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ABSTRACT

Efficient and scalable methods for monitoring marine biodiversity are critical for understanding ecological change in coastal 

environments, given the limited resources available. Environmental DNA (eDNA) metabarcoding shows promise for monitoring 

coastal taxa, but its ability to differentiate communities from different locations remains insufficiently understood, particularly 

in dynamic marine environments. Here, we evaluate the effectiveness and resolution capacity of eDNA metabarcoding in detect-

ing rocky intertidal taxa across three spatial scales—national, regional, and local—in the United Kingdom. Onshore surface- 

water samples were collected from 32 sites across five UK Regional Seas from rockpools in high and low shore zones, as well as 

directly from the sea. We detected 1026 target taxa within 442 families and 19 phyla using two established markers targeting 

invertebrates (COI) and macroalgae (18S). Distinct eDNA signals were found at all spatial scales, indicating local discreteness 

even between vertical shore heights within the same sites. Communities were more discrete at larger scales (i.e., between regions) 

than at smaller scales (i.e., between shore heights). eDNA signals were more strongly structured by geographical location than 

by vertical shore height as a probable consequence of greater DNA homogenization over the tidal cycle at smaller spatial scales. 

Established ecological zonation patterns were reflected in eDNA signals, with higher richness at lower shore heights, reflecting 

abiotic stress gradients. Detections of cold- affinity boreal species increased with latitude, while warm- affinity lusitanian species 

declined with latitude. Our work supports the utility of eDNA metabarcoding for multiscale biodiversity monitoring in dynamic 

marine environments and for detections beyond this study's target taxa. We recommend the adoption of scale- appropriate sam-

pling protocols to optimize the benefits of eDNA, such as prioritizing open water sampling at high tide for broad- scale assess-

ments and rockpool sampling at low tide for capturing local- scale patterns. Future work should validate detections through 

direct visual comparisons.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 

provided the original work is properly cited.
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1   |   Introduction

Monitoring marine biodiversity at multiple spatial scales (e.g., 
local, regional, or national scales) offers a more comprehen-
sive understanding of biological community responses to envi-
ronmental change compared to single- scale approaches (Perry 
and Ommer  2003; Anderson  2018). For example, large- scale 
monitoring can reveal changes in the biogeographic distribu-
tions of marine species, such as shifting range edges, while 
small- scale monitoring can uncover local extinctions of native 
species or species introductions. Specifically, coastal marine 
ecosystems are more vulnerable to anthropogenic impacts 
than pelagic or deep- sea ecosystems due to their close prox-
imity to major sources of human activity (Halpern et al. 2008; 
Mieszkowska 2021). Thus, efficient and scalable methods for 
monitoring coastal biodiversity are essential for detecting and 
managing ecological change, including shifts in species dom-
inance and community composition (Perry and Ommer 2003; 
Anderson 2018).

Environmental DNA (eDNA) is a powerful molecular tool 
for detecting biodiversity in marine environments, with ad-
vances in using eDNA to monitor macro- organisms in re-
cent years (Takahashi et  al.  2023). Specifically, eDNA is 
defined as a complex mixture of organismal (i.e., whole or-
ganisms) and extra- organismal (i.e., shed by organisms) ge-
netic material found in environmental media such as seawater 
(Rodriguez- Ezpeleta et  al.  2021). An established technique 
for multi- species detection is eDNA metabarcoding which 
can capture marine biodiversity over large spatial scales 
(Agersnap et  al.  2022; Cole et  al.  2021; Deiner et  al.  2017). 
Monitoring methods that use eDNA can overcome challenges 
faced by visual methods, such as reducing dependency on 
in situ species identification and standardizing ecological data 
collection (Takahashi et  al.  2023). Although eDNA methods 
have been applied across the tree of life, ecologically and cli-
matically important indicator groups like invertebrates and 
macroalgae remain understudied compared to vertebrates 
(Takahashi et al. 2023).

Despite its advantages, eDNA metabarcoding has inherent 
limitations that can restrict its application to answer ecologi-
cal questions effectively. In high- energy marine environments 
strongly influenced by tides, geology, and environmental fac-
tors, eDNA signals can be difficult to interpret over space and 
time (Scriver et  al.  2023). For example, eDNA can be trans-
ported away from its source organism, increasing the risk of 
false- positive detections (Goldberg et  al.  2016). Conversely, 
the concentration and quality of eDNA can be reduced by bi-
otic and abiotic factors, increasing the risk of false negatives 
(Harrison et  al.  2019; Scriver et  al.  2023). There is growing 
evidence that eDNA signals are spatially discrete (i.e., dis-
criminate dissimilar communities from nearby locations) 
even in highly connected marine systems (Larson et al. 2022; 
O'Donnell et al. 2017; Shea and Boehm 2024; Stat et al. 2019; 
West et  al.  2020), with detections potentially reflecting the 
movement of organisms (Scriver et al. 2024). Specifically, spa-
tial discreteness has been found at fine spatial scales (< 5 km 
and < 40 m, Jeunen et  al.  2019; Shea and Boehm  2024, re-
spectively). While broad- scale eDNA studies exist, those 
specifically testing spatial resolution have been limited to 

single geographical areas, typically within one site or region. 
Therefore, to implement eDNA as a biodiversity monitoring 
tool, it is crucial to understand its utility at multiple spatial 
scales and the environmental factors that may affect detection.

