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The scrape-off layer of a tokamak fusion reactor carries the plasma exhaust from the hot core plasma to the 
material surfaces of the reactor vessel. The heat loads imposed by the exhaust are a critical limit on the 
performance of fusion power plants. Turbulent transport of the plasma regulates the width of the scrape-off 
layer plasma and must be modelled to understand the intensity of these heat loads.
STORM is a plasma turbulence code capable of simulating three dimensional turbulence across the full scrape-
off layer of a tokamak fusion reactor, using a drift reduced, collisional fluid model. STORM uses mostly finite 
difference schemes, with a staggered grid in the direction parallel to the magnetic field. We describe the model, 
geometry and initialisation options used by STORM, as well as the numerical methods, which are implemented 
using the BOUT++ plasma simulation framework.
BOUT++ has been enhanced alongside the development of STORM, providing better support for staggered grid 
methods. We summarise these enhancements, including a detailed explanation of the parallel derivative methods, 
which underwent a major update for version 4 of BOUT++.

Program summary
Program Title: STORM
CPC Library link to program files: https://doi.org/10.17632/zm3tdfhp9r.1
Developer’s repository link: https://github.com/boutproject/STORM
Licensing provisions: GPLv3
Programming language: C++
Supplementary material: Configuration and input files and post-processing scripts to run the example code given 
in Listings 1, 2, and 3.
Nature of problem: The scrape-off layer region of tokamak fusion reactors carries the plasma exhaust which 
escapes from the core, confined plasma and reaches material surfaces along open magnetic field lines. The power 
and particle loads on the material surfaces are a critical limiting factor for the performance of fusion reactors, 
but are challenging to simulate due to the large fluctuation amplitudes, complex magnetic geometry, and widely 
separated time- and length-scales. Three dimensional simulations of plasma turbulence are needed to understand 
the particle and energy transport in the scrape-off layer and provide predictive capability for the design of future 
reactors.
Solution method: STORM solves a drift reduced, collisional, fluid model for the scrape-off layer plasma. The 
model is discretised in space using mostly finite difference methods, combined in some places with Fourier 
methods that take advantage of the toroidal symmetry of the tokamak geometry. The fastest dynamics occur 
in the direction parallel to the magnetic field, for which a staggered grid is used to avoid the chequerboard 
instability associated with advective equations [1, sections 6.2, 6.3]. The time solver is a fully implicit, matrix 
free, variable-step, variable-order method provided by the SUNDIALS library [2]. STORM is implemented using 
the BOUT++ framework for plasma simulations.
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1. Introduction

Transport of heat and particles through the region of open magnetic 
field lines in the boundary of a tokamak fusion reactor regulates the 
loads reaching material surfaces, which limit reactor performance [1]. 
This region, the scrape-off layer (SOL), is difficult to model as it com-
bines strong plasma-neutral interactions, complex geometry, boundary 
conditions at material surfaces and large amplitude plasma fluctuations.

The state of the art in first principles modelling of the saturated, 
statistical steady state of SOL plasma turbulence is represented by 
codes which implement plasma equations based on collisional fluid 
closures [2], restricted to low frequency dynamics using drift order-
ing [3,4]. While the assumptions necessary to construct fluid closures 
restrict the applicability of these codes, for example they are not suitable 
for modelling the high performance H-mode [5] where collisionality is 
low, they are sufficiently tractable computationally for simulation of 
the entire SOL of present day tokamaks using realistic parameters [6,7]. 
STORM (‘Scrape-off layer Turbulence ORiented Model’) is one of sev-
eral such codes that have been developed by the community, others are 
FELTOR [8], GBS [9], GDB [10], GRILLIX [11], Hermes [12,13], and 
SOLEDGE3X [14]. There is also ongoing progress in gyrokinetic mod-
elling of SOL turbulence [15–18].

As transport in a magnetised plasma is much more rapid in the direc-
tion parallel to the magnetic field than in the perpendicular directions, 
turbulent structures tend to be aligned to the magnetic field, having 
much smaller parallel gradients than perpendicular gradients. Parallel 
derivative operators are often treated specially to take advantage of this 
property by allowing one dimension to have its grid spacing increased 
by two or three orders of magnitude, giving a correspondingly less re-
strictive Courant–Friedrichs–Lewy (CFL) condition [19,20] and reduced 
memory requirement. STORM and Hermes are built using the BOUT++ 
framework [21–23] and are distinguished from the other SOL turbulence 
codes by calculating derivatives parallel to the magnetic field using a 
field aligned computational grid. In contrast FELTOR and GRILLIX use 
the ‘Flux Coordinate Independent’ (FCI) approach [24] (which has also 
been implemented in BOUT++ [25,26]) where parallel derivatives are 
calculated in a locally field aligned way but without a globally field 
aligned grid; GDB is restricted to limiter configurations without X-points 
in the poloidal magnetic field, and calculates parallel derivatives in a 
similar way to what BOUT++ calls the ‘shifted metric’ scheme, described 
in section 2.3; GBS and SOLEDGE3X use non-aligned derivatives, GBS 
on a simple, cylindrical grid and SOLEDGE3X on a flux surface aligned 
grid. While STORM and Hermes are both built on BOUT++, STORM uses 
a staggered grid in the parallel direction and finite difference operators, 
while Hermes uses an unstaggered grid and finite volume operators.

Coherent, field aligned structures known as ‘filaments’ (or ‘blobs’ 
from their cross section perpendicular to the magnetic field) [27] are 
typically observed in the SOL of tokamaks [28–31], and also stellara-
tors [32]. STORM was originally developed to study the dynamics of 
filaments using an electrostatic, cold ion, isothermal electron model, 
in a simplified curved slab geometry, where the filament was imposed 
as an initial condition [33,34], building on earlier filament studies 
with BOUT++ [35,36]. After electron temperature evolution was in-
troduced [37], STORM was part of a multi-code validation comparing 
to filament measurements from MAST [38] and the effects of interac-
tions with other filaments [39] and with background neutral gas [40,41] 
were studied. Electromagnetic effects were introduced to the equa-
tions, and investigated with further filament simulations [42]. A variant, 
STORM2D, which simulates a plane perpendicular to the magnetic field, 

Fig. 1. Density in units of m−3, from a STORM turbulence simulation of MAST 
pulse #21712. To smoothly visualise the field-aligned turbulent structures, the 
poloidal resolution has been increased by a factor of 16 using interpolation par-
allel to the magnetic field.

using closures for the parallel dynamics (which is common in the litera-
ture, see for example the review [43]), has been used for studies of both 
isolated filaments [33,39,44] and turbulence [45–47]. We focus here on 
the three dimensional version and so do not discuss STORM2D further, 
for more details see [48,49].

Starting with [6,50], STORM has transitioned to focus on studies of 
turbulence. Well diagnosed MAST discharges in a suitable regime for 
modelling by STORM are available. STORM results, illustrated in Fig. 1, 
were compared to pulse #21712 [6], which is a double-null, ohmic 
L-mode discharge, providing the first detailed experimental compari-
son of a three dimensional SOL turbulence simulation to a double-null 
tokamak experiment. While the fluctuation amplitudes and SOL width 
were somewhat underestimated, many of the experimentally measured 
statistical properties of the turbulence were well reproduced by the 
simulation. Synthetic fast camera signals were constructed from the sim-
ulation data, and compared to a database of experimental results that 
exploit the wide field of view of the fast camera in MAST to enable 
a detailed characterisation of turbulence localised to the divertor vol-
ume [51]. The simulation can reproduce a range of features observed 
across a wide range of conditions in the experimental database. In addi-
tion, by disabling several types of turbulence drive in simulations their 
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relative effect and importance could be observed. For example it was 
possible to identify the contrasting role of magnetic curvature in driv-
ing flux into the PFR in the inner divertor leg where curvature is aligned 
with the average pressure gradient, while suppressing flux into the PFR 
in the outer divertor leg where curvature is in the opposite direction to 
the average pressure gradient. Other studies have looked at aspects of 
SOL turbulence using a curved slab geometry [45,50,52].

This paper describes the capabilities of STORM and gives a fuller 
description of the numerical methods used than is possible in papers 
focused on simulation results, including upgrades that were made to 
BOUT++ in support of STORM development. We begin section 2 with 
a brief overview of the BOUT++ framework to set the scene for the 
rest of the paper, then in section 2.2 we outline upgrades to the sup-
port for staggered grids in BOUT++ so that they are correct in non-
slab geometry, and in section 2.3 give an explanation of the various 
methods used to treat parallel derivatives using field aligned numerical 
schemes in BOUT++ version 4 on flux surface aligned grids (i.e. exclud-
ing the FCI scheme). Section 3 describes STORM, beginning with the 
model equations and boundary conditions in section 3.1. The numeri-
cal methods used in STORM are detailed in section 3.2, with methods 
for initialising simulations in section 3.3 and the source terms used to 
sustain background profiles and drive turbulence in section 3.4. The 
implementation of synthetic Langmuir probe diagnostics is discussed in 
section 3.5. We summarise in section 4. Appendix A briefly introduces an 
alternative syntax provided by BOUT++ to allow more efficient thread-
based parallelism, Appendix B presents the normalised model equations 
as implemented in STORM, Appendix C is a brief note on simplifica-
tion of the curvature operator in a ‘slab’ geometry, the parallel scaling 
performance of STORM is discussed in Appendix D, the post process-
ing libraries xBOUT and xSTORM are briefly introduced in Appendix E, 
and some features for provenance tracking of simulation results are de-
scribed in Appendix F.

2. BOUT++ updates supporting STORM

BOUT++ is a framework for writing physics codes that provides a 
general purpose, three dimensional partial differential equation solver 
in curvilinear coordinates, with specialised features targeted at repre-
senting magnetised plasmas in toroidal geometry, especially using drift 
reduced fluid models. The productivity of physicists developing codes is 
enhanced by an operator syntax that allows time evolution equations to 
be expressed in a very similar form to their mathematical expressions, 
while the underlying library is well optimised to provide efficient per-
formance up to several thousand cores on high performance computing 
(HPC) clusters. Next we give a very brief overview of BOUT++ to pro-
vide context for the rest of the paper; for more detail see [21–23] and 
the online documentation [53]. In the rest of this section we detail two 
upgrades to the BOUT++ framework, to staggered grids in section 2.2
and new options for field aligned derivatives in section 2.3, which were 
critical to the development of STORM.

The primary use case for BOUT++, on which we focus in this paper, 
is in simulating the edge and SOL region of tokamak fusion reactors. 
Tokamaks are toroidally symmetric to a good approximation, and so 
their geometry can be described fully by a two dimensional ‘poloidal’ 
cross section. The option to use fully three dimensional geometry to bet-
ter support cases with no symmetry direction, such as stellarators, has 
been added to the version 5.0.0 major release of BOUT++ [54], but will 
not be discussed further here. This paper focuses on the version 4 series 
of BOUT++ releases which began with version 4.0.0 in 2017 [55], but 
the methods described are still used in version 5. A grid file provides 
geometrical information such as the magnetic field strength, metric co-
efficients for a locally field aligned geometry (see section 2.1), etc. on 
a grid such as that shown in Fig. 2. The example shown in Fig. 2 is a 
connected double-null configuration; BOUT++ also supports single-null 
and disconnected double-null topologies. The non-trivial topology of the 
grid is handled by representing physical variables on a globally rectan-

Fig. 2. Example BOUT++ grid for double-null configuration. For clarity, this 
example grid is much coarser than those usually used for simulations. Tar-
gets where the magnetic field intersects material surfaces are shown with thick 
black lines. The branch cut locations shown in Fig. 3 are highlighted with thick 
coloured lines. Cell centre grid points are black dots, while cell faces are thin 
black lines.

gular, block structured mesh, as shown in Fig. 3, which has branch cuts 
to match the connectivity of the physical mesh. The mesh can be di-
vided into: a ‘core’, closed flux surface region; one or two SOL regions 
of open flux surfaces that share a radial edge with the core region; and 
private flux regions (PFRs), open flux surface regions that share radial 
edges only with SOL regions. The choice of a globally rectangular mesh 
in the poloidal plane restricts the number of radial grid points in the in-
ner SOL to be equal that in the outer SOL, and the number in the PFR to 
be equal to the number in the core for the PFR adjacent to the primary X-
point, or number in the core plus the inter-separatrix region for the PFR 
adjacent to the secondary X-point in a disconnected double-null config-
uration. More general poloidal-plane grids, which relax this restriction 
and could support more topologies, for example snowflake or X-point 
target, might be implemented in future work. The third, toroidal, direc-
tion of the grid is taken to be periodic. BOUT++’s naming convention 
is that the radial direction, which uses the poloidal magnetic flux func-
tion 𝜓 as its coordinate, is 𝑥; the poloidal direction, whose coordinate 
will be aligned to the magnetic field 𝑩, is 𝑦; and the (shifted) toroidal 
direction is 𝑧. Simpler geometries, such as a Cartesian slab, can also be 
defined and are often useful for testing. The coordinates and geometry 
are discussed further in section 2.1.

The main parallelisation strategy for BOUT++ is domain decompo-
sition using MPI. The two dimensional grid is split between MPI ranks, 
and the array representing each variable includes a halo of ‘guard cells’ 
whose values are set by communicating with neighbouring processes. 
The branch cuts are required to be on processor boundaries so that their 

Computer Physics Communications 318 (2026) 109893 

3 



J.T. Omotani, D. Dickinson, B.D. Dudson et al. 

Fig. 3. Logical grid with same structure as Fig. 2. The 𝑥-direction is radial and the 𝑦-direction is poloidal. For clarity fewer cells in the 𝑦-direction are shown here 
than in Fig. 2. As in Fig. 2 the targets are shown with thick black lines. Branch cuts are shown with thick coloured lines; grid cells adjacent to edges of the same 
colour communicate with each other, as they are physically adjacent with both coloured edges being located at the single line with the same colour in Fig. 2. Cell 
centre grid points are black dots, while cell faces are thin black lines.

# i n c l u d e < b o u t / p h y s i c s m o d e l . h x x > 
c l a s s S i m p l e W a v e : p u b l i c P h y s i c s M o d e l { 
i n t i n i t ( b o o l U N U S E D ( r e s t a r t i n g ) ) { 

s o l v e r -> a d d ( f , " f " ) ; 
s o l v e r -> a d d ( g , " g " ) ; 

r e t u r n 0 ; 
} 

i n t r h s ( B o u t R e a l U N U S E D ( t ) ) { 
m e s h -> c o m m u n i c a t e ( f , g ) ; 

d d t ( f ) = G r a d _ p a r ( g ) ; 
d d t ( g ) = G r a d _ p a r ( f ) ; 

r e t u r n 0 ; 
} 

F i e l d 3 D f ; 
F i e l d 3 D g ; 

} ; 

B O U T M A I N ( S i m p l e W a v e ) ; 

Listing 1: BOUT++ program implementing wave equations.

handling can be delegated to the communication routines. The toroidal 
direction is not decomposed, in order to allow efficient fast Fourier 
transforms (FFT) in this periodic dimension. BOUT++ does implement 
thread based parallelism using OpenMP, in part to compensate for the 
lack of domain decomposition in the toroidal direction. For technical 
reasons described in Appendix A, efficient use of thread based paral-
lelism requires a less convenient syntax for the physics code. STORM 
uses the usual, compact BOUT++ syntax and therefore does not rou-
tinely use thread based parallelism.

Codes that are built with BOUT++ define a subclass of the 
PhysicsModel abstract base class. For example, a simple set of wave 
equations

𝜕𝑓

𝜕𝑡 
=∇‖𝑔 (1)

𝜕𝑔

𝜕𝑡 
=∇‖𝑓, (2)

where the parallel gradient is ∇‖ = 𝒃⋅∇ and 𝒃 =𝑩∕𝐵 is the unit vector in 
the direction of the magnetic field, can be implemented with the code2

in Listing 1, which defines a SimpleWave subclass of PhysicsModel.

2 Configuration and input files to compile this code and those in the subse-
quent listings, linked to BOUT++, and run them on a one dimensional, periodic 
grid are provided in the supplementary material.

