
This is a repository copy of A General Theoretical Framework for Learning Smallest
Interpretable Models.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/232937/

Version: Accepted Version

Article:

Ordyniak, S. orcid.org/0000-0003-1935-651X, Paesani, G., Rychlicki, M. et al. (1 more
author) (Accepted: 2025) A General Theoretical Framework for Learning Smallest
Interpretable Models. Artificial Intelligence. ISSN: 0004-3702 (In Press)

This is an author produced version of an article accepted for publication in Artificial
Intelligence, made available under the terms of the Creative Commons Attribution License
(CC-BY), which permits unrestricted use, distribution and reproduction in any medium,
provided the original work is properly cited.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/id/eprint/232937/
https://eprints.whiterose.ac.uk/

A General Theoretical Framework for

Learning Smallest Interpretable Models

Sebastian Ordyniaka, Giacomo Paesanib, Mateusz Rychlickia, Stefan Szeiderc

aUniversity of Leeds, 183 Woodhouse Lane, Leeds, LS2 9HD, UK
bSapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy

cAlgorithms and Complexity Group, TU Wien, Favoritenstrasse 9±11, Wien, 1040, Austria

Abstract

We develop a general algorithmic framework that allows us to obtain fixed-parameter tractability

for computing smallest symbolic models that represent given data. Our framework applies to all

ML model types that admit a certain extension property. By establishing this extension property

for decision trees, decision sets, decision lists, and binary decision diagrams, we obtain that

minimizing these fundamental model types is fixed-parameter tractable. Our framework even

applies to ensembles, which combine individual models by majority decision.

1. Introduction

The modern highly successful subsymbolic Machine Learning models like neural networks

can exhibit lack of robustness, display bias, and their operation is invariably inscrutable for hu-

man decision makers [11]. Hence, symbolic models such as decision trees, decision lists and sets,

and binary decision diagrams have recently received new attention as they are easier to analyze

and control and more interpretable [24, 21]. However, also symbolic models become increas-

ingly opaque if their size increases. Hence one is interested in finding a model of smallest size

that still classifies all examples correctly. This task is typically NP-hard (see [14] for the case

of DTs and our hardness results in Section 9 for the remaining models); thus, practitioners have

utilized powerful tools like SAT, MIP, and CP solvers to compute small or even smallest models

that fit the data [15, 22, 25, 26]. Also, from a theoretical perspective, the parameterized com-

plexity of finding smallest decision trees or ensembles of decision trees has become the subject

of intensive research [23, 7, 17, 18] which revealed that the problem is fixed-parameter tractable

when parameterized by the solution size plus a bound δ on the number of features any two ex-

amples differ1. Such studies are still pending for other symbolic ML model types like decision

lists, decision sets, binary decision diagrams, and ensembles.

In this paper, we significantly extend this line of research to all the mentioned symbolic model

types. However, instead of developing specialized algorithms for all the model types, we develop

a general algorithmic framework that applies to all of them and any further model type that admits

one of two natural extension properties: strong extendability and (weak) extendability. Therefore,

to show that a particular type of model admits the efficient2 computation of a smallest model,

1Empirical investigations show that δ is reasonably small for real-world data sets [23].
2Throughout the paper, our notion of efficiency includes fixed-parameter tractable algorithms.

Preprint submitted to Artificial Intelligence October 13, 2025

strongly extendable? # branches

single ensemble

DS ✓ δ 2 + sδ

DL ✓ δ + s + 1 1 + s(1 + δ)

DT ✓ δ(s + 1) 2 + 2sδ

BDD - δ3O(s) δ3O(s)

Table 1: The number of branches required by our framework for DSs, DLs, DTs, and BDDs, both for learning simple

models and for learning ensemble models. All model types except BDDs are strongly extendable and allow for polynomial

number of branches. The run-time of our algorithm to learn a small model (ignoring polynomial factors) only depends

on the number of branches b and is given by O∗(b2).

one only needs to show that the model type admits one of the two extension properties. This way,

we generalize the fixed-parameter tractability results from decision trees (DTs) to decision sets

(DSs), decision lists (DLs), binary decision diagrams (BDDs), and even ensembles of all these

model types.

Our framework uses a bounded-depth branching algorithm that, starting from the empty

model, exhaustively branches into all ªimportantº extensions, i.e., all extensions that could po-

tentially be part of an optimal model, of the current model until either a small model is found

or the framework correctly returns that no model of the required size (in the following denoted

by s) exists. The main challenge behind the algorithm is to restrict the number of important ex-

tensions of the current model that need to be considered at every step. In particular, it is crucial

to bound the number of additional features whose addition to the model is required for an ex-

haustive enumeration of all minimum models. We employ two main approaches which lead to

strong and (weak) extendability, respectively. For DSs, DLs, and DTs, we can employ an adapted

version of the annotation approach that has recently been developed for DTs [18]. Here, parts of

the model are annotated with examples that allow us to guide the selection of important features.

While the approach is similar to the approach of Komusiewicz et al. [18], we show that it can also

be applied to DSs and DLs (as well as ensembles thereof), and we also manage to simplify the

approach significantly for the case of DTs. Indeed, we can simplify the annotation by showing

that it suffices to annotate only with already correctly classified examples. We also simplify their

correctness proof by defining extension in a declarative manner instead of explicitly in terms of

operations (that are required to obtain the extension). This allows us not to have to ensure that

the operations are invariant under reordering, which led to an unnecessarily technical proof used

in previous work [18]. Surprisingly, the annotation approach does not seem to apply to BDDs. In

this case, we are, however, able to adapt the ideas (most notably the notion of ªusefulº sets of fea-

tures) behind the first algorithm for DTs given by Ordyniak and Szeider [23] to show that BDDs,

as well as their ensembles, can be learned efficiently. Our algorithmic results are summarized in

Table 1. There we state the number of branches that our framework requires to extend the current

model for each of the considered model types, since this is the main parameter that influences the

run-time of our framework for learning a smallest model of size at most s, which is then given by

O∗(bs) (O∗ suppresses polynomial factors). Interestingly, the number of branches dramatically

differs between the different model types and their ensembles, particularly between the strongly

extendable models using the first approach and the (weakly) extendable models using the second

approach.

2

We complement our algorithmic results with hardness results. First, we show that similar to

decision trees, also for the other model types, the parameter δ is indispensable; when parame-

terized by solution size alone, we obtain W[2]-hardness. Second, we show that for decision sets

and decision lists, we cannot replace the parameter solution size with either the total number of

terms or the maximum size of a term by showing that, in this case, the problems remain NP-hard

even for δ = 2.

2. Related Work

Recent years have seen significant advances in exact methods for learning optimal inter-

pretable models. This section reviews the key developments for different model types.

Decision Trees. Ordyniak and Szeider [23] initiated the line of research investigating the pa-

rameterized complexity of learning optimal models, showing that finding smallest decision trees

is fixed-parameter tractable when parameterized by the solution size and a data diversity mea-

sure; this was later generalized from Boolean features to features having an arbitrary large do-

main [7]. Following this foundational work, Komusiewicz et al. [18] extended these methods to

tree ensembles, while Kobourov et al. [17] explored the influence of dimensions on computa-

tional complexity. Moreover, Dabrowski et al. [4] showed that finding smallest decision trees is

also fixed-parameter tractable parameterized by the rank-width of the input data. Recently, Har-

mender and Meirav [9] investigated the parameterized complexity of finding smallest decision

trees that allow for a given number of falsily classified examples.

For the practical computation of optimal decision trees, Narodytska et al. [22] pioneered

SAT encodings that find the smallest trees consistent with given data. This approach was sub-

sequently improved by Avellaneda [3] through an efficient inference strategy and by Schidler

and Szeider [25] with better scalability for larger datasets. In practise one often wants to find

a decision tree of a given maximum size that minimizes the number of classification errors; in

contrast to finding a smallest decision tree without classification errors. In this case, alternative

approaches exists and include constraint programming methods by Verhaeghe et al. [27], which

use AND/OR search structures, and MILP formulations by Verwer and Zhang [28], which handle

numeric features through a binary encoding of threshold decisions.

Specialized search algorithms have also been developed, including Optimal Sparse Decision

Trees (OSDT) by Hu et al. [13], which uses analytical lower bounds and bitvector-based com-

putations, and its extension GOSDT by Lin et al. [19], which addresses imbalanced data and

continuous features. Dynamic programming approaches include DL8.5 by Aglin et al. [1] and

MurTree by DemiroviÂc et al. [6], which significantly improve efficiency through caching and

specialized solvers for subtrees. Recent work by van der Linden et al. [20] has also incorporated

fairness constraints into optimal decision tree learning.

Decision Lists and Sets. For decision lists, Angelino et al. [2] introduced CORELS, a branch-

and-bound algorithm for learning optimal rule lists using a regularized objective. Yu et al. [29,

30] developed a SAT-based approach with their DLSAT algorithm, which finds minimum-size

decision lists that perfectly classify training data. Ignatiev and Marques-Silva [15] contributed

rigorous explanation methods for decision lists, enhancing their interpretability.

For decision sets, Ignatiev et al. [16] proposed SAT-based methods for learning explainable

decision sets, which Yu et al. [30] later unified with decision lists in a MaxSAT framework. Other

approaches include MaxSAT-based methods by Ghosh and Meel [10] and column generation

techniques by Dash et al. [5], which learn Boolean rule sets through integer programming.

3

Binary Decision Diagrams. Research on optimal BDDs is more recent but showing promis-

ing results. Hu et al. [12] proposed the first complete approach using MaxSAT to learn optimal

BDDs, including techniques to merge compatible subtrees for further compression. Florio et

al. [8] developed a flexible MILP model for Optimal Decision Diagrams that can incorporate

various constraints, while Shati et al. [26] extended SAT-based search to handle non-binary fea-

tures in BDDs.

Comparative Insights. Experimental comparisons have revealed interesting trade-offs between

model types. BDDs often achieve higher accuracy than decision trees of comparable complexity

[12, 8] and show greater stability due to their ability to share substructures. Meanwhile, decision

sets can sometimes provide shorter explanations for individual instances than decision lists [30],

though decision lists offer more structured reasoning.

3. Preliminaries

Classification Instances. A (binary) classification instance (CI) is a triple C = (E, F, µ),

where E is a set of examples over a set of binary features F and µ is a classification function

µ : E → {0, 1}. We commonly say that an example e is a 0-example, or negative example, (1-

example, or positive example) if µ(e) = 0 (µ(e) = 1) and we denote by e(f) the value of the

example e ∈ E on the feature f ∈ F. The size of a C is given by ∥C∥ = |E| · |F|.

We say that two examples e and e′ agree (don’t agree) on a feature f if e(f) = e′(f) (e(f) ,

e′(f)) and denote with δ(e, e′) the set of features on which e and e′ disagree on. For a (partial)

assignment τ : F′ → {0, 1}, where F′ ⊆ F, we denote by E[τ] the set of all examples in E

that agree with τ, i.e., all examples e with e(f) = τ(f) for every feature f ∈ F′. For two partial

assignments τ1 : F1 → {0, 1} and τ2 : F2 → {0, 1}, where F1, F2 ⊆ F and F1 ∩ F2 = ∅, we

denote by τ1 ∪ τ2 the assignment τ : F1 ∪ F2 → {0, 1} defined by setting τ(f) = τ1(f) if f ∈ F1

and τ(f) = τ2(f) if f ∈ F2. Finally, δ(C), or simply δ if C is clear from the context, denotes the

maximum size of δ(e, e′) over all pairs of examples (e, e′), where µ(e) + µ(e′) = 1.