An appropriate marine system to explore the spatial discrete-
ness of eDNA is rocky intertidal reef due to its unique physi-
cal characteristics, such as distinct vertical zonation, ubiquity 
across coastlines at temperate latitudes, and continuing value 
in global change research (Hawkins et  al.  2020). Rocky in-
tertidal communities are among the most threatened coastal 
habitats due to their sensitivity to ocean warming, caused 
by organisms living close to their thermal tolerance limits 
and regularly being exposed to a wide range of environmen-
tal conditions (Falkenberg et  al.  2021; Halpern et  al.  2007; 
Mieszkowska 2021). Unique physical features that are import-
ant in determining the structure of communities, such as the 
presence of rockpools and vertical zonation, can be utilized 
to test the precision of eDNA at small spatial scales (Hawkins 
et  al.  2019; Martins et  al.  2007). For example, high shore 
zones typically support lower species diversity than low shore 
zones due to greater exposure to environmental stressors 
such as temperature extremes and desiccation (Underwood 
and Kennelly 1990; Martins et al. 2007; Hawkins et al. 2019). 
Thus, if eDNA signals accurately reflect spatial patterns, an 
increase in species richness from high to low shore zones 
should be detectable. Conversely, due to the widespread dis-
tribution of some species and the potential for DNA homog-
enization, some overlap in community composition may be 
expected across spatial scales. A better understanding of the 
spatial dynamics of eDNA on rocky shores will support its in-
tegration into routine ecological monitoring for high- energy 
coastal ecosystems.

We conducted nationwide sampling across the UK to assess 
the ability of eDNA metabarcoding to characterize intertidal 
rocky shore diversity across three spatial scales (local, regional, 
and national). Through a multi- gene approach, we focused on 
taxonomic groups known to be sensitive to ocean warming, 
broadly targeting marine invertebrates (COI) and macroalgae 
(18S). Onshore surface- water samples were collected across 32 
rocky shore sites in five UK Regional Seas. Samples were col-
lected from spatially discrete shore heights, including rockpools 
in high and low shore zones, as well as directly from the sea to 
determine how eDNA signals change over small spatial scales. 
We aimed to expand the application of eDNA- based methods for 
intertidal monitoring by (i) assessing the ability of eDNA meth-
ods to accurately identify intertidal taxa and (ii) investigating 
the spatial discreteness of eDNA to describe rocky intertidal di-
versity at multiple spatial scales while accounting for environ-
mental factors (temperature and pH) that could influence eDNA 
detection.

2   |   Methods

Detailed protocols are available that provide comprehensive guid-
ance on how to reproduce the methods described here, includ-
ing sample collection (Simons et al. 2024), laboratory processing 
(NEOF- NERC Environmental Omics Facility et al. 2025), and 
computational processing (see NEOF  2023 for bioinformatics; 
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Simons  2025 for formatting, filtering, and quality control). A 
publicly accessible GitHub repository (Simons et al. 2025) con-
tains all data and code (in an R Markdown file) necessary to 
fully reproduce the analyses.

2.1   |   Sampling Locations

Thirty- two intertidal rocky sites in five UK Regional Seas 
(Figure  1a) were sampled in the summer (June–September) 
of 2022 and 2023. Sampling sites were selected based on four 
criteria: being extensive intertidal rocky reefs (sometimes 
with the inclusion of hard coastal structures); distanced from 
human development (e.g., docks, ports, buildings) and estua-
rine outputs to reduce acute anthropogenic activity; accessible 
for researchers to safely traverse the shore with equipment by 
foot; and located across a wide geographical range to enable 
detection of regional differences. Sites had variable shore ex-
posures and weather conditions during collection (Table S1). 
Samples were collected across two summer field seasons 
and during different weeks, which could have introduced 
temporal variation (Jensen et al. 2022). However, visual sur-
veys often detect minimal short- term annual variation in the 
rocky shore taxa studied here (Mieszkowska et al. 2021), and 
coastal eDNA studies have demonstrated annual consistency 
in community composition (Sevellec et  al.  2025). Although 
the data are summer- biased, we followed protocols devel-
oped in the intertidal visual monitoring programme MarClim 
(Mieszkowska  2020) which recommends safer site access 
during this season.

Up to nine samples per site were haphazardly collected within a 
100 m section of each shore to capture site heterogeneity. Three 
replicate samples were collected at three shore heights: high and 
low shore rockpools, and directly from the sea (referred to as 
open water samples hereafter; Figure  1b,c). We selected rock-
pools that were fully isolated from each other at low tide, more 
than 10 m apart, and contained sufficient water volume. Shore 
heights were classified through visual identification of species 
typically found at specific heights (e.g., Fucus spiralis at high 
shore, Fucus serratus at low shore) and opinion from expert 
rocky shore field ecologists. To ensure maximum spatial dis-
creteness, high shore rockpool samples were collected near the 
high- water mark while open water samples were taken as far 
below the low- water mark as possible. Open water samples were 
collected predominantly on foot, except one site where samples 
were collected in the subtidal zone from a boat (n = 3).

2.2   |   Sample Collection and Filtration

Before sample collection at each site, all equipment was ster-
ilized using a 20% bleach solution (Fisher Scientific UK Ltd., 
Leicestershire, UK), rinsed with ultrapure water (Milli- Q 
UltraPure System, Merck KGaA, Darmstadt, Germany), dried, 
and transported in clean plastic Bryson Packaging bags (Fisher 
Scientific UK Ltd., Leicestershire, UK).

We collected 265 × 1 L surface water samples using a custom on- 
site protocol. The chosen sampling volume of 1 L is common for 
aquatic studies as it sufficiently captures diversity in nearshore 

FIGURE 1    |    (a) Location of sampling sites within five major UK regions, (b) local- scale sampling design showing nine 1 L replicates (consisting of 

two 500 mL subsamples per replicate) per site, with three from each shore height, and (c) schematic diagram of the nested sampling design.
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marine environments (Govindarajan et  al.  2022; Patin and 
Goodwin  2023; Takahashi et  al.  2023). Due to high turbidity, 
a maximum volume of less than 1 L (between 200 and 999 mL) 
was filtered before blockage for 24.5% of the field samples. Since 
diversity can still be resolved from low- volume water samples 
(Dan et al. 2024), these samples were retained.