The scalar variables 𝑓 and 𝑔 are represented by Field3D objects 
f and g, which are included as member variables of SimpleWave. 
PhysicsModel subclasses are required to implement two methods: 
init(), which performs any initialisation needed before the time 
loop starts; and rhs(), which evaluates the time derivatives of the 
evolving variables. Here init() declares to the time solver object 
solver that f and g should be advanced in time. rhs() first calls 
mesh ->communicate(f , g) to fill the guard cells of f and g on each 
process by communicating with its neighbours, as is necessary before 
calculating derivatives. Then the evolution equations (1) and (2) are 
transcribed into C++ code using operators provided by BOUT++: ddt()
is a convenience macro that fetches the Field3D member variable 
where the time derivative is stored; Grad_par() is a finite difference 
discretisation of the ∇‖ operator. The final part of the code is the macro 
BOUTMAIN(), which provides a standard main() function that handles 
library initialisation and finalisation, and runs the simulation.

Different types of variable are represented by different subclasses 
of the Field abstract base class. Field3D, as seen above, is used to 
represent evolving plasma variables. Field2D represents toroidally-
symmetric quantities, such as metric coefficients or magnetic field 
strength. FieldPerp represents a slice of a Field3D at constant 𝑦, 
which can be useful for certain operations such as inversion of the ∇2

⟂

operator or applying boundary conditions at the 𝑦-boundaries.

2.1. Coordinates and geometry

The standard, toroidally symmetric, tokamak geometry is defined in 
BOUT++ using locally field aligned flux coordinates [53], which we 
outline here for completeness. The major radius 𝑅, toroidal angle 𝜁
(increasing anticlockwise as seen from above) and vertical position 𝑍
define a right handed, cylindrical coordinate system {𝑅,𝜁,𝑍} whose 
axis is the symmetry axis of the tokamak. A right handed flux coordi-
nate system is given by {𝜓,𝜃, 𝜁} where 𝜓 is the poloidal magnetic flux 
divided by 2𝜋 (which we assume here increases from the magnetic axis 
to the separatrix), 𝜃 is some angle-like coordinate which parameterises 
the poloidal position on each flux surface (increasing in the clockwise 
direction on an 𝑅-𝑍 plane), and 𝜁 is the toroidal angle (the same as 
for the cylindrical coordinate system). The exact definition of 𝜃 is arbi-
trary, and is decided by the grid generator. A field aligned coordinate 
system [21,56,57] is defined by

𝑥 = 𝜓 −𝜓0 (3)

𝑦 = 𝜃 (4)

𝑧 = 𝜁 −

𝜃

∫
𝜃0

𝑩 ⋅∇𝜁

𝑩 ⋅∇𝜃 
𝑑𝜃. (5)

This choice ensures, although we do not prove it here, that 𝑥 and 𝑧 are 
constant along magnetic field lines, so that 𝑦 is a ‘field aligned coordi-
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nate’. 𝜓0 is an arbitrary constant, and 𝜃0 defines the poloidal position 
where the 𝑥-𝑧 grid is orthogonal. Finally we define a set of locally field 
aligned coordinate systems where for each 𝑥-𝑧 grid plane at a given 𝜃𝑙 , 
the local coordinate system is

𝑥 = 𝜓 −𝜓0 (6)

𝑦 = 𝜃 (7)

𝑧𝑙 = 𝜁 −

𝜃

∫
𝜃𝑙

𝑩 ⋅∇𝜁

𝑩 ⋅∇𝜃 
𝑑𝜃. (8)

The way that the different local coordinate systems are connected to-
gether is discussed below in section 2.3. Once the coordinate system 
is defined, the geometrical quantities required to evaluate differen-
tial operators in terms of coordinate derivatives are defined in the 
usual way, such as the reciprocal basis vectors ∇𝑥𝑖 (where 𝑖 ∈ {𝑥, 𝑦, 𝑧}, 
𝑥𝑥 = 𝑥, 𝑥𝑦 = 𝑦, 𝑥𝑧 = 𝑧), the Jacobian 𝐽 = (∇𝑥 ⋅∇𝑦 ×∇𝑧)−1, basis vectors 
𝒆𝑖 =

∑
𝑗,𝑘 𝐽𝜖𝑖𝑗𝑘∇𝑥

𝑗 ×∇𝑥𝑘 (where 𝜖𝑖𝑗𝑘 is an alternating symbol, or Levi-
Civita symbol, with 𝜖𝑥𝑦𝑧 = 1), contravariant components of the metric 
tensor 𝑔𝑖𝑗 = ∇𝑥𝑖 ⋅ ∇𝑥𝑗 , and covariant components of the metric tensor 
𝑔𝑖𝑗 = 𝒆𝑖 ⋅𝒆𝑗 . These geometrical quantities are calculated by the grid gen-
erator and provided to BOUT++ as input in a grid file.

Many codes built with BOUT++ assume that the 𝑥- and 𝑦- coor-
dinates are orthogonal, 𝒆𝑥 ⋅ 𝒆𝑦 = 0 as this simplifies some differential 
operators. This is not required by BOUT++ or the grid generator hyp-
notoad [58], but is supported as the default option.

Note that in these field aligned coordinates, the 𝑦 and 𝑧 coordinates 
are very much not orthogonal, 𝒆𝑦 ⋅ 𝒆𝑧 ≠ 0, as the basis vector in the 𝑦-
direction is parallel to the magnetic field 𝒆𝑦 ∝ 𝒃 while the basis vector 
in the 𝑧-direction points in the toroidal direction 𝒆𝑧 ∝ ∇𝜁 . At X-points 
the coordinate system is singular (as the poloidal magnetic field vanishes 
there, so 𝑩 ⋅∇𝜃 = 0) and 𝒆𝑦 and 𝒆𝑧 are parallel. The grid is constructed so 
that X-points are at cell corners, where no quantity is evaluated, in order 
to avoid this singularity; nevertheless metric components may take ex-
tremely large or small values on grid points close to the X-points, which 
has the potential to compromise the accuracy or stability of simulations 
in this region.

2.2. Staggered grids

To construct staggered finite difference stencils, variables may be 
defined at different locations within a grid cell, either at the centre 
(the default) or one of the cell faces. BOUT++ represents these differ-
ent locations with an ‘enum class CELL_LOC’ type, whose values can 
be CELL_CENTRE for the cell centres, or CELL_XLOW, CELL_YLOW, or 
CELL_ZLOW for the cell faces in the 𝑥-, 𝑦- or 𝑧-dimensions respectively. 
A Field object has a location member variable of type CELL_LOC
specifying the location within a grid cell where its values are defined. 
Differential operators have a ‘CELL_LOC outloc’ argument to specify 
where within a grid cell the result should be calculated; the combination 
of outloc and the location of each Field argument to the differen-
tial operator determines the staggered or unstaggered finite difference 
stencil to be used for that operator.

When computing operations on staggered grids, it is necessary to 
evaluate geometrical quantities, such as metric coefficients, on the stag-
gered grids, usually at the location of the output of the operation. Before 
version 4, support for staggered grids in BOUT++ was experimental and 
geometrical quantities were only available at cell centre locations. This 
caused an inconsistency which in principle limited the convergence to 
first order in the grid spacing, regardless of the numerical scheme be-
ing used. In practice the effect of the inconsistency was probably limited, 
since the plasma variables generally have short length scale fluctuations 
with much steeper gradients than the gradients of the magnetic equilib-
rium that determines the geometrical quantities. Simulations using slab 
geometry have constant geometrical coefficients and were therefore un-
affected. In the version 4 series of releases the handling of geometrical 

# i n c l u d e < b o u t / p h y s i c s m o d e l . h x x > 

c l a s s S i m p l e W a v e S t a g g e r e d : p u b l i c P h y s i c s M o d e l { 

i n t i n i t ( b o o l U N U S E D ( r e s t a r t i n g ) ) { 

g . s e t L o c a t i o n ( C E L L _ Y L O W ) ; 

s o l v e r -> a d d ( f , " f " ) ; 
s o l v e r -> a d d ( g , " g " ) ; 

r e t u r n 0 ; 
} 

i n t r h s ( B o u t R e a l U N U S E D ( t ) ) { 

m e s h -> c o m m u n i c a t e ( f , g ) ; 

d d t ( f ) = G r a d _ p a r ( g , C E L L _ C E N T R E ) ; 
d d t ( g ) = G r a d _ p a r ( f , C E L L _ Y L O W ) ; 

r e t u r n 0 ; 
} 

F i e l d 3 D f ; 
F i e l d 3 D g ; 

} ; 

B O U T M A I N ( S i m p l e W a v e S t a g g e r e d ) ; 

Listing 2: BOUT++ program implementing wave equations with a stag-
gered grid.

quantities was refactored so that they could be provided at the cell face 
locations, as we now describe.

Before version 4, the Mesh class in BOUT++ handled both the log-
ical structure of the grid (communication, etc.) and the geometrical 
quantities (metric, Jacobian, etc.). In version 4.0.0 [55] the geometrical 
quantities were moved into a separate Coordinates class, and from 
version 4.2.0 [59] a new Coordinates object is created for each cell 
location being used. When the grid file provides only cell centre informa-
tion, the geometrical quantities at the cell face locations are computed 
by interpolating from the cell centres. From version 4.3.0 [60] it is also 
possible to read geometrical quantities at cell faces from the grid file, if 
they are present. A new grid generator, hypnotoad version 2 [58], which 
creates grid files including geometrical quantities at cell faces, was writ-
ten from scratch in Python (replacing the older IDL hypnotoad). With 
these upgrades, the handling of staggered variables is consistent and 
evaluation of geometrical quantities on staggered grids does not limit 
the convergence order of the numerical schemes in BOUT++, as long 
as the geometrical quantities are calculated accurately enough by the 
grid generator. Version 4.3.0 also made the ParallelTransform sub-
classes which implement parallel derivatives (discussed in section 2.3) 
aware of cell location, so that they could correctly handle staggered 
variables.

As an illustration, our example program from Listing 1 can be ex-
tended to use staggered grids by changing the location of g and passing 
an output location to the two Grad_par() calls, as shown in Listing 2.

2.3. Field aligned derivatives

The extreme anisotropy between parallel and perpendicular trans-
port in magnetised plasmas makes a grid aligned to the magnetic field 
very beneficial numerically. Since parallel derivatives are small, an 
aligned grid allows the grid spacing in one dimension to be signifi-
cantly increased, reducing memory usage and relaxing time step con-
straints [56,61]. However magnetic shear is always present in realistic 
tokamak configurations and presents problems when calculating radial 
derivatives using a globally field aligned grid [61,62], at least when us-
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Fig. 4. Two flux tubes formed by extending a grid cell (rectangular at the out-
board mid-plane) along the magnetic field. Black squares show the grid cell at 
different values of the poloidal/parallel coordinate 𝑦. The flux tube in the SOL 
has the field lines through its inner and outer corners shown in blue and orange, 
respectively, while green and red are the same for the flux tube in the core re-
gion. The flux tubes are plotted only until they approach near the X-points, as 
after that the shear would be too extreme to distinguish the grid cells in the fig-
ure. Flux tubes that are closer to the separatrix than those shown would shear 
notably more strongly as they approach near the X-points; the flux tubes shown 
are further from the separatrix than the grid for a SOL turbulence simulation 
would typically extend as their more moderate shear makes the figure clearer. 
The grey surfaces show the separatrix of this equilibrium, with a segment re-
moved for clarity. (For interpretation of the colours in the figure(s), the reader 
is referred to the web version of this article.)

ing non-spectral methods. The perpendicular planes in a globally aligned 
grid will be strongly distorted in some regions, as illustrated in Fig. 4, 
so that the ‘radial’ direction on the grid deviates by a large angle from 
the flux surface normal. There is a tension between parallel derivatives, 
where the most natural grid is field aligned (called an ‘aligned grid’ from 
now on), and radial derivatives, where the most natural grid follows the 
normals to flux surfaces (called a ‘toroidal grid’ from now on).

Several methods are or have been available in BOUT++ to resolve 
this tension. The methods discussed in this paper exploit the toroidal 
symmetry of the equilibrium, which allows FFT based methods to be 
used for very efficient interpolation in the toroidal direction. An al-
ternative, the flux coordinate independent (FCI) method [24], which 
has also been implemented in BOUT++, is similar in approach to the 
‘shifted metric’ method described in section 2.3.1, but does not align 
its grid to flux surfaces so that the interpolation is two dimensional. 
FCI methods usually choose the toroidal angle as the parallel coordi-
nate, and construct a grid on poloidal planes for the two ‘perpendicular’ 
directions, which results in a quite different implementation from the 
methods discussed below. The additional flexibility of the FCI approach 
enables support for three dimensional geometries such as stellarators as 
well as avoiding discretisation issues near X-points, and the BOUT++ 
implementation is discussed in detail elsewhere [25,26].

In version 4 and above, the standard representation of variables in 
BOUT++ is on the toroidal grid, so operations involving radial deriva-
tives are straightforward. Parallel derivatives require special handling, 
which is provided by various implementations of the ParallelTrans-
form abstract base class. For slab-like simulations ParallelTrans-
formIdentity can be used, which assumes the standard grid is itself 
field aligned so that parallel derivative stencils can be applied on it di-
rectly, without any ‘transform’. There is an FCI implementation, which 
as mentioned above is discussed elsewhere. The ShiftedMetric
implementation supports the ‘shifted metric’ and ‘aligned transform’ 
schemes which we now describe.

2.3.1. Shifted metric
The ‘shifted metric’ procedure introduced by Scott (2001) [62] uses 

a field aligned coordinate system defined locally around the 𝑥-𝑧 grid 
plane at each poloidal position (planes of constant 𝑦 in the coordinates 
used here), as described in section 2.1. The local coordinate system is 
defined so that on each 𝑥-𝑧 grid plane, the radial 𝑥 and toroidal 𝑧 direc-
tions are orthogonal. The poloidal 𝑦 coordinate is field aligned, but the 
grid points at different poloidal positions are defined in different local 
coordinate systems. When a parallel derivative needs to be calculated 
at a grid point, the magnetic field is followed to the adjacent poloidal 
positions, where it will intersect the 𝑥-𝑧 plane at points that are in gen-
eral not grid points. The radial coordinate 𝑥 is the poloidal magnetic 
flux function, so the planes of constant 𝑥 are the flux surfaces on which 
magnetic field lines lie and the field line does not change its position in 
𝑥; the field line is offset from the grid only in the 𝑧-direction, as shown 
in Fig. 5. Interpolation must be used to calculate the values of the vari-
able at the points on the magnetic field line in order for the derivative 
to be calculated. BOUT++ takes advantage of the periodicity and sym-
metry of the grid in the toroidal 𝑧-direction to use FFT based methods 
for the interpolation.

The shifted metric approach, in the form just described, was intro-
duced to BOUT++ in version 4.0.0 [55]. The ShiftedMetric sub-
class of ParallelTransform handles the necessary interpolation. The 
toroidal displacement of magnetic field lines relative to an arbitrary ref-
erence poloidal location is calculated by the grid generator and stored 
in an array called zShift to be used by ShiftedMetric.

BOUT++ refers to the set of interpolated values of a Field3D that 
are offset by a certain number of grid points along the magnetic field 
from the toroidal grid as a ‘parallel slice’; in the locally field aligned co-
ordinate system associated with each grid point (for example the central, 
red cross in Fig. 5), each point along the magnetic field (red asterisks in 
Fig. 5) comes from a separate parallel slice. Each parallel slice is a three 
dimensional array of values, one for each point on the toroidal grid, and 
is stored as a Field3D object. In version 4.0.0 only two parallel slices 
were calculated, one in each direction along the magnetic field; from 
version 4.3.0 it is possible to calculate an arbitrary number, allowing 
the use of derivatives with larger stencils (although at present BOUT++ 
only allows derivatives with up to two points either side of the central 
point in the stencil). The number of parallel slices calculated in each di-
rection along the magnetic field is the same as the number of guard cells 
used in the 𝑦-direction, MYG.

