires (see section 2.3.1) only 2x MYG = 2 FFT interpolations, while

aligned transform requires 1+ Np,.o, =2 FFT interpolations if only one

of the first and second derivatives must be calculated (Npqy.qp = 1), but
three FFT interpolations for any variable where both first and second
derivatives are needed (Np,r.op = 2). When using staggered grids, a four
point stencil is used to interpolate between centred and staggered grids,
requiring MYG = 2 for the shifted metric method as well as FFT interpola-
tion to different points for outputs on centred and staggered grids, giving
a total of 4xMYG = 8 FFT interpolations per variable. For the aligned
transform method, since a parallel interpolation is typically required for
each variable, there are likely to be two or three operations per variable
Npar-op = 2,3, so only 1+ Np,.op = 3,4 FFT interpolations per variable
are needed, making the aligned transform significantly cheaper for the
y-staggered grid case.

2.3.3. BOUT++ version 3

In version 3 and earlier of BOUT++ the standard grid was the aligned
grid. When calculating radial derivatives or applying radial boundary
conditions, variables were shifted to the toroidal grid using FFT in-
terpolation in the toroidal direction [21], following on from one of
the schemes described in Dimits (1993) [61]. The aligned transform
method, section 2.3.2, is equivalent to this scheme; the differences are in
implementation, due to the different choices of standard grid — toroidal
vs. aligned.

3. STORM

In this section we describe the STORM code. We begin in section 3.1
by giving the model equations in SI units (the normalised form used in-
ternally by the code is given in Appendix B). The numerical methods
used are described in section 3.2, the options used to initialise vari-
ous types of simulations in section 3.3, and the source terms used to
drive transport in section 3.4. Finally some routines for providing high
time resolution output suitable for synthetic Langmuir probe diagnostics
are described in section 3.5. Additional information on parallel scaling
performance, post-processing tools and provenance tracking features is
provided in Appendix D, Appendix E, and Appendix F.

3.1. Model

STORM solves drift reduced, cold ion, collisional fluid equations for
a hydrogenic plasma [3,4], which written in SI units are

on 1 1
S = 5b-Vex Vn—BY) (V)

—nC(ed)+C(p,)+V, - (anﬂl) +S,.

(electron continuity) (9)

J.T. Omotani, D. Dickinson, B.D. Dudson et al.

#include <bout/physicsmodel.hxx>
class SimpleWaveAlignedTransform : public PhysicsModel {
int init (bool UNUSED (restarting)) ({

g.setLocation (CELL_YLOW) ;
g_aligned.setLocation (CELL_YLOW) ;

solver-sadd(f, "f");
solver->add(g, "g");

f aligned.setBoundary ("f aligned");
g_aligned.setBoundary ("g aligned") ;

return 0;

}

int rhs(BoutReal UNUSED(t)) ({
mesh->communicate (£, g);

f aligned = toFieldAligned (f) ;
f_aligned.applyBoundary () ;

g aligned = toFieldAligned(g) ;
g_aligned.applyBoundary () ;

Comp Physics Co ications 318 (2026) 109893

ddt (f) = fromFieldAligned (Grad par(g_aligned, CELL_CENTRE)) ;
ddt (g) = fromFieldAligned (Grad par (f_aligned, CELL_YLOW)) ;
return O;

}

Field3D f£;

Field3D f_aligned;

Field3D g;

Field3D g_aligned;

i

BOUTMAIN (SimpleWaveAlignedTransform) ;

Listing 3: BOUT++ program implementing wave equations using the optimised version of the aligned transform method for parallel derivatives on

a staggered grid.

a < e) 1 e
—\Viy+—A |=—=b-VopXVV, = V;yV Vi — — V@
or \ il m, I B il il v il m, [

m, 1 1
- —051— (V) =V,) +0.71—V, T,
03 (Vi = V) o Vi Te
VS,
2 i|Pn
+'DK”VLLﬁ_ n

(ion velocity) (10)
d < e > 1 e
—\Vyy—-—A)=—=b-VoxVV,, =V, ,V\V, + — V¢
ar \ el = 5 A B el = Ve Viver + 5 Vi

1 1
- —Vp. +051— (Vy =V,
mon 1P Te’_(= Ver)

1) Ve Su
=071 VTt Dy, ViV = ==

(Ohm’s law) (11)

9p, 1
T —Eb' Vo XVp, =V V) p.

2 e 2
— 3BV <§> = 30710 (Viy = Vo) VYT

5 Var\ | 2m, n 2
—gl’eBVu(j + 5051 = (V= Va)

m,V?
+35 (—C(e¢> L, C(Te>> -,
3 n 3

m, V2
+§Vl'(KeLVLTe)+%SE+ ¢ el

Sy
3 n

(electron pressure) (12)

w1 1
S = —2b-Vox Vo~V Vyw + B <Een (Vi =Va))

+eC(p,)+V, - (ﬂlew) .
(vorticity) (13)

e is the proton charge, m, is the electron mass and m; is the ion mass,
for which by default the value for Deuterium is used. The plasma vari-
ables are the electron density n, parallel flow velocities of electrons V),
and ions V|;, and electron pressure p, = nT, where T, is the electron
temperature. The generalised vorticity w is related to the electrostatic
potential ¢ by

m;ng

T0V.18). (14)

w=v-(

where, in a form of so-called ‘Boussinesq approximation’, a constant ref-
erence density ry is used, as discussed further in section 3.1.1, including
the possibility to lift this approximation. Parallel and perpendicular are
defined relative to the magnetic field B = Bb whose magnitude and di-
rection are B and b. The curvature operator is defined as

C(f)=£V><<%>-Vf. (15)

J.T. Omotani, D. Dickinson, B.D. Dudson et al.

The perpendicular dissipation coefficients u,,, k, |, #y» DV,.” and Dy, |
are set to constant values for turbulence simulations, chosen such that
fluctuations are dissipated before reaching the gyroradius scale. For
computational efficiency, the grid scale in the perpendicular directions
is chosen to be comparable to the gyroradius, so it is important for nu-
merical stability that fluctuations are dissipated above this scale. It can
then be verified that simulation results are insensitive to the particu-
lar values of the perpendicular dissipation parameters, as shown in [6].
Parameter dependent expressions for the perpendicular dissipation co-
efficients have been used for filament simulations, as discussed in sec-
tion 3.1.3. There are volumetric sources of particles S, and energy Sg
which are used to drive turbulent simulations, discussed in section 3.4.
The conductive parallel electron heat flux is

Qo = KoV Te = 0.71nT, (Vi = Vyy) (16)

where the parallel thermal conductivity is Ko = 3.16nT,7,;/m, and the
collision times are given by 7., = 1271:3/2egmtl/zT;ﬂ/Zlﬂnbe4 In A with
the vacuum permittivity ¢, and cyclotron frequencies Q, = eB/m,; the
Coulomb logarithm is evaluated using reference parameters n, and 7T}
(see section 3.1.5) asIn A = 18 —log ((n0/1019 m~3) 12 (Ty/1 keV)_3/2>.

A, is the parallel component of the magnetic vector potential gen-
erated by parallel currents in the plasma modelled by the code, which
act as a perturbation on top of the background equilibrium magnetic
field generated by the external coils and the equilibrium plasma current,
which is not part of the plasma modelled by the code. When running in
electrostatic mode, the parallel component of the magnetic vector poten-
tial is neglected, A =0, so that the parallel momentum equations (10)
and (11) evolve V; and V, directly. In electromagnetic mode, the equa-
tions are completed by relating A to the parallel current with Ampére’s
law

V2 Ay =—en (Vi = Vi) an
Ho

where i is the vacuum permeability, and parallel derivatives follow
the perturbed magnetic field
where b is the unit vector along the background magnetic field, while
perturbations to the magnitude B are neglected. So far it has only been
possible to use the electromagnetic mode in slab geometry [42] due to
numerical instabilities appearing near the X-point in tokamak config-
urations, but the cause of this issue continues to be investigated as it
has been shown that including electromagnetic effects can allow longer
time steps to be taken [63].

Cold ion, collisional fluid equations are not well suited to describe
the edge, closed field line region of present day tokamak experiments,
which even in low power L-mode regimes are typically hot enough to
make the collisional assumption marginal, and hot ion effects are likely
to be qualitatively important. Nevertheless a small closed field line re-
gion is included in tokamak simulations with STORM as a buffer where
the sources of heat and, if necessary, particles representing fluxes from
the core plasma can be introduced. The closed field line region allows
turbulent fluctuations to develop around and across the separatrix; if
the separatrix were taken as the radial boundary of the grid, the SOL
turbulence would be unphysically modified, likely being suppressed by
the absence of fully developed fluctuations at that boundary.

There is also an isothermal mode, where T, is taken to be constant
and the electron pressure equation (12) is neglected.

3.1.1. Boussinesq approximations

A so-called ‘Boussinesq approximation’, as presented in section 3.1,
is normally used for numerical efficiency, where the density is replaced
by a constant reference value so that it can be removed from the diver-
gence in (14). This form of Boussinesq approximation was introduced

10

ications 318 (2026) 109893
by [12] and is now used as the standard option, as it has better con-
servation properties than the version originally used in STORM [33],
and so avoids large, spurious current sources that could be produced
by the original form in some situations. The original form of Boussi-
nesq approximation from [33], rather than replacing the density in the
full expression (21) with a constant reference value r, instead moved
the density outside the derivative terms /9, (V- (m;nB72V ¢)) ~
no/o, (V . (m,-B‘2 \% lqb)), resulting in a modified generalised vorticity

Comp Physics Co

Wod =V - (miB_ZVJ_‘f)) (19)
and the vorticity equation
0W 04 1
% = —Eb . Vd)X Vwmod - I/,”V”Wmod
1 1 C(p.)
+ =BV (gen (Vi = V)) +e—
+V,- (ﬂlemed>. (20)

It is also possible to run without any Boussinesq approximation, re-
taining the full density in the generalised vorticity, giving [39,64]

m;n
W =V - (Fvﬂﬁ) (21)
0wy 1 1 bxVg|?
T=—§b~V¢Xwau”—§b~V B X Vn
1
ViV + BYy (gen (Vi —Vey))
+eCp)+ V- (HepV 1Dy - (22)

The options for numerical methods that allow lifting the Boussinesq ap-
proximation are discussed in section 3.2.2.

3.1.2. Boundary conditions

The radial boundaries are essentially dissipative numerical buffers
and are discussed in section 3.2.3.

The parallel boundary conditions for the plasma are set by the
physics of the Debye sheath, with Bohm boundary conditions [65] being
imposed at the sheath entrance location (the non-quasineutral sheath
itself is not included in the simulation domain). These are outflow
boundary conditions where no explicit boundary condition is imposed
on scalar variables (density and pressure), while Dirichlet-type bound-
ary conditions are imposed on the parallel fluxes of particles and energy
as follows. The ion parallel velocity at the sheath entrance is set greater
than or equal to the sound speed

> Te |sheath
sheath m; +m »

and the electron parallel velocity is regulated by the electrostatic poten-

tial at the sheath entrance
emax(@| ,0
exp(— (sheath) > s 24

TE |sheath

£V

(23)

m T,|
i ©elsheath
ile”

sheath 2zm, (m; +m,)
where the electrostatic potential at the wall is taken to be |, =0.
Negative values of the sheath potential are disregarded to avoid un-
physically large values of V,; which might occur in rare, exceptionally
large fluctuations; (24) is derived assuming an electron repelling sheath
and so is not valid for ¢|geam S 0. The total electron parallel energy
flux at the sheath entrance is

0,

sheath = (é‘ ¢|Sheath +2 Té’lsheath) nlsheath Ve||

5 m:
~(0.5In
2 n,

~ 5.18 n|sheath Te|shearh Vel

sheath

> +2> nlsheath Telsheath V‘?”

(25)

sheath

sheath ’

J.T. Omotani, D. Dickinson, B.D. Dudson et al.

The signs in (23), (24), and (25) are such that the parallel velocities
and parallel energy flux are directed outwards at each boundary. Note
that in the second line (25), while the time-varying ¢|g,cqm is used to

calculate V, using (24), in the prefactor ¢|gea is replaced by

IHsheath
the floating potential 0.51n (m;/2zm,) T,|gcam- It would be possible to

use ¢|gpearm also in the prefactor, but (25) is the form that has been used
for previous publications with STORM.