In the following, let C = (E, F, µ) be a CI.

Models and Support Sets. In the following we will define models of different types (such as

decision trees, decision sets, and decision lists); some of these are illustrated in Figure 1. Here,

we will introduce some notation that applies to all models. Let M be a model. We denote by

F(M) the set of all features used by M. Moreover, we will denote by M : E → {0, 1,u} the

classification function defined by M, which classifies every example e ∈ E as either 0, 1, or u

(which means undefined). We say that M classifies e correctly if M(e) = µ(e) and we will say

that M is a model for C if M classifies all examples of C correctly.

A set S ⊆ F of features is a support set of C if it contains at least one feature from δ(e, e′) for

every pair (e, e′) of 0-example e and 1-example e′. The following observation follows immedi-

ately from the fact that a model for a CI needs to at least be able to distinguish every 0-example

from every 1-example.

Observation 1. Let M be a model for a CI C = (E, F, µ). Then, F(M) is a support set for C.

Decision Sets. A term t over C is a set of literals with each literal being of the form (f = z)

where f ∈ F and z ∈ {0, 1}. A rule r is a pair (t, c) where t is a term and c ∈ {0, 1}. We say that

a rule (t, c) is a c-rule. We say that a term t (or rule (t, c)) applies to (or agrees with) an example

4

A B C D out

1 0 1 1 1

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 0 1 0 1

0 0 0 0 1

0 0 1 0 1

0 1 0 0 1

0 1 1 0 1

A

1 D

B 1

C 0

0 1

0 1

0 1

0 1

0 1

if A = 0 then 1

if A = 1 ∧ B = 0 ∧ C = 1 then 1

default 0

if A = 0 then 1

elseif B = 1 then 0

elseif C = 1 then 1

elseif true then 0

A

B

C

01

0

1

0
1

1 0

Figure 1: A classification instance C and four models that classify C: a decision tree, a decision set (top), a decision list

(bottom), and a binary decision diagram (from left to right).

e if e(f) = z for every element (f = z) of t. Note that the empty term (or rule) applies to any

example.

A decision set M is a pair (T, b), where T is a set of terms and b ∈ {0, 1} is the classification

of the default rule rD = (∅, b). We denote by ∥M∥ the size of M which is equal to (
∑

t∈T |t|) + 1;

the +1 is for the default rule. The classification function M : E → {0, 1} of a DS M = (T, b) is

defined by setting M(e) = b for every example e ∈ E such that no term in T applies to e and

otherwise we set M(e) = 1 − b.

Decision Lists. A decision list L is a sequence of rules (r1 = (t1, c1), . . . , rℓ = (tℓ, cℓ)), for some

ℓ ≥ 0. The size of a DL L, denoted by ∥L∥, is equal to
∑ℓ

i=1(|ti| + 1). The classification function

L : E → {0, 1} of a DL L is defined by setting L(e) = b if the first rule in L that applies to e is a

b-rule. For convenience, we set L(e) = u if no rule in L applies to e.

Decision Trees. A decision tree M is a pair (T, λ) such that T is a rooted binary tree with vertex

set V(T) and λ : V(T) → F ∪ {0, 1} is a function that assigns a feature in F to every inner node

of T and either 0 or 1 to every leaf node of T . Every inner node of T has exactly 2 children, one

left child (or 0-child) and one right-child (or 1-child). The classification function M : E → {0, 1}

of a DT M = (T, λ) is defined as follows for an example e ∈ E. Starting at the root of T one does

the following at every inner node t of T . If e(λ(t)) = 0 one continues with the 0-child of t and

if e(λ(t)) = 1 one continues with the 1-child of t until one eventually ends up at a leaf node l at

which e is classified as λ(l).

For every node t of T , we denote by EM(t) the set of examples that reach t from the root

of T . EM(t) can be defined recursively as follows: Set EM(r) = E for the root r of T and if t

is an x-child of some (inner) node p, then we set EM(t) = EM(p) ∩ {e | e(λ(p)) = x} for every

x ∈ {0, 1}. We denote by ∥M∥ (h(M) = h(T)) the size (height) of a DT, which is equal to the

number of leaves of T (the length of a longest root-to-leaf path in T).

Binary Decision Diagrams. A binary decision diagram (BDD) B is a pair (D, ρ) where D is a

directed acyclic graph with three special vertices {s, t0, t1} such that:

• s is a source vertex that can (but does not have to) be equal to t0 or t1,

• t0 and t1 are the only sink vertices of D,

• every non-sink vertex has exactly two outgoing neighbors, which we call the 0-neighbor

and the 1-neighbor and

5

• ρ : V(D) \ {t0, t1} → F is a function that associates to every non-sink node of D a feature

of E

For an example e ∈ E, we denote by PB(e) (or P(e) if B is clear from the context), the unique

path from s to either t0 or t1 followed by e in B. That is starting at s and ending at either t0 or

t1, P(e) is iteratively defined as follows. Initially, we set P(e) = (s), moreover, if P(e) ends in a

vertex v other than t0 or t1, then we extend P(e) by the e(ρ(v))-neighbor of v in D. Let B be a

BDD and e an example of a CI (E, F, µ). The classification function B : E → {0, 1} of B is given

by setting B(e) = b if PB(e) ends in tb. We denote by ∥B∥ the size of B, which is equal to |V(D)|.

Ensembles. An T -ensemble E is a set of models of type T , where T ∈ {DS,DL,DT,BDD}. We

say that E classifies an example e ∈ E as b if so do the majority of models in E, i.e., if there are at

least ⌊|E|/2⌋ + 1 models in E that classify e as b. We denote by ∥E∥ the size of E, which is equal

to
∑

M∈E ∥M∥.

Considered Problems. Let Γ ∈ {DS,DL,DT,BDD}. We consider the following problems.

Γ-MINIMUM MODEL SIZE (Γ-MMS)

INSTANCE: A CI C = (E, F, µ) and an integer s.

QUESTION: Find a model of type Γ and size at most s for C or report correctly

that no such model exists.

Γ-MINIMUM ENSEMBLE MODEL SIZE (Γ-MEMS)

INSTANCE: A CI C = (E, F, µ) and an integer s.

QUESTION: Find an ensemble model of type Γ and size at most s for C or

report correctly that no such model exists.

Note that all our (tractability) results still apply to the corresponding optimisation variants of the

above problems, i.e., our algorithms are able to find a smallest (ensemble) model in fpt-time if

the parameter s is replaced by the size of an optimal model.

4. The Framework

In this section we develop the framework for learning models as well as ensembles of models

for different model-types. In the following sections, we will then show how this framework can

be employed to learn (ensembles) of decision sets, decision lists, decision trees, and any form of

binary decision diagrams. At its core the framework uses a bounded-depth branching algorithm

that starting from an empty model branches over all simple extensions of the current model that

could potentially be part of an optimum model until either an optimum model is found or it is

shown that no optimal model of the required size exists. The framework can therefore be applied

to all types of models, where the number of simple extensions of a model that can potentially lead

to an optimum model is bounded by our parameters s + δ and those extensions can be computed

efficiently3. Designing such a procedure, i.e., an efficient algorithm that given a model computes

a small but complete set of extensions that can be part of an optimum model, for every model

3Note that parameterizing a problem by a set S of parameters is equivalent to parameterizing the problem by the sum

of the parameters in S .

6

type is the main challenge of our approach. In particular, to achieve this one needs to design the

update procedure in such a way that at every step only a small set of novel features need to be

considered that must potentially be added to the current model.

The framework will need to deal with so-called partial models and so-called annotated mod-

els. That is, a partial model can be thought of as an incomplete model that by itself is not yet a

model but can be completed into one and an annotated model can be thought of as a pair (M, A),

where M is a model and A is an annotation of the model with examples that will help guide the

search for possible extensions. While the exact definitions of these notions will depend on the

particular type of model, for the purposes of presenting our framework we merely require them

to satisfy the following natural properties.

(P0) Deciding whether a model M is a model for a CI C = (E, F, µ) and if not providing an

example e ∈ E that is not correctly classified by M can be achieved in time O(|E|∥M∥).

(P1) Any model M is an extension of the empty partial/annotated model, denoted by nil.

(P2) If a partial/annotated model is a strict extension of another partial/annotated model, then

the former is larger than the latter.

To make our framework work for all of our model types, we need to distinguish between two

forms of ªextendabilityº, i.e., strong and (weak) extendability that we will introduce in the next

two subsections.

4.1. Strong Extendability

In this section, we will introduce and develop our framework for strong extendable models,

which as we will see later include DSs, DLs, and DTs. For all these model types, we will later

introduce so-called annotated models, which can be thought of as a pair (M, A), where M is a

model and A is an annotation of the model with examples that will help guide the search for

possible simple extensions. The main advantage of strong extendability versus (weak) extend-

ability is that model types that are strongly extendable automatically allow also for an efficient

algorithm to learn ensembles of that model type.

We are now ready to provide a formal definition of strong extendability. Let (M, A) be an

annotated model such that M is not a model for the CI C = (E, F, µ) and let e ∈ E be an example

not correctly classified by M. A full set of strict extensions for an annotated model (M, A) and

example e is a set E of strict extensions of (M, A) such that every model M′ that correctly classifies

e and is an extension of (M, A) is also an extension of some annotated model in E.

We say that a model-type T is strongly (f (|M|, δ), g(|M|, |C|))-extendable for some com-

putable functions f (|M|, δ) and g(|M|, |C|) if there is an algorithm running in time O(g(|M|, |C|))

that given a CI C, an annotated model (M, A) of type T , and an example e ∈ E that is not correctly

classified by M computes a full set E of strict extensions for (M, A) and e with |E| ≤ f (|M|, δ).

The following theorem now provides an algorithm for Γ-MMS for any strongly extendable

model type Γ.

Theorem 2. Let Γ be a strongly (f (|M|, δ), g(|M|, |C|))-extendable model-type. Then, Γ-MMS

can be solved in time O((f (s, δ))s(g(s, |C|) + |E|s)).

Proof. We solve Γ-MMS by the bounded-depth branching algorithm illustrated in Algorithm 1.

The main part of the algorithm is the function FINDOPTEXTSTR(C, s, (M, A)), which, when

called initially with the empty annotated model (nil) returns the required result. In general, the

7

Algorithm 1: Generic Algorithm for finding a minimum model of size at most s for any strongly

extendable model-type Γ. Note that the only part of the algorithm that depends on the particular

model type Γ is provided by the function FINDSTRICTEXTSSTR(C, (M, A), e), whose existence

is guaranteed because Γ is strongly extendable.

Input: CI C = (E, F, µ) and integer s.

Output: return a minimum model for C of type Γ and size at most s (or nil if no such model exists).