For each sample, 1 L of surface water was collected in a sterile 
HDPE collection bottle (Wide Neck, Fisher Scientific UK Ltd., 
Leicestershire, UK). To increase sampling heterogeneity, two 
500 mL subsamples were collected in the same bottle at two 
different locales (i.e., at opposite sides of the same rockpool; 
Figure 1b). The samples were filtered on- site within 1 h after 
collection, where possible. When on- site filtering was not pos-
sible, samples were kept cool and protected from sunlight to 
prevent DNA degradation, then filtered within 5 h of collec-
tion (4% of samples). The water temperature and pH were re-
corded onshore using a pre- calibrated ExStik II sensor (Extech 
EC500, FLIR Systems UK, Kent, UK) directly after sample 
collection which prevented contamination from equipment 
entering the water.

The water samples were filtered across a 0.22 μm Sterivex- GX 
unit (Merck KGaA, Darmstadt, Germany) using a modified seal-
ant gun (a custom plastic adaptor was fitted to narrow the gun's 
opening for a better syringe fit), dried by pushing air through 
the capsule, preserved in high- grade 100% ethanol (as recom-
mended by Spens et al. 2017), and capped using sterile combi- 
stoppers (UKMEDI, Norwich, UK). A negative field control 
was collected at each site to check for contamination. For each 
control, we rinsed a sterile collection bottle using sealed bottled 
drinking water, then filtered 200 mL of the bottled water using 
the same procedures as the samples. All samples were kept 
refrigerated until they could be stored at −20°C, with a maxi-
mum of 10 days between collection and freezing. The samples 
remained in the freezer for a maximum of 7 months before DNA 
was extracted from the filter membranes.

2.3   |   DNA Extraction and Metabarcoding

We conducted DNA extractions, PCR amplification, library 
preparation, and sequencing at the UK NERC Environmental 
Omics Visitors Facility (NEOF, Sheffield, UK). Before molecu-
lar work, all surfaces and equipment were sterilized with a 20% 
bleach solution and daily UV exposure. All DNA extractions and 
PCR plate preparations were performed in a PCR- free clean lab-
oratory room under a laminar flow hood. Rigorous precautions 
were implemented to prevent cross- contamination, including 
the incorporation of field, extraction, and PCR negative controls.

DNA was extracted directly from filter membranes using a mod-
ified protocol with the DNeasy Blood and Tissue Kit in combi-
nation with a QIAshredder and eluted in 50 μL AE buffer (all 
QIAGEN GMBH, Hilden, Germany). The filters were separated 
from their casing following the guidance of Cruaud et al. (2017), 
air- dried to remove trace ethanol, and incubated overnight 
(> 16 h) with proteinase K and ATL buffer (QIAGEN GMBH, 
Hilden, Germany). A negative extraction control consisting of 
molecular- grade water was included in each of the 10 extraction 
batches. DNA concentrations were measured by fluorometry on 

a multimode microplate reader (Thermo Fisher Scientific Inc., 
Waltham, MA, USA).

Two pairs of metabarcoding primers were used in a two- step 
amplification protocol to allow a broad characterization of 
marine invertebrates and macroalgae diversity. For inver-
tebrates, we amplified a ~313- bp fragment of the mitochon-
drial COI gene using the highly degenerate Leray- XT primer 
set (Forward: GGWACWRGWTGRACWITITAYCCYCC; 
Reverse: TAIACYTCIGGRTGICCRAARAAYCA), which 
provides high taxonomic resolution in diverse marine in-
vertebrate communities (Wangensteen et  al.  2018). For 
macroalgae, we amplified a ~133- bp fragment from the V7 
hypervariable region of the 18S rRNA gene using the Euka02 
primer set (Forward: TTTGTCTGSTTAATTSCG; Reverse: 
CACAGACCTGTTATTGC), which provides good coverage for 
macroalgae taxa and, to our knowledge, the only macrophyte- 
specific primer tested in eDNA metabarcoding (Ortega 
et al. 2020). Both markers were amplified in an initial PCR reac-
tion (PCR1) using the primers mentioned above tailed with an 
overhang adapter. A second amplification (PCR2) used indexed 
primers that incorporate the overhang adapter from PCR1 and 
Illumina sequencing primers to allow sample multiplexing for 
sequencing. To reduce PCR inhibitors and improve amplifica-
tion performance, serial dilutions were performed on extracts 
prior to PCR amplification, with 18S extracts diluted by 1:8 and 
COI extracted by 1:16.

For PCR1 reactions, we used a total volume of 20 μL, consist-
ing of 10 μL of Multiplex PCR Master Mix (QIAGEN GMBH, 
Hilden, Germany), 2 μL of 5 μM forward primer (Merck KGaA, 
Darmstadt, Germany), 2 μL of 5 μM reverse primer (Merck 
KGaA, Darmstadt, Germany), 5 μL of ddH2O, and 1 μL of di-
luted DNA. Due to budgetary limitations, single PCR1 repli-
cates were performed on a representative subset comprising 5% 
of the total samples. Optimized PCR thermocycling conditions 
were used for each primer (Table  1). PCR1 amplification was 
carried out in 10 batches, with each batch including a negative 
PCR1 control consisting of molecular- grade water. DNA extracts 
from four taxa outside the target communities were obtained as 
positive controls for each primer, including two terrestrial in-
vertebrates (stalk- eyed fly [Teleopsis dalmanni] and tropical ant 
[Philidris nagasau]), an Arctic microalga (Snow algae [Chlorella 

spp]), and a terrestrial grass [Vulpia myuros]. All sample repli-
cates and controls were amplified in separate wells alongside the 
main samples within the same PCR runs.