3.1.3. Perpendicular dissipation parameters used for filament simulations
For turbulence simulations, the perpendicular dissipation parame-
ters are set to constant values, as discussed in section 3.1. Filament
simulations have used expressions that depend on the evolving n, and
T,

e’

T; T,
= (14134 1+—’)—e 26
Hn (1) < Te mngTei ()
K =466(1+1642)"‘3—Te @7
el =™ ’ m,Q2z,;
3 5 T;
4 () miﬂ.zr

i il

which are the classical values of Braginskii when ¢ =0. u, and yu,, are
evaluated with a finite ion temperature 7; = T, despite the model as-
suming cold ions, in order to provide finite perpendicular viscosity in the
vorticity equation in particular. The velocity diffusion coefficients DV,-”
and Dy, are set to zero for these filament simulations. The enhancement
of the perpendicular dissipation coefficients for ¢ > 0 was originally mo-
tivated by analogy with the neoclassical radial diffusion coefficients on
closed flux surfaces [66], with ¢ nominally the safety factor, but can
better be viewed as an ad-hoc enhancement to prevent gyroradius scale
gradients within a cold ion model and to improve numerical stability,
with ¢ an arbitrary parameter. Values for ¢ have been chosen, as rele-
vant for a tokamak edge, for filament simulations between 4.8 [38] and
7 [33,371, enhancing the dissipation coefficients by factors between 30
and 80 compared to the classical values.

3.1.4. Coordinates and geometry

For simulations in tokamak geometry, the usual BOUT++ locally
field aligned coordinate system discussed in section 2.1 is used, with
orthogonal x- and y-coordinates. For curved slab geometries {x,y,z}
are simply Cartesian coordinates, with x being radial, y the coordinate
along magnetic field lines and z binormal. The metric is then simply the
identity matrix.

3.1.5. Normalisations

Internally, dimensionless variables are used which are normalised to
have magnitudes of order unity in order to minimise the possibility of
underflow or overflow errors. Writing the normalised version of a vari-
able or operator f as f, reference values of density n, temperature Ty,
and magnetic field B, for which suitable values are chosen depend-
ing on the parameters of a given simulation, are used to normalise the
density A = n/n,, electron temperature T, = T,/T,,, and magnetic field
B = B/B,. The ion mass is used as the reference value, so the normalised
electron mass is 71, = m,/m;. Bohm normalisation is used for lengths and
times, V = p,,V and 9/0f = QE)I 0/0t, with the reference sound Larmor
radius py = ¢,/ cold ion sound speed c,, = 1/T;,/m; and cyclotron
frequency Q;, = eBy/m;. The electromagnetic potentials are normalised
as $ = €¢/TO and AA” = 2eAH/ﬂ0mics0 where ﬂo = 2/40”0T0/B3. The
normalised vorticity is @ =V - (B™2V) = w/en, for the ‘standard’
Boussinesq approximation (14); @, = V - (ﬁﬁ_zﬁl(ﬁ) =y /eng for
the full, non-Boussinesq version (21); and @0q = V - (B72V) =
W4/ e for the ‘original STORM’ Boussinesq approximation (19). The
source terms are normalised as S, = S, /n,Q;o and S = S /nuToQ0-
Normalisations of the parameters and model equations follow from these
definitions, as detailed in Appendix B.

11

ications 318 (2026) 109893
In tokamak geometries, the y and z coordinates are dimensionless

(angle-like) and so do not need to be normalised, while x = y is nor-

malised as X = x/ p?OBO. As the reciprocal metric components are by

Comp Physics Co

definition g/ = Vx' - Vx/ they are normalised as §** = g*¥/ pfOB(z), &=
&%, 8% = 87p%, & =g /By, §° = g*/By, and &% = g%’ ,
while the metric components are the inverse g, = gxxpioBg, &y =
2 5 _ 2 5 5 5 — 2

gyy/ps()! 82z~ gzz/pso’ 8xy = gxyBO’ 8xz = gszO! and 8yz = gyz/ps()' The
Jacobian J = (Vx - Vyx Vz)~! is normalised as J = JBy/ps-

In slab geometries all the coordinates are normalised by p,, so
X=x/py, ¥ =v/ps, and Z = z/p,. The metric and Jacobian are di-
mensionless and therefore do not need to be normalised.

3.2. Numerical methods

The physical model described in the previous subsection must be
discretised so that it can be solved numerically. We now describe in
some detail the algorithms used, to provide a reference for the code.

STORM uses finite difference methods, except for a few places noted
below where FFTs are used for toroidal derivatives or interpolation.
The implementation of the numerical schemes is mostly provided by
the BOUT++ framework; the sheath boundary conditions require a
lower level implementation, section 3.2.3. Here, we specify the methods
STORM used as standard for each operation. The standard set of choices
described here can be overridden at run time by options in the input
file if necessary; differences applied in some particular study would be
noted explicitly in the paper describing it. To ensure positivity of the
density n and pressure p,, their logarithms log» and log p, are evolved
numerically, as shown in the normalised equations in Appendix B.

As introduced above, one of the distinctive features of STORM is its
use of staggered grids in the parallel direction. This helps to avoid the
chequerboard instability — the numerical decoupling of ‘odd’ grid points
from ‘even’ grid points — associated with advective equations [67, sec-
tions 6.2, 6.3]. The parallel direction has been found to be susceptible
to the chequerboard instability while the perpendicular directions are
not, likely due to the faster parallel dynamics and the presence of sheath
boundary conditions that impose sharp variations in the parallel direc-
tion. The ‘scalar’ variables n, p,, @, ¢ are evolved or evaluated on the
‘cell centre’ grid, while ‘vector’ variables V;;, V,, and A, which rep-
resent the parallel component of a vector quantity, are evolved on a
staggered grid offset to half way between the cell centres, at the ‘cell
faces’. This means that the evolution equations (9), (12), and (13), and
therefore each component (such as derivatives) within those equations,
are evaluated at cell centre grid points. (10) and (11), and each com-
ponent within them, are evaluated at cell face grid points. As shown in
Figs. 2 and 3, in BOUT++ the boundaries of the domain are taken to be
at cell face locations.

The following subsections detail the specific methods used for each
type of numerical operation: parallel interpolation and the differential
operators used for parallel derivatives, perpendicular derivatives, and
curvature operators in section 3.2.1; Laplace inversions needed to cal-
culate ¢ and A in section 3.2.2; boundary conditions in section 3.2.3;
and the time solver in section 3.2.4.

3.2.1. Differential operators and interpolation

Differential operators in BOUT++ are defined in terms of coordinate
derivatives 0/0x, d/dy and d/0z in the locally field aligned coordinate
system (section 2.3), combined with appropriate geometric factors —
metric components, the Jacobian, etc. — to account for general curvilin-
ear coordinates, as described in the BOUT++ documentation [53]. The
grid generator hypnotoad is designed to ensure that all grid spacings
are slowly and smoothly varying, so that this coordinate transformation
provides an accurate representation of the differential operators [58]. In
this section, except where noted otherwise, we detail just the discretisa-
tions used for the underlying coordinate derivatives in each operator, as
used by STORM. The aligned transform scheme (section 2.3.2) is used,

J.T. Omotani, D. Dickinson, B.D. Dudson et al.

so that parallel derivatives and interpolation are calculated on a globally
field aligned grid, with the toroidal interpolations needed to transform
variables onto that aligned grid being calculated using FFTs. The chain
rule is used to split several operators in equations (9)-(13) as the split
forms have slightly better numerical stability. The exact forms as used in
the code are shown in the normalised equations in Appendix B. Within
this section, we quote individual terms from the split forms, which each
correspond to an individual term in equations (B.2)-(B.6), when refer-
ring to the terms that are discretised, but write them in SI units.

To describe finite difference stencils for parallel derivatives, we de-
note the values of some variable f at grid points using a subscript that
labels the y-index of the points, with indices on the staggered grid being
offset by one half, as shown in the sketch.

Jisn fia fan S fan fi fan fi Sasn fe
o X 0o X o X o X o X

——
y

Derivatives parallel to the unperturbed magnetic field use second
order accurate finite difference methods. Derivatives parallel to the full
magnetic field are calculated, in electromagnetic mode, by adding a cor-
rection due to Ay discussed below. Advective derivatives, of the form
vV, f, use an upwind method, while the other parallel derivatives use a
centred method. Derivatives account for whether the argument is on the
same grid as the output, or on the grid staggered relative to the output,
by using the appropriate stencil. For the non-advective derivatives, this
is essentially just a change in grid spacing, so that unstaggered deriva-
tives use

0 i —Ji-

_f — f +1 f 1 (29)
oy |; 2A,;

where A, ; is the y-grid spacing at point i, which is used for VT, in

the electron pressure equation (12) and V| logn in the vorticity equa-
tion (13). Staggered derivatives use

of _Ji—Ja

al , (30)
oyl Ayiap

which is used for: V| (V,;;/B) in the continuity equation (9); V¢, VT,
and 7 logn in the ion momentum equation (10) and Ohm’s law (11);
VT, in the calculation of g, (16); V, (qe”/B) and V (VL,”/B) in the
electron pressure equation (12); and V, ((V;; — V) /B) in the vorticity
equation (13).

Parallel advection terms use upwind schemes. For the V;;V, V;; and
VoV Ve terms in the ion and electron momentum equations (10)
and (11), the velocity and the variable are on the same grid and the
unstaggered form

, Gfr2tatina)

5 Aafimntaliz)

A a
9y |;

v; >0

v (31)
(%fr'_zfi+] +%fi+2)

is used. The remaining parallel advection terms, V, V logn, V, V, log p,,

and V,—H \Y e in the continuity (9), electron pressure (12), and vortic-

ity (13) equations use the form with a staggered velocity

| _ouf| _av
9y |; ay | dy” |;
Xy +X_ (Vir1/2 = Vi12)
_ | =) (v /A 2 32
Vil Vi
where
3 1
Vir1/2 (Efi - Efi-l> Vip172 >=0 @3)

3 i
Vit1/2 (5fi+1 - §fi+2) Vip172 <0

12

Comp ications 318 (2026) 109893

3 1
—Up12 (Efi»] - 5f;:z> V12 >=0
3 1 ’
—Uf-1/2<§fi—§ft+1> Viij2 <0

Physics Co

(34

Note that this form ensures that the result is continuous as either v,/
or vy, pass through zero, which reduces the sensitivity to round off
errors.

In several places scalar variables n, T,, ¢ are required on the cell
face grid in equations (10) and (11), while vector variables Ve”, ViH,
A” are required on the cell centre grid in equations (9), (12), and (13).
The values are calculated by interpolating in the parallel y direction on
a field aligned grid. The interpolation is performed in grid-index space
using a cubic polynomial interpolation from a four point stencil with
two points on either side of the result, so that a variable f is calculated
at each offset point i — 1/2 as

_ =S+ +9fi - fin
Jiip= 16 :

(35)

Note that interpolation in grid index space is equivalent to interpolation
in the y-coordinate, as tokamak grids for BOUT++ always use constant
grid spacing in y, with any refinement of the grid in specific locations
being achieved by different choices of y-coordinate.

E X B advection and corrections to the parallel gradient due to mag-
netic field perturbations (18) both have the form

1

EbO-Vf><Vh (36)

and are discretised in the same way. The x and z coordinates in the lo-
cally field aligned coordinate system represent perpendicular variations,
but are not in general perpendicular to the magnetic field (as discussed
in section 2.1), which means that y-derivative terms contribute to the
operator (36). These y-derivatives are neglected on the assumption that
parallel gradients are negligible compared to perpendicular gradients,
which is reasonable for turbulent fluctuations in a magnetised plasma.
For structures that have a perpendicular length scale within a flux sur-
face comparable to the parallel length scales, i.e. axisymmetric modes
or those with low toroidal mode number, the neglect of y-derivatives
means that the effects of poloidal E X B drift and radial drift from
E,10ida1 due to these modes are not consistently included, although some
parts are captured by y-derivatives that are included in the curvature
operator (39). Careful validation would be needed in situations where
these kinds of poloidal E X B drift or Ejq, are an important contri-
bution. In regions where parallel gradients are extremely strong, such as
near the sheath entrances at the target plates, the assumption is violated
and so the effects of drifts are again not fully captured. Neglect of the y-
derivatives in differential operators is consistent with their neglect when
calculating the electromagnetic potentials ¢ and A, see section 3.2.2;
including all y-derivatives would be straightforward in the differential
operators described here, but would require them also to be included
in the potential solvers, which is challenging. The remaining x- and
z-derivative components are calculated using a second order accurate
Arakawa stencil [68]. The Clebsch property of the locally aligned coor-
dinate system used by BOUT++ B = VzXx Vx, combined with the neglect
of y-derivatives, gives a particularly simple form of this operator

> 37
0x 0z (87)

which is discretised as
L I x x+
(gbo-Vrx Vh)i’j e R IR RO Lo UV R EL
I
JEHhf) = T [(g = uy) (Frany = fimr)
- (hi+1,j - hi*l,j) (fi,j+1 - fi,j*l):l

1
I (h)= TN [hi,j+l (firr a1 = fictje1)

J.T. Omotani, D. Dickinson, B.D. Dudson et al.