1: function FINDOPTMODELSTR(C, s)

2: return FINDOPTEXTSTR(C, s, nil)

3: function FINDOPTEXTSTR(C, s, (M, A))

4: if M is a model for C then

5: return M

6: if |M| ≥ s then

7: return nil

8: e← any example not correctly classified by M

9: M← FINDSTRICTEXTSSTR(C, (M, A), e)

10: B← nil

11: for (M′, A′) ∈ M do

12: if |M′| ≤ s then

13: A← FINDOPTEXTSTR(C, s, (M′, A′))

14: if A , nil and (B = nil or |B| > |A|) then

15: B← A

16: return B

function FINDOPTEXTSTR(C, s, (M, A)) does the following: given a CI C, an integer s, and an

annotated model (M, A), it outputs a minimum model M′ for C of size at most s that extends

(M, A) if such a model exists; otherwise it will output nil. To achieve this, the function first

checks whether M is already a model for C and if so returns M. Otherwise, it checks whether M

is already too large to be extended, i.e., if |M| ≥ s, and if so returns nil. If this is not the case, the

function takes any example e ∈ E that is not correctly classified by M and calls the model-type

specific function FINDSTRICTEXTSTR(C, (M, A), e) to obtain a full set E of strict extensions for

(M, A) and e. Finally, the function then calls itself recursively for every annotated model (M′, A′)

in E and returns the best model found for any such strict extension.

Towards showing the correctness of the algorithm first note that if the algorithm returns a

model M, then this is indeed a model for C (because of Line 4 of the algorithm) of size at most

s (because of Line 12 of the algorithm).

So suppose that there is indeed a model M′ for C of type Γ and size at most s. We will

show that the algorithm considers every such model and therefore returns one of those models

of minimum size. To achieve this it suffices to show that M′ extends nil and whenever M′

extends the current annotated model (M, A), then it will also extend one of the strict extensions

in E computed in Line 9 of the algorithm. The former clearly holds because of (P1). Towards

showing the latter, let e be the example assigned in Line 8 of the algorithm. Then, M does not

correctly classify e but M′ does (since it is a model for C), and therefore it holds that M′ is an

extension of M that correctly classifies e. Therefore, M′ is an extension of some annotated model

in the full set of strict extensions E for (M, A) and e, as required.

Let us now consider the running-time of the algorithm. Because Γ is strongly

(f (|M|, δ), g(|M|, |C|))-extendable, it holds that the function FINDSTRICTEXTSSTR(C, (M, A), e)

called in Line 9 requires time at most O(g(|M|, |C|)) and returns at most f (|M|, δ) ≤ f (s, δ) strict

8

Algorithm 2: Generic Algorithm for finding a minimum ensemble model of size at most s for any

strongly extendable model-type Γ. Note that the only part of the algorithm that depends on the

particular model type Γ is provided by the function FINDSTRICTEXTSSTR(C, (M, A), e), whose

existence is guaranteed because Γ is strongly extendable.

Input: CI C = (E, F, µ) and integer s.

Output: return a minimum ensemble model for C of type Γ and size at most s (or nil if no such model

exists).

1: function FINDOPTENSMODELSTR(C, s)

2: return FINDOPTENSEXTSTR(C, s, nil)

3: function FINDOPTENSEXTSTR(C, s, E)

4: if E is an ensemble model for C then

5: return E

6: if |E| ≥ s then

7: return nil

8: e← any example not classified correctly by E

9: B← nil

10: for (M, A) ∈ E do

11: if (M, A) does not correctly classify e then

12: M← FINDSTRICTEXTSSTR(C, (M, A), e)

13: for (M′, A′) ∈ M do

14: E′ ← E \ {(M, A)} ∪ {(M′, A′)}

15: if |E′| > s then

16: break

17: A ← FINDOPTENSEXTSTR(C, s, E′)

18: ifA , nil and (B = nil or |B| > |A|) then

19: B ← A

20: M← FINDSTRICTEXTSSTR(C, nil, e)

21: for (M′, A′) ∈ M do

22: E′ ← E ∪ {(M′, A′)}

23: if |E′| ≤ s then

24: A ← FINDOPTENSEXTSTR(C, s, E′)

25: ifA , nil and (B = nil or |B| > |A|) then

26: B ← A

27: return B

extensions. Therefore, the branching factor of the algorithm is at most f (s, δ) and since the size

of the considered partial annotated models increases by at least one (P2) in each recursive call,

we obtain that the recursion depth of the algorithm is at most s. Therefore, the algorithm does at

most (f (s, δ))s recursive calls. Moreover, the time required for each recursive call is dominated

by the call to FINDSTRICTEXTSSTR(C, (M, A), e) in Line 9, which is g(|M|, |C|) ≤ g(s, |C|), the

check whether M is already a model in Line 4, and finding an example e that is not correctly

classified by M in Line 8, which because of (P0) can be achieved in time O(|E|s). Therefore, the

total run-time of the algorithm is at most O((f (s, δ))s(g(s, |C|) + |E|s)).

We show next that strong extendability is even sufficient to efficiently learn ensembles.

Theorem 3. Let Γ be a strongly (f (|M|, δ), g(|M|, |C|))-extendable model-type. Then, Γ-MEMS

can be solved in time O(bss(g(s, δ) + |E|)), where b = f (0, δ) +
∑

(M,A)∈E f (|M|, δ).

9

Proof. We solve Γ-MEMS by the bounded-depth branching algorithm illustrated in Algorithm 2.

The main part of the algorithm is the function FINDOPTENSEXTSTR(C, s, E), which when called

initially with the empty annotated ensemble model (nil) returns the required result. In general,

the function FINDOPTEXTSTR(C, s, E) does the following: Given a CI C, an integer s, and an

annotated ensemble model E, it outputs a minimum ensemble model E′ for C of size at most s

that extends E if such a model exists; otherwise it will output nil. To achieve this, the function

first checks whether E is already a model for C and if so returns E. Otherwise, it checks whether

E is already too large to be extended, i.e., if |E| ≥ s, and if so returns nil. If this is not the case,

the function takes any example e ∈ E that is not correctly classified by E and proceeds as follows.

For every annotated model (M, A) ∈ E that does not correctly classify e the algorithm calls the

(model-type specific) function FINDSTRICTEXTSTR(C, (M, A), e) to obtain a full setM of strict

extensions for (M, A) and e. For every strict extension (M′, A′) ∈ M the algorithm then calls

itself recursively for the the ensemble model E′ that is obtained from E after replacing (M, A)

with (M′, A′). If any of those recursive calls returns a better ensemble model than was already

found it stores the best currently found ensemble model in the variable B. Finally, the algorithm

considers the case of adding a new model to the ensemble E. To do that the algorithm first calls

FINDSTRICTEXTSTR(C, nil, e) to obtain a full setM of strict extensions for the empty model

nil and e. It then class itself recursively for the ensemble model E′ = E ∪ (M′, A′) for every

(M′, A′) ∈ M. If any of those recursive calls returns a better ensemble model than was already

found it stores the best currently found ensemble model in the variable B.

Towards showing the correctness of the algorithm first note that if the algorithm returns an

ensemble model E, then this is indeed an ensemble model for C (because of Line 4 of the algo-

rithm) of size at most s (because of Lines 15 and 23 of the algorithm).

So suppose that there is indeed an ensemble model E0 for C of type Γ and size at most s. We

will show that the algorithm considers every such ensemble model and therefore returns one of

those ensemble models of minimum size. To achieve this it suffices to show that E0 extends nil

and whenever E0 extends the current annotated ensemble E, then it will also extend one of the

annotated ensembles E′ computed in Lines 14 and 22 of the algorithm. The former clearly holds

because of (P1).

Towards showing the latter, let e be the example assigned in Line 8 of the algorithm. Then,

E does not correctly classify e but E0 does (since it is a model for C). Therefore, E0 contains

a model M0 that correctly classifies e such that either M0 extends an annotated model (M, A)

in E that does not correctly classify e or M0 is not an extension of any annotated model in E.

In the former case, M0 is an extension of some strict extension (M′, A′) in the full set of strict

extensions for (M, A) and e, which is considered in Line 13 of the algorithm. Therefore, E0 is

an extension of E′ = E \ {(M, A)} ∪ {(M′, A′)}, which is considered by the algorithm in Line 14,

as required. In the latter case, M0 is an extension of some strict (M′, A′) in the full set of strict

extensions for nil and e, which is considered in Line 21 of the algorithm. Therefore, E0 is an

extension of E′ = E \ {(M, A)} ∪ {(M′, A′)}, which is considered by the algorithm in Line 22, as

required.

Let us now consider the running-time of the algorithm. Because Γ is strongly

(f (|M|, δ), g(|M|, |C|))-extendable, it holds that the function FINDSTRICTEXTSSTR(C, (M, A), e)

requires time at most O(g(|M|, |C|)) and returns at most f (|M|, δ) strict extensions. Since the al-

gorithm calls itself recursively for every strict extension for (M, A) and e for every (M, A) ∈ E (in

Line 12) as well as every strict extension of nil and e (in Line 20), the branching factor of the

algorithm is at most b = f (0, δ) +
∑

(M,A)∈E f (|M|, δ). Moreover, since the size of the considered

annotated ensemble models increases by at least one (P2) in each recursive call, we obtain that

10

the recursion depth of the algorithm is at most s. Therefore, the algorithm does at most bs recur-

sive calls. Moreover, the time for each recursive call is dominated by |E| + 1 calls to the function

FINDSTRICTEXTSSTR(C, (M, A), e) (Lines 12 and 20) plus the time required to check whether

E is already a model for C (Line 4) and for finding an example e that is not correctly classified

by E (Line 8). Since the former can be achieved in time O(sġ(s, δ) and the latter two can be

achieved in time O(|E|s), because of (P0), we obtain O(bss(g(s, δ) + |E|)) as the total run-time of

the algorithm.

4.2. Extendability

In this section, we will introduce and develop our framework for extendable models, which

as we will see later include all forms of BDDs as well as BDD-ensembles. In contrast to strong

extendable models, it will no longer be necessary to annotate the models but instead we need to

be able to deal with ºpartialº models, which for the purposes of the framework can be thought of

incomplete models that can be extended to a model.

We are now ready to provide a formal definition of extendable models. A full set of strict ex-

tensions for a partial model M is a set E of strict extensions of M such that for every model M′ of

minimum size for C that is an extension of M it holds that M′ is also an extension of some partial

model in E. We say that a model-type Γ is (f (|M|, δ), g(|M|, |C|))-extendable for some computable

functions f (|M|, δ) and g(|M|, |C|) if there is an algorithm running in time O(g(|M|, |C|)) that given

a CI C and a partial model M of type Γ such that M is not a model for C and |M| computes a full

set E of strict extensions for M with |E| ≤ f (|M|, δ).

Note that the main difference to the case of strongly extendable models is that the full set

of strict extensions does no longer need to address a specific example, but instead it is merely

required that one of the strict extensions is part of some optimum model. While this makes the

framework applicable to more general models (such as BDDs), it also comes with a cost. Indeed,

without the example as a guide to further restrict the number of possible extensions, the number

of strict extensions becomes potentially much larger; we will later see that this indeed applies in

the case of BDDs. Furthermore, the extension of the framework to ensembles of models (using

Algorithm 2)seems no longer possible as it specifically requires to find extensions that can be

used to classify a specific example and more importantly the models in an ensemble are not

required to be models for the CI. Nevertheless, we will show that the latter disadvantage can be

overcome by showing that also BDD-ensemble models are extendable.

The following theorem now provides an algorithm for Γ-MMS for any extendable model

type Γ.