Staggered grids in the 𝑦-direction are not currently supported when 
using shifted metric parallel derivatives. As shown in Fig. 5, to allow 
parallel derivatives to be calculated on the staggered grid from a cell 
centre variable, or to interpolate the variable between centred and stag-
gered grids, an extra set of interpolated values (the purple triangles in 
the figure) would have to be calculated and cached. The extra com-
putational cost and implementation complexity mean that the aligned 
transform approach described in section 2.3.2 is recommended when 
using staggered grids.

The implementation of shifted metric derivatives is mostly hidden 
when writing implementations of PhysicsModel. When ShiftedMet-
ric is in use, calling mesh ->communicate(f) calculates the parallel 
slices and caches them in two std::vector <Field3D > private mem-
bers of f, one for ‘y-up’ points ‘up’ the magnetic field from each grid 
point, and one for ‘y-down’ points ‘down’ the magnetic field. Differen-
tial operators automatically use these cached parallel slices to populate 
the stencils for 𝑦-derivatives. If no parallel derivatives of some variable 
are required, it is possible as an optimisation to skip calculating the par-
allel slices by using the method mesh ->communicateXZ(f); as the 
name suggests, this method is intended for cases where communication 
is required only in the 𝑥-𝑧 plane (at present this method does still swap 
guard cells in the 𝑦-direction, but this is an implementation detail which 
may change in future).

Parallel boundary conditions can be applied in two ways. The 
method most suited for simulations using the shifted metric method is 
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Fig. 5. Sketch to illustrate the interpolations needed for the shifted metric procedure. The grid shown is a zoom in on part of a flux surface (a surface at constant 
𝑥) around some arbitrary grid point (𝑦𝑗 , 𝑧𝑘) which is a cell centre point shown by the red cross . The other cell centre grid points are shown as black crosses . 
Magnetic field lines through the centre row of grid points are grey lines, with the line through (𝑦𝑗 , 𝑧𝑘) highlighted in red. Interpolated points at 𝑦𝑗±1, 𝑦𝑗±2, shown as 
red stars , are needed to calculate parallel derivatives at (𝑦𝑗 , 𝑧𝑘). The corresponding interpolated points for other grid points on the 𝑦𝑗 row are shown as black stars 
. 𝑦-staggered grid points at 𝑦𝑗−1∕2, etc. are shown as squares , with a chosen staggered point (𝑦𝑗−1∕2, 𝑧𝑘) highlighted in purple . The magnetic field line through 

the staggered point (𝑦𝑗−1∕2, 𝑧𝑘) is shown in purple, and interpolated points needed to evaluate a derivative at (𝑦𝑗−1∕2, 𝑧𝑘) from input values on the cell centre grid are 
shown as purple triangles .

to apply the boundary condition directly to the cached parallel slices, al-
though only a subset of the BOUT++ boundary conditions are currently 
supported. The full range of boundary conditions provided by BOUT++ 
can be applied by transforming a variable to the aligned grid, applying 
the boundary condition, then transforming back to the toroidal grid; this 
is more expensive than the first method described because extra FFT in-
terpolations are required.

A reasonable way to calculate the cost of the parallel derivative 
schemes is to count the number of FFT interpolations required, as they 
are expected to be the most computationally expensive part of the calcu-
lation. Also, the computational cost of applying finite difference stencils 
should be similar between different methods, although it is possible that 
there could be differences due to the different memory access patterns 
causing, for example, changes in vectorisation or cache use. For the 
shifted metric approach, the number of FFT interpolations per variable 
is the number of parallel slices that are needed, which is 2×MYG. If a 
𝑦-staggered grid were supported a second set of parallel slices would be 
needed, corresponding to the purple triangles in Fig. 5, so twice as many 
FFT interpolations would be needed, 4×MYG per variable.

2.3.2. Aligned transform
The ‘aligned transform’ scheme described in this section is a variation 

of the shifted metric procedure. Variables are represented on the toroidal 
grid using a set of locally field aligned coordinate systems in the same 
way. The difference is in how the parallel derivatives are calculated. 
For the aligned transform scheme, a variable is transformed from the 
toroidal grid to the globally field aligned grid, using FFT interpolations. 
Parallel derivatives or interpolations are calculated on the aligned grid, 
as sketched in Fig. 6, and the results of these operations are transformed 
back to the toroidal grid.

As mentioned in section 2.3.1, using the poloidal flux function 𝜓 for 
the radial coordinate means each magnetic field line, as it lies on a flux 
surface, has a single value of 𝑥 = 𝜓 and so interpolation is only needed in 
the 𝑧-direction to shift from the toroidal grid to the aligned grid. zShift
contains the toroidal angular position of a field line relative to a refer-
ence poloidal location (equal to ∫ 𝜃

𝜃0

𝑩⋅∇𝜁

𝑩⋅∇𝜃 𝑑𝜃, see equation (5)). To in-
terpolate a Field3D variable 𝑓 (𝑥, 𝑦, 𝑧) from the toroidal to the aligned 
grid we Fourier transform the 𝑧-dimension to wavenumber 𝑘𝑧 space, 
giving 𝑓𝑘(𝑥, 𝑦, 𝑘𝑧), then multiply by a phase exp(𝑖𝑘𝑧zShift), and in-
verse Fourier transform back to a spatial grid giving 𝑓 (𝑥, 𝑦, 𝑧+zShift)

which gives the values of 𝑓 on the aligned grid. To transform back from 
the aligned to the toroidal grid, we follow the same process but shifting 
in the opposite direction using −zShift instead of zShift.

Using a grid aligned to the magnetic field when computing parallel 
derivatives or interpolations has several advantages. Using a 𝑦-staggered 
grid is simple to implement, avoiding the complications associated with 
the shifted metric approach described in section 2.3.1, and the aligned 
transform scheme is computationally cheaper for staggered grids, as 
shown below. It is also straightforward to implement conservative nu-
merical schemes, since each cell face through which the parallel fluxes 
pass is perfectly aligned with the face of a single adjacent cell, unlike in 
the shifted metric scheme where each of those cell faces would have 
a partial overlap with the faces of two neighbouring cells; standard 
flux-calculation methods can therefore be used, while the FFT interpo-
lation used to transform between toroidal and aligned grids preserves 
the toroidal average, and therefore toroidally integrated conservation, 
to machine precision.

The aligned transform scheme has been implemented by adding ex-
tra functionality to the ShiftedMetric implementation of Parallel-
Transform; this was the most efficient approach due to the many com-
monalities between the aligned transform and shifted metric schemes, 
and because the ShiftedMetric class was already implemented.

Aligned transform derivatives were available in BOUT++ version 
4.0.0, but in that version were intended primarily as a fall back for 
cases when the argument to a differential operator had no precalculated 
parallel slices. For example when computing Grad_par(A+B), even if 
both A and B have cached parallel slices, the operation (A+B) returns 
a result which does not have parallel slices. In that version, the paral-
lel slices were calculated as part of the communication routine, while 
transforming to and from the aligned grid did not and does not trig-
ger communication. To avoid unnecessary communication, the aligned 
transform method was used rather than calculating parallel slices within 
the parallel derivative operator.3 Full support for the aligned transform 
scheme was added in BOUT++ version 4.3.0, when an option was added 
to disable calculation of parallel slices by the ShiftedMetric class, so 

3 From version 4.2.0 it was possible to get the ParallelTransform instance 
using public methods, and therefore to calculate parallel slices without com-
municating, and from version 4.3.0 this was simplified by providing a method 
Field3D::calcParallelSlices().
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Fig. 6. Sketch of globally field aligned grid. Cell centre and 𝑦-staggered grid points correspond to the toroidal grid shown in Fig. 5. The central grid point is 
highlighted in red . The magnetic field is shown as grey lines, with the line through the central grid point highlighted in red. Parallel derivatives at points on both 
central and staggered grids can be calculated using values on the globally aligned grid.

that all parallel operations are done by transforming variables to the 
aligned grid. In 4.3.0 the operation of the parallel derivative and inter-
polation operators was clarified by making them return their output on 
the same grid (aligned or toroidal) as the input argument; previously 
even if a field aligned input was given, the output would have been on 
the toroidal grid.

The aligned transform scheme can be enabled by using ShiftedMet-
ric with calculation of parallel slices disabled, with no special modi-
fications to PhysicsModel code. In this case the transformation to 
and from the field aligned grid is implicit, and is applied automat-
ically within each parallel derivative operator. Boundary conditions 
are applied similarly, by transforming to the aligned grid, applying the 
boundary condition, and then transforming back to the toroidal grid.

The implementation just described can lead to variables being trans-
formed from the toroidal to the aligned grid multiple times, if more than 
one parallel derivative or interpolation is calculated for each variable, 
and also when applying parallel boundary conditions. For a code using 
𝑦-staggered grids, the inefficiency can be significant, as typically at least 
one parallel derivative, plus an interpolation between cell centre and cell 
face grids, are needed for each variable. A more optimised implementa-
tion can be achieved, at the cost of extra variables and lines of code in 
the PhysicsModel implementation, by defining a separate Field3D
object to hold the transformation of each variable to the aligned grid, 
which can be calculated once, have boundary conditions applied, and 
be passed to several operations. This is the approach taken in STORM. 
This optimised approach can be applied to the example wave equation 
program, using staggered grids, as shown in Listing 3.

The optimised version of the aligned transform scheme requires one 
FFT interpolation per variable to calculate the aligned version, plus one 
FFT interpolation per parallel operation to transform the result back 
to the toroidal grid, so in total 1 +𝑁par-op interpolations per variable, 
where 𝑁par-op is the average number of parallel operations per variable. 
The number of parallel operations for each variable depends on the par-
ticular set of model equations being solved. For a staggered grid code 
𝑁par-op ∼ 2−3 would be typical, allowing for one parallel interpolation 
between centred and staggered grids plus one or two derivative opera-
tions for the parallel first and second derivative.

Which of the shifted metric or aligned transform methods has lower 
computational cost depends on the situation. When using second order 
central finite difference methods, which have only three points in their 
stencils, on an unstaggered grid for parallel derivatives, only one guard 
cell in the 𝑦-direction is needed, MYG= 1, so the shifted metric method 
requires (see section 2.3.1) only 2×MYG = 2 FFT interpolations, while 
aligned transform requires 1+𝑁par-op = 2 FFT interpolations if only one 

of the first and second derivatives must be calculated (𝑁par-op = 1), but 
three FFT interpolations for any variable where both first and second 
derivatives are needed (𝑁par-op = 2). When using staggered grids, a four 
point stencil is used to interpolate between centred and staggered grids, 
requiring MYG= 2 for the shifted metric method as well as FFT interpola-
tion to different points for outputs on centred and staggered grids, giving 
a total of 4×MYG = 8 FFT interpolations per variable. For the aligned 
transform method, since a parallel interpolation is typically required for 
each variable, there are likely to be two or three operations per variable 
𝑁par-op = 2,3, so only 1 +𝑁par-op = 3,4 FFT interpolations per variable 
are needed, making the aligned transform significantly cheaper for the 
𝑦-staggered grid case.

2.3.3. BOUT++ version 3
In version 3 and earlier of BOUT++ the standard grid was the aligned 

grid. When calculating radial derivatives or applying radial boundary 
conditions, variables were shifted to the toroidal grid using FFT in-
terpolation in the toroidal direction [21], following on from one of 
the schemes described in Dimits (1993) [61]. The aligned transform 
method, section 2.3.2, is equivalent to this scheme; the differences are in 
implementation, due to the different choices of standard grid – toroidal 
vs. aligned.

3. STORM

In this section we describe the STORM code. We begin in section 3.1
by giving the model equations in SI units (the normalised form used in-
ternally by the code is given in Appendix B). The numerical methods 
used are described in section 3.2, the options used to initialise vari-
ous types of simulations in section 3.3, and the source terms used to 
drive transport in section 3.4. Finally some routines for providing high 
time resolution output suitable for synthetic Langmuir probe diagnostics 
are described in section 3.5. Additional information on parallel scaling 
performance, post-processing tools and provenance tracking features is 
provided in Appendix D, Appendix E, and Appendix F.

3.1. Model

STORM solves drift reduced, cold ion, collisional fluid equations for 
a hydrogenic plasma [3,4], which written in SI units are

𝜕𝑛

𝜕𝑡 
= −

1 
𝐵
𝒃 ⋅∇𝜙 ×∇𝑛−𝐵∇‖

(
1 
𝐵
𝑛𝑉𝑒‖

)

− 𝑛(𝑒𝜙) + (𝑝𝑒) + ∇
⟂
⋅

(
𝜇𝑛∇⟂

𝑛
)
+𝑆𝑛,

(electron continuity) (9)

Computer Physics Communications 318 (2026) 109893 

8 



J.T. Omotani, D. Dickinson, B.D. Dudson et al. 

# i n c l u d e < b o u t / p h y s i c s m o d e l . h x x > 
c l a s s S i m p l e W a v e A l i g n e d T r a n s f o r m : p u b l i c P h y s i c s M o d e l { 

i n t i n i t ( b o o l U N U S E D ( r e s t a r t i n g ) ) { 

g . s e t L o c a t i o n ( C E L L _ Y L O W ) ; 
g _ a l i g n e d . s e t L o c a t i o n ( C E L L _ Y L O W ) ; 

s o l v e r -> a d d ( f , " f " ) ; 
s o l v e r -> a d d ( g , " g " ) ; 

f _ a l i g n e d . s e t B o u n d a r y ( " f _ a l i g n e d " ) ; 
g _ a l i g n e d . s e t B o u n d a r y ( " g _ a l i g n e d " ) ; 

r e t u r n 0 ; 
} 

i n t r h s ( B o u t R e a l U N U S E D ( t ) ) { 

m e s h -> c o m m u n i c a t e ( f , g ) ; 

f _ a l i g n e d = t o F i e l d A l i g n e d ( f ) ; 
f _ a l i g n e d . a p p l y B o u n d a r y ( ) ; 

g _ a l i g n e d = t o F i e l d A l i g n e d ( g ) ; 
g _ a l i g n e d . a p p l y B o u n d a r y ( ) ; 

d d t ( f ) = f r o m F i e l d A l i g n e d ( G r a d _ p a r ( g _ a l i g n e d , C E L L _ C E N T R E ) ) ; 
d d t ( g ) = f r o m F i e l d A l i g n e d ( G r a d _ p a r ( f _ a l i g n e d , C E L L _ Y L O W ) ) ; 

r e t u r n 0 ; 
} 

F i e l d 3 D f ; 
F i e l d 3 D f _ a l i g n e d ; 
F i e l d 3 D g ; 
F i e l d 3 D g _ a l i g n e d ; 

} ; 

B O U T M A I N ( S i m p l e W a v e A l i g n e d T r a n s f o r m ) ; 

Listing 3: BOUT++ program implementing wave equations using the optimised version of the aligned transform method for parallel derivatives on 
a staggered grid.