Post- PCR1, successful amplification, correct product sizes, 
and absence of contamination were confirmed by agarose 
gel electrophoresis. PCR1 products were cleaned using a 1.5× 
volume of Pronex magnetic beads (Promega Corporation, 
Madison, WI, USA). PCR2 was performed using tailed prim-
ers (dual- plexed Fi5 and Ri7) to add unique barcodes and 
Illumina adapter sequences to each sample, using 10 μL reac-
tions with MyTaq HS Mix (Meridian Bioscience, Cincinnati, 
OH, USA), 0.5 μL each of 10 μM primers, 1 μL sterile ddH₂O, 
and 8 μL of PCR1 product as template. The samples were then 
again cleaned with Pronex magnetic beads and pooled to 
approximately equal molarity, using fluorometry and qPCR 
(KK4873 kit, KAPA Biosystems on a QuantStudio 12 K Flex in-
strument, Thermo Fisher Scientific Inc., Waltham, MA, USA) 
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for quantification. Positive and negative controls were added 
at a volume of 0.5 μL to prevent overwhelming the pool. A sin-
gle library per primer pair was prepared, resulting in two final 
libraries. The size of the DNA fragment was checked on an 
Agilent 4200 TapeStation (Agilent Technologies, Santa Clara, 
CA, USA), which found primer dimer in the COI library. 
Consequently, the COI fragment was size- selected using a 
BluePippin (Pippin Prep, Sage Science Inc., Beverly, MA, 
USA). We acknowledge that size selection is not optimal and 
could have resulted in a non- normalized library pool prior to 
sequencing.

COI and 18S libraries were sequenced on an MiSeq platform 
(2 × 300 bp paired- end reads, Illumina UK, Cambridgeshire, 
UK) and a MiniSeq platform (2 × 150 bp paired- end reads, 
Illumina UK, Cambridgeshire, UK), respectively. A 10% PhiX 
spike- in was included in both runs to increase the sequence 
diversity. Laboratory work was carried out separately for each 
field season. Hence, two sequencing runs per primer pair were 
conducted. Samples from South Wales and Scotland were se-
quenced first, and then samples from Northeast England, 
North Wales, and Southwest England were sequenced second. 
All conditions were consistent across sequencing runs, and 
sample replicates were included between runs to check for 
consistency.

Across the two libraries, a total of 675 PCR samples were se-
quenced (Table S2). The COI library contained a total of 353 PCR 
samples, with 231 field samples, 53 negative controls, 17 positive 
controls, 44 replicates, and 8 failed repeats (Table S2). The 18S 
library contained a total of 322 PCR samples, with 231 field sam-
ples, 50 negative controls, 15 positive controls, 25 replicates, and 
1 failed repeat (Table S2).

2.4   |   Bioinformatics, Filtering and Quality Control

Bioinformatic analyses were conducted on the University of 
Sheffield's High Performance Computing Cluster (Bessemer). 
We used the DADA2 bioinformatics pipeline to filter, trim, derep-
licate, and denoise sequences (Callahan et al. 2016; NEOF 2023). 
BLAST searches were performed against the MIDORI2 vGB259 
database (Leray et al. 2022) for COI amplicons and the SILVA 

v132 database (Quast et  al.  2013) for 18S amplicons. Both cu-
rated databases are quality- controlled, regularly updated, and 
technically validated. We used a strict sequence identity thresh-
old of 98% to reduce false positive detections. Taxonomic as-
signments were assessed using the software MEGAN6 (Huson 
et al. 2016), where we used the LCA algorithm default param-
eters, except for adjusting the top percentage identity to 1% to 
improve species- level taxonomic matches. Analysis pipelines 
with different parameters, including using the NCBI database 
(Sayers et  al.  2022), retaining a sequence identity of 80%, and 
adjusting the top percentage identity to 10%, did not show differ-
ences except for improved taxonomic assignments with curated 
databases and stricter settings.

All downstream formatting, quality control check, and data 
analyses were completed using R v4.4.2 (R Core Team 2024) in 
the RStudio v2024.12.1 + 563 integrated development environ-
ment (Posit Team  2024). Taxonomic names were cleaned and 
validated against the World Register of Marine Species (WoRMS; 
WoRMS Editorial Board  2024) using the packages worrms 
v0.4.3 (Chamberlain and Vanhoorne  2024) and taxize v0.9.1 
(Chamberlain et al. 2012). Broad ecological taxonomic groups as-
sociated with taxa (known hereafter as taxonomic groups) were 
obtained through a custom function using the package worrms 
(Chamberlain and Vanhoorne 2024; Webb 2024). Subsequently, 
the reads, sample metadata, and cleaned taxonomy were wran-
gled into a phyloseq object using the package phyloseq v1.48.0 
(McMurdie and Holmes 2013).

To further reduce the risk of false positives, a decontamination 
pipeline was applied (as suggested by Gold et al. 2022). The sam-
ples were decontaminated by batch (field, extraction, and PCR) 
using a custom function which removed all taxa that contained a 
higher read count in negative controls than in the corresponding 
sample. To prevent non- target taxa from influencing biodiver-
sity estimates, taxa were filtered to only include target macro-
invertebrate and macroalgae phyla, as well as those organisms 
larger than 1 mm (i.e., macrobenthos only).

A series of quality control checks was performed on the fil-
tered data using the packages phyloseq, metabaR v1.0.0 
(Zinger et al. 2021) and vegan v2.6.6 (Oksanen et al. 2022). We 
confirmed the success of positive controls to at least a family 

TABLE 1    |    Thermocycler conditions for primers and PCR steps used in metabarcoding.