- hi,j—l (fiJrl,j—l - fifl.j—l)
- hi+1,j (fi+1,j+1 - fi+1.j—1)

+hi_y; (fi—l,j+1 = fic1,j-1)]
1
J,->,<j+(ha = m [h[+l,j+1 (fi+1,j - fi,j+1)

= hi_y oy (fijo1 = ficry)
- h[+l,j—1 (fi+1,j - fi,j—l)
+ R4 (fi,j+1 - fi—l,j)]

where i is the x-index and j is the z-index, A, is the spacing of the
x-grid and A, is the constant spacing of the z-grid. Note that here b is
in the y-direction of a right handed {x,y, z} coordinate system, so the
order of indices in (38) is reversed compared to (36)-(38) of [68].

The operators used for perpendicular dissipation (section 3.1.3) also
neglect y-derivatives. The diffusion terms Vi f use BOUT++’s Delp2
operator, which was written to be the discrete operator whose inverse is
calculated by the ‘Laplace inversion’ routines (section 3.2.2). Delp2 first
performs a toroidal Fourier transform of its argument, then computes x-
derivatives using a second order centred finite difference method, and
z-derivatives by multiplying by the appropriate power of the complex
wave number for each Fourier mode; for completeness, note that Delp2
does have an argument allowing to switch to an implementation with
centred finite difference for all derivatives, but STORM does not use
this. When non-constant dissipation parameters are used the diffusion
operator is split in the form

Vo (uVLf)= UV +V u VoS

as shown in Appendix B, so it is necessary to compute terms of the form
V,u-V, f. As BOUT++ does not provide this particular operator, it is
implemented in STORM in terms of coordinate derivatives as

wOHOf | 20O

ox 0x 0z 0z
where g** and g** are contravariant components of the metric tensor
and we recall that in the locally field aligned coordinate system, g** =0
at the grid points as x and z are orthogonal there, section 2.3.1. The
coordinate derivative d/0x is discretised with a second order central
finite difference method, and 0/0z usually uses an FFT method, but
some filament simulations in slab geometry use second order central
finite difference for symmetry.

Finally, we turn to the curvature operator (15)

Viu-Vif=g

C(f)=éVx(%)-Vf

tox(g) Lavx(8) Lavx(2) L] a9

e B/ o0x B

For simulations in tokamak geometry, the contravariant components of
the vector V x(b/ B) are calculated by the grid generator hypnotoad [58]
using derivatives of the interpolating functions used to represent the
poloidal flux y and poloidal current function I(y) = RB,qqa of the
equilibrium, where R is the major radius and B4, is the equilib-
rium toroidal magnetic field. As for other operators described above,
0/0x and 0/0y use a second order centred finite difference method,
and d/0z uses an FFT method. For simulations in curved slab geom-
etry, the curvature is approximated by the form for a purely toroidal
magnetic field with a radius of curvature R, that is large compared
to the radial width of the simulation domain, V X (b/B)* = 2/ByR,
and V X (b/B)* =V x (b/B)” =0, where B, is the constant, reference
magnetic field, as shown in Appendix C; 0/dz is calculated in slab sim-
ulations either with an FFT, or a second order central finite difference
method.

13

Comp Physics Co ications 318 (2026) 109893
3.2.2. Laplace inversion

To calculate ¢ from w or, in electromagnetic mode, to separate
Ay, V> and V} requires solving a boundary value problem involving
perpendicular gradients, referred to by BOUT++ as ‘Laplace inversion’
because the leading term in the equations is the perpendicular Laplacian
Vi. As mentioned in section 3.2.1, there are y-derivative contributions
to the perpendicular gradient, because the x- and z-coordinates are not
in general perpendicular to the magnetic field. The underlying issue is
not dependent on the particular choice of coordinate system however,
as in the closed field line region a line following the binormal direc-
tion, perpendicular to B but within a flux surface, will usually cover
the whole flux surface ergodically. Therefore the ‘plane’ perpendicu-
lar to B on which we must solve the boundary value problem actually
fills the whole volume, making the solution three dimensional rather
than two dimensional. In order to make the problem two dimensional,
y-derivatives are neglected, which can be justified to the extent that
parallel gradients are much smaller than perpendicular gradients, as
discussed in section 3.2.1; three dimensional ‘Laplace solvers’ are un-
der development in BOUT++ to remove this approximation, although
these are computationally intensive and it is also challenging to formu-
late an appropriate parallel boundary condition.

Using either form of Boussinesq approximation, the coefficients in
the equation to be solved for ¢, (14) or (19), are independent of the
toroidal coordinate z. This makes it possible to use the default BOUT++
solver (called ‘cyclic’), which transforms the equation using FFTs in the
toroidal coordinate z into a set of decoupled, ordinary differential equa-
tions where the independent variable is the radial x-coordinate. A sec-
ond order central finite difference discretisation puts these in the form of
a tridiagonal matrix, and the solution is computed by a direct method
using a two level partitioning algorithm [69]. For the non-Boussinesq
case, the coefficients of (21) involve the density n, which has toroidal
variation and so prevents decoupling by toroidal Fourier transform. A
multigrid algorithm, which discretises both x- and z-derivatives using
second order central finite differences, can be used and has been suc-
cessful for filament simulations in slab geometry [39,42]. For turbulent
simulations in tokamak geometry, it has been observed to be more ro-
bust to use an iterative algorithm [70] called the ‘Naulin Solver’ where
iterations ¢' are updated by solving

i B? n i
2 gi+l it+1
Vig +<_n >ZVL<—2>Z-VL¢

_ B? B2_ =n B? n ;
- (g () v ().) v
with the ‘cyclic’ solver, where (-), denotes a toroidal average.
Radial boundary conditions are required to solve for ¢. The radial
boundaries are located at an arbitrary flux surface where the grid ends,
not a physical boundary such as a wall, and the region near the radial
boundaries is a non-physical buffer zone where enhanced numerical dis-
sipation is used to damp fluctuations, section 3.2.3. Therefore the radial
boundary condition is somewhat arbitrary, and a Dirichlet boundary
condition is used, with a non-zero boundary value that is updated over
time. To improve numerical stability and avoid restricting the timestep,
it has been found that allowing a poloidal variation in the value to which
this boundary condition is set is important to avoid sharp boundary lay-
ers in the dissipative radial buffers, which would form if the boundary
value were far from values consistent with parallel force balance for
the electrons. For turbulent simulations, this poloidal variation is de-
termined by a relaxation procedure. The radial boundary values are
updated at intervals, whose length is chosen for each simulation to give
numerically stable solutions. At the end of each interval, the boundary
value is set to the time and toroidal average of ¢ at the adjacent grid
point over the interval, so that the average radial profile of ¢ relaxes to-
ward zero gradient at the boundaries. For filament simulations, which
are initialised on top of a stationary background plasma (section 3.3),
the background value of ¢ is used as the radial boundary condition.

(40)

J.T. Omotani, D. Dickinson, B.D. Dudson et al.

For Fourier components of ¢ with low toroidal mode numbers, the
approximation that parallel derivatives are much smaller than perpen-
dicular derivatives can break down as the length scale of toroidal deriva-
tives for these components is comparable to the major radius. Near
the X-point, radial derivatives are also small due to the flux expan-
sion there. This can result in unphysical solutions in some cases, for
which a partial solution is to include y-derivatives when solving for the
toroidally-constant part of ¢ (the zero mode number component of the
toroidal Fourier transform) [12]. There is an option to enable this partial
solution, which can be used with the standard Boussinesq approxima-
tion. When the option split_noO=true is set, the toroidally constant
part of (14) is solved including y-derivatives. The operator is discretised
with second order centred finite differences, and then solved on the full
x—y plane using an iterative scheme implemented using PETSc [71,72]
and calling the BoomerAMG preconditioner from Hypre [73]. Radial
x-boundaries use the same boundary conditions as the standard solve.
Parallel/poloidal y-boundaries use Neumann boundary conditions by
default, but appropriate settings here are still under investigation.

In electromagnetic mode, the variables advanced by the time solver
in the ion and electron momentum equations (10) and (11) are y; = Vi+
eAy/m; and y, =V, —eAj/m,. To obtain A, V;;, and V, separately,
we solve Ampere’s law (17), in the form

1 1
2 2
VIiA + < + i>e HonA) = —epgh VAR

e

(41D

for A, which we can then use to calculate V;; and V, directly from
x; and y,. Zero value Dirichlet boundary conditions are used for A
at the radial boundaries. The coefficient of the second term on the left
hand side of (41) is not toroidally constant, so we again use either the
multigrid or Naulin solvers. These solvers have been used successfully
for filament simulations in slab geometry. However, as the vector vari-
ables are defined on the staggered grid, in tokamak geometry (41) must
be solved on the x-z planes that intersect the X-points, see Fig. 2, which
causes numerical problems. Several workarounds have been tried to
enable electromagnetic runs in tokamak geometry, but so far without
success.

3.2.3. Boundary conditions

The parallel boundary conditions, where the magnetic field inter-
sects the wall at the divertor targets, are set by sheath physics, sec-
tion 3.1.2. The scalar variables n, T,, and ¢ should not have any parallel
boundary condition, so to constrain them as little as possible, they are
extrapolated to the sheath entrance with a quadratic polynomial extrap-
olation

1
Fliean = g (1514 = 105, 1 +3Fi 22) “2)

where i, is the y-index of the grid point adjacent to the sheath en-
trance, the upper signs apply to upper y-boundaries, and the lower signs
to lower y-boundaries. Recall that the scalar variables are evolved on the
cell centre grid, while the sheath entrance boundary is at a cell face lo-
cation, s0 f|gheqn is located at y-index igyqy /2. The extrapolated values
of the scalar variables are used to evaluate the sheath entrance values
of the parallel flows with (23) and (24), while the conductive parallel
heat flux g, is calculated using the total parallel heat flux Q, evaluated
similarly with (25) as

9ell| eain = Cell|spatn ~ 5 Telshean Ve

1 3
B Eme (Ve” sheath) ’

All variables are extrapolated into the boundary cells past the wall, again
with a quadratic polynomial extrapolation

sheath sheath

(43)

fi=3fiz1 = 3fiz2 t fiz3 (44)

where i is the y-index of any grid point within the boundary. The paral-
lel boundary conditions are applied to auxiliary variables containing the

14

ications 318 (2026) 109893
transformation to the field aligned grid of each quantity, as discussed
in section 2.3.2. For some filament simulations, to reduce the compu-
tational expense, only half of the slab domain is simulated, dividing
the domain in the parallel y-direction with boundary conditions at the
lower-y end of the computational grid imposing reflection symmetry,
i.e. Neumann boundary conditions for the scalar variables n, p,, @, ¢
and Dirichlet boundary conditions for the vector variables Vit Ve Ay
De|-

The radial boundaries of the grid are not physical. Their position
should be chosen to be far enough away from the separatrix that the
results of a simulation are insensitive to the exact position of the bound-
aries. Fluctuations that occur near the boundaries are therefore unim-
portant for the simulations, but have a tendency to lead to numerical
instabilities. Therefore for turbulent simulations, a combination of ra-
dial boundary conditions is used that have been found from experi-
ence to mitigate these numerical instabilities by suppressing fluctuations
(which are set to zero at the radial boundaries, and may be further
damped by a buffer region with enhanced dissipation) but allowing the
average values to float as freely as possible, to avoid creating artifi-
cial boundary layers. At the radial boundaries in SOL and PFR regions,
logn, log p, and w use a Neumann boundary condition on the toroidal-
average part of the variable (logn),, etc. and a zero-value Dirichlet
boundary condition on the ‘fluctuating part’ (logn — (logn),), etc. At
the core boundary w uses the same boundary condition as in the SOL
and PFR, while the combined toroidal and poloidal average of logn or
log p,, that is (logn),. or {log p,), use a Neumann boundary condition,
while the ‘fluctuating parts’ which use Dirichlet boundary conditions
are now (logn — (logn),.) and (log p, — (logp,),,). In filament simula-
tions, Neumann boundary conditions are used at all radial boundaries
for logn, logp,, and w. The radial boundary conditions for the elec-
tromagnetic potentials ¢ and A were described in section 3.2.2. In all
simulations Neumann boundary conditions are used at all radial bound-
aries for the parallel velocities V; and V. Radial boundary conditions
are applied, when necessary, to the intermediate variables storing inter-
polated, staggered versions of the variables in the same way as for the
unstaggered ones and Neumann boundary conditions are used for g,-
The exceptions are the electromagnetic potentials. As the staggered ver-
sions of ¢ and A are calculated simply by interpolating, not by separate
Laplace inversions (section 3.2.2), for simplicity ‘free’ boundary condi-
tions are applied using quadratic extrapolation in the radial direction
with the stencil (44).