𝜕

𝜕𝑡

(
𝑉𝑖‖ +

𝑒 
𝑚𝑖
𝐴‖

)
= −

1 
𝐵
𝒃 ⋅∇𝜙 ×∇𝑉𝑖‖ − 𝑉𝑖‖∇‖𝑉𝑖‖ −

𝑒 
𝑚𝑖

∇‖𝜙

−
𝑚𝑒

𝑚𝑖
0.51

1 
𝜏𝑒𝑖

(
𝑉𝑖‖ − 𝑉𝑒‖

)
+ 0.71

1 
𝑚𝑖

∇‖𝑇𝑒

+𝐷𝑉𝑖‖∇
2
⟂
𝑉𝑖‖ −

𝑉𝑖‖𝑆𝑛
𝑛 

,

(ion velocity) (10)

𝜕

𝜕𝑡

(
𝑉𝑒‖ −

𝑒 
𝑚𝑒
𝐴‖

)
= −

1 
𝐵
𝒃 ⋅∇𝜙 ×∇𝑉𝑒‖ − 𝑉𝑒‖∇‖𝑉𝑒‖ +

𝑒 
𝑚𝑒

∇‖𝜙

−
1 
𝑚𝑒𝑛

∇‖𝑝𝑒 + 0.51
1 
𝜏𝑒𝑖

(
𝑉𝑖‖ − 𝑉𝑒‖

)

− 0.71
1 
𝑚𝑒

∇‖𝑇𝑒 +𝐷𝑉𝑒‖∇
2
⟂
𝑉𝑒‖ −

𝑉𝑒‖𝑆𝑛
𝑛 

,

(Ohm’s law) (11)

𝜕𝑝𝑒

𝜕𝑡 
= −

1 
𝐵
𝒃 ⋅∇𝜙 ×∇𝑝𝑒 − 𝑉𝑒‖∇‖𝑝𝑒

−
2

3
𝐵∇‖

(
𝑞𝑒‖
𝐵

)
−

2

3
0.71𝑛

(
𝑉𝑖‖ − 𝑉𝑒‖

)
∇‖𝑇𝑒

−
5

3
𝑝𝑒𝐵∇‖

(
𝑉𝑒‖
𝐵

)
+

2𝑚𝑒

3 
0.51

𝑛 
𝜏𝑒𝑖

(
𝑉𝑖‖ − 𝑉𝑒‖

)2

+
5

3
𝑝𝑒

(
−(𝑒𝜙) + (𝑝𝑒)

𝑛 
+ (𝑇𝑒)

)
−
𝑚𝑒𝑉

2
𝑒‖

3 
(𝑝𝑒)

+
2

3
∇
⟂
⋅

(
𝜅𝑒⟂∇⟂

𝑇𝑒
)
+

2

3
𝑆𝐸 +

𝑚𝑒𝑉
2
𝑒‖

3 
𝑆𝑛,

(electron pressure) (12)

𝜕𝜛

𝜕𝑡 
= −

1 
𝐵
𝒃 ⋅∇𝜙 ×∇𝜛 − 𝑉𝑖‖∇‖𝜛 +𝐵∇‖

(
1 
𝐵
𝑒𝑛

(
𝑉𝑖‖ − 𝑉𝑒‖

))

+ 𝑒(𝑝𝑒) + ∇
⟂
⋅

(
𝜇𝜛∇⟂

𝜛
)
.

(vorticity) (13)

𝑒 is the proton charge, 𝑚𝑒 is the electron mass and 𝑚𝑖 is the ion mass, 
for which by default the value for Deuterium is used. The plasma vari-
ables are the electron density 𝑛, parallel flow velocities of electrons 𝑉‖𝑒
and ions 𝑉‖𝑖, and electron pressure 𝑝𝑒 = 𝑛𝑇𝑒 where 𝑇𝑒 is the electron 
temperature. The generalised vorticity 𝜛 is related to the electrostatic 
potential 𝜙 by

𝜛 =∇ ⋅

(𝑚𝑖𝑛0
𝐵2

∇
⟂
𝜙

)
, (14)

where, in a form of so-called ‘Boussinesq approximation’, a constant ref-
erence density 𝑛0 is used, as discussed further in section 3.1.1, including 
the possibility to lift this approximation. Parallel and perpendicular are 
defined relative to the magnetic field 𝑩 =𝐵𝒃 whose magnitude and di-
rection are 𝐵 and 𝒃. The curvature operator is defined as

(𝑓 ) = 1

𝑒 
∇×

(
𝒃

𝐵

)
⋅∇𝑓. (15)
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The perpendicular dissipation coefficients 𝜇𝑛, 𝜅𝑒⟂, 𝜇𝜛 , 𝐷𝑉𝑖‖ and 𝐷𝑉𝑒‖
are set to constant values for turbulence simulations, chosen such that 
fluctuations are dissipated before reaching the gyroradius scale. For 
computational efficiency, the grid scale in the perpendicular directions 
is chosen to be comparable to the gyroradius, so it is important for nu-
merical stability that fluctuations are dissipated above this scale. It can 
then be verified that simulation results are insensitive to the particu-
lar values of the perpendicular dissipation parameters, as shown in [6]. 
Parameter dependent expressions for the perpendicular dissipation co-
efficients have been used for filament simulations, as discussed in sec-
tion 3.1.3. There are volumetric sources of particles 𝑆𝑛 and energy 𝑆𝐸
which are used to drive turbulent simulations, discussed in section 3.4. 
The conductive parallel electron heat flux is

𝑞𝑒‖ = −𝜅𝑒‖∇‖𝑇𝑒 − 0.71𝑛𝑇𝑒
(
𝑉𝑖‖ − 𝑉𝑒‖

)
, (16)

where the parallel thermal conductivity is 𝜅𝑒‖ = 3.16𝑛𝑇𝑒𝜏𝑒𝑖∕𝑚𝑒 and the 

collision times are given by 𝜏𝑎𝑏 = 12𝜋3∕2𝜖2
0
𝑚
1∕2
𝑎 𝑇

3∕2
𝑎 ∕21∕2𝑛𝑏𝑒

4 lnΛ with 
the vacuum permittivity 𝜖0 and cyclotron frequencies Ω𝑎 = 𝑒𝐵∕𝑚𝑎; the 
Coulomb logarithm is evaluated using reference parameters 𝑛0 and 𝑇0
(see section 3.1.5) as lnΛ = 18−log

((
𝑛0∕10

19m−3
)1∕2 (

𝑇0∕1 keV
)−3∕2)

.

𝐴‖ is the parallel component of the magnetic vector potential gen-
erated by parallel currents in the plasma modelled by the code, which 
act as a perturbation on top of the background equilibrium magnetic 
field generated by the external coils and the equilibrium plasma current, 
which is not part of the plasma modelled by the code. When running in 
electrostatic mode, the parallel component of the magnetic vector poten-
tial is neglected, 𝐴‖ = 0, so that the parallel momentum equations (10) 
and (11) evolve 𝑉𝑖‖ and 𝑉𝑒‖ directly. In electromagnetic mode, the equa-
tions are completed by relating 𝐴‖ to the parallel current with Ampère’s 
law

1 
𝜇0

∇2
⟂
𝐴‖ = −𝑒𝑛

(
𝑉𝑖‖ − 𝑉𝑒‖

)
, (17)

where 𝜇0 is the vacuum permeability, and parallel derivatives follow 
the perturbed magnetic field

∇‖𝑓 = 𝒃0 ⋅∇𝑓 +
1 
𝐵
𝒃0 ⋅∇𝐴‖ ×∇𝑓, (18)

where 𝒃0 is the unit vector along the background magnetic field, while 
perturbations to the magnitude 𝐵 are neglected. So far it has only been 
possible to use the electromagnetic mode in slab geometry [42] due to 
numerical instabilities appearing near the X-point in tokamak config-
urations, but the cause of this issue continues to be investigated as it 
has been shown that including electromagnetic effects can allow longer 
time steps to be taken [63].

Cold ion, collisional fluid equations are not well suited to describe 
the edge, closed field line region of present day tokamak experiments, 
which even in low power L-mode regimes are typically hot enough to 
make the collisional assumption marginal, and hot ion effects are likely 
to be qualitatively important. Nevertheless a small closed field line re-
gion is included in tokamak simulations with STORM as a buffer where 
the sources of heat and, if necessary, particles representing fluxes from 
the core plasma can be introduced. The closed field line region allows 
turbulent fluctuations to develop around and across the separatrix; if 
the separatrix were taken as the radial boundary of the grid, the SOL 
turbulence would be unphysically modified, likely being suppressed by 
the absence of fully developed fluctuations at that boundary.

There is also an isothermal mode, where 𝑇𝑒 is taken to be constant 
and the electron pressure equation (12) is neglected.

3.1.1. Boussinesq approximations
A so-called ‘Boussinesq approximation’, as presented in section 3.1, 

is normally used for numerical efficiency, where the density is replaced 
by a constant reference value so that it can be removed from the diver-
gence in (14). This form of Boussinesq approximation was introduced 

by [12] and is now used as the standard option, as it has better con-
servation properties than the version originally used in STORM [33], 
and so avoids large, spurious current sources that could be produced 
by the original form in some situations. The original form of Boussi-
nesq approximation from [33], rather than replacing the density in the 
full expression (21) with a constant reference value 𝑛0, instead moved 
the density outside the derivative terms 𝜕∕𝜕𝑡

(
∇ ⋅

(
𝑚𝑖𝑛𝐵

−2∇
⟂
𝜙
))

≈

𝑛𝜕∕𝜕𝑡
(
∇ ⋅

(
𝑚𝑖𝐵

−2∇
⟂
𝜙
))
, resulting in a modified generalised vorticity

𝜛mod =∇ ⋅

(
𝑚𝑖𝐵

−2∇
⟂
𝜙
)

(19)

and the vorticity equation

𝜕𝜛mod

𝜕𝑡 
= −

1 
𝐵
𝒃 ⋅∇𝜙 ×∇𝜛mod − 𝑉𝑖‖∇‖𝜛mod

+
1

𝑛 
𝐵∇‖

(
1 
𝐵
𝑒𝑛

(
𝑉𝑖‖ − 𝑉𝑒‖

))
+ 𝑒

(𝑝𝑒)
𝑛 

+∇
⟂
⋅

(
𝜇𝜛∇⟂

𝜛mod

)
. (20)

It is also possible to run without any Boussinesq approximation, re-
taining the full density in the generalised vorticity, giving [39,64]

𝜛full =∇ ⋅

(𝑚𝑖𝑛
𝐵2

∇
⟂
𝜙

)
(21)

𝜕𝜛full

𝜕𝑡 
= −

1 
𝐵
𝒃 ⋅∇𝜙 ×∇𝜛full −

1

2
𝒃 ⋅∇

(||||
𝒃 ×∇𝜙

𝐵

||||
2)

×∇𝑛

− 𝑉𝑖‖∇‖𝜛full +𝐵∇‖
(
1 
𝐵
𝑒𝑛

(
𝑉𝑖‖ − 𝑉𝑒‖

))

+ 𝑒(𝑝𝑒) + ∇
⟂
⋅

(
𝜇𝜛∇⟂

𝜛full

)
. (22)

The options for numerical methods that allow lifting the Boussinesq ap-
proximation are discussed in section 3.2.2.

3.1.2. Boundary conditions
The radial boundaries are essentially dissipative numerical buffers 

and are discussed in section 3.2.3.
The parallel boundary conditions for the plasma are set by the 

physics of the Debye sheath, with Bohm boundary conditions [65] being 
imposed at the sheath entrance location (the non-quasineutral sheath 
itself is not included in the simulation domain). These are outflow 
boundary conditions where no explicit boundary condition is imposed 
on scalar variables (density and pressure), while Dirichlet-type bound-
ary conditions are imposed on the parallel fluxes of particles and energy 
as follows. The ion parallel velocity at the sheath entrance is set greater 
than or equal to the sound speed

±𝑉𝑖‖
|||sheath ≥

√
𝑇𝑒

||sheath
𝑚𝑖 +𝑚𝑒

(23)

and the electron parallel velocity is regulated by the electrostatic poten-
tial at the sheath entrance

±𝑉𝑒‖
|||sheath =

√√√√ 𝑚𝑖 𝑇𝑒
||sheath

2𝜋𝑚𝑒
(
𝑚𝑖 +𝑚𝑒

) exp

(
−
𝑒max

(
𝜙|sheath ,0

)

𝑇𝑒
||sheath

)
, (24)

where the electrostatic potential at the wall is taken to be 𝜙|wall = 0. 
Negative values of the sheath potential are disregarded to avoid un-
physically large values of 𝑉𝑒‖ which might occur in rare, exceptionally 
large fluctuations; (24) is derived assuming an electron repelling sheath 
and so is not valid for 𝜙|sheath ≲ 0. The total electron parallel energy 
flux at the sheath entrance is

±𝑄𝑒‖
|||sheath =

(
𝑒 𝜙|sheath + 2 𝑇𝑒

||sheath
)
𝑛|sheath 𝑉𝑒‖|||sheath

≈

(
0.5 ln

(
𝑚𝑖

2𝜋𝑚𝑒

)
+ 2

)
𝑛|sheath 𝑇𝑒||sheath 𝑉𝑒‖|||sheath (25)

≈ 5.18 𝑛|sheath 𝑇𝑒||sheath 𝑉𝑒‖|||sheath .
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The signs in (23), (24), and (25) are such that the parallel velocities 
and parallel energy flux are directed outwards at each boundary. Note 
that in the second line (25), while the time-varying 𝜙|sheath is used to 
calculate 𝑉𝑒‖

|||sheath using (24), in the prefactor 𝜙|sheath is replaced by 
the floating potential 0.5 ln

(
𝑚𝑖∕2𝜋𝑚𝑒

)
𝑇𝑒

||sheath. It would be possible to 
use 𝜙|sheath also in the prefactor, but (25) is the form that has been used 
for previous publications with STORM.

3.1.3. Perpendicular dissipation parameters used for filament simulations
For turbulence simulations, the perpendicular dissipation parame-

ters are set to constant values, as discussed in section 3.1. Filament 
simulations have used expressions that depend on the evolving 𝑛𝑒 and 
𝑇𝑒,

𝜇𝑛 =
(
1 + 1.3𝑞2

)(
1 +

𝑇𝑖

𝑇𝑒

)
𝑇𝑒

𝑚𝑒Ω
2
𝑒
𝜏𝑒𝑖

(26)

𝜅𝑒⟂ = 4.66
(
1 + 1.6𝑞2

) 𝑛𝑒𝑇𝑒

𝑚𝑒Ω
2
𝑒
𝜏𝑒𝑖

(27)

𝜇𝜛 =
3

4

(
1 + 1.6𝑞2

) 𝑇𝑖

𝑚𝑖Ω
2
𝑖
𝜏𝑖𝑖

, (28)

which are the classical values of Braginskii when 𝑞 = 0. 𝜇𝑛 and 𝜇𝜛 are 
evaluated with a finite ion temperature 𝑇𝑖 = 𝑇𝑒, despite the model as-
suming cold ions, in order to provide finite perpendicular viscosity in the 
vorticity equation in particular. The velocity diffusion coefficients 𝐷𝑉𝑖‖
and 𝐷𝑉𝑒‖are set to zero for these filament simulations. The enhancement 
of the perpendicular dissipation coefficients for 𝑞 > 0 was originally mo-
tivated by analogy with the neoclassical radial diffusion coefficients on 
closed flux surfaces [66], with 𝑞 nominally the safety factor, but can 
better be viewed as an ad-hoc enhancement to prevent gyroradius scale 
gradients within a cold ion model and to improve numerical stability, 
with 𝑞 an arbitrary parameter. Values for 𝑞 have been chosen, as rele-
vant for a tokamak edge, for filament simulations between 4.8 [38] and 
7 [33,37], enhancing the dissipation coefficients by factors between 30
and 80 compared to the classical values.

3.1.4. Coordinates and geometry
For simulations in tokamak geometry, the usual BOUT++ locally 

field aligned coordinate system discussed in section 2.1 is used, with 
orthogonal 𝑥- and 𝑦-coordinates. For curved slab geometries {𝑥, 𝑦, 𝑧}
are simply Cartesian coordinates, with 𝑥 being radial, 𝑦 the coordinate 
along magnetic field lines and 𝑧 binormal. The metric is then simply the 
identity matrix.