Theorem 4. Let Γ be a (f (|M|, δ), g(|M|, |C|))-extendable model-type. Then, Γ-MMS can be

solved in time O((f (s, δ))s(g(s, |C|) + |E|s)).

Proof. As mentioned above, we solve Γ-MMS by the simple bounded depth branching algorithm

illustrated in Algorithm 3. The main part of the algorithm is the function FINDOPTEXT(C, s,

(M, A)), which when called initially with the empty partial annotated model (nil) returns the

required result. In general, the function FINDOPTEXT(C, s, (M, A)) does the following: Given a

CI C, an integer s, and a partial annotated model (M, A), it outputs a minimum model M′ for C of

size at most s that extends (M, A) if such a model exists; otherwise it will output nil. To achieve

this, the function first checks whether M is already a model for C and if so returns M. Otherwise,

it checks whether M is already too large to be extended, i.e., if |M| ≥ s, and if so returns nil.

If this is not the case, the function calls the (model-type specific) function FINDSTRICTEXTS(C,

11

Algorithm 3: Generic Algorithm for finding a minimum model of size at most s for any extend-

able model-type Γ.

Input: CI C = (E, F, µ) and integer s.

Output: return a minimum model for C of type Γ and size at most s (or nil if no such model exists).

1: function FINDOPTMODEL(C, s)

2: return FINDOPTEXT(C, s, nil)

3: function FINDOPTEXT(C, s, (M, A))

4: if M is a model for C then

5: return M

6: if |M| ≥ s then

7: return nil

8: M← FINDSTRICTEXTS(C, s, (M, A))

9: B← nil

10: for (M′, A′) ∈ M do

11: if |M′| ≤ s then

12: A← FINDOPTEXT(C, s, (M′, A′))

13: if A , nil and (B = nil or |B| > |A|) then

14: B← A

15: return B

s, (M, A)) to obtain a full set E of strict extensions for (M, A) and the function then calls itself

recursively for every partial annotated model (M′, A′) in E and returns the best model found for

any such strict extension.

Towards showing the correctness of the algorithm first note that if the algorithm returns a

model M, then this is indeed a model for C (because of Line 4 of the algorithm) of size at most

s (because of Line 11 of the algorithm).

So suppose that there is indeed a model M′ for C of type Γ and size at most s. We will

show that the algorithm considers every such model and therefore returns one of those models of

minimum size. To achieve this it suffices to show that M′ extends nil and whenever M′ extends

the current partial annotated model (M, A), then it will also extend one of the strict extensions in

E computed in Line 8 of the algorithm. The former clearly holds because of (P1) and the latter

holds because E is a full set of strict extensions for (M, A).

Let us now consider the running-time of the algorithm. Because Γ is (f (|M|, δ), g(|M|, |C|))-

extendable, it holds that the function FINDSTRICTEXTS(C, (M, A)) called in Line 8 requires time

at mostO(g(|M|, |C|)) and returns at most f (|M|, δ) strict extensions. Therefore, the branching fac-

tor of the algorithm is at most f (|M|, δ) and since the size of the considered partial annotated mod-

els increases by at least one (P2) in each recursive call, we obtain that the recursion depth of the

algorithm is at most s. Therefore, the algorithm does at most (f (|M|, δ))s recursive calls. More-

over, the time required for each recursive call is dominated by the call to FINDSTRICTEXTS(C,

s, (M, A)) in Line 8, which is g(|M|, |C|) and the check whether M is already a model in Line 4,

which because of (P0) can be achieved in time O(|E|s). Therefore, the total run-time of the algo-

rithm is at most O((f (|M|, δ))s(g(|M|, |C|) + |E|s)) = O((f (s, δ))s(g(s, |C|) + |E|s)).

5. Decision Sets

In the case of DSs an annotated DS is simple a pair (M, A), where M = (T, b) is a decision

set and A : T ∪ {rD} → E is the annotation function that assigns one example to every term

12

Algorithm 4: Algorithm for finding a full set of strict extensions for DSs.

Input: A CI C = (E, F, µ), an annotated DS (M = (T, b), A), and an example e ∈ E that is not correctly

classified by M.

Output: An full set of strict extensions for (M = (T, b), A) and e.

1: function FINDSTRICTEXTSSTR(C, (M = (T, b), A), e)

2: if (M, A) = nil then

3: e1 ← some 1-example in E

4: A1 ← function assigning e1 to the default rule rD.

5: e0 ← some 0-example in E

6: A0 ← function assigning e0 to the default rule rD.

7: return {((∅, 0), A0), ((∅, 1), A1)}

8: X ← ∅

9: if b , µ(e) then

10: e′ ← A(rD)

11: for f ∈ δ(e′, e) do

12: t ← {(f = e(f))}

13: A′ ← A with the additional assignment A′(t) = e

14: X ← X ∪ {((T ∪ {t}, b), A′)}

15: return X

16: t ← term in T that applies to e

17: e′ ← A(t)

18: for f ∈ δ(e′, e) do

19: t′ ← t ∪ {(f = e′(f))}

20: T ′ ← obtained from T after replacing t with t′

21: X ← X ∪ {((T ′, b), A)}

22: return X

(including the default rule rD) of T . The idea of the annotation is that if a term is annotated by an

example, then we only consider extensions of the term that agree with the example.

We say that a DS (T ′, b′) is an extension of a DS (T, b) if either (T, b) = nil or it holds that

b′ = b and there is an injective function α : T → T ′ such that t ⊆ α(t) for every t ∈ T . We say

that a DS (T ′, b′) is an extension of an annotated DS ((T, b), A) if (T ′, b′) is an extension of (T, b)

and additionally A(t) agrees with α(t) for every t ∈ T . We say that an annotated DS ((T ′, b′), A′)

is an extension of an annotated DS ((T, b), A) if either ((T, b), A) = nil or it holds that b′ = b

and there is an injective function α : T → T ′ such that for every t ∈ T , it holds that t ⊆ α(t) and

A(t) = A′(α(t)). Moreover, we say that an annotated DS ((T ′, b′), A′) is a strict extension of an

annotated DS ((T, b), A) if it is an extension and additionally ((T ′, b′), A′) , ((T, b), A); note that

this also implies that |T ′| > |T | if we define the size of nil as 0.

Lemma 5. Decision Sets are strongly (δ, δ + ∥T∥)-extendable.

Proof. We claim that Algorithm 4 shows the result, i.e., we need to show that Algorithm 4 runs

in time O(|E|s+δ(E)) and given a CI C = (E, F, µ), an integer s, an annotated DS (M = (T, b), A),

and an example e such that M does not correctly classify e computes a full set of strict extensions

E for (M, A) and e with |E| ≤ max{2, δ}.

The main ideas behind Algorithm 4 are as follows. If (M, A) = nil, then the algorithm

creates two trivial annotated DSs (in Lines 2± 7) corresponding to the two classifications of the

default rule. That is, the algorithm takes an arbitrary 1-example e1 and creates the annotated

13

model ((∅, 1), A1), where A1 is the function assigning e1 to the default rule. Similarly, the algo-

rithm takes an arbitrary 0-example e0 and creates the annotated model ((∅, 1), A0), where A0 is the

function assigning e0 to the default rule. Moreover, if on the other hand (M = (T, b), A) , nil,

then the algorithm distinguishes two cases. If b , µe (Lines 9± 15 of the algorithm) and therefore

no term of T applies to e, then any extension of (M, A) that correctly classifies e must contain a

new term that applies to e. The algorithm therefore creates a new term t and annotates it by e.

Moreover, it then ensures that t does not apply to the annotated example e′ = A(rD) of the default

rule rD by adding one literal f = e(f) to t, where f ∈ δ(e′, e). It then returns one strict extension

((T ∪ {t}), b), A′) of (M, A) for every feature in f ∈ δ(e′, e), where t is the term containing only

the literal f = e(f). Finally, if b = µ(e) (Lines 16± 22 of the algorithm), then because e is not

correctly classified by M, there is a term that applies to e and the algorithm chooses an arbitrary

such term in Line 16. But then any extension of (M, A) that correctly classifies e must ensure that

e does not apply to t. This can be achieved by adding some literal f = e′(f) for every f ∈ δ(e′, e),

where e′ = A(t). The algorithm therefore returns a strict extension ((T ′, b), A) of (M, A) for every

f ∈ δ(e′, e), where T ′ is obtained from T after adding the literal f = e′(f) to t.

Towards showing the correctness of Algorithm 4, we first note that the algorithm always

outputs a set of strict extensions of (M, A) and that the number of those strict extensions is at

most max{2, δ} ≤ δ; assuming that δ ≥ 2. This clearly holds in the case that (M, A) , nil

because in this case every annotated DS added to the set X by the algorithm extends at least one

rule of M by at least one literal. Moreover, this also holds if (M, A) = nil because in this case

the size of (M, A) is equal to −1 and both annotated DS returned by the algorithm in Line 7 have

size 0. It remains to show that the set of strict extensions returned by the algorithm is indeed a

full set of strict extensions for (M, A) and e. To see this let M′ be a DS that extends (M, A) and

correctly classifies e. We distinguish the following cases. If (M, A) = nil, then M′ is clearly an

extension of either (∅, 0) or (∅, 1). Moreover, since the default rule applies to every 1-example

respectively 0-example, M′ is also an extension of the annotation returned by the algorithm.

Otherwise, we distinguish the following two cases. If b , µ(e), then M′ must contain a term

t such that e is satisfied by t, which M does not contain; in fact M does not contain any such term

because it does not correctly classify e. Let e′ be the example assigned by A to the default rule

of M. Then, µ(e) , µ(e′) and therefore t has to contain a literal on a feature that distinguishes e′

from e; since otherwise t would also apply to e′, which would contradict our assumption that M′

is an extension of (M, A). Since the algorithm adds such a term t for every f ∈ δ(e, e′) and the

algorithm also annotates this term with e, this shows that M′ is an extension of some annotated

DS returned by the algorithm.

If on the other hand b = µ(e), then M must contain a term t that applies to e and suppose that

t is the term chosen by the algorithm in Line 16. Moreover, since M′ is an extension of (M, A),

M′ must contain a term t′ such that t ⊆ t′ and e′ = A(t) is satisfied by t′. Since M′ classifies e

correctly, it follows that e cannot be satisfied by t′. Therefore, t′ must contain a literal of some

feature f in δ(e, e′), whose value is set to e′(f). Since the algorithm branches through all those

features and for each of them tries to add the feature with the value of e′ to t this shows that M′

is an extension of some annotated DS returned by the algorithm.

Finally, let us consider the run-time of the algorithm. Note first that all but one single line

instruction of the algorithm can be done in constant time. The only exception is Line 16 for

finding the term of T that applies to e and this can be achieved in time O(∥T∥) using the natural

and appropriate data structures. Therefore, the total time required by the algorithm is O(∥T∥+ δ),

where the δ-term is due to the two for-loops in Lines 11 and 18.

14

Combining Lemma 5 with Theorem 2, we obtain.

Corollary 6. DS-MMS can be solved in timeO(δs|E|s) and is therefore fixed-parameter tractable

parameterized by s + δ.

Combining Lemma 5 with Theorem 3, we obtain.

Corollary 7. DS-MEMS can be solved in time O((2+ sδ)s|E|s) and is therefore fixed-parameter

tractable parameterized by s + δ.