Dissipative buffer regions can be created near the radial bound-
aries to further damp any fluctuations before they can interact with the
boundary. These buffer regions include a number of grid points in the
x-direction chosen for each simulation, typically 8 to 16. The perpendic-
ular diffusion coefficients y,, Dy, Dy, K15 and p, are enhanced by
a factor that increases linearly through each buffer region, up to a maxi-
mum enhancement factor at the radial boundary, which is again chosen
for each simulation, and defaults to 10. It is also possible to enhance the
parallel resistivity 0.51/7,; by the same factor in the dissipative radial
buffers; this enhancement is applied only in the ion and electron mo-
mentum equations (10) and (11), and not in the resistive heating term
in the pressure equation (12) in order to avoid spurious heating in the
buffers.

Comp Physics Co

3.2.4. Time solver

As is standard for BOUT++ codes, STORM uses the method of lines.
The spatial discretisation described above is used to implement the
STORM: : rhs () function which evaluates the time derivatives from the
values of the evolving variables. This function is passed to the ‘time
solver’ object, for which several implementation options are available
in BOUT++ [22]. As the parallel thermal conduction of the electrons is
a diffusive process which is faster than the typical turbulent dynamics,
it would imply a very restrictive CFL condition for an explicit time step-
ping algorithm [19,20]. STORM therefore uses the CVODE library from
the SUNDIALS suite, which uses a fully implicit, matrix free, variable-

J.T. Omotani, D. Dickinson, B.D. Dudson et al.

order, variable-step multistep method, employing a Newton-Krylov iter-
ative solver, to advance the solution in time [74]. Even without precon-
ditioning, which has not yet been implemented in STORM,* the adaptive
step size algorithm in CVODE provides a solution that is robust as the
state of the system changes, for example during initial transients, which
are often violent, before a settled turbulent state develops. The primary
important settings are the relative and absolute tolerances that control
the accuracy of the time advance.

As CVODE increases the internal time step, it sometimes happens
that the time step gets too long, resulting in multiple iteration failures
causing the time step to be decreased to a very small value before the
simulation continues. This behaviour tends to happen in cycles and sig-
nificantly increases the iteration count, and therefore the run time. It
can be prevented by choosing an appropriate maximum timestep for
the simulation, which should be as long as possible while avoiding the
cycle just described.

3.3. Initialisation

Turbulence and seeded filament simulations have different require-
ments for initialisation, and are discussed in turn below.

In turbulence simulations, it is the long term, statistical steady state
that is of interest, which should not be sensitive to the particular choice
of initial conditions, but is instead determined by the sources and bound-
ary conditions. The initial conditions are therefore arbitrary, but are
chosen with the aim of allowing the steady state to be reached as quickly
as possible. The best option is usually to restart from an existing turbu-
lent state, even if it comes from a simulation with somewhat different
parameters. When this is not possible, some analytical functions that
satisfy the boundary conditions are used, with random noise added to
seed turbulence. The initial values are defined in open field line regions
as

2 =035+1.29(1-9) (45)
ngy

T

€ = 0.54023p(1 - §) (46)
T(J

v, T

o 5p(? - 1) +4/ £ @91, 47)
€50 Ty

in terms of a normalised coordinate y which varies proportional to y.
In all open field line regions y goes from O at the lower-y target to 1
at the upper-y target. In SOL regions j simply varies linearly with y.
In PFR regions y has two linear segments, defined so that y = 0.5 at
the y-position of the X-point. Similarly in the region between the two
separatrices of a disconnected double null configuration y has two linear
segments and y = 0.5 is at the y-position of the secondary X-point. In
closed field line regions the initial values are set to constant values with
Vi =0, while n and 7, are set to their maximum values in the open field
line regions (45) and (46). In all regions, it is assumed that there is no
current, so V, =V} in the initial state and the electrostatic potential is
set to

Te m;
¢=—"log (48)
e

2zm

e

so that when evaluated at the sheath entrances, the boundary conditions
there, (23) and (24), give zero parallel current. These initial profiles
have no radial x-dependence, to minimise the radial gradients during
the initial transient as turbulence starts to develop and to minimise the
development of very low density far outside the separatrix in the phase
before turbulence has developed enough to provide radial transport into

4 Preconditioning the time advance has, however, been a topic of active re-
search in the BOUT++ community [13,22,75].

15

ications 318 (2026) 109893
this region. An example of these initial profiles for a disconnected double
null equilibrium can be seen in figure 2 of [6].

Seeded filament simulations use a steady, time independent back-
ground plasma sustained by sources, see section 3.4. It is usual [33,35,
64,76] to assume that the background plasma is constant in the radial
and binormal directions, and varies only in the parallel direction. We
therefore set up the initial background plasma by running a simulation
in a reduced, one dimensional mode where perpendicular gradients are
set to zero. In addition the parallel current is taken to vanish, so V, is
set equal to V;; and electron inertia is neglected, with Ohm’s law (11)
being used first to replace V¢ in the ion velocity equation (10) and sec-
ond to calculate ¢ by directly integrating from the boundary value that
gives zero current at the sheath entrance from (23) and (24). In this one
dimensional mode, ¢ is only calculated at time points when output is
saved, because it is not directly needed to advance the simulation. The
one dimensional simulation is run until a steady state is reached, and
the final state is saved and used to initialise the background plasma for
a three dimensional filament simulation. One or more filaments can be
added on top of this background plasma. Their perpendicular cross sec-
tions are elliptical, described by Gaussian functions parameterised by a
width 6, elongation ¢, and inclination a, and centred on a specified
radial position x, and binormal position z,. In the parallel direction,
the filament has a finite length L, truncated by a hyperbolic tangent
function with whose width is 6. Combining these with an amplitude
A, the density and temperature of each filament are given by a function
of the form

Comp Physics Co

[(x=x;)cosa; +(z—z,) sinaf]2

Aexp|—
52
f

[(x = xo) sina, + (z - zg) cosozf]2

(ey8/)”

y—(L,+L;)/2
<1 —tanh(—éyf”/2 >>
1 (Ly+Lf)/2—y>>
—| I —tanh| ——22— ")},
Xz((o

where L, is the length of the simulation domain in the parallel y-
direction and in the curved slab geometry, x, y, and z are orthog-
onal coordinates whose values are lengths in metres and 0 < y <
L,. In simulations using a reflection symmetric lower-y boundary,
the y-dependent part on the final two lines of (49) is replaced by

(1-tanh((y=Ly) /8)) /2.

X

N —

(49

3.4. Source terms

The particle and energy sources S, and S can be defined by ar-
bitrary analytic functions of the coordinates, using expressions set in
the input file. These expressions can become complicated when it is
necessary to distinguish between different topological regions, e.g. core
and PFR. For convenience more restricted functions are provided for the
source terms usually used for turbulent simulations. There are sources
to provide poloidally and toroidally uniform fuelling and heating in the
core and the ‘upstream’ SOL (the part of the SOL adjacent to the core)

2
(x - xn,core)
Sn,core = Sn,coreo exp<— - > (50)
n,core
(x - xE,core)2
SE,core = SE,coreOeXp _2— 5 (51)
E core
controlled by amplitudes .S, ;e and Sg core 0, PEaK positions x,, ... and

XE core» and widths w,, ... and wg .. that are set independently for the
particle and energy sources. The energy source is usually positioned well

J.T. Omotani, D. Dickinson, B.D. Dudson et al.

inside the closed field line region, representing the outflow of heat from
the core. The particle source is often positioned near the primary sep-
aratrix, roughly representing the ionisation source in attached divertor
conditions where the low plasma density allows neutrals recycled from
the target to travel upstream to the edge of the closed field line region.
The amplitudes of both source terms are usually tuned to achieve the
desired, time averaged density and temperature on the separatrix at the
outboard midplane. There are also particle sources localised near the
divertor targets

Sauuae = {S,,’targem exp(—=105) 0<7 <.o.5 52

0 otherwise

where j is a normalised coordinate proportional to y defined so that
y =0 at the targets and y = 0.5 at the y-position of the X-point near-
est to the target. The divertor localised sources can be useful during the
initial transient phase of turbulence simulations, to prevent numerical
instabilities due to very low density near the targets while radial trans-
port from the core is still at a low level. It can also be used as a very
crude model of recycling in the divertors. To avoid very low tempera-
tures in the initial transient phase, it is also possible to add a constant
background energy source Sg 1, = nyT€2;. Note that sources added for
numerical stability in the initial transient phase are removed before tak-
ing results in the saturated turbulent state.

Filament simulations use source terms to maintain a steady back-
ground plasma. The source terms are implemented using expressions in
the input file so could be arbitrary, but studies with STORM have by con-
vention used sources that are constant in the perpendicular directions
to ensure that the background plasma has a stable, time independent
steady state and vary exponentially in the parallel direction. The parti-
cle source is peaked near the targets, roughly representing recycling

S, =S80 [exp(—i) +exp<—%>] ,

and the energy source is peaked at the midplane, representing power
exhausted from the core plasma

(53)

p-r.f)

E.y

Sg =Sgoexp| — (54)

The amplitudes S,, and Sg are tuned to give the desired density and
temperature at the midplane and the decay lengths are set by A, , and
A . When areflection symmetric lower-y boundary is used, the sources
are instead S,, = S, exp(— (Ly -y) /Ay) and Sg = Sgg exp(—y/AE’y).

3.5. Synthetic Langmuir probe diagnostics

A simple synthetic Langmuir probe signal can be generated by calcu-
lating the ion saturation current that a Langmuir probe, introduced into
the plasma on a reciprocating probe, would measure, taking the plasma
density and temperature as inputs [65]

j —lenc—len L
Jat = 5616 =3 m;+m,’

where the factor of a half as compared to the Bohm sheath boundary
condition (23) accounts for the density drop that would develop in the
presheath between the unperturbed, ‘upstream’ plasma and the surface
of a probe. Langmuir probes can take measurements at a high frequency
~ 1 MHz, and saving full outputs from the simulation at this rate would
require a prohibitive amount of disk space. Therefore a generic inter-
face was written [77] that allows some variables to be written out from
selected grid points with a higher frequency than the full outputs. An
arbitrary number of spatial locations where high frequency output will
be written out can be selected in the input file.

(55)

16

Comp Physics Co ications 318 (2026) 109893

4. Summary

Turbulence is critical to radial transport in the scrape-off layer of
tokamak reactors, and is observed experimentally to produce large am-
plitude, coherent filaments that may propagate across the full width
of the scrape-off layer. STORM has been developed to simulate scrape-
off layer plasma turbulence, using a drift reduced, cold ion, collisional
fluid model. STORM uses a flux surface aligned grid with field aligned
parallel derivatives to deal efficiently with the strong anisotropy of a
magnetised plasma, and evolves fluxes on a grid staggered in the par-
allel direction to avoid grid scale instabilities. The code is implemented
using the BOUT++ framework, whose handling of staggered grids has
been upgraded to support STORM’s needs, including a new implemen-
tation for field aligned parallel derivatives.

CRediT authorship contribution statement

J.T. Omotani: Writing — original draft, Visualization, Software, In-
vestigation, Conceptualization. D. Dickinson: Software. B.D. Dudson:
Supervision, Software. L. Easy: Software, Investigation, Conceptualiza-
tion. D. Hoare: Software. P. Hill: Software. T. Nicholas: Software, In-
vestigation, Conceptualization. J. Parker: Software. F. Riva: Software,
Investigation, Conceptualization. N.R. Walkden: Software, Investiga-
tion, Conceptualization. Q. Xia: Software, Investigation. F. Militello:
Project administration, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:

Co-author is an editor for CPC - B. Dudson. The other authors de-
clare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported
in this paper.

Acknowledgements

This work has been funded by the EPSRC Energy Programme [grant
number EP/W006839/1]. To obtain further information on the data
and models underlying this paper please contact PublicationsManager@
ukaea.uk. This work was in part prepared by LLNL under Contract
DE-AC52-07NA27344. This work used the ARCHER2 UK National Su-
percomputing Service (https://www.archer2.ac.uk) through the Plasma
HEC consortium [grant number EP/R029148/1].

For the purpose of open access, the authors have applied a Cre-
ative Commons Attribution (CC BY) licence to any Author Accepted
Manuscript version arising.