3.1.5. Normalisations
Internally, dimensionless variables are used which are normalised to 

have magnitudes of order unity in order to minimise the possibility of 
underflow or overflow errors. Writing the normalised version of a vari-
able or operator 𝑓 as 𝑓 , reference values of density 𝑛0, temperature 𝑇0, 
and magnetic field 𝐵0, for which suitable values are chosen depend-
ing on the parameters of a given simulation, are used to normalise the 
density 𝑛̂ = 𝑛∕𝑛0, electron temperature 𝑇̂𝑒 = 𝑇𝑒∕𝑇0, and magnetic field 
𝐵̂ =𝐵∕𝐵0. The ion mass is used as the reference value, so the normalised 
electron mass is 𝑚̂𝑒 =𝑚𝑒∕𝑚𝑖. Bohm normalisation is used for lengths and 
times, ∇̂ = 𝜌𝑠0∇ and 𝜕∕𝜕𝑡 = Ω−1

𝑖0
𝜕∕𝜕𝑡, with the reference sound Larmor 

radius 𝜌𝑠0 = 𝑐𝑠0∕Ω𝑖0, cold ion sound speed 𝑐𝑠0 =
√
𝑇0∕𝑚𝑖 and cyclotron 

frequency Ω𝑖0 = 𝑒𝐵0∕𝑚𝑖. The electromagnetic potentials are normalised 
as 𝜙̂ = 𝑒𝜙∕𝑇0 and 𝐴̂‖ = 2𝑒𝐴‖∕𝛽0𝑚𝑖𝑐𝑠0 where 𝛽0 = 2𝜇0𝑛0𝑇0∕𝐵

2
0
. The 

normalised vorticity is 𝜛̂ = ∇̂ ⋅

(
𝐵̂−2∇̂

⟂
𝜙̂
)
=𝜛∕𝑒𝑛0 for the ‘standard’ 

Boussinesq approximation (14); 𝜛̂full = ∇̂ ⋅

(
𝑛̂𝐵̂−2∇̂

⟂
𝜙̂
)
=𝜛full∕𝑒𝑛0 for 

the full, non-Boussinesq version (21); and 𝜛̂mod = ∇̂ ⋅

(
𝐵̂−2∇̂

⟂
𝜙̂
)
=

𝜛mod∕𝑒 for the ‘original STORM’ Boussinesq approximation (19). The 
source terms are normalised as 𝑆̂𝑛 = 𝑆𝑛∕𝑛0Ω𝑖0 and 𝑆̂𝐸 = 𝑆𝐸∕𝑛0𝑇0Ω𝑖0. 
Normalisations of the parameters and model equations follow from these 
definitions, as detailed in Appendix B.

In tokamak geometries, the 𝑦 and 𝑧 coordinates are dimensionless 
(angle-like) and so do not need to be normalised, while 𝑥 = 𝜓 is nor-
malised as 𝑥̂ = 𝑥∕𝜌2

𝑠0
𝐵0. As the reciprocal metric components are by 

definition 𝑔𝑖𝑗 =∇𝑥𝑖 ⋅∇𝑥𝑗 they are normalised as 𝑔̂𝑥𝑥 = 𝑔𝑥𝑥∕𝜌2
𝑠0
𝐵2
0
, 𝑔̂𝑦𝑦 =

𝑔𝑦𝑦𝜌2
𝑠0
, 𝑔̂𝑧𝑧 = 𝑔𝑧𝑧𝜌2

𝑠0
, 𝑔̂𝑥𝑦 = 𝑔𝑥𝑦∕𝐵0, 𝑔̂

𝑥𝑧 = 𝑔𝑥𝑧∕𝐵0, and 𝑔̂
𝑦𝑧 = 𝑔𝑦𝑧𝜌2

𝑠0
, 

while the metric components are the inverse 𝑔̂𝑥𝑥 = 𝑔𝑥𝑥𝜌
2
𝑠0
𝐵2
0
, 𝑔̂𝑦𝑦 =

𝑔𝑦𝑦∕𝜌
2
𝑠0
, 𝑔̂𝑧𝑧 = 𝑔𝑧𝑧∕𝜌

2
𝑠0
, 𝑔̂𝑥𝑦 = 𝑔𝑥𝑦𝐵0, 𝑔̂𝑥𝑧 = 𝑔𝑥𝑧𝐵0, and 𝑔̂𝑦𝑧 = 𝑔𝑦𝑧∕𝜌

2
𝑠0
. The 

Jacobian 𝐽 = (∇𝑥 ⋅∇𝑦 ×∇𝑧)−1 is normalised as 𝐽 = 𝐽𝐵0∕𝜌𝑠0.
In slab geometries all the coordinates are normalised by 𝜌𝑠0 , so 

𝑥̂ = 𝑥∕𝜌𝑠0, 𝑦̂ = 𝑦∕𝜌𝑠0, and 𝑧̂ = 𝑧∕𝜌𝑠0. The metric and Jacobian are di-
mensionless and therefore do not need to be normalised.

3.2. Numerical methods

The physical model described in the previous subsection must be 
discretised so that it can be solved numerically. We now describe in 
some detail the algorithms used, to provide a reference for the code.

STORM uses finite difference methods, except for a few places noted 
below where FFTs are used for toroidal derivatives or interpolation. 
The implementation of the numerical schemes is mostly provided by 
the BOUT++ framework; the sheath boundary conditions require a 
lower level implementation, section 3.2.3. Here, we specify the methods 
STORM used as standard for each operation. The standard set of choices 
described here can be overridden at run time by options in the input 
file if necessary; differences applied in some particular study would be 
noted explicitly in the paper describing it. To ensure positivity of the 
density 𝑛 and pressure 𝑝𝑒, their logarithms log𝑛 and log𝑝𝑒 are evolved 
numerically, as shown in the normalised equations in Appendix B.

As introduced above, one of the distinctive features of STORM is its 
use of staggered grids in the parallel direction. This helps to avoid the 
chequerboard instability – the numerical decoupling of ‘odd’ grid points 
from ‘even’ grid points – associated with advective equations [67, sec-
tions 6.2, 6.3]. The parallel direction has been found to be susceptible 
to the chequerboard instability while the perpendicular directions are 
not, likely due to the faster parallel dynamics and the presence of sheath 
boundary conditions that impose sharp variations in the parallel direc-
tion. The ‘scalar’ variables 𝑛, 𝑝𝑒, 𝜛, 𝜙 are evolved or evaluated on the 
‘cell centre’ grid, while ‘vector’ variables 𝑉𝑖‖ , 𝑉𝑒‖, and 𝐴‖, which rep-
resent the parallel component of a vector quantity, are evolved on a 
staggered grid offset to half way between the cell centres, at the ‘cell 
faces’. This means that the evolution equations (9), (12), and (13), and 
therefore each component (such as derivatives) within those equations, 
are evaluated at cell centre grid points. (10) and (11), and each com-
ponent within them, are evaluated at cell face grid points. As shown in 
Figs. 2 and 3, in BOUT++ the boundaries of the domain are taken to be 
at cell face locations.

The following subsections detail the specific methods used for each 
type of numerical operation: parallel interpolation and the differential 
operators used for parallel derivatives, perpendicular derivatives, and 
curvature operators in section 3.2.1; Laplace inversions needed to cal-
culate 𝜙 and 𝐴‖ in section 3.2.2; boundary conditions in section 3.2.3; 
and the time solver in section 3.2.4.

3.2.1. Differential operators and interpolation
Differential operators in BOUT++ are defined in terms of coordinate 

derivatives 𝜕∕𝜕𝑥, 𝜕∕𝜕𝑦 and 𝜕∕𝜕𝑧 in the locally field aligned coordinate 
system (section 2.3), combined with appropriate geometric factors – 
metric components, the Jacobian, etc. – to account for general curvilin-
ear coordinates, as described in the BOUT++ documentation [53]. The 
grid generator hypnotoad is designed to ensure that all grid spacings 
are slowly and smoothly varying, so that this coordinate transformation 
provides an accurate representation of the differential operators [58]. In 
this section, except where noted otherwise, we detail just the discretisa-
tions used for the underlying coordinate derivatives in each operator, as 
used by STORM. The aligned transform scheme (section 2.3.2) is used, 
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so that parallel derivatives and interpolation are calculated on a globally 
field aligned grid, with the toroidal interpolations needed to transform 
variables onto that aligned grid being calculated using FFTs. The chain 
rule is used to split several operators in equations (9)-(13) as the split 
forms have slightly better numerical stability. The exact forms as used in 
the code are shown in the normalised equations in Appendix B. Within 
this section, we quote individual terms from the split forms, which each 
correspond to an individual term in equations (B.2)-(B.6), when refer-
ring to the terms that are discretised, but write them in SI units.

To describe finite difference stencils for parallel derivatives, we de-
note the values of some variable 𝑓 at grid points using a subscript that 
labels the 𝑦-index of the points, with indices on the staggered grid being 
offset by one half, as shown in the sketch.

Derivatives parallel to the unperturbed magnetic field use second 
order accurate finite difference methods. Derivatives parallel to the full 
magnetic field are calculated, in electromagnetic mode, by adding a cor-
rection due to 𝐴‖ discussed below. Advective derivatives, of the form 
𝑣∇‖𝑓 , use an upwind method, while the other parallel derivatives use a 
centred method. Derivatives account for whether the argument is on the 
same grid as the output, or on the grid staggered relative to the output, 
by using the appropriate stencil. For the non-advective derivatives, this 
is essentially just a change in grid spacing, so that unstaggered deriva-
tives use

𝜕𝑓

𝜕𝑦 

||||𝑖 =
𝑓𝑖+1 − 𝑓𝑖-1

2Δ𝑦,𝑖
(29)

where Δ𝑦,𝑖 is the 𝑦-grid spacing at point 𝑖, which is used for ∇‖𝑇𝑒 in 
the electron pressure equation (12) and ∇‖ log𝑛 in the vorticity equa-
tion (13). Staggered derivatives use

𝜕𝑓

𝜕𝑦 

||||𝑖-1∕2 =
𝑓𝑖 − 𝑓𝑖-1

Δ𝑦,𝑖-1∕2
, (30)

which is used for: ∇‖
(
𝑉𝑒‖∕𝐵

)
in the continuity equation (9); ∇‖𝜙, ∇‖𝑇𝑒, 

and ∇‖ log𝑛 in the ion momentum equation (10) and Ohm’s law (11); 
∇‖𝑇𝑒 in the calculation of 𝑞𝑒‖ (16); ∇‖

(
𝑞𝑒‖∕𝐵

)
and ∇‖

(
𝑉𝑒‖∕𝐵

)
in the 

electron pressure equation (12); and ∇‖
((
𝑉𝑖‖ − 𝑉𝑒‖

)
∕𝐵

)
in the vorticity 

equation (13).
Parallel advection terms use upwind schemes. For the 𝑉𝑖‖∇‖𝑉𝑖‖ and 

𝑉𝑒‖∇‖𝑉𝑒‖ terms in the ion and electron momentum equations (10) 
and (11), the velocity and the variable are on the same grid and the 
unstaggered form

𝑣
𝜕𝑓

𝜕𝑦 

||||𝑖 =
⎧⎪⎨⎪⎩

𝑣𝑖

(
3
2
𝑓𝑖−2𝑓𝑖-1+

1
2
𝑓𝑖-2

)

Δ𝑦,𝑖
𝑣𝑖 ≥ 0

−𝑣𝑖

(
3
2
𝑓𝑖−2𝑓𝑖+1+

1
2
𝑓𝑖+2

)

Δ𝑦,𝑖
𝑣𝑖 < 0

(31)

is used. The remaining parallel advection terms, 𝑉𝑒‖∇‖ log𝑛, 𝑉𝑒‖∇‖ log𝑝𝑒, 
and 𝑉𝑖‖∇‖𝜛 in the continuity (9), electron pressure (12), and vortic-
ity (13) equations use the form with a staggered velocity

𝑣
𝜕𝑓

𝜕𝑦 

||||𝑖 =
𝜕𝑣𝑓

𝜕𝑦 

||||𝑖 −
𝜕𝑣

𝜕𝑦 
𝑓
||||𝑖

=

(
𝑋+ +𝑋−

)
Δ𝑦,𝑖

−

(
𝑣𝑖+1∕2 − 𝑣𝑖-1∕2

)
Δ𝑦,𝑖

𝑓𝑖, (32)

where

𝑋+ =

⎧⎪⎨⎪⎩

𝑣𝑖+1∕2

(
3

2
𝑓𝑖 −

1

2
𝑓𝑖-1

)
𝑣𝑖+1∕2 >= 0

𝑣𝑖+1∕2

(
3

2
𝑓𝑖+1 −

1

2
𝑓𝑖+2

)
𝑣𝑖+1∕2 < 0

(33)

𝑋− =

⎧⎪⎨⎪⎩

−𝑣𝑖-1∕2

(
3

2
𝑓𝑖-1 −

1

2
𝑓𝑖-2

)
𝑣𝑖-1∕2 >= 0

−𝑣𝑖-1∕2

(
3

2
𝑓𝑖 −

1

2
𝑓𝑖+1

)
𝑣𝑖-1∕2 < 0

. (34)

Note that this form ensures that the result is continuous as either 𝑣𝑖+1∕2
or 𝑣𝑖-1∕2 pass through zero, which reduces the sensitivity to round off 
errors.

In several places scalar variables 𝑛, 𝑇𝑒, 𝜙 are required on the cell 
face grid in equations (10) and (11), while vector variables 𝑉𝑒‖ , 𝑉𝑖‖, 
𝐴‖ are required on the cell centre grid in equations (9), (12), and (13). 
The values are calculated by interpolating in the parallel 𝑦 direction on 
a field aligned grid. The interpolation is performed in grid-index space 
using a cubic polynomial interpolation from a four point stencil with 
two points on either side of the result, so that a variable 𝑓 is calculated 
at each offset point 𝑖− 1∕2 as

𝑓𝑖-1∕2 =
−𝑓𝑖-2 + 9𝑓𝑖-1 + 9𝑓𝑖 − 𝑓𝑖+1

16 
. (35)

Note that interpolation in grid index space is equivalent to interpolation 
in the 𝑦-coordinate, as tokamak grids for BOUT++ always use constant 
grid spacing in 𝑦, with any refinement of the grid in specific locations 
being achieved by different choices of 𝑦-coordinate.
𝐸 ×𝐵 advection and corrections to the parallel gradient due to mag-

netic field perturbations (18) both have the form

1 
𝐵
𝒃0 ⋅∇𝑓 ×∇ℎ (36)

and are discretised in the same way. The 𝑥 and 𝑧 coordinates in the lo-
cally field aligned coordinate system represent perpendicular variations, 
but are not in general perpendicular to the magnetic field (as discussed 
in section 2.1), which means that 𝑦-derivative terms contribute to the 
operator (36). These 𝑦-derivatives are neglected on the assumption that 
parallel gradients are negligible compared to perpendicular gradients, 
which is reasonable for turbulent fluctuations in a magnetised plasma. 
For structures that have a perpendicular length scale within a flux sur-
face comparable to the parallel length scales, i.e. axisymmetric modes 
or those with low toroidal mode number, the neglect of 𝑦-derivatives 
means that the effects of poloidal 𝐸 × 𝐵 drift and radial drift from 
𝐸poloidal due to these modes are not consistently included, although some 
parts are captured by 𝑦-derivatives that are included in the curvature 
operator (39). Careful validation would be needed in situations where 
these kinds of poloidal 𝐸 ×𝐵 drift or 𝐸poloidal are an important contri-
bution. In regions where parallel gradients are extremely strong, such as 
near the sheath entrances at the target plates, the assumption is violated 
and so the effects of drifts are again not fully captured. Neglect of the 𝑦-
derivatives in differential operators is consistent with their neglect when 
calculating the electromagnetic potentials 𝜙 and 𝐴‖, see section 3.2.2; 
including all 𝑦-derivatives would be straightforward in the differential 
operators described here, but would require them also to be included 
in the potential solvers, which is challenging. The remaining 𝑥- and 
𝑧-derivative components are calculated using a second order accurate 
Arakawa stencil [68]. The Clebsch property of the locally aligned coor-
dinate system used by BOUT++ 𝑩 =∇𝑧×∇𝑥, combined with the neglect 
of 𝑦-derivatives, gives a particularly simple form of this operator

1 
𝐵
𝒃0 ⋅∇𝑓 ×∇ℎ ≈

𝜕𝑓

𝜕𝑧 
𝜕ℎ

𝜕𝑥 
−
𝜕𝑓

𝜕𝑥 
𝜕ℎ

𝜕𝑧 
, (37)

which is discretised as
(
1 
𝐵
𝒃0 ⋅∇𝑓 ×∇ℎ

)
𝑖,𝑗

= −
1

3

[
𝐽++
𝑖,𝑗

(ℎ,𝑓 ) + 𝐽+×
𝑖,𝑗

(ℎ,𝑓 ) + 𝐽×+
𝑖,𝑗

(ℎ,𝑓 )
]

(38)

𝐽++
𝑖,𝑗

(ℎ,𝑓 ) =
1 

4Δ𝑥,𝑖Δ𝑧

[(
ℎ𝑖,𝑗+1 − ℎ𝑖,𝑗−1

)(
𝑓𝑖+1,𝑗 − 𝑓𝑖−1,𝑗

)

−
(
ℎ𝑖+1,𝑗 − ℎ𝑖−1,𝑗

)(
𝑓𝑖,𝑗+1 − 𝑓𝑖,𝑗−1

)]

𝐽+×
𝑖,𝑗

(ℎ,𝑓 ) =
1 

4Δ𝑥,𝑖Δ𝑧

[
ℎ𝑖,𝑗+1

(
𝑓𝑖+1,𝑗+1 − 𝑓𝑖−1,𝑗+1

)

Computer Physics Communications 318 (2026) 109893 

12 



J.T. Omotani, D. Dickinson, B.D. Dudson et al. 