Proof. It follows from Lemma 5 that DSs are strongly (δ, δ + ∥T∥)-extendable. Therefore, using

Theorem 3, we obtain that DS-MEMS can be solved in time O(bss(δ + s + |E|)), where b =

f (0, δ) +
∑

(M,A)∈E f (|M|, δ) ≤ 2 + sδ. Here we assume for simplicity that δ + s ≤ |E|.

6. Decision Lists

In the case of DLs an annotated DL is simple a pair (L, A), where L is a decision list and

A : L→ E is the annotation function that assigns one example to every rule in L. The idea of the

annotation is that if a rule is annotated by an example, then we only consider extensions of the

rule that agree with the example.

We say that an injective function α : L→ L′ between two DLs L and L′ is order-preserving if

for every two distinct l, l′ ∈ L, it holds that l is ordered before l′ in L if and only if α(l) is ordered

before α(l′) in L′.

We say that a DL L′ is an extension of a DL L if there is an injective and order-preserving

function α : L→ L′ such that for every r = (t, b) ∈ L with (t′, b′) = α(r), it holds that b′ = b and

t ⊆ t′. We say that a DL L′ is an extension of an annotated DL (L, A) if there is an injective order-

preserving function α : L→ L′ such that for every r = (t, b) ∈ L with r′ = (t′, b′) = α(r), it holds

that b′ = b, t ⊆ t′, and r′ is the first rule in L′ that agrees with A(r). We say that an annotated DL

(L′, A′) is an extension of an annotated DL (L, A) if there is an injective order-preserving function

α : L → L′ such that for every r = (t, b) ∈ L with r′ = (t′, b′) = α(r), it holds that b′ = b,

t ⊆ t′, and A′(r′) = A(r). Finally, we say that an annotated DL (L′, A′) is a strict extension of

an annotated DL (L, A) if it is an extension and additionally (L′, A′) , (L, A); note that this also

implies that |L′| > |L|.

Lemma 8. Decision Lists are strongly (δ + |L| + 1, |L| + δ)-extendable.

Proof. We claim that Algorithm 5 shows the result, i.e., we need to show that Algorithm 5 runs

in time O(|L| + δ) and given a CI C = (E, F, µ), an annotated DL (L, A), and an example e such

that L does not correctly classify e computes a full set of strict extensions E for (L, A) and e with

|E| ≤ δ + |L| + 1.

The main ideas behind Algorithm 5 are as follows. If no rule in L applies to e, then the

algorithm considers all extensions (L′, A′) obtained from (L, A) after inserting a new (empty)

rule (∅, µ(e)) annotated by e at any possible position in L. Otherwise, let r′ = (t′, 1 − µ(e)) be the

first rule that applies to e in L and let p′ be its position. The algorithm then adds all extensions

(L′, A′) obtained from (L, A) after inserting a new (empty) rule r = (∅, µ(e)) annotated by e at any

possible position before p′ in L, to the initially empty set X of extensions. Finally, the algorithm

returns X after additionally adding to it all extensions of (M, A) obtained by adding the literal

f = e′(f) to the the term t′ of rule r′ for every f ∈ δ(e′, e).

15

Algorithm 5: Algorithm for finding a full set of strict extensions for DLs.

Input: A CI C = (E, F, µ), an annotated DL (L, A), and an example e ∈ E that is not correctly classified by

L.

Output: An full set of strict extensions for (L, A) and e.

1: function FINDSTRICTEXTSSTR(C, (L, A), e)

2: X ← ∅

3: if no rule in L applies to e then

4: for p ∈ [0, |L|] do

5: r ← (∅, µ(e))

6: A′ ← extension of A by A′(r) = e

7: L′ ← obtained from L after inserting r at p

8: X ← X ∪ {(L′, A′)}

9: r′ = (t′, 1 − µ(e))← first rule in L that applies to e

10: p′ ← position of r′ in L

11: r ← (∅, µ(e))

12: A′ ← extension of A with {A′(r) = e}

13: for p ∈ [0, p′ − 1] do

14: L′ ← obtained from L after inserting r at p

15: X ← X ∪ {(L′, A′)}

16: e′ ← A(r′)

17: for f ∈ δ(e′, e) do

18: r ← (t′ ∪ {(f = e′(f))}, 1 − µ(e))

19: L′ ← list obtained from L after replacing r with r′

20: X ← X ∪ {(L′, A)}

21: return X

Towards showing the correctness of Algorithm 5, we first note that the algorithm always

outputs a set of strict extensions of (L, A), i.e., in every case L is extended by some rule or some

rule of L is extended by some literal, and that the number of those strict extensions is at most

δ + |L| + 1. It remains to show that the set of strict extensions returned by the algorithm is indeed

a full set of strict extensions for (L, A) and e. To see this let Le be a DL that extends (L, A) and

correctly classifies e. We need to show that Le is an extension of some strict extension returned

by the algorithm. We distinguish the following cases.

If no rule in L applies to e, i.e., the case corresponding to Line 3 of the algorithm, then

because Le correctly classifies e, it holds that Le \ L must contain a new rule, say r that can be

inserted at some position p ∈ {0, |L|} in L and that applies to e. W.l.o.g. we assume that r is the

first rule in Le that applies to e, which will allow us to annotate r with e. Therefore, we obtain that

Le extends (L′, A′), where L′ is obtained by adding the new rule r at position p to L and setting

A′ = A ∪ {A(r) = e}. Since the algorithm considers all those cases in the for-loop in Line 4, this

shows that (in the case that no rule in L applies to e) Le is an extension of some annotated DL

returned by the algorithm in Line 8.

Otherwise, let p′ be the position of the first rule r′ = (t′, 1 − µ(e)) in L that applies to e (see

also Line 9 of the algorithm). Then, because Le correctly classifies e, it holds that either Le \ L

must contain a new rule, say r that can be inserted at some position p ∈ {0, p′ − 1} in L and that

applies to e (and that can therefore be annotated with e) or α(r′) does not apply to e. In the former

case, we obtain that Le is an extension of (L′, A′), where L′ is obtained from L after adding the

new rule r annotated by e at position p and the algorithm considers all those cases in the for-loop

16

in Line 13. In the latter case, since Le is an extension of (L, A), it follows that α(r′) is the first

rule of L′ that applies to e′. Therefore, Le is an extension of some (L′, A), where L′ is obtained

after adding some literal f = e′(f) to t′ for some feature f ∈ δ(e′, e) and the algorithm considers

all those cases in the for-loop of Line 17.

Towards showing the correctness of the run-time of the algorithm, we first note that almost

all single line operations in the algorithms can be achieved in constant time (with the natural and

appropriate data structures). The only two exceptions are: (1) checking whether no rule applies

to e in Line 3 and (2) finding the first rule in L that applies to e in Line 9. Since both of these

exceptions can be achieved in time O(|L|), we obtain that the total run-time of the algorithm

is dominated by the two for-loops in Lines 13 and 17 of the algorithm, which together can be

achieved in time O(|L| + δ), as required. Here, we assume that δ(e′, e) has been precomputed

before that start of the algorithm for every pair of 1-example and 0-example.

Combining Lemma 8 with Theorem 2, we obtain the following.

Corollary 9. DL-MMS can be solved in time O((δ+ s+1)s|E|s) and is therefore fixed-parameter

tractable parameterized by s + δ.

Combining Lemma 8 with Theorem 3, we obtain the following.

Corollary 10. DL-MEMS can be solved in time O((1 + s + sδ)s|E|s) and is therefore fixed-

parameter tractable parameterized by s + δ.

Proof. It follows from Lemma 8 that DLs are strongly (δ+ |L|+ 1, |L|+ δ)-extendable. Therefore,

using Theorem 3, we obtain that DL-MEMS can be solved in time O(bss(δ + s + |E|)), where

b = f (0, δ) +
∑

(M,A)∈E f (|M|, δ) ≤ 1 + s + sδ. Here we assume for simplicity that δ + s ≤ |E|.

7. Decision Trees

Let M = (T, λ) and M′ = (T ′, λ′) be two DTs. We say that an injective function α : V(T) →

V(T ′) is structure-preserving from M to M′ if

• For every t ∈ V(T), it holds that λ(t) = λ(α(t)); note that this also implies that leaves are

mapped to leaves and inner nodes are mapped to inner nodes.

• If p ∈ V(T) is a node with x-child c in T , then α(c) is contained in the subtree rooted at the

x-child of α(p) in T ′.

We say that a DT M′ = (T ′, λ′) is an extension of a DT M = (T, λ) if either M = nil or there

is a structure-preserving function from M to M′.

We say that a DT M′ = (T ′, λ′) is an extension of an annotated DT (M = (T, λ), A) if either

M = nil or there is a structure-preserving function from M to M′ that additionally satisfies

A(l) ∈ EM′ (α(l)) for every leaf l of T .

We say that an annotated DT (M′ = (T ′, λ′), A′) is an extension of an annotated DT (M =

(T, λ), A) if either M = nil or there is a structure-preserving function from M to M′ that addi-

tionally satisfies A(l) ∈ A′(α(l)) for every leaf l of T .

Lemma 11. Decision Trees are strongly (δ(h(T) + 1), δh(T))-extendable.

17

Algorithm 6: Algorithm for finding a full set of strict extensions for DTs.

Input: A CI C = (E, F, µ), an annotated DT (M = (T, λ), A), and an example e ∈ E that is not correctly

classified by M.

Output: An full set of strict extensions for (M, A) and e.

1: function FINDSTRICTEXTSSTR(C, (M, A), e)

2: if (M, A) = nil then

3: M0 = (T0, λ0)← DT with one leaf labeled 0

4: M1 = (T1, λ1)← DT with one leaf labeled 1

5: l0 ← the leaf of T0

6: A0 ← function assigning some 0-example to l0

7: l1 ← the leaf of T1

8: A1 ← function assigning some 1-example to l1

9: return {(M0, A0), (M1, A1)}

10: X ← ∅

11: le ← leaf of T with e ∈ EM(le)

12: Pe ← path from root to le in T

13: e′ ← A(le)

14: for f ∈ δ(e′, e) do

15: M′
= (T ′, λ′)← (f , e(f), µ(e))-extension of M

16: l← new leaf of V(T ′) \ V(T)

17: A′ ← obtained from A after setting A′(l) = e

18: X ← X ∪ {(M′, A′)}

19: for a ∈ E(Pe) do

20: x← y if a is y-edge in T

21: M′
= (T ′, λ′)← (x, a, f , e(f), µ(e))-extension of M

22: l← new leaf of V(T ′) \ V(T)

23: A′ ← obtained from A after setting A′(l) = e

24: X ← X ∪ {(M′, A′)}

25: return X

Proof. We claim that Algorithm 6 shows the result, i.e., we need to show that Algorithm 6 runs

in time O(δh(T)) and given a CI C = (E, F, µ), an annotated DT (M = (T, λ), A), and an example

e such that M does not correctly classify e computes a full set of strict extensions E for (M, A)

and e with |E| ≤ max{2, δ(h(T) + 1)}.

Before we proceed with the description and correctness proof of the algorithm, we need to

introduce the operations employed by the algorithm. Let f ∈ F and y, z ∈ {0, 1}. We say that a

DT M′ = (T ′, λ′) is an (f , y, z)-extension of a DT M = (T, λ) if M , nil and T ′ is obtained from

T after adding a new node n together with a (1 − y)-edge from n to the root r of T and adding a

new leaf l as the y-child of n. Moreover, λ′ is obtained from λ by setting λ′(w) = λ(w) for every

w ∈ V(T) and λ′(n) = f and λ′(l) = z.