Appendix A. Syntax for thread based parallelism

The usual BOUT++ syntax uses C++ operator overloading to allow
code that is compact and as close to the mathematical expression of the
differential equations as possible. This is the style used in the example
code listings in this paper, in the majority of the BOUT++ documen-
tation [53], and in STORM. In this style, each C++ operator becomes
an individual loop over the grid, with a single computation (for exam-
ple addition of two array entries) inside the loop. The result is a large
number of loops, each of which does a small amount of work. For thread-
based parallelism, and also for the best vectorisation of the loops, this
is not the optimal structure. There is an overhead cost to starting and
stopping threads at the beginning and end of each loop, so to minimise
the overhead the ideal structure would be a few loops each of which
does a large amount of work. BOUT++ does support this style by pro-
viding a set of operators that act on a single grid point, so that an outer
loop or loops can be written in the PhysicsModel: : rhs () method.
However, the ‘outer loop’ style is more cumbersome and requires more

mailto:PublicationsManager@ukaea.uk
mailto:PublicationsManager@ukaea.uk
https://www.archer2.ac.uk

J.T. Omotani, D. Dickinson, B.D. Dudson et al.

care with the order of operations. For example, any operations that re-
quire Fourier transforms must be done outside the outer loops, because
the Fourier transform couples the whole grid toroidally. There is there-
fore a trade off between maintainability, which is somewhat better for
the operator-overloading style, and computational efficiency which is
somewhat better for the outer loop style.

Appendix B. Normalised model equations

The normalisations defined in section 3.1.5 are

Ai=n/n, T,=T,/T, B=B/B,
i, =m,/m; V=p,V 0/t =Q o /ot B.1)
d=ep/Ty Aj=2eA/fymicy w=mw/eny '

Sn =S5,/noQ SE =Sg/ngTyLy

using the reference density n, temperature 7}, magnetic field B, and
derived parameters py, = c,/;0, ¢s0 = \/To/m;, R0 = eBy/m;, and
Bo = 2ugngTy /B(z). Using these normalisations and applying the chain
rule several times, the model equations (9)-(13) can be put into the form
implemented in the code,

—C@+ —=+ =+ Y (A,) Vi logh
n
(normalised electron continuity) (B.2)
07, N s
a—tf=—{¢’"/i||}—V:uV||V:\|—V||¢
f 0.71V
7ite o A3/2(i = Ver) + e
s enn VS
+Dy, ViV - —
(normalised ion velocity) (B.3)
07, N oA PN 1 o =«
=—{dV, V=V ¥V Vo + —V
o =Tl =V et g Vid
. A . 14 e R
+90 =57 (Vi = Vey) = == 1.V log#
e e
1.71 &, 4 RIS I7e|\5'n
===V T, + Dy, ViV - —
me
(normalised electron velocity) (B.4)
dlogp, 2 4
=— {1 Vylogp, — — BV
7 {$.1ogh, } = Ve V) logp, 35,0 I\ 3

2 s oo o Sae (Ve
- 3071 (Vig = Vo) Vylog T, - 3BV <?

(normalised electron pressure) (B.5)

17

P Comp Physics Co ications 318 (2026) 109893
& . =
AL i S T A v
7 {5} -VyV,
o (Va=Va N o oo
+ABV | = |+ AV = Vo) Vylogh

+Cb) + V2 + Y () - ¥, .
(normalised vorticity) (B.6)
The bracket operator is { 7, fz} = B~'b- V f x Vh. The normalised elec-
tron pressure is p, = AT,. The composite variables 7; = 17,-” + ﬂ—z‘)fi” and
X = I7e” - 2%14” are used in the momentum equations and in electro-

magnetic mode Ampere’s law is used in the form

i (Vi = V) = =Vi4). (B.7)

The normalised, generalised vorticity is

w=V- 1V¢ ——V2¢+V L V,.d (B.8)
= 5 7)) = L B2 1 .

and the conductive parallel heat flux is

N o 25/28 4 PSR S

q” = _KOT(’ V”Te - 071"Te (I/I” - I/EH> . (B.9)

The default values of the constant prefactors in the parallel dissipation
coefficients are

1
910 = 0.51 (B.10)
I Zei0€2i0
Toz..
ko=3.16—20 (B.11)
meps()QIO

where a collision time evaluated at the reference parameters is 7, =
12723/ 26(2)m[11/ 2TO3 /2 /24 Znge* In A. The default perpendicular dissipation
coefficients are

1+1.3¢q — (B.12)
() M, Tei0R40 BT
e
1 [}
Kl—(1+l6q)466A—— (B.13)
mL’TelOQiO Ez /T
e
a=(1+16g) 3L A (B.14)

but these coefficients are often set to constant values purely to give nu-
merical dissipation that prevents fluctuations reaching the grid scale,
see section 3.1.3. DV,- I and ﬁVe" are only introduced for numerical rea-
sons, and are given constant numerical values.

B.1. ‘Boussinesq approximation’ variations

If the original STORM Boussinesq approximation is selected, the nor-
malised form of the modified, generalised vorticity (19) is

. - 1 1 PN
’lﬂmod:V (BZVLQS) :_V2¢+VJ_ <B2> 'VJ_¢ (B.15)
and the corresponding vorticity equation (20) becomes
0w, d_ NP
o - {¢ wmod} Vl \ wmud
or
e (Vi =V O .
+BV) <T + (Vi = Vo) Vylog
Che) . wp . e
+ Te + vaiwmnd + Vl (”m) : VJ_’lﬂm()d' (B~16)

Without any Boussinesq approximation, the normalised form of the
generalised vorticity (21) is

J.T. Omotani, D. Dickinson, B.D. Dudson et al.

\s
x\
-1 SN
1074 R
\\

— X
=z NG
1) AN
2 N
e S X
- A
(5] SN X
=% AN
L in-2 N
g 1071 . X
= S
- AN x
I~ A x
o} N
£

N

N

N

N

N
N
N
N
10—3< SN
02 03
10 10

number of cpu cores

Fig. D.7. Strong scaling performance of STORM on the ARCHER2 cluster, for a
simulation run with 256 x 96 X 64 grid points.

. N A s 2 Aesr o il ”n
wfullzv'<EVL¢>:§V§_¢+VL<E> Vi (B.17)
and the vorticity equation (22) becomes
a2
OB . 1]|bx¥é -
_— . 0, - - N il - V.V, ®
7 {b. Fran } 273 A iV @ran
PPN I7"|| - I}EH s 5 & ~
+ABY | = |+ A (Vi = Vo) Vylogh
+Cp) + fig Vi + V1 (Ag) - Vi B (B.18)

Appendix C. Curvature for slab geometry

For simulations in curved slab geometry, STORM uses the curvature
as calculated for a purely toroidal magnetic field, like that produced
by an infinite straight wire. A cylindrical coordinate system is given by
defining the major radius R as the distance away from the wire, Z as the
distance along the wire, and choosing the direction of the magnetic field
so that {x,y,z} is a right handed coordinate system with unit vectors
along the coordinate axes given by = VR, y=2x%=band 2=V Z.
The magnetic field strength is proportional to R~!, so B can be written
as B = By with B= ByR_./R where R, is the radius of curvature at the
points where B = B,,. Noting that there is no current outside the wire,
V x B =0 for R > 0. Therefore the curvature (15) for this magnetic field
is

2, (C.1)

where on the last line we evaluate the expression at R = R under the
assumption that the width of the simulation box is much smaller than
R..

Appendix D. Strong scaling performance

An example strong scaling study of the performance of STORM has
been conducted on the ARCHER2 HPC cluster [78] (see Fig. D.7). Each
node on ARCHER2 has two AMD EPYC 7742 64-core 2.25 GHz proces-
sors and 256 GB of RAM, and nodes are connected by a HPE Slingshot in-
terconnect. The test used a simulation of MAST on a grid with 256 points
in the radial x-direction, 96 in the parallel y-direction and 64 in the

18

Comp Physics Co ications 318 (2026) 109893

toroidal z-direction. The plot shows the mean time per STORM: : rhs ()
evaluation over a short test simulation, restarted from a saturated tur-
bulent state. Simulating 1 ms of plasma turbulence takes of the order of
108 STORM: :rhs () evaluations, corresponding to around two weeks
on 768 cores, although this will vary depending on the grid, plasma

conditions, etc.
Appendix E. Post processing

Post processing tools for BOUT++ are provided by the xBOUT Python
package [79], which provides a function to load BOUT++ output into
an xarray [80,81] Dataset object, with extra BOUT++ specific func-
tionality provided by the BoutDataset accessor.

We have written an extension of xBOUT called xSTORM to pro-
vide further functionality specific to STORM, which is included with
the STORM code. STORM output can be converted to SI units from the
internal, dimensionless representation. Particle fluxes can be calculated
consistent with the terms as implemented in STORM. Values of vari-
ables at the position of the sheath entrance can be re-calculated with
the same algorithm as STORM uses. Various convenience methods are
included for statistical analysis of turbulence and for frequently used
operations in analysing seeded filament simulations, such as calculating
the position and velocity of the filament centre of mass.

xBOUT and xSTORM provide high-level functions for data analysis
and visualisation. xarray supports a method chaining syntax which al-
lows operations on a data set, or a variable, to be combined in a single
line while maintaining an easy to read left-to-right order of method ap-
plication. Taken together, these two features support a workflow where
outputs can be generated with just a few lines of code in a Python script,
interactive session or Jupyter notebook, which has proven to be benefi-
cial for productivity, interactivity and code reuse.

Appendix F. Provenance tracking

Provenance tracking and reproducibility of simulations is important
for the reliability of the research process. For example, if a published
result is contradicted by a new study it is important to be able to find
the reason for the difference: Is it some new physics? Better resolution
achieved on newer, more powerful computers? A bug in the old code,
or in the new code? While these questions may be difficult to answer in
general, they become almost impossible if it is not known what software
was used to produce the result.

Version control provides a first step. Both BOUT++ and STORM
are version controlled using git and both save the hash which identi-
fies the commit used to build the executable into the output files for
each simulation. STORM in addition saves the difference in the STORM
repo between the compiled code and the last commit (the output of
git diff).

The versions of compilers and external libraries used to build the
code may also be important. To try to capture this information, STORM
saves the contents of the CMakeCache. txt file produced by CMake.
The module system is commonly used to manage libraries on HPC clus-
ters; when it is present STORM also saves the active modules when it
was compiled (the output of module list). Complete configuration
for the HPC systems usually used by our group is stored in version con-
trolled bash scripts; the git hash and git diff for the repos containing
these configuration scripts are recorded.

The inputs used for a simulation are also critical. It is good practice
to archive the input file along with the output. However, SOL turbu-
lence simulations take many days, or even several weeks, to run and so
the output is produced over many restarts of the code. Output is usu-
ally stored in separate files for each restart in order to avoid excessively
large files which can cause problems for storage systems and increase
the risk of data corruption. In order to verify that a set of files belongs
to a consecutive sequence of restarts, BOUT++ assigns a standard uni-
versally unique identifier (UUID) [82] to each run. When restarting, it

J.T. Omotani, D. Dickinson, B.D. Dudson et al.

also records the UUID of the run that produced the snapshot used to
restart from. STORM records in addition the contents of the input file
used for the run and also the input files used for all the previous restarts
into the output binary (NetCDF) files. This feature provides a fallback in
case output files from some of the restarts leading up to a certain run are
misplaced. It is also a useful record as, especially in the early stages of
a simulation where there is usually a violent initial transient, it is some-
times necessary to change the settings, e.g. for numerical dissipation,
between restarts. The grid file that represents the magnetic equilibrium
is the other important input. The grid generator [58] assigns a UUID to
each grid file produced, and the UUID from the grid file is recorded by
BOUT++ in simulation output.

The provenance tracking information described above is all written
into the same binary (NetCDF) files as the simulation output, minimis-
ing the likelihood that it will be separated from the output. The features
have been introduced incrementally and not all are present in older ver-
sions of STORM. The information is not perfect, for example if options
are passed on the command line they are recorded only in log files,
not binary output, or on unsupported systems configuration information
such as library dependencies might well not be recorded. Nevertheless,
for our usual workflows this information provides a high degree of re-
producibility.

Appendix G. Supplementary material

Supplementary material related to this article can be found online at
https://doi.org/10.1016/j.cpc.2025.109893.

Data availability
No data was used for the research described in the article.

References

[1] H. Zohm, C. Angioni, E. Fable, G. Federici, G. Gantenbein, T. Hartmann, K. Lackner,
E. Poli, L. Porte, O. Sauter, G. Tardini, D. Ward, M. Wischmeier, On the physics
guidelines for a tokamak DEMO, Nucl. Fusion 53 (7) (2013) 073019, https://doi.
org/10.1088/0029-5515/53/7/073019.

[2] S.I. Braginskii, Transport processes in a plasma, Rev. Plasma Phys. 1 (1965) 205, au-
thorized translation from the Russian by Herbert Lashinsky, University of Maryland.

[3] J.F. Drake, T.M. Antonsen, Nonlinear reduced fluid equations for toroidal plas-
mas, Phys. Fluids 27 (4) (1984) 898-908, https://aip.scitation.org/doi/pdf/10.
1063/1.864680, https://doi.org/10.1063/1.864680, https://aip.scitation.org/doi/
abs/10.1063/1.864680.