− ℎ𝑖,𝑗−1
(
𝑓𝑖+1,𝑗−1 − 𝑓𝑖−1,𝑗−1

)

− ℎ𝑖+1,𝑗
(
𝑓𝑖+1,𝑗+1 − 𝑓𝑖+1,𝑗−1

)

+ ℎ𝑖−1,𝑗
(
𝑓𝑖−1,𝑗+1 − 𝑓𝑖−1,𝑗−1

) ]

𝐽×+
𝑖,𝑗

(ℎ,𝑓 ) =
1 

4Δ𝑥,𝑖Δ𝑧

[
ℎ𝑖+1,𝑗+1

(
𝑓𝑖+1,𝑗 − 𝑓𝑖,𝑗+1

)

− ℎ𝑖−1,𝑗−1
(
𝑓𝑖,𝑗−1 − 𝑓𝑖−1,𝑗

)

− ℎ𝑖+1,𝑗−1
(
𝑓𝑖+1,𝑗 − 𝑓𝑖,𝑗−1

)

+ ℎ𝑖−1,𝑗+1
(
𝑓𝑖,𝑗+1 − 𝑓𝑖−1,𝑗

) ]

where 𝑖 is the 𝑥-index and 𝑗 is the 𝑧-index, Δ𝑥,𝑖 is the spacing of the 
𝑥-grid and Δ𝑧 is the constant spacing of the 𝑧-grid. Note that here 𝒃0 is 
in the 𝑦-direction of a right handed {𝑥, 𝑦, 𝑧} coordinate system, so the 
order of indices in (38) is reversed compared to (36)-(38) of [68].

The operators used for perpendicular dissipation (section 3.1.3) also 
neglect 𝑦-derivatives. The diffusion terms ∇2

⟂
𝑓 use BOUT++’s 𝙳𝚎𝚕𝚙𝟸

operator, which was written to be the discrete operator whose inverse is 
calculated by the ‘Laplace inversion’ routines (section 3.2.2). 𝙳𝚎𝚕𝚙𝟸 first 
performs a toroidal Fourier transform of its argument, then computes 𝑥-
derivatives using a second order centred finite difference method, and 
𝑧-derivatives by multiplying by the appropriate power of the complex 
wave number for each Fourier mode; for completeness, note that 𝙳𝚎𝚕𝚙𝟸
does have an argument allowing to switch to an implementation with 
centred finite difference for all derivatives, but STORM does not use 
this. When non-constant dissipation parameters are used the diffusion 
operator is split in the form

∇ ⋅

(
𝜇∇

⟂
𝑓
)
= 𝜇∇2

⟂
𝑓 +∇

⟂
𝜇 ⋅∇

⟂
𝑓

as shown in Appendix B, so it is necessary to compute terms of the form 
∇
⟂
𝜇 ⋅∇

⟂
𝑓 . As BOUT++ does not provide this particular operator, it is 

implemented in STORM in terms of coordinate derivatives as

∇
⟂
𝜇 ⋅∇

⟂
𝑓 = 𝑔𝑥𝑥

𝜕𝜇

𝜕𝑥 
𝜕𝑓

𝜕𝑥 
+ 𝑔𝑧𝑧

𝜕𝜇

𝜕𝑧 
𝜕𝑓

𝜕𝑧 
where 𝑔𝑥𝑥 and 𝑔𝑧𝑧 are contravariant components of the metric tensor 
and we recall that in the locally field aligned coordinate system, 𝑔𝑥𝑧 = 0

at the grid points as 𝑥 and 𝑧 are orthogonal there, section 2.3.1. The 
coordinate derivative 𝜕∕𝜕𝑥 is discretised with a second order central 
finite difference method, and 𝜕∕𝜕𝑧 usually uses an FFT method, but 
some filament simulations in slab geometry use second order central 
finite difference for symmetry.

Finally, we turn to the curvature operator (15)

(𝑓 ) = 1

𝑒 
∇×

(
𝒃

𝐵

)
⋅∇𝑓

=
1

𝑒 

[
∇×

(
𝒃

𝐵

)𝑥 𝜕𝑓
𝜕𝑥 

+∇×
(
𝒃

𝐵

)𝑦 𝜕𝑓
𝜕𝑦 

+∇×
(
𝒃

𝐵

)𝑧 𝜕𝑓
𝜕𝑧 

]
. (39)

For simulations in tokamak geometry, the contravariant components of 
the vector ∇×(𝒃∕𝐵) are calculated by the grid generator hypnotoad [58] 
using derivatives of the interpolating functions used to represent the 
poloidal flux 𝜓 and poloidal current function 𝐼(𝜓) = 𝑅𝐵toroidal of the 
equilibrium, where 𝑅 is the major radius and 𝐵toroidal is the equilib-
rium toroidal magnetic field. As for other operators described above, 
𝜕∕𝜕𝑥 and 𝜕∕𝜕𝑦 use a second order centred finite difference method, 
and 𝜕∕𝜕𝑧 uses an FFT method. For simulations in curved slab geom-
etry, the curvature is approximated by the form for a purely toroidal 
magnetic field with a radius of curvature 𝑅c that is large compared 
to the radial width of the simulation domain, ∇ × (𝒃∕𝐵)𝑧 = 2∕𝐵0𝑅c

and ∇ × (𝒃∕𝐵)𝑥 = ∇ × (𝒃∕𝐵)𝑦 = 0, where 𝐵0 is the constant, reference 
magnetic field, as shown in Appendix C; 𝜕∕𝜕𝑧 is calculated in slab sim-
ulations either with an FFT, or a second order central finite difference 
method.

3.2.2. Laplace inversion
To calculate 𝜙 from 𝜛 or, in electromagnetic mode, to separate 

𝐴‖, 𝑉𝑒‖, and 𝑉𝑖‖ requires solving a boundary value problem involving 
perpendicular gradients, referred to by BOUT++ as ‘Laplace inversion’ 
because the leading term in the equations is the perpendicular Laplacian 
∇2
⟂
. As mentioned in section 3.2.1, there are 𝑦-derivative contributions 

to the perpendicular gradient, because the 𝑥- and 𝑧-coordinates are not 
in general perpendicular to the magnetic field. The underlying issue is 
not dependent on the particular choice of coordinate system however, 
as in the closed field line region a line following the binormal direc-
tion, perpendicular to 𝑩 but within a flux surface, will usually cover 
the whole flux surface ergodically. Therefore the ‘plane’ perpendicu-
lar to 𝑩 on which we must solve the boundary value problem actually 
fills the whole volume, making the solution three dimensional rather 
than two dimensional. In order to make the problem two dimensional, 
𝑦-derivatives are neglected, which can be justified to the extent that 
parallel gradients are much smaller than perpendicular gradients, as 
discussed in section 3.2.1; three dimensional ‘Laplace solvers’ are un-
der development in BOUT++ to remove this approximation, although 
these are computationally intensive and it is also challenging to formu-
late an appropriate parallel boundary condition.

Using either form of Boussinesq approximation, the coefficients in 
the equation to be solved for 𝜙, (14) or (19), are independent of the 
toroidal coordinate 𝑧. This makes it possible to use the default BOUT++ 
solver (called ‘cyclic’), which transforms the equation using FFTs in the 
toroidal coordinate 𝑧 into a set of decoupled, ordinary differential equa-
tions where the independent variable is the radial 𝑥-coordinate. A sec-
ond order central finite difference discretisation puts these in the form of 
a tridiagonal matrix, and the solution is computed by a direct method 
using a two level partitioning algorithm [69]. For the non-Boussinesq 
case, the coefficients of (21) involve the density 𝑛, which has toroidal 
variation and so prevents decoupling by toroidal Fourier transform. A 
multigrid algorithm, which discretises both 𝑥- and 𝑧-derivatives using 
second order central finite differences, can be used and has been suc-
cessful for filament simulations in slab geometry [39,42]. For turbulent 
simulations in tokamak geometry, it has been observed to be more ro-
bust to use an iterative algorithm [70] called the ‘Naulin Solver’ where 
iterations 𝜙𝑖 are updated by solving

∇2
⟂
𝜙𝑖+1 +

⟨
𝐵2

𝑛 

⟩

𝑧

∇
⟂

⟨
𝑛 
𝐵2

⟩
𝑧
⋅∇

⟂
𝜙𝑖+1

=
𝐵2

𝑚𝑖𝑛
𝜛 −

(
𝐵2

𝑛 
∇
⟂

𝑛 
𝐵2

−

⟨
𝐵2

𝑛 

⟩

𝑧

∇
⟂

⟨
𝑛 
𝐵2

⟩
𝑧

)
⋅∇

⟂
𝜙𝑖 (40)

with the ‘cyclic’ solver, where ⟨⋅⟩𝑧 denotes a toroidal average.
Radial boundary conditions are required to solve for 𝜙. The radial 

boundaries are located at an arbitrary flux surface where the grid ends, 
not a physical boundary such as a wall, and the region near the radial 
boundaries is a non-physical buffer zone where enhanced numerical dis-
sipation is used to damp fluctuations, section 3.2.3. Therefore the radial 
boundary condition is somewhat arbitrary, and a Dirichlet boundary 
condition is used, with a non-zero boundary value that is updated over 
time. To improve numerical stability and avoid restricting the timestep, 
it has been found that allowing a poloidal variation in the value to which 
this boundary condition is set is important to avoid sharp boundary lay-
ers in the dissipative radial buffers, which would form if the boundary 
value were far from values consistent with parallel force balance for 
the electrons. For turbulent simulations, this poloidal variation is de-
termined by a relaxation procedure. The radial boundary values are 
updated at intervals, whose length is chosen for each simulation to give 
numerically stable solutions. At the end of each interval, the boundary 
value is set to the time and toroidal average of 𝜙 at the adjacent grid 
point over the interval, so that the average radial profile of 𝜙 relaxes to-
ward zero gradient at the boundaries. For filament simulations, which 
are initialised on top of a stationary background plasma (section 3.3), 
the background value of 𝜙 is used as the radial boundary condition.
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For Fourier components of 𝜙 with low toroidal mode numbers, the 
approximation that parallel derivatives are much smaller than perpen-
dicular derivatives can break down as the length scale of toroidal deriva-
tives for these components is comparable to the major radius. Near 
the X-point, radial derivatives are also small due to the flux expan-
sion there. This can result in unphysical solutions in some cases, for 
which a partial solution is to include 𝑦-derivatives when solving for the 
toroidally-constant part of 𝜙 (the zero mode number component of the 
toroidal Fourier transform) [12]. There is an option to enable this partial 
solution, which can be used with the standard Boussinesq approxima-
tion. When the option split_n0=true is set, the toroidally constant 
part of (14) is solved including 𝑦-derivatives. The operator is discretised 
with second order centred finite differences, and then solved on the full 
𝑥−𝑦 plane using an iterative scheme implemented using PETSc [71,72] 
and calling the BoomerAMG preconditioner from Hypre [73]. Radial 
𝑥-boundaries use the same boundary conditions as the standard solve. 
Parallel/poloidal 𝑦-boundaries use Neumann boundary conditions by 
default, but appropriate settings here are still under investigation.

In electromagnetic mode, the variables advanced by the time solver 
in the ion and electron momentum equations (10) and (11) are 𝜒𝑖 = 𝑉𝑖‖+
𝑒𝐴‖∕𝑚𝑖 and 𝜒𝑒 = 𝑉𝑒‖ − 𝑒𝐴‖∕𝑚𝑒. To obtain 𝐴‖, 𝑉𝑖‖, and 𝑉𝑒‖ separately, 
we solve Ampère’s law (17), in the form

∇2
⟂
𝐴‖ +

(
1 
𝑚𝑒

+
1 
𝑚𝑖

)
𝑒2𝜇0𝑛𝐴‖ = −𝑒𝜇0𝑛

(
𝜒𝑖 − 𝜒𝑒

)
, (41)

for 𝐴‖, which we can then use to calculate 𝑉𝑖‖ and 𝑉𝑒‖ directly from 
𝜒𝑖 and 𝜒𝑒. Zero value Dirichlet boundary conditions are used for 𝐴‖
at the radial boundaries. The coefficient of the second term on the left 
hand side of (41) is not toroidally constant, so we again use either the 
multigrid or Naulin solvers. These solvers have been used successfully 
for filament simulations in slab geometry. However, as the vector vari-
ables are defined on the staggered grid, in tokamak geometry (41) must 
be solved on the 𝑥-𝑧 planes that intersect the X-points, see Fig. 2, which 
causes numerical problems. Several workarounds have been tried to 
enable electromagnetic runs in tokamak geometry, but so far without 
success.

3.2.3. Boundary conditions
The parallel boundary conditions, where the magnetic field inter-

sects the wall at the divertor targets, are set by sheath physics, sec-
tion 3.1.2. The scalar variables 𝑛, 𝑇𝑒, and 𝜙 should not have any parallel 
boundary condition, so to constrain them as little as possible, they are 
extrapolated to the sheath entrance with a quadratic polynomial extrap-
olation

𝑓 |sheath = 1

8

(
15𝑓𝑖end − 10𝑓𝑖end∓1 + 3𝑓𝑖end∓2

)
, (42)

where 𝑖end is the 𝑦-index of the grid point adjacent to the sheath en-
trance, the upper signs apply to upper 𝑦-boundaries, and the lower signs 
to lower 𝑦-boundaries. Recall that the scalar variables are evolved on the 
cell centre grid, while the sheath entrance boundary is at a cell face lo-
cation, so 𝑓 |sheath is located at 𝑦-index 𝑖end±1∕2. The extrapolated values 
of the scalar variables are used to evaluate the sheath entrance values 
of the parallel flows with (23) and (24), while the conductive parallel 
heat flux 𝑞𝑒‖ is calculated using the total parallel heat flux 𝑄𝑒‖ evaluated 
similarly with (25) as

𝑞𝑒‖
|||sheath = 𝑄𝑒‖

|||sheath −
5

2
𝑇𝑒

||sheath 𝑉𝑒‖|||sheath
−

1

2
𝑚𝑒

(
𝑉𝑒‖

|||sheath
)3

. (43)

All variables are extrapolated into the boundary cells past the wall, again 
with a quadratic polynomial extrapolation

𝑓𝑖 = 3𝑓𝑖∓1 − 3𝑓𝑖∓2 + 𝑓𝑖∓3, (44)

where 𝑖 is the 𝑦-index of any grid point within the boundary. The paral-
lel boundary conditions are applied to auxiliary variables containing the 

transformation to the field aligned grid of each quantity, as discussed 
in section 2.3.2. For some filament simulations, to reduce the compu-
tational expense, only half of the slab domain is simulated, dividing 
the domain in the parallel 𝑦-direction with boundary conditions at the 
lower-𝑦 end of the computational grid imposing reflection symmetry, 
i.e. Neumann boundary conditions for the scalar variables 𝑛, 𝑝𝑒, 𝜛, 𝜙
and Dirichlet boundary conditions for the vector variables 𝑉𝑖‖ , 𝑉𝑒‖, 𝐴‖, 
𝑞𝑒‖.