We say that a DT M′ = (T ′, λ′) is an (x, e, f , y, z)-extension of a DT M = (T, λ), where

e = pc ∈ E(T) is an x-edge of T with p being the parent of c in T , if M , nil and T ′ is obtained

from T after adding a new node n, replacing the edge e with an x-edge from p to n and an y-edge

from n to v and adding a new leaf l as the (1 − y)-child of n. Moreover, λ′ is obtained from λ by

setting λ′(w) = λ(w) for every w ∈ V(T) and λ′(n) = f and λ′(l) = z.

The main ideas behind Algorithm 6 are as follows. If (M, A) = nil, then the algorithm

returns the annotated DTs (M0, λ0) and (M1, λ1), where the former is the DT with one leaf labeled

18

0 and annotated by e and the latter is the DTwith one leaf labeled 1 and annotated by e. Otherwise,

let le be the leaf of T with e ∈ EM(le), let Pe be the path from the root to le in T , and let e′ = A(le).

The algorithm then adds all (f , e(f), τ(e))-extensions of M for every f ∈ δ(e′, e), where the new

leaf is annotated by e, to the initially empty set of extensions X. Additionally, the algorithm adds

all (x, a, f , e(f), τ(e)-extensions for every x-edge a on Pe and every feature f ∈ δ(e′, e), where

the new leaf is annotated by e, to the set of extensions X. The algorithm then returns the set X.

If no rule in L applies to e, then the algorithm considers all extensions (L′, A′) obtained from

(L, A) after inserting a new (empty) rule (∅, µ(e)) annotated by e at any possible position in L.

Otherwise, let r′ = (t′, 1−µ(e)) be the first rule that applies to e in L and let p′ be its position. The

algorithm then considers all extensions (L′, A′) obtained from (L, A) after inserting a new (empty)

rule r = (∅, µ(e)) annotated by e at any possible position before p′ in L. Finally, it considers all

extensions of the term t′ in rule r′ with a literal f = e′(f) for every f ∈ δ(e′, e).

Towards showing the correctness of Algorithm 6, we first note that the algorithm always

outputs a set of strict extensions of (M, A), i.e., in every case T is extended by at least two new

nodes and that the number of those strict extensions is at most max{2, δ(h(T)+ 1)} ≤ δ(h(T)+ 1);

assuming that δ(h(T) + 1) ≥ 2. It remains to show that the set of strict extensions returned by the

algorithm is indeed a full set of strict extensions for (M, A) and e. To see this let Me = (Te, λe) be

a DT that extends (M, A) and correctly classifies e. We need to show that Me is an extension of

some strict extension returned by the algorithm. We distinguish the following cases.

If (M, A) = nil, then Me is clearly an extension of the two trivial annotated DTs (M0, A0) or

(M1, A1) returned in Line 9; this is because every DT that is not equal to nil is an extension of

either (M0, A0) or (M1, A1).

Otherwise, (M, A) , nil. Let le be the leaf of T with e ∈ EM(le), let Pe be the path from the

root to le in T , and let e′ = A(le) (as also defined in Lines 11± 13 of the algorithm).

Let α : V(T) → V(Te) be the structure-preserving function from M to M′ that also satisfies

A(l) ∈ EMe
(l) for every leaf l of T , which exists because Me is an extension of (M, A). Let P′e′

be the path from the root of Te to α(le). Then, because M′ correctly classifies e and because

e′ ∈ EM′ (le), it follows that P′e′ \ {α(v) | v ∈ V(Pe)} must contain a node n with λe(n) ∈ δ(e′, e)

such that the leaf l′e in T ′ that correctly classifies e is within the subtree rooted at the child of n that

is not in P′e′ . We now distinguish two cases. If n occurs before any node in {α(p) | p ∈ V(Pe)} on

P′e′ , then Me is an extension of the (f , e(f), µ(e))-extension M′ of M. Moreover, since e ∈ EMe
(l′e),

it also follows that Me is an extension of (M′, A′), where A′ is obtained from A by additionally

setting A′(l) = e, where l is the new leaf in V(T ′) \ V(T). Since, (M′, A′) is the strict extension

added to X in Line 18 for the feature f , this shows that Me is an extension of a strict extension

returned by the algorithm in this case.

Otherwise, n occurs between some node in {α(p) | p ∈ V(Pe)} on P′e′ . Let e = pc be the

x-edge in Pe such that n occurs between α(p) and α(c) on P′e′ and assume that p is the parent of

c in T . In this case, Me is an extension of the (x, e, f , e(f), µ(e))-extension M′ of M. Moreover,

since e ∈ EMe
(l′e), it also follows that Me is an extension of (M′, A′), where A′ is obtained from

A by additionally setting A′(l) = e, where l is the new leaf in V(T ′) \ V(T). Since, (M′, A′) is the

strict extension added to X in Line 24 for the feature f and the edge e, this shows that Me is an

extension of a strict extension returned by the algorithm in this case.

Towards showing the correctness of the run-time of the algorithm, we first note that almost

all single line operations in the algorithms can be achieved in constant time (with the natural and

appropriate data structures). The only exceptions are the Lines 11 and 12 to obtain the leaf le of T

with e ∈ EM(l) together with the path Pe. Since both of these exceptions can be achieved in time

O(h(T)), we obtain that the total run-time of the algorithm is dominated by the two for-loops in

19

Lines 13 and 17 of the algorithm, which together can be achieved in time O(δ(h(T))), as required.

Here, we assume that δ(e′, e) has been precomputed before that start of the algorithm for every

pair of 1-example and 0-example.

Combining Lemma 11 with Theorem 2, we obtain.

Corollary 12. DT-MMS can be solved in timeO((δ(s+1))s|E|s) and is therefore fixed-parameter

tractable parameterized by s + δ.

Combining Lemma 11 with Theorem 3, we obtain.

Corollary 13. DT-MEMS can be solved in timeO((2+2sδ)s|E|s) and is therefore fixed-parameter

tractable parameterized by s + δ.

Proof. It follows from Lemma 11 that DTs are strongly (δ(h(T) + 1), δh(T))-extendable. There-

fore, using Theorem 3, we obtain that DT-MEMS can be solved in time O(bss(sδ + |E|)), where

b = f (0, δ) +
∑

(M,A)∈E f (|M|, δ) ≤ 2 + 2sδ. Here we assume for simplicity that s2δ ≤ |E|.

8. Binary Decision Diagrams

Let C = (E, F, µ) be a CI. A partial BDD S is a pair S = (D, ρ) where D is a directed acyclic

graph with two special vertices t0 and t1 such that:

• t0 and t1 are sinks,

• every vertex except t0 and t1 has out-degree at most 2 and more specifically it has at most

one 0-out-neighbor and at most one 1-out-neighbor.

• it can (but does not have to have) a specified root vertex, usually denoted by s, which is

not allowed to have any in-neighbors,

• ρ is a function that associates a feature in F to every node except t0 and t1.

Informally, a partial BDD is obtained by inducing a BDD on some subset of its inner nodes. That

is, a partial BDD S = (D, ρ) is any pair for which there exists a BDD B′ = (D′, ρ′) such that

B′[D] = S , where B′[D] = (D′[V(D)], ρ′
|V(D)

) and ρ′
|V(D)

is equal to the function ρ′ restricted to

the vertices in D.

We say that a (partial) BDD B′ = (D′, ρ′) is an extension of a partial BDD B = (D, ρ) if

B = B′[D]. We say that B′ is a strict extension of B if B′ is an extension of B and additionally

B′ , B or equivalently |D′| > |D|. We say that B′ is a simple extension of B if B′ is an extension

of B and additionally |D′| = |D| + 1.

For a partial BDD B = (D, ρ) and a subset F′ ⊆ F of features, we denote by SExt(B, F′)

the set of all simple extensions B′ = (D′, ρ′) of B such that the unique vertex v in V(D′) \ V(D)

satisfies that ρ(v) ∈ F′, i.e., we only consider simple extension of B, whose new nodes use only

features from F′. The following lemma now shows that if we could bound the number of features

that need to be considered by any strict extension in SExt(B) = SExt(B, F), then we could also

bound the size of SExt(B).

Lemma 14. Let C = (E, F, µ) be a CI, let B = (D, ρ) be a partial BDD, and let F′ ⊆ F. Then,

SExt(B, F′) can be computed in time O(|F′|(∥B∥ + 1)23∥B∥−2) and |SExt(B, F′)| ≤ 2|F′|(∥B∥ +

1)23∥B∥−2.

20

Proof. Since B′[D] = B and |D′| = |D| + 1 for every B′ = (D′, ρ′) ∈ SExt(B, F′), it holds that

every simple extension B′ = (D′, ρ′) is obtained from B by:

(0) adding a new vertex v to D,

(1) choosing a subset P0 ⊆ V(D) \ {t0, t1} of in-neighbors for v that have a 0-arc to v,

(2) choosing a subset P1 ⊆ V(D) \ ({t0, t1} ∪ P0) of in-neighbors for v that have a 1-arc to v,

(3) choosing no 0-out-neighbor for v or choosing a 0-out-neighbor for v among V(D) \ {s},

(4) choosing no 1-out-neighbor for v or choosing a 1-out-neighbor for v among V(D) \ {s},

(5) choosing a feature in F′ to assign to v,

(6) choosing whether or not v becomes the root of B′.

Since, there are 3|V(D)|−2 possibilities for (1) and (2), (|V(D)| + 1)2 possibilities for (3) and (4),

|F′| possibilities for (5) and 2 possibilities for (6), we obtain 2|F′|(|V(D)|+1)23|V(D)|−2 as the total

number of possibilities for B′. The stated run-time can now be easily achieved by brute-force

enumeration of all possibilities.

A partial BDD-ensemble E is a set of partial BDDs. We say that a (partial) BDD-ensemble E′

is an extension of a partial BDD-ensemble E if there is an injective function α : E → E′ such

that α(B) is an extension of B for every B ∈ E. We say that E′ is a strict extension of E if E′ is

an extension of E and additionally E′ , E or equivalently |E′| > |E|. We say that E′ is a simple

extension of E if E′ is an extension of E and either there is exactly one B ∈ E such that α(B) is

a simple extension of B or α(B) = B for every B ∈ E and E′ \ E is a trivial partial BDD, i.e., a

partial BDD B = (D, ρ) with V(D) = {t0, t1}.

For a partial BDD-ensemble E and a subset F′ ⊆ F of features, we denote by SExt(E, F′) the

set of all simple extensions E′ such the at most one new inner vertex v is assigned to a feature in

F′.

Lemma 15. Let C = (E, F, µ) be a CI, let E be a partial BDD-ensemble, and let F′ ⊆ F.

Then, SExt(B, F′) can be computed in time O(|F′|(∥E∥ + 1)23∥E∥) and |SExt(E, F′)| ≤ 2|F′|(∥E∥ +

1)23∥E∥−2|E|
+ 3.

Proof. This follows immediately from Lemma 14 together with the fact that there are at most 3

distinct trivial partial BDDs, i.e., the trivial BDD without a root, the trivial BDD with root t0, and

the trivial BDD with root t1.