PCR cycle Dilution Denaturation Cyclic denaturation Cycles Final extension and cooling

PCR1 (Leray- XT) 1/16 95°C/15 min 95°C/20 s 35 72°C/10 min

50°C/90 s 10°C/indefinite

72°C/90 s

PCR1 (Euka02) 1/8 95°C/15 min 95°C/20 s 35 72°C/10 min

53°C/90 s 10°C/indefinite

72°C/90 s

PCR2 NA 95°C/2 min 98°C/10 s 12 72°C/5 min

65°C/30 s 10°C/indefinite

72°C/30 s
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level, though some sequences required manual BLAST search-
ing when absent from the curated databases. We visualized 
read depths across primers (Figure  S1), regions (Figure  S2), 
and samples (Figures  S3 and S4) to evaluate the overall se-
quencing quality and to identify a suitable threshold for fur-
ther filtering. Thus, samples with a read depth below 3000 
reads (20 samples) were removed to prevent bias in diversity 
estimates. Rarefaction curves were constructed across each 
region and primer set to verify sufficient sampling effort using 
vegan (Figure S5). The similarity of technical replicates (be-
tween runs and within runs) was explored by calculating the 
pairwise Jaccard and Bray dissimilarity in vegan (Figure S6), 
as well as by inspection of compositional taxa plots in phy-

loseq (Figures  S7 and S8). Data were not rarefied to prevent 
reduction in statistical power and reduce the risk of false pos-
itive rates (McMurdie and Holmes  2014). Conclusions were 
not affected by any of these steps, as checked by replicating 
analyses with rarefied data, unfiltered data, and alternative 
decontamination steps. All replicates were retained in the sta-
tistical analyses.

2.5   |   Statistical Analyses

To assess the ability of our employed eDNA methods to iden-
tify a wide range of intertidal macroinvertebrates and mac-
roalgae, we visualized taxa detected across key phyla and 
taxonomic groups (macroalgae, macrobenthos, and others) 
using bar plots in the ggplot2 v3.5.1 package (Wickham 2016). 
We also visualized taxa detected across COI and 18S markers 
using Euler diagrams in the package eulerr v7.0.2 (Larsson 
et al. 2024).

To evaluate the spatial discreteness of eDNA signals, we ex-
plored how alpha and beta diversity varied across different scales 
while accounting for environmental variables. When reporting 
results, we use the graded evidence language outlined by Muff 
et al. (2022), which defines the following approximate categories: 
no evidence (p > 0.10), weak evidence (0.05 < p ≤ 0.10), moderate 
evidence (0.01 < p ≤ 0.05), strong evidence (0.001 < p ≤ 0.01), and 
very strong evidence (p ≤ 0.001).

We tested for differences in alpha diversity across shore heights 
using a mixed modeling approach that could handle both nested 
random effects and unbalanced data. Two diversity indices were 
calculated using the package phyloseq and modeled as outcome 
variables using the package lme4 v1.1.35.3 (Bates et  al.  2024): 
richness (number of species) and Shannon diversity index 
(which takes account of both species richness and evenness). 
For both models, explanatory variables were shore height (a cat-
egorical fixed effect with three levels), region (a categorical fixed 
effect with five levels), temperature (a continuous explanatory 
variable), and pH (a continuous explanatory variable). Variation 
across sampling sites was accounted for by incorporating a 
nested random effect.

Richness was modeled using a generalized linear mixed model 
with a Poisson response and a log link function in the function 
glmer(). The model structure is expressed mathematically as:

where Yijk is the observed richness for observation k at site j 
within region i, �ijk is the expected richness (the mean of the 
Poisson distribution), � is the overall intercept, �i is the fixed 
effect of region i, �1 is fixed effect of shore height, �2 is fixed 
effect of temperature, �3 is fixed effect of pH, and uij is the 
random effect of site. Denominator degrees of freedom are not 
provided when fitting GLMMs with glmer() because they are 
difficult to define (see Bolker 2025 for discussion). Therefore, 
for richness analyses, we report only the numerator degrees 
of freedom.

Shannon diversity index was modeled using a linear mixed 
model in the function lmer(). The model structure is expressed 
mathematically as:

where Zijk is Shannon diversity for observation k at site j within 
region i, �ijk is the residual error, and �, �i, �1, �2, �3, and uij are 
defined above. uij and �ijk were assumed to be mutually indepen-
dent. Denominator degrees of freedom were estimated using the 
Kenward–Roger approximation for Shannon diversity analyses 
(Kenward and Roger 1997; Schaalje et al. 2002).

Model assumptions were assessed using diagnostic plots generated 
with the core functions plot or qqnorm, including qq- plots of resid-
uals to check normality, residuals versus fitted values to check lin-
earity, and scale- location of residuals to check homoscedasticity. 
Multicollinearity was checked through the variance inflation fac-
tor (VIF) calculated in the package car (Fox and Weisberg 2018). 
In all cases, VIF values were < 2, which is below the threshold 
of 10 that indicates collinearity issues in model interpretation 
(Dormann et  al.  2013). Type II Wald chi- square tests were con-
ducted for each model using the Anova() function in the package 
car to evaluate significance.

Two planned orthogonal contrasts were used to determine 
differences between shore heights in the package emmeans 
(Lenth  2023). The first contrast examined whether diversity 
in the low shore rockpools differed from that in the high shore 
rockpools (contrast weights: 0, 1, −1 for open water, high shore, 
and low shore respectively). The second contrast tested whether 
diversity in open water differed from that in the high and low 
shore rockpools (contrast weights: 1, −0.5, −0.5 for open water, 
high shore, and low shore respectively). We visualized shared 
species detections across shore heights using Euler diagrams in 
the package eulerr v7.0.2 (Larsson et al. 2024).