The radial boundaries of the grid are not physical. Their position 
should be chosen to be far enough away from the separatrix that the 
results of a simulation are insensitive to the exact position of the bound-
aries. Fluctuations that occur near the boundaries are therefore unim-
portant for the simulations, but have a tendency to lead to numerical 
instabilities. Therefore for turbulent simulations, a combination of ra-
dial boundary conditions is used that have been found from experi-
ence to mitigate these numerical instabilities by suppressing fluctuations 
(which are set to zero at the radial boundaries, and may be further 
damped by a buffer region with enhanced dissipation) but allowing the 
average values to float as freely as possible, to avoid creating artifi-
cial boundary layers. At the radial boundaries in SOL and PFR regions, 
log𝑛, log𝑝𝑒 and 𝜛 use a Neumann boundary condition on the toroidal-
average part of the variable ⟨log𝑛⟩𝑧, etc. and a zero-value Dirichlet 
boundary condition on the ‘fluctuating part’ 

(
log𝑛− ⟨log𝑛⟩𝑧

)
, etc. At 

the core boundary 𝜛 uses the same boundary condition as in the SOL 
and PFR, while the combined toroidal and poloidal average of log𝑛 or 
log𝑝𝑒, that is ⟨log𝑛⟩𝑦𝑧 or ⟨log𝑝𝑒⟩𝑦𝑧 use a Neumann boundary condition, 
while the ‘fluctuating parts’ which use Dirichlet boundary conditions 
are now 

(
log𝑛− ⟨log𝑛⟩𝑦𝑧

)
and 

(
log𝑝𝑒 − ⟨log𝑝𝑒⟩𝑦𝑧

)
. In filament simula-

tions, Neumann boundary conditions are used at all radial boundaries 
for log𝑛, log𝑝𝑒, and 𝜛. The radial boundary conditions for the elec-
tromagnetic potentials 𝜙 and 𝐴‖ were described in section 3.2.2. In all 
simulations Neumann boundary conditions are used at all radial bound-
aries for the parallel velocities 𝑉𝑖‖ and 𝑉𝑒‖. Radial boundary conditions 
are applied, when necessary, to the intermediate variables storing inter-
polated, staggered versions of the variables in the same way as for the 
unstaggered ones and Neumann boundary conditions are used for 𝑞𝑒‖. 
The exceptions are the electromagnetic potentials. As the staggered ver-
sions of 𝜙 and 𝐴‖ are calculated simply by interpolating, not by separate 
Laplace inversions (section 3.2.2), for simplicity ‘free’ boundary condi-
tions are applied using quadratic extrapolation in the radial direction 
with the stencil (44).

Dissipative buffer regions can be created near the radial bound-
aries to further damp any fluctuations before they can interact with the 
boundary. These buffer regions include a number of grid points in the 
𝑥-direction chosen for each simulation, typically 8 to 16. The perpendic-
ular diffusion coefficients 𝜇𝑛, 𝐷𝑉𝑖‖ , 𝐷𝑉𝑒‖ , 𝜅𝑒⟂, and 𝜇𝜛 are enhanced by 
a factor that increases linearly through each buffer region, up to a maxi-
mum enhancement factor at the radial boundary, which is again chosen 
for each simulation, and defaults to 10. It is also possible to enhance the 
parallel resistivity 0.51∕𝜏𝑒𝑖 by the same factor in the dissipative radial 
buffers; this enhancement is applied only in the ion and electron mo-
mentum equations (10) and (11), and not in the resistive heating term 
in the pressure equation (12) in order to avoid spurious heating in the 
buffers.

3.2.4. Time solver
As is standard for BOUT++ codes, STORM uses the method of lines. 

The spatial discretisation described above is used to implement the 
STORM::rhs() function which evaluates the time derivatives from the 
values of the evolving variables. This function is passed to the ‘time 
solver’ object, for which several implementation options are available 
in BOUT++ [22]. As the parallel thermal conduction of the electrons is 
a diffusive process which is faster than the typical turbulent dynamics, 
it would imply a very restrictive CFL condition for an explicit time step-
ping algorithm [19,20]. STORM therefore uses the CVODE library from 
the SUNDIALS suite, which uses a fully implicit, matrix free, variable-
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order, variable-step multistep method, employing a Newton-Krylov iter-
ative solver, to advance the solution in time [74]. Even without precon-
ditioning, which has not yet been implemented in STORM,4 the adaptive 
step size algorithm in CVODE provides a solution that is robust as the 
state of the system changes, for example during initial transients, which 
are often violent, before a settled turbulent state develops. The primary 
important settings are the relative and absolute tolerances that control 
the accuracy of the time advance.

As CVODE increases the internal time step, it sometimes happens 
that the time step gets too long, resulting in multiple iteration failures 
causing the time step to be decreased to a very small value before the 
simulation continues. This behaviour tends to happen in cycles and sig-
nificantly increases the iteration count, and therefore the run time. It 
can be prevented by choosing an appropriate maximum timestep for 
the simulation, which should be as long as possible while avoiding the 
cycle just described.

3.3. Initialisation

Turbulence and seeded filament simulations have different require-
ments for initialisation, and are discussed in turn below.

In turbulence simulations, it is the long term, statistical steady state 
that is of interest, which should not be sensitive to the particular choice 
of initial conditions, but is instead determined by the sources and bound-
ary conditions. The initial conditions are therefore arbitrary, but are 
chosen with the aim of allowing the steady state to be reached as quickly 
as possible. The best option is usually to restart from an existing turbu-
lent state, even if it comes from a simulation with somewhat different 
parameters. When this is not possible, some analytical functions that 
satisfy the boundary conditions are used, with random noise added to 
seed turbulence. The initial values are defined in open field line regions 
as

𝑛 
𝑛0

= 0.35 + 1.2𝑦̂ (1 − 𝑦̂) (45)

𝑇𝑒

𝑇0
= 0.5 + 0.23𝑦̂ (1 − 𝑦̂) (46)

𝑉𝑖‖
𝑐𝑠0

= 5𝑦̂
(
𝑦̂2 − 1

)
+

√
𝑇𝑒

𝑇0
(2𝑦̂− 1) , (47)

in terms of a normalised coordinate 𝑦̂ which varies proportional to 𝑦. 
In all open field line regions 𝑦̂ goes from 0 at the lower-𝑦 target to 1 
at the upper-𝑦 target. In SOL regions 𝑦̂ simply varies linearly with 𝑦. 
In PFR regions 𝑦̂ has two linear segments, defined so that 𝑦̂ = 0.5 at 
the 𝑦-position of the X-point. Similarly in the region between the two 
separatrices of a disconnected double null configuration 𝑦̂ has two linear 
segments and 𝑦̂ = 0.5 is at the 𝑦-position of the secondary X-point. In 
closed field line regions the initial values are set to constant values with 
𝑉𝑖‖ = 0, while 𝑛 and 𝑇𝑒 are set to their maximum values in the open field 
line regions (45) and (46). In all regions, it is assumed that there is no 
current, so 𝑉𝑒‖ = 𝑉𝑖‖ in the initial state and the electrostatic potential is 
set to

𝜙 =
𝑇𝑒

𝑒 
log

√
𝑚𝑖

2𝜋𝑚𝑒
(48)

so that when evaluated at the sheath entrances, the boundary conditions 
there, (23) and (24), give zero parallel current. These initial profiles 
have no radial 𝑥-dependence, to minimise the radial gradients during 
the initial transient as turbulence starts to develop and to minimise the 
development of very low density far outside the separatrix in the phase 
before turbulence has developed enough to provide radial transport into 

4 Preconditioning the time advance has, however, been a topic of active re-
search in the BOUT++ community [13,22,75].

this region. An example of these initial profiles for a disconnected double 
null equilibrium can be seen in figure 2 of [6].

Seeded filament simulations use a steady, time independent back-
ground plasma sustained by sources, see section 3.4. It is usual [33,35, 
64,76] to assume that the background plasma is constant in the radial 
and binormal directions, and varies only in the parallel direction. We 
therefore set up the initial background plasma by running a simulation 
in a reduced, one dimensional mode where perpendicular gradients are 
set to zero. In addition the parallel current is taken to vanish, so 𝑉𝑒‖ is 
set equal to 𝑉𝑖‖ and electron inertia is neglected, with Ohm’s law (11) 
being used first to replace ∇‖𝜙 in the ion velocity equation (10) and sec-
ond to calculate 𝜙 by directly integrating from the boundary value that 
gives zero current at the sheath entrance from (23) and (24). In this one 
dimensional mode, 𝜙 is only calculated at time points when output is 
saved, because it is not directly needed to advance the simulation. The 
one dimensional simulation is run until a steady state is reached, and 
the final state is saved and used to initialise the background plasma for 
a three dimensional filament simulation. One or more filaments can be 
added on top of this background plasma. Their perpendicular cross sec-
tions are elliptical, described by Gaussian functions parameterised by a 
width 𝛿𝑓 , elongation 𝜖𝑓 and inclination 𝛼𝑓 and centred on a specified 
radial position 𝑥𝑓 and binormal position 𝑧𝑓 . In the parallel direction, 
the filament has a finite length 𝐿𝑓 , truncated by a hyperbolic tangent 
function with whose width is 𝛿𝑓‖. Combining these with an amplitude 
𝐴, the density and temperature of each filament are given by a function 
of the form

𝐴 exp

⎛⎜⎜⎝
−

[(
𝑥− 𝑥𝑓

)
cos𝛼𝑓 +

(
𝑧− 𝑧𝑓

)
sin𝛼𝑓

]2
𝛿2
𝑓

−

[
−

(
𝑥− 𝑥0

)
sin𝛼𝑓 +

(
𝑧− 𝑧0

)
cos𝛼𝑓

]2
(
𝜖𝑓 𝛿𝑓

)2
⎞⎟⎟⎠

×
1

2

(
1 − tanh

(
𝑦−

(
𝐿𝑦 +𝐿𝑓

)
∕2

𝛿𝑓‖∕2 

))

×
1

2

(
1 − tanh

((
𝐿𝑦 +𝐿𝑓

)
∕2 − 𝑦

𝛿𝑓‖∕2 

))
, (49)

where 𝐿𝑦 is the length of the simulation domain in the parallel 𝑦-
direction and in the curved slab geometry, 𝑥, 𝑦, and 𝑧 are orthog-
onal coordinates whose values are lengths in metres and 0 ≤ 𝑦 ≤
𝐿𝑦. In simulations using a reflection symmetric lower-𝑦 boundary, 
the 𝑦-dependent part on the final two lines of (49) is replaced by (
1 − tanh

((
𝑦−𝐿𝑓

)
∕𝛿𝑓‖

))
∕2.

3.4. Source terms

The particle and energy sources 𝑆𝑛 and 𝑆𝐸 can be defined by ar-
bitrary analytic functions of the coordinates, using expressions set in 
the input file. These expressions can become complicated when it is 
necessary to distinguish between different topological regions, e.g. core 
and PFR. For convenience more restricted functions are provided for the 
source terms usually used for turbulent simulations. There are sources 
to provide poloidally and toroidally uniform fuelling and heating in the 
core and the ‘upstream’ SOL (the part of the SOL adjacent to the core)

𝑆𝑛,core = 𝑆𝑛,core 0 exp

(
−

(
𝑥− 𝑥𝑛,core

)2
𝑤2
𝑛,core

)
(50)

𝑆𝐸,core = 𝑆𝐸,core 0 exp

(
−

(
𝑥− 𝑥𝐸,core

)2
𝑤2
𝐸,core

)
, (51)

controlled by amplitudes 𝑆𝑛,core 0 and 𝑆𝐸,core 0, peak positions 𝑥𝑛,core and 
𝑥𝐸,core, and widths 𝑤𝑛,core and 𝑤𝐸,core that are set independently for the 
particle and energy sources. The energy source is usually positioned well 
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inside the closed field line region, representing the outflow of heat from 
the core. The particle source is often positioned near the primary sep-
aratrix, roughly representing the ionisation source in attached divertor 
conditions where the low plasma density allows neutrals recycled from 
the target to travel upstream to the edge of the closed field line region. 
The amplitudes of both source terms are usually tuned to achieve the 
desired, time averaged density and temperature on the separatrix at the 
outboard midplane. There are also particle sources localised near the 
divertor targets

𝑆𝑛,target =

{
𝑆𝑛,target 0 exp (−10𝑦̃) 0 ≤ 𝑦̃ < 0.5

0 otherwise
(52)

where 𝑦̃ is a normalised coordinate proportional to 𝑦 defined so that 
𝑦̃ = 0 at the targets and 𝑦̃ = 0.5 at the 𝑦-position of the X-point near-
est to the target. The divertor localised sources can be useful during the 
initial transient phase of turbulence simulations, to prevent numerical 
instabilities due to very low density near the targets while radial trans-
port from the core is still at a low level. It can also be used as a very 
crude model of recycling in the divertors. To avoid very low tempera-
tures in the initial transient phase, it is also possible to add a constant 
background energy source 𝑆𝐸,bg = 𝑛0𝑇0Ω𝑖0. Note that sources added for 
numerical stability in the initial transient phase are removed before tak-
ing results in the saturated turbulent state.

Filament simulations use source terms to maintain a steady back-
ground plasma. The source terms are implemented using expressions in 
the input file so could be arbitrary, but studies with STORM have by con-
vention used sources that are constant in the perpendicular directions 
to ensure that the background plasma has a stable, time independent 
steady state and vary exponentially in the parallel direction. The parti-
cle source is peaked near the targets, roughly representing recycling

𝑆𝑛 = 𝑆𝑛0

[
exp

(
−
𝑦 

Δ𝑛,𝑦

)
+ exp

(
−

(
𝐿𝑦 − 𝑦

)
Δ𝑛,𝑦

)]
, (53)

and the energy source is peaked at the midplane, representing power 
exhausted from the core plasma

𝑆𝐸 = 𝑆𝐸0 exp

⎛⎜⎜⎝
−

|||𝑦−𝐿𝑦∕2
|||

Δ𝐸,𝑦

⎞⎟⎟⎠
. (54)

The amplitudes 𝑆𝑛0 and 𝑆𝐸0 are tuned to give the desired density and 
temperature at the midplane and the decay lengths are set by Δ𝑛,𝑦 and 
Δ𝐸,𝑦. When a reflection symmetric lower-𝑦 boundary is used, the sources 
are instead 𝑆𝑛 = 𝑆𝑛0 exp

(
−

(
𝐿𝑦 − 𝑦

)
∕Δ𝑦

)
and 𝑆𝐸 = 𝑆𝐸0 exp

(
−𝑦∕Δ𝐸,𝑦

)
.

3.5. Synthetic Langmuir probe diagnostics

A simple synthetic Langmuir probe signal can be generated by calcu-
lating the ion saturation current that a Langmuir probe, introduced into 
the plasma on a reciprocating probe, would measure, taking the plasma 
density and temperature as inputs [65]

𝑗sat =
1

2
𝑒𝑛𝑐𝑠 =

1

2
𝑒𝑛

√
𝑇𝑒

𝑚𝑖 +𝑚𝑒
, (55)

where the factor of a half as compared to the Bohm sheath boundary 
condition (23) accounts for the density drop that would develop in the 
presheath between the unperturbed, ‘upstream’ plasma and the surface 
of a probe. Langmuir probes can take measurements at a high frequency 
∼ 1 MHz, and saving full outputs from the simulation at this rate would 
require a prohibitive amount of disk space. Therefore a generic inter-
face was written [77] that allows some variables to be written out from 
selected grid points with a higher frequency than the full outputs. An 
arbitrary number of spatial locations where high frequency output will 
be written out can be selected in the input file.