Let S ⊆ F be a support set of C. We define an equivalence relation w.r.t. S by saying that

two examples are equivalent w.r.t. S if they agree on all features in S . Note that if S is a support

set every equivalence class w.r.t. S is homogeneous, i.e., contains either only 1-example or only

0-examples. We say that a set U ⊆ F \S is useful for a given support set S if for every assignment

τU : U → {0, 1} there is an assignment τS : S → {0, 1} such that E[τS] , ∅ but E[τS ∪ τU] = ∅.

Informally, U is useful if every assignment of U filters out at least one previously non-empty

equivalence class (w.r.t. S) completely. In other words, U is not useful (or useless) if there is an

assignment of U that keeps (agrees with) at least one example from every non-empty equivalence

class. The following lemma is now an analogue of [23, Lemma 11] for BDD-ensembles instead

of DTs that will be crucial in bounding the number of features that need to be considered for the

computation of SExt(B).

21

Lemma 16. Let E be a BDD-ensemble for a CI C = (E, F, µ) of minimum size and let S be a

support set contained in F(E). Then, F(E) \ S is useful.

Proof. Suppose for a contradiction that this is not the case and let U = F(E) \ S . Then, U , ∅

and there is an assignment τU : U → {0, 1} such that E[τS ∪ τU] , ∅ for every assignment

τS : S → {0, 1}. Informally, we will show that we can obtain a smaller BDD-ensemble E′ for

C by ªcontractingº all vertices u in any BDD in E that are assigned to a feature in U, which

contradicts the minimality of E.

To obtain E′ we will replace every BDD B = (D, ρ) in E, with the BDD B∗ = (D∗, ρ∗) that is

obtained from B as follows. For every vertex u ∈ V(D) with ρ(u) ∈ U we do the following. If u is

the root of D, then we remove u and make the τU(u)-neighbor of u the new root of B∗. Otherwise,

let p1, . . . , pℓ be the in-neighbors of u in B and let c0 and c1 be the 0-neighbor respectively 1-

neighbor of u in D. Then, we remove u from D (together with all its incident arcs) and add an

x-arc from pi to cτU (u) for every 1 ≤ i ≤ ℓ (assuming that the arc (pi, u) is an x-arc in D). Finally,

ρ∗ is the restriction of ρ to V(D∗).

Then, E′ is clearly still a BDD-ensemble and because U , ∅ also |E′| < |E|. We will now

show that E′ is still a BDD-ensemble for C, which contradicts the minimality of E. Assume for a

contradiction that this is not the case and there is an example e ∈ E that is not classified correctly

by E′. Let e∗ be any example in the equivalence class of e w.r.t. S that agrees with τU . Note that

such an example exists because E[τS] , ∅ for the assignment τS : S → {0, 1} that agrees with e

and therefore E[τS ∪τU] , ∅. But then, E′(e∗) = E′(e) (because e and e∗ agree on every feature in

S and E′ uses only features in S) and E′(e∗) = E(e∗) (because e∗ agrees with τU), which implies

that e∗ is not correctly classified by E and contradicts our assumption that E is a BDD-ensemble

for C.

Because a BDD-ensemble of size one is simply a BDD, we obtain the following as a corollary

of Lemma 16.

Corollary 17. Let B = (D, A) be a BDD for a CI C = (E, F, µ) of minimum size and let S be a

support set contained in F(B). Then, F(B) \ S is useful.

We say that a set U0 is a branching set for a support set S if every useful set U for S contains

at least one feature in U0.

Lemma 18 ([23, Lemma 14]). There is a polynomial-time algorithm that given a support set S

of a CI C = (E, F, µ) computes a branching set U0 for S of size at most 2|S |2δ(C).

Lemma 19. Let C = (E, F, µ) be a CI and let B = (D, ρ) be a partial BDD that is not a BDD for

C. There is a polynomial-time algorithm that given C and B outputs a set of features F′ ⊆ F of

size at most n+ 2n2δ(C), where n = |F(B)|, such that every BDD of minimum size for C that is an

extension of B also extends some partial BDD in SExt(B, F′).

Proof. To compute F′ we distinguish the following two cases. If F(B) is not a support set for

C, then there is a pair (e, e′) of examples with µ(e) , µ(e′) such that both examples agree on all

features in F(B). In this case any BDD for C that extends B must contain one of the features in

δ(e, e′). Therefore, in this case we set F′ = δ(e, e′). Otherwise, we use Lemma 18 to compute

a branching set U0 for F(B) and set F′ = F(B) ∪ U0. This completes the description of the

algorithm to compute F′, which clearly runs in polynomial-time. Furthermore, we have that in

both cases |F′| ≤ n+2n2δ(C). It remains to show that every minimum size BDD for C that extends

B is an extension of a partial BDD in SExt(S , F′).

22

Let B′ = (D′, ρ′) be a BDD for C of minimum size that extends B. Then, B′ , B because

B is not a BDD for C. If F(B) is not a support set for C, then F′ = δ(e, e′) for some pair of

examples with µ(e) , µ(e′) such that both examples agree on all features in F(B). Since B is

not a BDD for C but B′ is, D′ must contain a vertex v (that is not in D) with ρ′(v) ∈ F′. Then,

B′′ = B′[V(D) ∪ {v}] is a strict extension of B in SExt(B, F′) such that B′ is an extension of B′′,

as required. If on the other hand F(B) is a support set for C, then F′ = F(B)∪U0 for a branching

set U0 for F(B). Since B′ is of minimum size, we obtain from Corollary 17 that F(B′) \ F(B) is

useful. Therefore, by the definition of a branching set, if F(B′) \ F(B) , ∅, then B′ contains a

vertex v (that is not in B) with ρ′(v) ∈ U0 ⊆ F′. It follows that B′′ = B′[V(D) ∪ {v}] is a strict

extension of B in SExt(B, F′) such that B′ is an extension of B′′, as required. If on the other hand

F(B′) \ F(B) = ∅, then B′ contains a vertex v (that is not in B) with ρ′(v) ∈ F(B) ⊆ F′, which

again implies that B′′ = B′[V(D) ∪ {v}] is a strict extension of B in SExt(B, F′) such that B′ is an

extension of B′′, as required.

The following is analogue of the above lemma for BDD-ensembles.

Lemma 20. Let C = (E, F, µ) be a CI and let E be a partial BDD-ensemble that is not a BDD-

ensemble for C. There is a polynomial-time algorithm that given C and E outputs a set of features

F′ ⊆ F of size at most n+ 2n2δ(C), where n = |F(E)|, such that every BDD-ensemble of minimum

size for C that is an extension of E also extends some partial BDD-ensemble in SExt(E, F′).

Proof. Let FE = F(E) and n = |FE|. To compute F′ we distinguish the following two cases. If

FE is not a support set for C, then there is a pair (e, e′) of examples with µ(e) , µ(e′) such that

both examples agree on all features in FE. In this case, it follows from Observation 1 that any

BDD-ensemble for C that extends B must contain one of the features in δ(e, e′). Therefore, in this

case we set F′ = δ(e, e′). Otherwise, we use Lemma 18 to compute a branching set U0 for FE
and set F′ = FE ∪ U0. This completes the description of the algorithm to compute F′, which

clearly runs in polynomial-time. Furthermore, we have that in both cases |F′| ≤ n + 2n2δ(C). It

remains to show that every minimum size BDD-ensemble for C that extends E is an extension of

a partial BDD-ensemble in SExt(E, F′).

Let E′ be a BDD-ensemble for C of minimum size that extends E. Note that E′ is a strict

extension of E because E is not a BDD-ensemble for C. If FE is not a support set for C, then

F′ = δ(e, e′) for some pair of examples with µ(e) , µ(e′) such that both examples agree on all

features in FE. Since E is not a BDD for C but E′ is, there must exists a partial BDD B′ = (D′, ρ′)

in E′ such that D′ contains a vertex v with ρ′(v) ∈ F′. Since E′ is an extension of E, it holds that

either B′ is an extension of some partial BDD B = (D, ρ) ∈ E or not (i.e., B′ has no corresponding

partial BDD in E). In the former case, E′ is an extension of E\{B}∪{B′[V(D)∪{v}]} ∈ SExt(E, F′)

and in the latter case E′ is an extension of E ∪ B′[{t0, t1, v}] ∈ SExt(E, F′), as required.

If on the other hand FE is a support set for C, then F′ = FE ∪ U0 for a branching set

U0 for FE. Since E′ is of minimum size, we obtain from Lemma 16 that F(E′) \ FE is useful.

Therefore, by the definition of a branching set and the fact that E′ is a strict extension of E,

some BDD B′ = (D′, ρ′) in E′ must contain a vertex v that is in no BDD of E with ρ′(v) ∈ F′.

Moreover, if B′ is an extension of some partial BDD B = (D, ρ) ∈ E, then E′ is an extension of

E \ {B} ∪ {B′[V(D) ∪ {v}]} ∈ SExt(E, F′) and otherwise E′ is an extension of E ∪ B′[{t0, t1}] ∈

SExt(E, F′).

Lemma 21. BDDs are

(2(s + 2s2δ)(s + 1)23s−2, 2O(s)nO(1))-extendable.

23

Proof. Let B = (D, ρ) be a partial BDD of size at most s. Then, because of Lemma 19, the set

SExt(B, F′) is a full set of strict extensions for B, where F′ is the set of features of size at most

s+2s2δ that can be computed in polynomial-time. Moreover, it follows from Lemma 14 that given

B and F′, the set SExt(B, F′) has size at most 2|F′|(∥B∥ + 1)23∥B∥−2 and can be computed in time

O(|F′|(∥B∥+1)23∥B∥−2) = 2O(s). Therefore, SExt(B) has size at most 2(s+2s2δ)(s+1)23s−2 and can

be computed in time 2O(s)nO(1), which shows that BDDs are (2(s + 2s2δ)(s + 1)23s−2, 2O(s)nO(1))-

extendable.

Combining Lemma 21 with Theorem 4, we obtain the following.

Corollary 22. BDD-MMS and is fixed-parameter tractable parameterized by s + δ.

We obtain the following result for BDD-ensembles.

Lemma 23. BDD-ensembles are (2(s + 2s2δ)(s + 1)23s−2
+ 3, 2O(s)nO(1))-extendable.

Proof. Let E be a partial BDD-ensemble of size at most s. Then, because of Lemma 20 the set

SExt(B, F′) is a full set of strict extensions for E, where F′ is the set of features of size at most

s + 2s2δ that can be computed in polynomial-time. Moreover, it follows from Lemma 15 that

given B and F′, the set SExt(E, F′) has size at most 2|F′|(s+ 1)23s−2
+ 3 and can be computed in

time O(|F′|(s+1)23s) = 2O(s). Therefore, SExt has size at most 2(s+2s2δ)(s+1)23s−2
+3 and can

be computed in time 2O(s)nO(1), which shows that BDDs are (2(s+2s2δ)(s+1)23s−2
+3, 2O(s)nO(1))-

extendable.

Combining Lemma 23 with Theorem 4, we obtain the following.

Corollary 24. BDD-MEMS is fixed-parameter tractable parameterized by s + δ.

9. Completing the Parameterized Complexity Landscape

In this section, we provide complementary hardness results. In particular, we will show that

finding a minimum size model is W[2]-hard parameterized by s alone for all model types con-

sidered in this paper. This is already known in the case of DTs, but not for DSs, DLs, and BDDs.