[4] A.N. Simakov, P.J. Catto, Drift-ordered fluid equations for field-aligned modes in
low-# collisional plasma with equilibrium pressure pedestals, Phys. Plasmas 10 (12)
(2003) 4744-4757, https://doi.org/10.1063/1.1623492.

[5] F. Wagner, G. Becker, K. Behringer, D. Campbell, A. Eberhagen, W. Engelhardt,
G. Fussmann, O. Gehre, J. Gernhardt, G.v. Gierke, G. Haas, M. Huang, F. Karger,
M. Keilhacker, O. Kliiber, M. Kornherr, K. Lackner, G. Lisitano, G.G. Lister, H.M.
Mayer, D. Meisel, E.R. Miiller, H. Murmann, H. Niedermeyer, W. Poschenrieder,
H. Rapp, H. Rohr, F. Schneider, G. Siller, E. Speth, A. Stabler, K.H. Steuer, G.
Venus, O. Vollmer, Z. Yii, Regime of improved confinement and high beta in
neutral-beam-heated divertor discharges of the asdex tokamak, Phys. Rev. Lett.
49 (1982) 1408-1412, https://doi.org/10.1103/PhysRevLett.49.1408, https://link.
aps.org/doi/10.1103/PhysRevLett.49.1408.

[6] F. Riva, F. Militello, S. Elmore, J.T. Omotani, B. Dudson, N.R. Walkden, The MAST
Team, Three-dimensional plasma edge turbulence simulations of the mega am-
pere spherical tokamak and comparison with experimental measurements, Plasma
Phys. Control. Fusion 61 (9) (2019) 095013, https://doi.org/10.1088/1361-6587/
ab3561.

[7] W. Zholobenko, T. Body, P. Manz, A. Stegmeir, B. Zhu, M. Griener, G.D. Conway, D.
Coster, F. Jenko, Electric field and turbulence in global Braginskii simulations across
the ASDEX upgrade edge and scrape-off layer, Plasma Phys. Control. Fusion 63 (3)
(2021) 034001, https://doi.org/10.1088/1361-6587/abd97e.

[8] M. Wiesenberger, L. Einkemmer, M. Held, A. Gutierrez-Milla, X. Sdez, R. Iakym-
chuk, Reproducibility, accuracy and performance of the Feltor code and li-
brary on parallel computer architectures, Comput. Phys. Commun. 238 (2019)
145-156, https://doi.org/10.1016/j.cpc.2018.12.006, https://www.sciencedirect.
com/science/article/pii/S0010465518304223.

[9] F. Halpern, P. Ricci, S. Jolliet, J. Loizu, J. Morales, A. Mosetto, F. Musil, F. Riva,
T. Tran, C. Wersal, The GBS code for tokamak scrape-off layer simulations, J.
Comput. Phys. 315 (2016) 388-408, https://doi.org/10.1016/].jcp.2016.03.040,
https://www.sciencedirect.com/science/article/pii/S0021999116001923.

19

Comp Physics Co ications 318 (2026) 109893

[10] B. Zhu, M. Francisquez, B.N. Rogers, GDB: a global 3D two-fluid model of
plasma turbulence and transport in the tokamak edge, Comput. Phys. Com-
mun. 232 (2018) 46-58, https://doi.org/10.1016/j.cpc.2018.06.002, https://www.
sciencedirect.com/science/article/pii/S001046551830208X.

[11] A. Stegmeir, D. Coster, A. Ross, O. Maj, K. Lackner, E. Poli, GRILLIX: a 3D turbulence
code based on the flux-coordinate independent approach, Plasma Phys. Control. Fu-
sion 60 (3) (2018) 035005, https://doi.org/10.1088/1361-6587 /aaa373.

[12] B.D. Dudson, J. Leddy, Hermes: global plasma edge fluid turbulence simulations,
Plasma Phys. Control. Fusion 59 (5) (2017) 054010, https://doi.org/10.1088/1361-
6587/aa63d2.

[13] B. Dudson, M. Kryjak, H. Muhammed, P. Hill, J. Omotani, Hermes-3: multi-
component plasma simulations with bout++, Comput. Phys. Commun. 296 (2024)
108991, https://doi.org/10.1016/j.cpc.2023.108991, https://www.sciencedirect.
com/science/article/pii/S0010465523003363.

[14] H. Bufferand, P. Tamain, S. Baschetti, J. Bucalossi, G. Ciraolo, N. Fedorczak, P.
Ghendrih, F. Nespoli, F. Schwander, E. Serre, Y. Marandet, Three-dimensional mod-
elling of edge multi-component plasma taking into account realistic wall geometry,
Nucl. Mater. Energy 18 (2019) 82-86, https://doi.org/10.1016/j.nme.2018.11.025,
https://www.sciencedirect.com/science/article/pii/S2352179118302035.

[15] R. Hager, S. Ku, A.Y. Sharma, C.S. Chang, R.M. Churchill, A. Scheinberg, Electromag-
netic total-f algorithm for gyrokinetic particle-in-cell simulations of boundary plasma
in xgc, Phys. Plasmas 29 (11) (2022) 112308, arXiv:https://pubs.aip.org/aip/
pop/article-pdf/doi/10.1063/5.0097855/16627866,112308_1_online.pdf, https://
doi.org/10.1063/5.0097855.

[16] M. Dorf, M. Dorr, Continuum gyrokinetic simulations of edge plasmas in single-null
geometries, Phys. Plasmas 28 (3) (2021) 032508, arXiv:https://pubs.aip.org/aip/
pop/article-pdf/doi/10.1063/5.0039169,/12361228/032508_1_online.pdf, https://
doi.org/10.1063/5.0039169.

[17] A.H. Hakim, N.R. Mandell, T.N. Bernard, M. Francisquez, G.W. Hammett, E.L.
Shi, Continuum electromagnetic gyrokinetic simulations of turbulence in the
tokamak scrape-off layer and laboratory devices, Phys. Plasmas 27 (4) (2020)
042304, arXiv:https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/1.5141157/
15923398/042304_1_online.pdf, https://doi.org/10.1063/1.5141157.

[18] D. Michels, A. Stegmeir, P. Ulbl, D. Jarema, F. Jenko, Gene-x: a full-f gyrokinetic
turbulence code based on the flux-coordinate independent approach, Comput. Phys.
Commun. 264 (2021) 107986, https://doi.org/10.1016/j.cpc.2021.107986, https://
www.sciencedirect.com/science/article/pii/S0010465521000989.

[19] H. Lewy, K. Friedrichs, R. Courant, Uber die partiellen differenzengleichungen der
mathematischen physik, Math. Ann. 100 (1928) 32-74, https://doi.org/10.1007/
BF01448839, http://eudml.org/doc/159283.

[20] R. Courant, K. Friedrichs, H. Lewy, On the partial difference equations of mathemat-
ical physics, IBM J. Res. Dev. 11 (2) (1967) 215-234, https://doi.org/10.1147/rd.
112.0215.

[21] B. Dudson, M. Umansky, X. Xu, P. Snyder, H. Wilson, BOUT++: a frame-
work for parallel plasma fluid simulations, Comput. Phys. Commun. 180 (9)
(2009) 1467-1480, https://doi.org/10.1016/j.cpc.2009.03.008, https://
www.sciencedirect.com/science/article/pii/S0010465509001040.

[22] B.D. Dudson, A. Allen, G. Breyiannis, E. Brugger, J. Buchanan, L. Easy, S. Far-
ley, 1. Joseph, M. Kim, A.D. McGann, et al., BOUT++: recent and current de-
velopments, J. Plasma Phys. 81 (1) (2015) 365810104, https://doi.org/10.1017/
$0022377814000816.

[23] B.D. Dudson, J. Madsen, J. Omotani, P. Hill, L. Easy, M. Lgiten, Verification of
BOUT++ by the method of manufactured solutions, Phys. Plasmas 23 (6) (2016)
062303, https://doi.org/10.1063/1.4953429.

[24] F. Hariri, M. Ottaviani, A flux-coordinate independent field-aligned ap-
proach to plasma turbulence simulations, Comput. Phys. Commun. 184 (11)
(2013) 2419-2429, https://doi.org/10.1016/j.cpc.2013.06.005, https://
www.sciencedirect.com/science/article/pii/S0010465513001999.

[25] B.W. Shanahan, P. Hill, B.D. Dudson, Towards nonaxisymmetry; initial results using
the flux coordinate independent method in BOUT++, J. Phys. Conf. Ser. 775 (2016)
012012, https://doi.org/10.1088/1742-6596,/775/1/012012.

[26] B. Shanahan, B. Dudson, P. Hill, Fluid simulations of plasma filaments in stellara-
tor geometries with BSTING, Plasma Phys. Control. Fusion 61 (2) (2018) 025007,
https://doi.org/10.1088/1361-6587 /aaed7d.

[27] D.A. D’Ippolito, J.R. Myra, S.J. Zweben, Convective transport by intermittent blob-
filaments: comparison of theory and experiment, Phys. Plasmas 18 (6) (2011)
060501, https://doi.org/10.1063/1.3594609.

[28] R.J. Maqueda, G.A. Wurden, S. Zweben, L. Roquemore, H. Kugel, D. Johnson, S.
Kaye, S. Sabbagh, R. Maingi, Edge turbulence measurements in NSTX by gas puff
imaging, Rev. Sci. Instrum. 72 (1) (2001) 931-934, https://doi.org/10.1063/1.
1321009.

[29] S. Zweben, R. Maqueda, D. Stotler, A. Keesee, J. Boedo, C. Bush, S. Kaye, B. LeBlanc,
J. Lowrance, V. Mastrocola, R. Maingi, N. Nishino, G. Renda, D. Swain, J. Wilgen, The
NSTX Team, High-speed imaging of edge turbulence in NSTX, Nucl. Fusion 44 (1)
(2003) 134-153, https://doi.org/10.1088/0029-5515/44/1/016.

[30] N.B. Ayed, A. Kirk, B. Dudson, S. Tallents, R.G.L. Vann, H.R. Wilson, The MAST
Team, Inter-ELM filaments and turbulent transport in the mega-amp spherical toka-
mak, Plasma Phys. Control. Fusion 51 (3) (2009) 035016, https://doi.org/10.1088/
0741-3335/51/3/035016.

https://doi.org/10.1016/j.cpc.2025.109893
https://doi.org/10.1088/0029-5515/53/7/073019
https://doi.org/10.1088/0029-5515/53/7/073019
http://refhub.elsevier.com/S0010-4655(25)00395-9/bib735486AC775A1AB50BD72456A03AE300s1
http://refhub.elsevier.com/S0010-4655(25)00395-9/bib735486AC775A1AB50BD72456A03AE300s1
https://aip.scitation.org/doi/pdf/10.1063/1.864680
https://aip.scitation.org/doi/pdf/10.1063/1.864680
https://doi.org/10.1063/1.864680
https://aip.scitation.org/doi/abs/10.1063/1.864680
https://aip.scitation.org/doi/abs/10.1063/1.864680
https://doi.org/10.1063/1.1623492
https://doi.org/10.1103/PhysRevLett.49.1408
https://link.aps.org/doi/10.1103/PhysRevLett.49.1408
https://link.aps.org/doi/10.1103/PhysRevLett.49.1408
https://doi.org/10.1088/1361-6587/ab3561
https://doi.org/10.1088/1361-6587/ab3561
https://doi.org/10.1088/1361-6587/abd97e
https://doi.org/10.1016/j.cpc.2018.12.006
https://www.sciencedirect.com/science/article/pii/S0010465518304223
https://www.sciencedirect.com/science/article/pii/S0010465518304223
https://doi.org/10.1016/j.jcp.2016.03.040
https://www.sciencedirect.com/science/article/pii/S0021999116001923
https://doi.org/10.1016/j.cpc.2018.06.002
https://www.sciencedirect.com/science/article/pii/S001046551830208X
https://www.sciencedirect.com/science/article/pii/S001046551830208X
https://doi.org/10.1088/1361-6587/aaa373
https://doi.org/10.1088/1361-6587/aa63d2
https://doi.org/10.1088/1361-6587/aa63d2
https://doi.org/10.1016/j.cpc.2023.108991
https://www.sciencedirect.com/science/article/pii/S0010465523003363
https://www.sciencedirect.com/science/article/pii/S0010465523003363
https://doi.org/10.1016/j.nme.2018.11.025
https://www.sciencedirect.com/science/article/pii/S2352179118302035
https://doi.org/10.1063/5.0097855
https://doi.org/10.1063/5.0097855
https://doi.org/10.1063/5.0039169
https://doi.org/10.1063/5.0039169
https://doi.org/10.1063/1.5141157
https://doi.org/10.1016/j.cpc.2021.107986
https://www.sciencedirect.com/science/article/pii/S0010465521000989
https://www.sciencedirect.com/science/article/pii/S0010465521000989
https://doi.org/10.1007/BF01448839
https://doi.org/10.1007/BF01448839
http://eudml.org/doc/159283
https://doi.org/10.1147/rd.112.0215
https://doi.org/10.1147/rd.112.0215
https://doi.org/10.1016/j.cpc.2009.03.008
https://www.sciencedirect.com/science/article/pii/S0010465509001040
https://www.sciencedirect.com/science/article/pii/S0010465509001040
https://doi.org/10.1017/S0022377814000816
https://doi.org/10.1017/S0022377814000816
https://doi.org/10.1063/1.4953429
https://doi.org/10.1016/j.cpc.2013.06.005
https://www.sciencedirect.com/science/article/pii/S0010465513001999
https://www.sciencedirect.com/science/article/pii/S0010465513001999
https://doi.org/10.1088/1742-6596/775/1/012012
https://doi.org/10.1088/1361-6587/aaed7d
https://doi.org/10.1063/1.3594609
https://doi.org/10.1063/1.1321009
https://doi.org/10.1063/1.1321009
https://doi.org/10.1088/0029-5515/44/1/016
https://doi.org/10.1088/0741-3335/51/3/035016
https://doi.org/10.1088/0741-3335/51/3/035016

J.T. Omotani, D. Dickinson, B.D. Dudson et al.