4. Summary

Turbulence is critical to radial transport in the scrape-off layer of 
tokamak reactors, and is observed experimentally to produce large am-
plitude, coherent filaments that may propagate across the full width 
of the scrape-off layer. STORM has been developed to simulate scrape-
off layer plasma turbulence, using a drift reduced, cold ion, collisional 
fluid model. STORM uses a flux surface aligned grid with field aligned 
parallel derivatives to deal efficiently with the strong anisotropy of a 
magnetised plasma, and evolves fluxes on a grid staggered in the par-
allel direction to avoid grid scale instabilities. The code is implemented 
using the BOUT++ framework, whose handling of staggered grids has 
been upgraded to support STORM’s needs, including a new implemen-
tation for field aligned parallel derivatives.
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Appendix A. Syntax for thread based parallelism

The usual BOUT++ syntax uses C++ operator overloading to allow 
code that is compact and as close to the mathematical expression of the 
differential equations as possible. This is the style used in the example 
code listings in this paper, in the majority of the BOUT++ documen-
tation [53], and in STORM. In this style, each C++ operator becomes 
an individual loop over the grid, with a single computation (for exam-
ple addition of two array entries) inside the loop. The result is a large 
number of loops, each of which does a small amount of work. For thread-
based parallelism, and also for the best vectorisation of the loops, this 
is not the optimal structure. There is an overhead cost to starting and 
stopping threads at the beginning and end of each loop, so to minimise 
the overhead the ideal structure would be a few loops each of which 
does a large amount of work. BOUT++ does support this style by pro-
viding a set of operators that act on a single grid point, so that an outer 
loop or loops can be written in the PhysicsModel::rhs() method. 
However, the ‘outer loop’ style is more cumbersome and requires more 
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care with the order of operations. For example, any operations that re-
quire Fourier transforms must be done outside the outer loops, because 
the Fourier transform couples the whole grid toroidally. There is there-
fore a trade off between maintainability, which is somewhat better for 
the operator-overloading style, and computational efficiency which is 
somewhat better for the outer loop style.

Appendix B. Normalised model equations

The normalisations defined in section 3.1.5 are

𝑛̂ = 𝑛∕𝑛0 𝑇̂𝑒 = 𝑇𝑒∕𝑇0 𝐵̂ =𝐵∕𝐵0

𝑚̂𝑒 =𝑚𝑒∕𝑚𝑖 ∇̂ = 𝜌𝑠0∇ 𝜕∕𝜕𝑡 =Ω−1
𝑖0
𝜕∕𝜕𝑡

𝜙̂ = 𝑒𝜙∕𝑇0 𝐴̂‖ = 2𝑒𝐴‖∕𝛽0𝑚𝑖𝑐𝑠0 𝜛̂ =𝜛∕𝑒𝑛0
𝑆̂𝑛 = 𝑆𝑛∕𝑛0Ω𝑖0 𝑆̂𝐸 = 𝑆𝐸∕𝑛0𝑇0Ω𝑖0

(B.1)

using the reference density 𝑛0, temperature 𝑇0, magnetic field 𝐵0 and 
derived parameters 𝜌𝑠0 = 𝑐𝑠0∕Ω𝑖0, 𝑐𝑠0 =

√
𝑇0∕𝑚𝑖, Ω𝑖0 = 𝑒𝐵0∕𝑚𝑖, and 

𝛽0 = 2𝜇0𝑛0𝑇0∕𝐵
2
0
. Using these normalisations and applying the chain 

rule several times, the model equations (9)-(13) can be put into the form 
implemented in the code,

𝜕 log 𝑛̂

𝜕𝑡
= −

{
𝜙̂, log 𝑛̂

}
− 𝐵̂∇̂‖

(
𝑉𝑒‖
𝐵̂

)
− 𝑉𝑒‖∇̂‖ log 𝑛̂

− ̂(𝜙̂) + ̂(𝑝̂𝑒)
𝑛̂

+ 𝜇̂𝑛
∇̂2
⟂
𝑛̂

𝑛̂
+ ∇̂

⟂

(
𝜇̂𝑛

)
⋅ ∇̂

⟂
log 𝑛̂

+
𝑆̂𝑛

𝑛̂

(normalised electron continuity) (B.2)

𝜕𝜒̂𝑖

𝜕𝑡
= −

{
𝜙̂, 𝑉𝑖‖

}
− 𝑉𝑖‖∇̂‖𝑉𝑖‖ − ∇̂‖𝜙̂

− 𝑚̂𝑒𝜈̂‖0
𝑛̂

𝑇̂ 3∕2

(
𝑉𝑖‖ − 𝑉𝑒‖

)
+ 0.71∇̂‖𝑇̂𝑒

+ 𝐷̂𝑉𝑖‖ ∇̂
2
⟂
𝑉𝑖‖ −

𝑉𝑖‖𝑆̂𝑛
𝑛̂

(normalised ion velocity) (B.3)

𝜕𝜒̂𝑒

𝜕𝑡
= −

{
𝜙̂, 𝑉𝑒‖

}
− 𝑉𝑒‖∇̂‖𝑉𝑒‖ +

1 
𝑚̂𝑒

∇̂‖𝜙̂

+ 𝜈̂‖0
𝑛̂

𝑇̂
3∕2
𝑒

(
𝑉𝑖‖ − 𝑉𝑒‖

)
−

1 
𝑚̂𝑒
𝑇̂𝑒∇̂‖ log 𝑛̂

−
1.71

𝑚̂𝑒
∇̂‖𝑇̂𝑒 + 𝐷̂𝑉𝑒‖ ∇̂

2
⟂
𝑉𝑒‖ −

𝑉𝑒‖𝑆̂𝑛
𝑛̂

(normalised electron velocity) (B.4)

𝜕 log 𝑝̂𝑒

𝜕𝑡
= −

{
𝜙̂, log 𝑝̂𝑒

}
− 𝑉𝑒‖∇̂‖ log 𝑝̂𝑒 −

2 
3𝑝̂𝑒

𝐵̂∇̂‖
(
𝑞‖
𝐵̂

)

−
2

3
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(normalised electron pressure) (B.5)

𝜕𝜛̂

𝜕𝑡
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{
𝜙̂, 𝜛̂

}
− 𝑉𝑖‖∇̂‖𝜛̂
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𝜛̂ + ∇̂

⟂

(
𝜇̂𝜛

)
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⟂
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(normalised vorticity) (B.6)

The bracket operator is 
{
𝑓, ℎ̂

}
= 𝐵̂−1𝒃 ⋅ ∇̂𝑓 × ∇̂ℎ̂. The normalised elec-

tron pressure is 𝑝̂𝑒 = 𝑛̂𝑇̂𝑒. The composite variables 𝜒̂𝑖 = 𝑉𝑖‖ +
𝛽0

2 𝐴̂‖ and 
𝜒̂𝑒 = 𝑉𝑒‖ −

𝛽0

2𝑚̂𝑒
𝐴̂‖ are used in the momentum equations and in electro-

magnetic mode Ampère’s law is used in the form

𝑛̂
(
𝑉𝑖‖ − 𝑉𝑒‖

)
= −∇̂2

⟂
𝐴̂‖. (B.7)

The normalised, generalised vorticity is

𝜛̂ = ∇̂ ⋅

(
1 

𝐵̂2
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⟂
𝜙̂
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1 
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⟂

(
1 
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𝜙̂ (B.8)

and the conductive parallel heat flux is

𝑞‖ = −𝜅̂0𝑇̂
5∕2
𝑒 ∇̂‖𝑇̂𝑒 − 0.71𝑛̂𝑇̂𝑒

(
𝑉𝑖‖ − 𝑉𝑒‖

)
. (B.9)

The default values of the constant prefactors in the parallel dissipation 
coefficients are

𝜈̂‖0 = 0.51
1 

𝜏𝑒𝑖0Ω𝑖0
(B.10)

𝜅̂0 = 3.16
𝑇0𝜏𝑒𝑖0

𝑚𝑒𝜌
2
𝑠0
Ω𝑖0

, (B.11)

where a collision time evaluated at the reference parameters is 𝜏𝑎𝑏0 =
12𝜋3∕2𝜖2

0
𝑚
1∕2
𝑎 𝑇

3∕2

0
∕21∕2𝑛0𝑒

4 lnΛ. The default perpendicular dissipation 
coefficients are
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2
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𝜇̂𝜛 =
(
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) 3

4
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𝜏𝑖𝑖0Ω𝑖0

𝑛̂

𝐵̂2

√
𝑇̂𝑒

, (B.14)

but these coefficients are often set to constant values purely to give nu-
merical dissipation that prevents fluctuations reaching the grid scale, 
see section 3.1.3. 𝐷̂𝑉𝑖‖ and 𝐷̂𝑉𝑒‖ are only introduced for numerical rea-
sons, and are given constant numerical values.

B.1. ‘Boussinesq approximation’ variations

If the original STORM Boussinesq approximation is selected, the nor-
malised form of the modified, generalised vorticity (19) is

𝜛̂mod = ∇̂ ⋅

(
1 
𝐵̂2

∇̂
⟂
𝜙̂

)
=
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⟂
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⟂

(
1 
𝐵̂2

)
⋅ ∇̂

⟂
𝜙̂ (B.15)

and the corresponding vorticity equation (20) becomes

𝜕𝜛̂mod

𝜕𝑡
= −

{
𝜙̂, 𝜛̂mod

}
− 𝑉𝑖‖∇̂‖𝜛̂mod

+ 𝐵̂∇̂‖
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𝑉𝑖‖ − 𝑉𝑒‖

𝐵̂

)
+
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+
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2
⟂
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⟂

(
𝜇̂𝜛

)
⋅ ∇̂

⟂
𝜛̂mod. (B.16)

Without any Boussinesq approximation, the normalised form of the 
generalised vorticity (21) is
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Fig. D.7. Strong scaling performance of STORM on the ARCHER2 cluster, for a 
simulation run with 256 × 96 × 64 grid points.

𝜛̂full = ∇̂ ⋅
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𝜙̂ (B.17)

and the vorticity equation (22) becomes

𝜕𝜛̂full

𝜕𝑡
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}
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|||||
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Appendix C. Curvature for slab geometry

For simulations in curved slab geometry, STORM uses the curvature 
as calculated for a purely toroidal magnetic field, like that produced 
by an infinite straight wire. A cylindrical coordinate system is given by 
defining the major radius 𝑅 as the distance away from the wire, 𝑍 as the 
distance along the wire, and choosing the direction of the magnetic field 
so that {𝑥, 𝑦, 𝑧} is a right handed coordinate system with unit vectors 
along the coordinate axes given by 𝒙̂ =∇𝑅, 𝒚̂ = 𝒛̂ × 𝒙̂ = 𝒃̂ and 𝒛̂ =∇𝑍 . 
The magnetic field strength is proportional to 𝑅−1, so 𝑩 can be written 
as 𝑩 =𝐵𝒚̂ with 𝐵 =𝐵0𝑅c∕𝑅 where 𝑅c is the radius of curvature at the 
points where 𝐵 = 𝐵0. Noting that there is no current outside the wire, 
∇×𝑩 = 0 for 𝑅> 0. Therefore the curvature (15) for this magnetic field 
is

∇×
(
𝒃

𝐵

)
=∇×

(
𝑩

𝐵2

)

= −𝑩 ×∇
(

1 
𝐵2

)

= −𝐵𝒚̂ ×
2𝑅 
𝐵2
0
𝑅2
c

𝒙̂

≈
2 

𝐵0𝑅c

𝒛̂, (C.1)

where on the last line we evaluate the expression at 𝑅 = 𝑅c under the 
assumption that the width of the simulation box is much smaller than 
𝑅c.

Appendix D. Strong scaling performance

An example strong scaling study of the performance of STORM has 
been conducted on the ARCHER2 HPC cluster [78] (see Fig. D.7). Each 
node on ARCHER2 has two AMD EPYC 7742 64-core 2.25 GHz proces-
sors and 256 GB of RAM, and nodes are connected by a HPE Slingshot in-
terconnect. The test used a simulation of MAST on a grid with 256 points 
in the radial 𝑥-direction, 96 in the parallel 𝑦-direction and 64 in the 

toroidal 𝑧-direction. The plot shows the mean time per STORM::rhs()
evaluation over a short test simulation, restarted from a saturated tur-
bulent state. Simulating 1 ms of plasma turbulence takes of the order of 
108 STORM::rhs() evaluations, corresponding to around two weeks 
on 768 cores, although this will vary depending on the grid, plasma 
conditions, etc.

Appendix E. Post processing

Post processing tools for BOUT++ are provided by the xBOUT Python 
package [79], which provides a function to load BOUT++ output into 
an xarray [80,81] Dataset object, with extra BOUT++ specific func-
tionality provided by the BoutDataset accessor.

We have written an extension of xBOUT called xSTORM to pro-
vide further functionality specific to STORM, which is included with 
the STORM code. STORM output can be converted to SI units from the 
internal, dimensionless representation. Particle fluxes can be calculated 
consistent with the terms as implemented in STORM. Values of vari-
ables at the position of the sheath entrance can be re-calculated with 
the same algorithm as STORM uses. Various convenience methods are 
included for statistical analysis of turbulence and for frequently used 
operations in analysing seeded filament simulations, such as calculating 
the position and velocity of the filament centre of mass.

xBOUT and xSTORM provide high-level functions for data analysis 
and visualisation. xarray supports a method chaining syntax which al-
lows operations on a data set, or a variable, to be combined in a single 
line while maintaining an easy to read left-to-right order of method ap-
plication. Taken together, these two features support a workflow where 
outputs can be generated with just a few lines of code in a Python script, 
interactive session or Jupyter notebook, which has proven to be benefi-
cial for productivity, interactivity and code reuse.

Appendix F. Provenance tracking

Provenance tracking and reproducibility of simulations is important 
for the reliability of the research process. For example, if a published 
result is contradicted by a new study it is important to be able to find 
the reason for the difference: Is it some new physics? Better resolution 
achieved on newer, more powerful computers? A bug in the old code, 
or in the new code? While these questions may be difficult to answer in 
general, they become almost impossible if it is not known what software 
was used to produce the result.

Version control provides a first step. Both BOUT++ and STORM 
are version controlled using git and both save the hash which identi-
fies the commit used to build the executable into the output files for 
each simulation. STORM in addition saves the difference in the STORM 
repo between the compiled code and the last commit (the output of 
git diff).

The versions of compilers and external libraries used to build the 
code may also be important. To try to capture this information, STORM 
saves the contents of the CMakeCache.txt file produced by CMake. 
The module system is commonly used to manage libraries on HPC clus-
ters; when it is present STORM also saves the active modules when it 
was compiled (the output of module list). Complete configuration 
for the HPC systems usually used by our group is stored in version con-
trolled bash scripts; the git hash and git diff for the repos containing 
these configuration scripts are recorded.

The inputs used for a simulation are also critical. It is good practice 
to archive the input file along with the output. However, SOL turbu-
lence simulations take many days, or even several weeks, to run and so 
the output is produced over many restarts of the code. Output is usu-
ally stored in separate files for each restart in order to avoid excessively 
large files which can cause problems for storage systems and increase 
the risk of data corruption. In order to verify that a set of files belongs 
to a consecutive sequence of restarts, BOUT++ assigns a standard uni-
versally unique identifier (UUID) [82] to each run. When restarting, it 
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also records the UUID of the run that produced the snapshot used to 
restart from. STORM records in addition the contents of the input file 
used for the run and also the input files used for all the previous restarts 
into the output binary (NetCDF) files. This feature provides a fallback in 
case output files from some of the restarts leading up to a certain run are 
misplaced. It is also a useful record as, especially in the early stages of 
a simulation where there is usually a violent initial transient, it is some-
times necessary to change the settings, e.g. for numerical dissipation, 
between restarts. The grid file that represents the magnetic equilibrium 
is the other important input. The grid generator [58] assigns a UUID to 
each grid file produced, and the UUID from the grid file is recorded by 
BOUT++ in simulation output.

The provenance tracking information described above is all written 
into the same binary (NetCDF) files as the simulation output, minimis-
ing the likelihood that it will be separated from the output. The features 
have been introduced incrementally and not all are present in older ver-
sions of STORM. The information is not perfect, for example if options 
are passed on the command line they are recorded only in log files, 
not binary output, or on unsupported systems configuration information 
such as library dependencies might well not be recorded. Nevertheless, 
for our usual workflows this information provides a high degree of re-
producibility.

Appendix G. Supplementary material

Supplementary material related to this article can be found online at 
https://doi.org/10.1016/j.cpc.2025.109893. 

Data availability

No data was used for the research described in the article.
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