We will then consider replacing s by weaker but natural parameters. In particular, we will con-

sider the parameters number of terms as well as the maximum size of any term as a parameter

replacing size for DSs and DLs. Surprisingly, we will show that even finding a DS (or DL) with

only one term (or alternatively with terms of maximum size 1) is NP-hard even if δ is equal to

2. Our hardness results are based on a simple reduction from the the well-known HITTING SET

(HS) problem, where given a family F of sets over a universe U and an integer k, the task is to

decide whether F has a hitting set of size at most k, i.e., a subset H ⊆ U with |H| ≤ k such that

H∩F , ∅ for every F ∈ F . Let I = (I,F , k) be an instance of HS. We denote by C(I) = (E, F, µ)

the CI defined as follows. C(I) has one feature fu for every u ∈ U, one example eb with µ(eb) = 1

that is 0 at all features, and one example eF with µ(eb) = 0 for every F ∈ F that is 1 for every

feature fu with u ∈ F and otherwise 0. Note that the reduction was already used by Ordyniak and

Szeider [23] to show the result for DTs.

Theorem 25. Γ-MMS is NP-hard and W[2]-hard parameterized by s for every Γ ∈

{DS,DL,DT,BDD}.

24

Proof. We will show the results for the decision variant of Γ-MMS and use a parameterized

reduction from HS, which is well-known to be W[2]-complete parameterized by k. That is, for a

given instance I = (U,F , k) of HS, the CI of our instance of Γ-MMS is given by C(I). We first

show that F has a hitting set of size at most k if and only if C(I) has a support set of size at most

k; note that this equivalence was already shown in [23], we repeat it here to be self-contained.

Towards showing the forward direction of the claim, let H be a hitting set for F of size at

most k. We claim that S = { fu | u ∈ H} is a support set of size at most k for C(I, b). Suppose for a

contradiction that this is not the case, then by the definition of a support set, there is an example

eF for some F ∈ F such that S ∩ δ(e1, eF) = ∅. However, then H ∩ F = ∅, which contradicts our

assumption that H is a hitting set for F .

Towards showing the reverse direction of the claim, let S be a support set for C(I) of size at

most k. We claim that H = {u | fu ∈ S } is a hitting set of size at most k for F . Suppose for a

contradiction that this is not the case, then by the definition of a hitting set, there is a set F ∈ F

such that H ∩ F = ∅. However, then S ∩ δ(e1, eF) = ∅, which contradicts our assumption that S

is a support set for C(I).

It now follows from Observation 1 that the size of any DS, DL, DTor BDDfor C(I, b) is at least

equal to the size of a minimum support set plus 1, plus 1, plus 1 or plus 2, respectively. On the

other hand, given a support set S it is easy to construct a DS of size |S |+ 1, a DL of size |S |+ 1, a

DT of size |S | + 1, and a BDD of size |S | + 2 for C(I). This implies that the reduction also shows

W[2]-hardness for the decision variant of Γ-MMS for every Γ ∈ {DS,DL,DT,BDD} parameter s

and completes the proof of the theorem.

Theorem 26. Given a CI C = (E, F, µ) with δ(C) = 2 and an integer k. It is NP-hard to decide

whether there is a DS/DL for C with at most k literals that either:

• uses at most one term/rule (plus a default rule) or

• uses at most one literal per term.

Proof. We again use the reduction from HS, which is well-known to be NP-hard even if all sets

have size exactly 2. Let I = (U,F , k) be an instance of HS, where all sets in F have size exactly

two.

We start by showing that F has a hitting set of size at most k if and only if C(I) has a DS/DL of

size at most k using at most one term/rule (plus the default rule). Towards showing the forward

direction, let H be a hitting set for F of size at most k. Then, ({tH}, 0), where tH is the term

{ fu = 0 | u ∈ H} is a DS for C(I) and ((tH , 1), (∅, 0)) is a DL for C(I), as required. The reverse

direction now follows from Observation 1 showing that the features of any DS/DL must form a

support set, which we know from the proof of Lemma 25 corresponds to a hitting set for F .

It remains to show that F has a hitting set of size at most k if and only if C(I) has a DS/DL

of size at most k using at most one literal per term/rule. Towards showing the forward direction,

let H be a hitting set for F of size at most k. Then, ({ fu = 1 | u ∈ H}, 1) is a DS for C(I) and

((tH , 1), (∅, 0)) is a DL for C(I), as required. The reverse direction now follows from Observation 1

showing that the features of any DS/DL must form a support set, which we know from the proof

of Lemma 25 corresponds to a hitting set for F .

10. Conclusion

We present a general framework for learning small (ensembles of) models (parameterized by

s + δ) and show its applicability to DSs, DLs, DTs, and BDDs. Since our algorithm enumerates

25

all minimum BDDs, it can also be applied to more restrictive variants of BDDs, such as free and

ordered BDDs. While we provide our framework only for CIs with Boolean domain features, all

our tractability results can be easily extended to features with unbounded domains as long as the

domains are ordered and the maximum size of the domain is taken as an additional parameter.

We leave it open, however, whether the recent tractability result for learning small DTs without

domain as a parameter [7] can be extended to BDDs or even DSs or DLs, and we conjecture

that this is not the case. Another interesting question is whether it is possible to show that the

dependency on the parameters of our algorithms is the best possible or whether, in particular, our

algorithm for BDDs can be significantly improved.

Acknowledgments

Sebastian Ordyniak acknowledges support from the Engineering and Physical Sciences Re-

search Council (EPSRC, project EP/V00252X/1). Stefan Szeider acknowledges support from the

Austrian Science Fund (FWF, projects P36420 and P36688), and from the Vienna Science and

Technology Fund (WWTF, project ICT19-065).

References

[1] Aglin, G., Nijssen, S., Schaus, P., 2020. Learning optimal decision trees using caching branch-and-bound search,

in: AAAI, AAAI Press. pp. 3146±3153.

[2] Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M.I., Rudin, C., 2017. Learning certifiably optimal rule lists for

categorical data. J. Mach. Learn. Res. 18, 234:1±234:78.

[3] Avellaneda, F., 2020. Efficient inference of optimal decision trees, in: AAAI, AAAI Press. pp. 3195±3202.

[4] Dabrowski, K.K., Eiben, E., Ordyniak, S., Paesani, G., Szeider, S., 2024. Learning small decision trees for data of

low rank-width, in: AAAI, AAAI Press. pp. 10476±10483.

[5] Dash, S., GÈunlÈuk, O., Wei, D., 2018. Boolean decision rules via column generation, in: NeurIPS, pp. 4660±4670.

[6] Demirovic, E., Lukina, A., Hebrard, E., Chan, J., Bailey, J., Leckie, C., Ramamohanarao, K., Stuckey, P.J., 2022.

Murtree: Optimal decision trees via dynamic programming and search. J. Mach. Learn. Res. 23, 26:1±26:47.

[7] Eiben, E., Ordyniak, S., Paesani, G., Szeider, S., 2023. Learning small decision trees with large domain, in: IJCAI,

ijcai.org. pp. 3184±3192.

[8] Florio, A.M., Martins, P., Schiffer, M., Serra, T., Vidal, T., 2023. Optimal decision diagrams for classification, in:

AAAI, AAAI Press. pp. 7577±7585.

[9] Gahlawat, H., Zehavi, M., 2024. Learning small decision trees with few outliers: A parameterized perspective, in:

AAAI, AAAI Press. pp. 12100±12108.

[10] Ghosh, B., Meel, K.S., 2019. IMLI: an incremental framework for maxsat-based learning of interpretable classifi-

cation rules, in: AIES, ACM. pp. 203±210.

[11] Gunning, D., Aha, D.W., 2019. Darpa’s explainable artificial intelligence (XAI) program. AI Mag. 40, 44±58.

[12] Hu, H., Huguet, M., Siala, M., 2022. Optimizing binary decision diagrams with maxsat for classification, in: AAAI,

AAAI Press. pp. 3767±3775.

[13] Hu, X., Rudin, C., Seltzer, M.I., 2019. Optimal sparse decision trees, in: NeurIPS, pp. 7265±7273.

[14] Hyafil, L., Rivest, R.L., 1976. Constructing optimal binary decision trees is np-complete. Inf. Process. Lett. 5,

15±17.

[15] Ignatiev, A., Marques-Silva, J., 2021. Sat-based rigorous explanations for decision lists, in: SAT, Springer. pp.

251±269.

[16] Ignatiev, A., Pereira, F., Narodytska, N., Marques-Silva, J., 2018. A sat-based approach to learn explainable deci-

sion sets, in: IJCAR, Springer. pp. 627±645.

[17] Kobourov, S.G., LÈoffler, M., Montecchiani, F., Pilipczuk, M., Rutter, I., Seidel, R., Sorge, M., Wulms, J., 2023. The

influence of dimensions on the complexity of computing decision trees, in: AAAI, AAAI Press. pp. 8343±8350.

[18] Komusiewicz, C., Kunz, P., Sommer, F., Sorge, M., 2023. On computing optimal tree ensembles, in: ICML, PMLR.

pp. 17364±17374.

[19] Lin, J., Zhong, C., Hu, D., Rudin, C., Seltzer, M.I., 2020. Generalized and scalable optimal sparse decision trees,

in: ICML, PMLR. pp. 6150±6160.

26

[20] van der Linden, J.G.M., de Weerdt, M., Demirovic, E., 2022. Fair and optimal decision trees: A dynamic program-

ming approach, in: NeurIPS.

[21] Molnar, C., 2022. Model-agnostic interpretable machine learning. Ph.D. thesis. Ludwig Maximilian University of

Munich, Germany.

[22] Narodytska, N., Ignatiev, A., Pereira, F., Marques-Silva, J., 2018. Learning optimal decision trees with SAT, in:

IJCAI, ijcai.org. pp. 1362±1368.

[23] Ordyniak, S., Szeider, S., 2021. Parameterized complexity of small decision tree learning, in: AAAI, AAAI Press.

pp. 6454±6462.

[24] Rudin, C., 2019. Stop explaining black box machine learning models for high stakes decisions and use interpretable

models instead. Nat. Mach. Intell. 1, 206±215.

[25] Schidler, A., Szeider, S., 2024. Sat-based decision tree learning for large data sets. J. Artif. Intell. Res. 80, 875±918.

[26] Shati, P., Cohen, E., McIlraith, S.A., 2021. Sat-based approach for learning optimal decision trees with non-binary

features, in: CP, Schloss Dagstuhl - Leibniz-Zentrum fÈur Informatik. pp. 50:1±50:16.

[27] Verhaeghe, H., Nijssen, S., Pesant, G., Quimper, C., Schaus, P., 2020. Learning optimal decision trees using

constraint programming. Constraints An Int. J. 25, 226±250.

[28] Verwer, S., Zhang, Y., 2019. Learning optimal classification trees using a binary linear program formulation, in:

AAAI, AAAI Press. pp. 1625±1632.

[29] Yu, J., Ignatiev, A., Bodic, P.L., Stuckey, P.J., 2020. Optimal decision lists using SAT. CoRR abs/2010.09919.

[30] Yu, J., Ignatiev, A., Stuckey, P.J., Bodic, P.L., 2021. Learning optimal decision sets and lists with SAT. J. Artif.

Intell. Res. 72, 1251±1279.

27