While alpha diversity indices provide insight into over-
all diversity, they do not distinguish the underlying com-
munity composition that drives such patterns. Therefore, 
we explored how beta diversity varied across spatial scales. 
Due to distinct dissimilarity between COI and 18S derived Yijk ∼ Poisson

(

�ijk

)

,uij ∼ N
(

0, �2
)

log
(

�ijk
)

= �+�i+�1 ⋅ShoreHeightijk

+�2 ⋅Temperatureijk+�3 ⋅pHijk+uij

uij ∼ N
(

0, �2
)

, �ijk ∼ N
(

0,Ψ2
)

Zijk=�+�i+�1 ⋅ShoreHeightijk+�2 ⋅Temperatureijk

+�3 ⋅pHijk+uij+�ijk
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communities, we tested differences in beta diversity (specif-
ically Jaccard dissimilarity) separately for each marker. We 
conducted restricted permutational multivariate analysis of 
variance (PERMANOVA) tests for multi- factorial analysis 
using 9999 permutations on a resemblance matrix based on 
Jaccard dissimilarity in PRIMER 7 with the PERMANOVA+ 
add- on (Clarke and Gorley  2015). We used Type III sums 
of squares as recommended by Anderson et  al.  (2008, sec-
tion 1.3.4) to appropriately handle unbalanced data and per-
muted residuals under a reduced model as recommended by 
Anderson and ter Braak  (2003) to ensure valid testing of in-
teractions. Terms included in the PERMANOVA design were 
region (fixed effect), shore height (fixed effect), site (random 
effect nested within region), and their interactions. The same 
two planned contrasts used in the alpha diversity models to 
determine differences between shore heights were incorpo-
rated into the PERMANOVA design. We tested for homoge-
neity of dispersions using the betadisper() function in vegan. 
Community composition across spatial scales was visualized 
using non- metric multidimensional scaling (NMDS) based 
on Jaccard dissimilarity. Ordination was performed with the 
ordinate() function in phyloseq, using three dimensions and 
other default settings. The first two dimensions were plotted 
in NMDS plots.

To investigate whether common species observed in the 
MarClim Project (Mieszkowska et  al.  2005) were detected by 
eDNA in their respective ecological habitats, we categorized 
their known prevalence at each shore height (i.e., high, low, 
and open water) and biogeographical realm (i.e., boreal [cold- 
affinity], lusitanian [warm- affinity], and cosmopolitan). We also 
categorized those taxa known as invasive to UK waters. Species 
were classified based on expert opinion and information from 
the online databases WoRMS (WoRMS Editorial Board  2025) 
and The Marine Life Information Network (MarLIN [Marine 
Life Information Network] 2020).

3   |   Results

3.1   |   Sequencing Output

The DADA2 pipeline returned 25,709,925 processed reads 
across 524 samples and 131 controls (field negatives, extraction 
negatives, PCR negatives, and PCR positives). For 77.3% of 
ASVs, no taxonomic assignment was possible (COI: 93.5%; 18S: 
61.1%). All positive controls contained expected taxa, none of 
which were found in any other samples. Decontamination steps 
identified and removed 51 contaminants individually across 
relevant batches. After decontamination and filtering for target 
taxa, a total of 9,133,664 reads (mean = 18,086 reads per sam-
ple) were obtained across 505 samples, of which 2,697,852 reads 
(mean = 10,258 reads per sample) were from COI amplicons 
and 6,435,812 reads (mean = 26,594 reads per sample) from 18S 
amplicons.

Samples achieved sufficient sequencing depth based on read 
depth visualization (Figures  S1–S4) and rarefaction curves 
(Figure S5). Although mean dissimilarity remained high across 
the dataset, technical replicates, both within and across runs, 
were more like their corresponding samples than non- replicates 

(Figure S6). Technical replicates also showed a consistent com-
position between runs (Figure S7) and within runs (Figure S8).

3.2   |   Taxonomy

The COI marker detected more unique taxa (539) than the 
18S marker (420), with 7% (67) of taxa being detected across 
both primers (Figure  2a; Table  S3). More unique taxa were 
detected in open water samples (233) than in high shore sam-
ples (56) or low shore samples (76), with 42% (428) of taxa de-
tected across all three heights (Figure 2b). Considering both 
unique and shared taxa across markers, we identified a total 
of 1026 target taxa (62.3% of total detections after decontam-
ination) belonging to 655 genera across 442 families and 19 
phyla (Figure 2c; Table S3). In terms of taxonomic resolution, 
75.6% of taxa were matched to species- level, 84.2% to at least 
genus- level, and 91.6% to at least family- level. 737 target inver-
tebrate taxa (71.8% of the filtered data) were identified across 
16 target phyla (Porifera, Cnidaria, Ctenophora, Gastrotricha, 
Annelida, Platyhelminthes, Mollusca, Arthropoda, Bryozoa, 
Nematoda, Chaetognatha, Echinodermata, Hemichordata, 
Chordata, Phoronida, and Orthonectida; Figure 2c; Table S3). 
289 target algal taxa (28.2% of the filtered data) were iden-
tified across three target phyla (Chlorophyta, Ochrophyta, 
Rhodophyta; Figure 2c; Table S3).

3.3   |   Alpha Diversity

The random component (site nested within region) of the 
richness model accounted for 35.8% of the total variance, in-
dicating that the site contributed substantially to the overall 
variation in richness. We found very strong evidence that rich-
ness varied across regions (χ2(4) = 20.4, p < 0.001) and shore 
heights (χ2(2) = 201.4, p < 0.001; Table  S5). Specifically, we 
found very strong evidence that richness at high shore rock-
pools was lower compared to low shore rockpools (z(1) = −12.2, 
p < 0.001) and that richness at open water was higher com-
pared to rockpools (z(1) = 8.95, p < 0.001; Figure 3a; Tables S5 
and S6). We found very strong evidence that species richness 
was negatively associated with temperature (χ2(1) = 92.2, 
p < 0.001; Figure 3c) and pH (χ2(1) = 13.6, p < 0.001; Figure 3e; 
Table S5).