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

J.R. Harrison, G.M. Fishpool, A.J. Thornton, N.R. Walkden, The appearance and
propagation of filaments in the private flux region in mega amp spherical tokamak,
Phys. Plasmas 22 (9) (2015) 092508, https://doi.org/10.1063/1.4929924.

C. Killer, B. Shanahan, O. Grulke, M. Endler, K. Hammond, L. Rudischhauser, Plasma
filaments in the scrape-off layer of Wendelstein 7-X, Plasma Phys. Control. Fusion
62 (8) (2020) 085003, https://doi.org/10.1088/1361-6587/ab9313.

L. Easy, F. Militello, J. Omotani, B. Dudson, E. Havlickov4, P. Tamain, V. Naulin,
A.H. Nielsen, Three dimensional simulations of plasma filaments in the scrape off
layer: a comparison with models of reduced dimensionality, Phys. Plasmas 21 (12)
(2014) 122515, https://doi.org/10.1063/1.4904207.

L. Easy, F. Militello, J. Omotani, N.R. Walkden, B. Dudson, Investigation of the effect
of resistivity on scrape off layer filaments using three-dimensional simulations, Phys.
Plasmas 23 (1) (2016) 012512, https://doi.org/10.1063/1.4940330.

N.R. Walkden, B.D. Dudson, G. Fishpool, Characterization of 3d filament dynamics
in a MAST SOL flux tube geometry, Plasma Phys. Control. Fusion 55 (10) (2013)
105005, https://doi.org/10.1088/0741-3335/55/10/105005.

N. Walkden, B. Dudson, L. Easy, G. Fishpool, J. Omotani, Numerical investigation
of isolated filament motion in a realistic tokamak geometry, Nucl. Fusion 55 (11)
(2015) 113022, https://doi.org/10.1088/0029-5515/55/11/113022.

N.R. Walkden, L. Easy, F. Militello, J.T. Omotani, Dynamics of 3d isolated thermal
filaments, Plasma Phys. Control. Fusion 58 (11) (2016) 115010, https://doi.org/10.
1088/0741-3335/58/11/115010.

F. Militello, N.R. Walkden, T. Farley, W.A. Gracias, J. Olsen, F. Riva, L. Easy, N. Fe-
dorczak, I. Lupelli, J. Madsen, A.H. Nielsen, P. Ricci, P. Tamain, J. Young, Multi-code
analysis of scrape-off layer filament dynamics in MAST, Plasma Phys. Control. Fusion
58 (10) (2016) 105002, https://doi.org/10.1088/0741-3335/58/10/105002.

F. Militello, B. Dudson, L. Easy, A. Kirk, P. Naylor, On the interaction of scrape
off layer filaments, Plasma Phys. Control. Fusion 59 (12) (2017) 125013, https://
doi.org/10.1088/1361-6587/aa9252.

D. Schworer, N. Walkden, H. Leggate, B. Dudson, F. Militello, T. Downes, M.
Turner, Influence of plasma background including neutrals on scrape-off layer fil-
aments using 3d simulations, in: Proceedings of the 22nd International Conference
on Plasma Surface Interactions 2016, 22nd PSI, Nucl. Mater. Energy 12 (2017)
825-830, https://doi.org/10.1016/j.nme.2017.02.016, https://www.sciencedirect.
com/science/article/pii/$2352179116301648.

D. Schworer, N.R. Walkden, H. Leggate, B.D. Dudson, F. Militello, T. Downes, M.M.
Turner, Influence of plasma background on 3d scrape-off layer filaments, Plasma
Phys. Control. Fusion 61 (2) (2018) 025008, https://doi.org/10.1088/1361-6587/
aae8fe.

D. Hoare, F. Militello, J.T. Omotani, F. Riva, S. Newton, T. Nicholas, D. Ryan,
N.R. Walkden, Dynamics of scrape-off layer filaments in high § plasmas, Plasma
Phys. Control. Fusion 61 (10) (2019) 105013, https://doi.org/10.1088/1361-6587/
ab34{8.

S.I. Krasheninnikov, D.A. D’Ippolito, J.R. Myra, Recent theoretical progress in un-
derstanding coherent structures in edge and sol turbulence, J. Plasma Phys. 74 (5)
(2008) 679-717, https://doi.org/10.1017/50022377807006940.

J.T. Omotani, F. Militello, L. Easy, N.R. Walkden, The effects of shape and amplitude
on the velocity of scrape-off layer filaments, Plasma Phys. Control. Fusion 58 (1)
(2015) 014030, https://doi.org/10.1088/0741-3335/58/1/014030.

T.E.G. Nicholas, J. Omotani, F. Riva, F. Militello, B. Dudson, Comparing two- and
three-dimensional models of scrape-off layer turbulent transport, Plasma Phys. Con-
trol. Fusion 64 (9) (2022) 095001, https://doi.org/10.1088/1361-6587 /ac7b48.

G. Decristoforo, F. Militello, T. Nicholas, J. Omotani, C. Marsden, N. Walkden, O.E.
Garcia, Blob interactions in 2d scrape-off layer simulations, Phys. Plasmas 27 (12)
(2020) 122301, https://doi.org/10.1063/5.0021314.

G. Decristoforo, A. Theodorsen, J. Omotani, T. Nicholas, O.E. Garcia, Numerical tur-
bulence simulations of intermittent fluctuations in the scrape-off layer of magnetized
plasmas, Phys. Plasmas 28 (7) (2021) 072301, https://doi.org/10.1063/5.0047566.
L. Easy, 3d simulations of scrape-off layer filaments, Ph.D. thesis, University of York,
2016, https://etheses.whiterose.ac.uk/15850/.

T. Nicholas, Reduced simulations of scrape-off-layer turbulence, Ph.D. thesis, Uni-
versity of York, 2021, https://etheses.whiterose.ac.uk/29962/.

N. Walkden, F. Riva, B. Dudson, C. Ham, F. Militello, D. Moulton, T. Nicholas, J.
Omotani, 3d simulations of turbulent mixing in a simplified slab-divertor geometry,
Nucl. Mater. Energy 18 (2019) 111-117, https://doi.org/10.1016/j.nme.2018.12.
005, https://www.sciencedirect.com/science/article/pii/S2352179118301492.

N. Walkden, F. Riva, J. Harrison, F. Militello, T. Farley, J. Omotani, B. Lipschultz,
The physics of turbulence localised to the tokamak divertor volume, Commun. Phys.
5 (1) (2022) 139, https://doi.org/10.1038/542005-022-00906-2.

Q. Xia, D. Moulton, J. Omotani, F. Militello, The effect of divertor particle sources
on scrape-off-layer turbulence, Plasma Phys. Control. Fusion 66 (6) (2024) 065022,
https://doi.org/10.1088/1361-6587/ad441c.

The BOUT++ Team, Bout++’s documentation, https://bout-dev.readthedocs.io/,
2025.

B. Dudson, P. Hill, D. Dickinson, J. Parker, A. Allen, D. Bold, G. Breyiannis, J. Brown,
L. Easy, S. Farley, B. Friedman, E. Grinaker, O. Izacard, I. Joseph, M. Kim, M. Leconte,
J. Leddy, M. Lgiten, C. Ma, J. Madsen, D. Meyerson, P. Naylor, S. Myers, J. Omotani,
T. Rhee, J. Sauppe, K. Savage, H. Seto, B. Shanahan, M. Thomas, S. Tiwari, M. Uman-
sky, N. Walkden, L. Wang, Z. Wang, P. Xi, T. Xia, X. Xu, H. Zhang, A. Bokshi, H.
Muhammed, M. Estarellas, F. Riva, A. Fisher, C. MacMackin, E. Medwedeff, J. Hol-

20

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Comp ications 318 (2026) 109893

ger, K.S. Kang, X. Xu, Y. Qin, Bout++, https://doi.org/10.5281/zenodo.7603558,
Feb. 2023.

B. Dudson, P. Hill, D. Dickinson, J. Parker, A. Allen, G. Breyiannis, J. Brown, L. Easy,
S. Farley, B. Friedman, E. Grinaker, O. Izacard, I. Joseph, M. Kim, M. Leconte, J.
Leddy, M. Lgiten, C. Ma, J. Madsen, D. Meyerson, P. Naylor, S. Myers, J. Omotani,
T. Rhee, J. Sauppe, K. Savage, H. Seto, D. Schworer, B. Shanahan, M. Thomas, S.
Tiwari, M. Umansky, N. Walkden, L. Wang, Z. Wang, P. Xi, T. Xia, X. Xu, H. Zhang,
Bout++ v4.0.0, https://github.com/boutproject/BOUT-dev/tree/v4.0.0, Feb. 2017.
M.A. Beer, S.C. Cowley, G.W. Hammett, Field-aligned coordinates for nonlinear sim-
ulations of tokamak turbulence, Phys. Plasmas 2 (7) (1995) 2687-2700, https://doi.
org/10.1063/1.871232, arXiv:https://pubs.aip.org/aip/pop/article-pdf/2/7/2687/
12714947/2687_1_online.pdf.

X.Q. Xu, R.H. Cohen, T.D. Rognlien, J.R. Myra, Low-to-high confinement transition
simulations in divertor geometry, Phys. Plasmas 7 (5) (2000) 1951-1958, https://
doi.org/10.1063/1.874044, arXiv:https://pubs.aip.org/aip/pop/article-pdf/7/5/
1951/12332239/1951_1_online.pdf.

J.T. Omotani, B. Dudson, P. Hill, hypnotoad, https://doi.org/10.5281/zenodo.
6360327, Apr. 2020.

B. Dudson, P. Hill, D. Dickinson, J. Parker, A. Allen, G. Breyiannis, J. Brown, L. Easy,
S. Farley, B. Friedman, E. Grinaker, O. Izacard, I. Joseph, M. Kim, M. Leconte, J.
Leddy, M. Lgiten, C. Ma, J. Madsen, D. Meyerson, P. Naylor, S. Myers, J. Omotani,
T. Rhee, J. Sauppe, K. Savage, H. Seto, D. Schworer, B. Shanahan, M. Thomas, S.
Tiwari, M. Umansky, N. Walkden, L. Wang, Z. Wang, P. Xi, T. Xia, X. Xu, H. Zhang,
Bout++ v4.2.0, https://doi.org/10.5281/zenodo.1464133, Oct. 2018.

B. Dudson, P. Hill, D. Dickinson, J. Parker, A. Allen, G. Breyiannis, J. Brown, L. Easy,
S. Farley, B. Friedman, E. Grinaker, O. Izacard, I. Joseph, M. Kim, M. Leconte, J.
Leddy, M. Lgiten, C. Ma, J. Madsen, D. Meyerson, P. Naylor, S. Myers, J. Omotani,
T. Rhee, J. Sauppe, K. Savage, H. Seto, D. Schworer, B. Shanahan, M. Thomas, S.
Tiwari, M. Umansky, N. Walkden, L. Wang, Z. Wang, P. Xi, T. Xia, X. Xu, H. Zhang,
A. Bokshi, H. Muhammed, M. Estarellas, Bout++ v4.3.0, https://doi.org/10.5281/
zenodo.3518905, Oct. 2019.

A.M. Dimits, Fluid simulations of tokamak turbulence in quasiballooning coordi-
nates, Phys. Rev. E 48 (1993) 4070-4079, https://doi.org/10.1103/PhysRevE.48.
4070, https://link.aps.org/doi/10.1103/PhysRevE.48.4070.

B. Scott, Shifted metric procedure for flux tube treatments of toroidal geometry:
avoiding grid deformation, Phys. Plasmas 8 (2) (2001) 447-458, https://doi.org/
10.1063/1.1335832.

B.D. Dudson, S.L. Newton, J.T. Omotani, J. Birch, On Ohm’s law in reduced plasma
fluid models, Plasma Phys. Control. Fusion 63 (12) (2021) 125008, https://doi.org/
10.1088/1361-6587/ac2af9.

J.R. Angus, S.I. Krasheninnikov, Inviscid evolution of large amplitude filaments in
a uniform gravity field, Phys. Plasmas 21 (11) (2014) 112504, https://doi.org/10.
1063/1.4901237.

P. Stangeby, The Plasma Boundary of Magnetic Fusion Devices, Taylor & Francis,
2000.

W. Fundamenski, O. Garcia, V. Naulin, R. Pitts, A. Nielsen, J.J. Rasmussen, J.
Horacek, J. Graves, JET EFDA contributors, dissipative processes in interchange
driven scrape-off layer turbulence, Nucl. Fusion 47 (5) (2007) 417-433, https://
doi.org/10.1088/0029-5515/47/5/006.

S. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Cor-
poration, 1980.

A. Arakawa, Computational design for long-term numerical integration of the equa-
tions of fluid motion: two-dimensional incompressible flow. Part i, J. Comput. Phys.
1 (1) (1966) 119-143, https://doi.org/10.1016/0021-9991(66)90015-5, https://
www.sciencedirect.com/science/article/pii/0021999166900155.

T.M. Austin, M. Berndt, J.D. Moulton, A memory efficient parallel tridiagonal solver,
Preprint LA-VR-03-4149, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.104.9454&rep =repl&type = pdf, 2004.

M.L. Magnussen, Global numerical modeling of magnetized plasma in a lin-
ear device, Ph.D. thesis, Department of Physics, Technical University of Den-
mark, 2017, https://orbit.dtu.dk/en/publications/global-numerical-modeling-of-
magnetized-plasma-in-a-linear-device.

S. Balay, W.D. Gropp, L.C. McInnes, B.F. Smith, Efficient management of parallelism

Physics Co

in object oriented numerical software libraries, in: E. Arge, A.M. Bruaset, H.P. Lang-
tangen (Eds.), Modern Software Tools in Scientific Computing, Birkhduser Press,
1997, pp. 163-202.

S. Balay, S. Abhyankar, M.F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman,
E. Constantinescu, L. Dalcin, A. Dener, V. Eijkhout, W.D. Gropp, V. Hapla, T. Isaac,
P. Jolivet, D. Karpeev, D. Kaushik, M.G. Knepley, F. Kong, S. Kruger, D.A. May,
L.C. Mclnnes, R.T. Mills, L. Mitchell, T. Munson, J.E. Roman, K. Rupp, P. Sanan,
J. Sarich, B.F. Smith, S. Zampini, H. Zhang, H. Zhang, J. Zhang, PETSc/TAO users
manual, Tech. Rep. ANL-21/39 - Revision 3.17, Argonne National Laboratory, 2022,
https://petsc.org/release/docs/manual/manual.pdf.

R.D. Falgout, hypre, Computer Software, https://doi.org/10.11578/dc.20190715.1,
May 2019, https://github.com/hypre-space/hypre/releases/tag/v2.23.0.

A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E. Shumaker,
C.S. Woodward, SUNDIALS: suite of nonlinear and differential/algebraic equation
solvers, ACM Trans. Math. Softw. 31 (3) (2005) 363-396, https://doi.org/10.1145/
1089014.1089020.

B. Dudson, S. Farley, L.C. McInnes, Improved nonlinear solvers in bout++, arXiv
preprint arXiv:1209.2054, 2012.

https://doi.org/10.1063/1.4929924
https://doi.org/10.1088/1361-6587/ab9313
https://doi.org/10.1063/1.4904207
https://doi.org/10.1063/1.4940330
https://doi.org/10.1088/0741-3335/55/10/105005
https://doi.org/10.1088/0029-5515/55/11/113022
https://doi.org/10.1088/0741-3335/58/11/115010
https://doi.org/10.1088/0741-3335/58/11/115010
https://doi.org/10.1088/0741-3335/58/10/105002
https://doi.org/10.1088/1361-6587/aa9252
https://doi.org/10.1088/1361-6587/aa9252
https://doi.org/10.1016/j.nme.2017.02.016
https://www.sciencedirect.com/science/article/pii/S2352179116301648
https://www.sciencedirect.com/science/article/pii/S2352179116301648
https://doi.org/10.1088/1361-6587/aae8fe
https://doi.org/10.1088/1361-6587/aae8fe
https://doi.org/10.1088/1361-6587/ab34f8
https://doi.org/10.1088/1361-6587/ab34f8
https://doi.org/10.1017/S0022377807006940
https://doi.org/10.1088/0741-3335/58/1/014030
https://doi.org/10.1088/1361-6587/ac7b48
https://doi.org/10.1063/5.0021314
https://doi.org/10.1063/5.0047566
https://etheses.whiterose.ac.uk/15850/
https://etheses.whiterose.ac.uk/29962/
https://doi.org/10.1016/j.nme.2018.12.005
https://doi.org/10.1016/j.nme.2018.12.005
https://www.sciencedirect.com/science/article/pii/S2352179118301492
https://doi.org/10.1038/s42005-022-00906-2
https://doi.org/10.1088/1361-6587/ad441c
https://bout-dev.readthedocs.io/
https://doi.org/10.5281/zenodo.7603558
https://github.com/boutproject/BOUT-dev/tree/v4.0.0
https://doi.org/10.1063/1.871232
https://doi.org/10.1063/1.871232
https://doi.org/10.1063/1.874044
https://doi.org/10.1063/1.874044
https://doi.org/10.5281/zenodo.6360327
https://doi.org/10.5281/zenodo.6360327
https://doi.org/10.5281/zenodo.1464133
https://doi.org/10.5281/zenodo.3518905
https://doi.org/10.5281/zenodo.3518905
https://doi.org/10.1103/PhysRevE.48.4070
https://doi.org/10.1103/PhysRevE.48.4070
https://link.aps.org/doi/10.1103/PhysRevE.48.4070
https://doi.org/10.1063/1.1335832
https://doi.org/10.1063/1.1335832
https://doi.org/10.1088/1361-6587/ac2af9
https://doi.org/10.1088/1361-6587/ac2af9
https://doi.org/10.1063/1.4901237
https://doi.org/10.1063/1.4901237
http://refhub.elsevier.com/S0010-4655(25)00395-9/bib96E00B2BD92FFF5859901EBD7B6FEB13s1
http://refhub.elsevier.com/S0010-4655(25)00395-9/bib96E00B2BD92FFF5859901EBD7B6FEB13s1
https://doi.org/10.1088/0029-5515/47/5/006
https://doi.org/10.1088/0029-5515/47/5/006
http://refhub.elsevier.com/S0010-4655(25)00395-9/bibFEF8DAD42F52783E4CBCE15F9905B3C9s1
http://refhub.elsevier.com/S0010-4655(25)00395-9/bibFEF8DAD42F52783E4CBCE15F9905B3C9s1
https://doi.org/10.1016/0021-9991(66)90015-5
https://www.sciencedirect.com/science/article/pii/0021999166900155
https://www.sciencedirect.com/science/article/pii/0021999166900155
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.9454&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.9454&rep=rep1&type=pdf
https://orbit.dtu.dk/en/publications/global-numerical-modeling-of-magnetized-plasma-in-a-linear-device
https://orbit.dtu.dk/en/publications/global-numerical-modeling-of-magnetized-plasma-in-a-linear-device
http://refhub.elsevier.com/S0010-4655(25)00395-9/bib5EA904170C55F237387D57BA48616C3As1
http://refhub.elsevier.com/S0010-4655(25)00395-9/bib5EA904170C55F237387D57BA48616C3As1
http://refhub.elsevier.com/S0010-4655(25)00395-9/bib5EA904170C55F237387D57BA48616C3As1
http://refhub.elsevier.com/S0010-4655(25)00395-9/bib5EA904170C55F237387D57BA48616C3As1
https://petsc.org/release/docs/manual/manual.pdf
https://doi.org/10.11578/dc.20190715.1
https://github.com/hypre-space/hypre/releases/tag/v2.23.0
https://doi.org/10.1145/1089014.1089020
https://doi.org/10.1145/1089014.1089020
http://refhub.elsevier.com/S0010-4655(25)00395-9/bib80DB997917083DCAC544BA6D2D525CCEs1
http://refhub.elsevier.com/S0010-4655(25)00395-9/bib80DB997917083DCAC544BA6D2D525CCEs1

J.T. Omotani, D. Dickinson, B.D. Dudson et al.

[76]

[771

[78]

[79]

W. Gracias, P. Tamain, E. Serre, R. Pitts, L. Garcfa, The impact of magnetic shear
on the dynamics of a seeded 3d filament in slab geometry, in: Proceedings of the
22nd International Conference on Plasma Surface Interactions 2016, 22nd PSI, Nucl.
Mater. Energy 12 (2017) 798-807, https://doi.org/10.1016/j.nme.2017.02.022,
https://www.sciencedirect.com/science/article/pii/S2352179116302800.

J.T. Omotani, BoutFastOutput, https://github.com/johnomotani/BoutFastOutput,
Dec. 2019.

G. Beckett, J. Beech-Brandt, K. Leach, Z. Payne, A. Simpson, L. Smith, A. Turner, A.
Whiting, ARCHER2 service description, https://doi.org/10.5281/zenodo.14507040,
2024.

T. Nicholas, J.T. Omotani, D. Bold, G. Decristoforo, B.D. Dudson, R. Doyle, P. Hill,
xBOUT, https://doi.org/10.5281/zenodo.6945613, Aug. 2022, https://github.com/
boutproject/xBOUT.

21

[80]

[81]

[82]

Comp ications 318 (2026) 109893

S. Hoyer, J. Hamman, xarray: N-D labeled arrays and datasets in Python, J. Open
Res. Softw. 5 (1) (2017), https://doi.org/10.5334/jors.148.

S. Hoyer, M. Roos, H. Joseph, J. Magin, D. Cherian, C. Fitzgerald, M. Hauser, K.
Fujii, F. Maussion, G. Imperiale, S. Clark, A. Kleeman, T. Nicholas, T. Kluyver,
J. Westling, J. Munroe, A. Amici, A. Barghini, A. Banihirwe, R. Bell, Z. Hatfield-
Dodds, R. Abernathey, B. Bovy, J. Omotani, K. Miihlbauer, M.K. Roszko, P.J. Wol-
fram, xarray, https://doi.org/10.5281/zenodo.598201, Jul. 2022, https://github.
com/pydata/xarray.

ISO/IEC 9834-8:2014, Information technology — Procedures for the operation of
object identifier registration authorities — Part 8: Generation of universally unique
identifiers (UUIDs) and their use in object identifiers, Standard, International Organi-
zation for Standardization, Geneva, CH, Aug. 2014, https://www.iso.org/standard/
62795.html.

Physics Co

https://doi.org/10.1016/j.nme.2017.02.022
https://www.sciencedirect.com/science/article/pii/S2352179116302800
https://github.com/johnomotani/BoutFastOutput
https://doi.org/10.5281/zenodo.14507040
https://doi.org/10.5281/zenodo.6945613
https://github.com/boutproject/xBOUT
https://github.com/boutproject/xBOUT
https://doi.org/10.5334/jors.148
https://doi.org/10.5281/zenodo.598201
https://github.com/pydata/xarray
https://github.com/pydata/xarray
https://www.iso.org/standard/62795.html
https://www.iso.org/standard/62795.html

	STORM: Scrape-off layer turbulence in tokamak fusion reactors
	1 Introduction
	2 BOUT++ updates supporting STORM
	2.1 Coordinates and geometry
	2.2 Staggered grids
	2.3 Field aligned derivatives
	2.3.1 Shifted metric
	2.3.2 Aligned transform
	2.3.3 BOUT++ version 3

	3 STORM
	3.1 Model
	3.1.1 Boussinesq approximations
	3.1.2 Boundary conditions
	3.1.3 Perpendicular dissipation parameters used for filament simulations
	3.1.4 Coordinates and geometry
	3.1.5 Normalisations

	3.2 Numerical methods
	3.2.1 Differential operators and interpolation
	3.2.2 Laplace inversion
	3.2.3 Boundary conditions
	3.2.4 Time solver

	3.3 Initialisation
	3.4 Source terms
	3.5 Synthetic Langmuir probe diagnostics

	4 Summary
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Syntax for thread based parallelism
	Appendix B Normalised model equations
	B.1 ‘Boussinesq approximation’ variations

	Appendix C Curvature for slab geometry
	Appendix D Strong scaling performance
	Appendix E Post processing
	Appendix F Provenance tracking
	Appendix G Supplementary material
	Data availability
	References