The random component of the Shannon diversity model ac-
counted for 13.1% of the total variance, indicating that the site 
contributed little to the overall variation in Shannon diversity. 
We found no evidence that Shannon diversity varied across re-
gions (χ2(4,30) = 3.4, p = 0.494; Table S5). We found moderate 
evidence that Shannon diversity varied across shore heights 
(χ2(2465) = 7.2, p = 0.027; Table  S5). Specifically, we found 
moderate evidence that Shannon diversity at open water 
was higher compared to rockpools (t(1,473) = 2.52, p = 0.012; 
Figure 3b; Tables S5 and S6). However, we found no evidence 
that Shannon diversity at high shore rockpools differed from 
low shore rockpools (t(1,448) = −0.99, p = 0.324; Figure  3b; 
Tables  S5 and S6). We found no evidence that temperature 
(χ2(1134) = 0.44, p = 0.507; Figure 3d) or pH (χ2 (1359) = 0.59, 
p = 0.442; Figure  3f) showed a relationship with Shannon 
diversity (Table S5).
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3.4   |   Beta Diversity

Beta diversity varied across all spatial scales, as supported by 
PERMANOVAs, NMDS, and pairwise dissimilarity comparisons.

For 18S, we found very strong evidence that variation in 
community composition was explained by region (11.98%; 

pseudo- F(4,29) = 3.50, p < 0.001), site (27.29%; pseu-
do- F(27,165) = 5.4, p < 0.001), shore height (2.64%; pseu-
do- F(2,35) = 2.78, p < 0.001), and the interaction between shore 
height and site (16.75%; pseudo- F(35,165) = 2.57, p < 0.001; 
Table S7). We found moderate evidence that variation in com-
munity composition was explained by the interaction between 
shore height and region (4.61%; pseudo- F(8,35) = 1.21, p = 0.012; 

FIGURE 2    |    Target taxa detected across (a) COI and 18S markers, (b) low, high, and open water samples, and (c) phyla and taxonomic groups. ‘Not 

found’ indicates that the taxonomic group was not available in the WoRMS database. ‘Other’ refers to taxonomic groups that were not specifically 

classified as Macroalgae or Macrobenthos in WoRMS but were still relevant to the study (e.g., epibenthos, endobenthos, meiobenthos).
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Table S7). The spatial factors explained a total of 76.42% of the ob-
served variability in 18S community composition (Table S7). We 
found strong evidence that the 18S community composition at 
high shore was different from low shore (pseudo- F(1,16) = 2.59, 
p = 0.002), and very strong evidence that open water was differ-
ent from rockpools (pseudo- F(1,19) = 3.01, p < 0.001; Table S7).

For COI, we found very strong evidence that variation in 
community composition was explained by region (9.24%; 
pseudo- F(4,29) = 2.78, p < 0.001), site (25.48%; pseu-
do- F(27,186) = 4.47, p < 0.001), shore height (2.22%; pseu-
do- F(2,35) = 2.64, p < 0.001), and the interaction between shore 
height and site (14.77%; pseudo- F(35,186) = 2.00, p < 0.001; 

Table  S8). There was no evidence of an interaction between 
shore height and region on COI community composition 
(pseudo- F(8,35) = 1.09, p = 0.123; Table S8). The spatial factors 
explained a total of 71.78% of the observed variability in COI 
community composition (Table S8). We found strong evidence 
that the COI community composition at high shore was differ-
ent from low shore (pseudo- F(1,16) = 2.92, p = 0.001), and very 
strong evidence that open water was different from rockpools 
(pseudo- F(1,19) = 2.24, p < 0.001; Table S8).

When visualizing dissimilarity using NMDS, regions exhibited 
clustering with some degree of overlap, which was more pro-
nounced in the 18S marker (Figure 4a,c). There was no obvious 

FIGURE 3    |    (a, c, e) Richness and (b, d, f) Shannon diversity across (a, b) shore heights, (c, d) temperature and (e, f) pH. Points in scatter plots (c–f) 

represent raw diversity estimates from individual samples. Lines of fit in scatter plots (c–f) represent predictions from the generalized linear model 

(richness) and general linear model (Shannon diversity) at different shore heights, averaging across the random (nested) effects, with bands repre-

senting 95% confidence intervals. p- values are from mixed models and planned contrasts.

FIGURE 4,    |    Non- metric multidimensional scaling (NMDS) ordination plots based on Jaccard dissimilarities of community compositions for (a, 

b) 18S and (c, d) COI. Community compositions are grouped by (a, c) region and (b, d) shore height as classification factors. Ellipses represent 95% 

confidence regions for the centroids of each category, assuming a multivariate t- distribution.
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clustering when visualizing dissimilarity of shore heights across 
all samples (Figure 4b,d). Dispersion across regions was not ho-
mogenous for the CO1 community (F(4,257) = 6.51, p < 0.001) or 
18S community (F(4,237) = 7.59, p < 0.001). High shore samples 
showed the highest dispersion across heights in the CO1 com-
munity (F(2,259) = 14.2, p < 0.001; Figure 4b) and the 18S com-
munity (F(2,239) = 13.3, p < 0.001; Figure 4d).

Pairwise dissimilarity was lower for samples in the same shore 
height (COI = 0.77 ± 0.004; 18S = 0.68 ± 0.005) than for samples 
in different heights (Figure 5a,b). Samples from high shore and 
open water were consistently more dissimilar to each other 
(COI = 0.87 ± 0.003; 18S = 0.84 ± 0.004) than to other shore 
heights (Figure 5a,b).

The proportion of typical high shore taxa detected increased 
from open water (7.7%) to high shore (23.0%; Figure  6a). The 
proportion of typical low shore taxa and open water taxa de-
tected decreased from open water (10.7%) to high shore (5.0%; 
Figure 6a). Typical low shore taxa dominated detections across 
all three positions (Figure 6a).

The proportion of boreal taxa detected increased from regions with 
lower latitudes (i.e., Southwest England; 53.3%) to regions with 
high latitudes (i.e., Scotland; 89.9%; Figure  6b). The proportion 
of lusitanian taxa detected approximately increased from regions 
with higher latitudes (i.e., Scotland; 6.7%) to regions with lower lat-
itudes, although South Wales had the highest proportion of lusita-
nian taxa (28.5%; Figure 6b). The highest proportion of invasive 

FIGURE 5    |    Shore height pairwise Jaccard dissimilarity comparisons across regions for (a) 18S and (b) COI markers. Comparisons are ordered 

from least to most predicted similarity based on physical proximity (i.e., high shore and open water samples are the least similar, same shore height 

samples are the most similar).
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taxa was detected in Southwest England (11.4%), and the lowest 
proportion was detected in Scotland and Northeast England (< 1%; 
Figure 6b). Proportions of cosmopolitan species showed no rela-
tionship with changing latitude (Figure 6b).

4   |   Discussion

This study examined the ability of eDNA metabarcoding to detect 
rocky intertidal communities at a national scale (hundreds of kilo-
meters apart), a regional scale (tens of kilometers apart), and a local 
scale (metres apart). We detected a broad range of marine taxa and 
observed discrete ecological communities at all spatial scales, 
with differences in eDNA signals at larger scales (i.e., between re-
gions) more discrete than at smaller scales (i.e., within sites). Our 
methods effectively captured well- established ecological zonation 
and biogeographical patterns. We suggest that observed detection 
patterns could be driven by differences in marker performance, a 
higher degree of DNA homogenization at small scales compared to 
large scales, and local abiotic gradients in rocky shores.

4.1   |   Performance and Variability of eDNA 
Metabarcoding

A broad range of marine taxa was detected across target and 
non- target taxonomic groups, with minimal overlap in commu-
nities derived from the two markers. Differences in marker de-
tections may be attributed to variations in taxonomic coverage, 
sequence availability in reference databases, and the resolution 

of taxonomic assignments. Previous work has shown that the 
18S gene can target a broader range of taxa with lower taxonomic 
resolution, while COI can provide a higher taxonomic resolu-
tion but for limited taxonomic coverage (Casey et  al.  2021). A 
substantial proportion of assigned taxa (37.7%) consisted of non- 
target amplifications, highlighting the limited specificity of the 
chosen universal barcodes. This finding demonstrates that the 
approach can detect a broader range of taxa than initially tar-
geted. Notably, many micro planktonic organisms comprised 
a large proportion of non- target marine species in this study 
(Table S4). Although the primers were not specifically designed 
for plankton and such detections may be sub- optimal, the ability 
to effectively monitor planktonic groups through shore- based 
surveys could prove highly valuable, especially considering me-
tabarcoding has been previously applied to monitor plankton 
(Chen et  al.  2024). The distinct and broad detections by each 
marker highlight the already well- established need for a mul-
tigene approach in metabarcoding to overcome marker- specific 
limitations and achieve a comprehensive representation of bio-
diversity (Casey et al. 2021; Mashar et al. 2025).

Technical replicates, both within and across sequencing runs, 
resembled their corresponding samples, as evidenced by similar 
taxa compositions and lower average dissimilarity compared to 
non- corresponding samples. However, overall dissimilarity was 
high across all technical replicates, which has been observed 
in other marine metabarcoding studies (Shea and Boehm 2024; 
Stauffer et  al.  2021). Field replicates (i.e., samples collected 
from the same site and shore height) exhibited high dissimi-
larity, which could be driven by two mechanisms. Firstly, high 

FIGURE 6    |    Proportion of subsetted detected taxa across (a) shore positions and (b) regions, categorized by their typical intertidal zone (high only, 

low only, open water only, or a combination) and biogeographical realm (boreal, Lusitanian, cosmopolitan, or invasive) based on available ecological 

information. Shore heights are ordered to reflect their true position on the shore (as shown in Figure 1b). Regions are ordered by descending latitude, 

with Scotland at the highest latitude and Southwest England at the lowest latitude.
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biological variation can be found between different rockpools, 
such that not all taxa suited to a particular shore height can 
inhabit every available rockpool due to site- specific environ-
mental factors (Martins et al. 2007; Hawkins et al. 2019). This 
is supported by how shore height influenced community com-
position differently across sites in our multivariate analyses. 
Secondly, the limited biological and technical replication in our 
study due to resource constraints may have reduced the proba-
bility of detecting all taxa present. Therefore, we interpret any 
absence of taxa with caution when assessing spatial differences. 
Future work should conduct direct comparisons with visual ob-
servations to ground- truth eDNA detections, which would help 
understand the probability of detecting certain taxa with eDNA. 
Nevertheless, prioritizing resources on site- level eDNA sample 
replication was appropriate for our multiscale experimental de-
sign and rigorous quality control checks confirmed our methods 
were robust for providing a representation of biodiversity.

4.2   |   Greater Differentiation of eDNA Signals at 
Larger Spatial Scales

The three spatial factors investigated in this study explained a 
large proportion of community variation, demonstrating that 
eDNA methods can effectively capture spatial influences on 
rocky shores. Nevertheless, we proceed with caution when as-
sessing spatial differences due to observed dispersion effects, 
which could be driving significant results in PERMANOVAs 
(Anderson 2017).

At a local scale, detections and community composition showed 
high overlap across shore heights, with shore height having a 
minor influence on community composition compared to re-
gional and site effects. These findings suggest that eDNA sig-
nals of intertidal communities are more strongly structured 
by geographic location than by vertical shore height. This is 
a probable consequence of greater water mixing and DNA ho-
mogenization at a local scale over the tidal cycle, when rock-
pools are physically connected, than at a regional or national 
scale. DNA transport and diffusion over small distances within 
rocky shore sites have been demonstrated by Ely et al. (2021), 
who showed that foreign DNA could move across an entire 35 m 
transect within 1.5 h of introduction. The effect of shore height 
also varied across sites, which accounted for the largest propor-
tion of variation among all spatial variables. Thus, site- specific 
environmental features could be driving local community 
differences by enabling species typically confined to partic-
ular areas to expand their shore height range. For example, 
site exposure (i.e., the degree to which a site is subject to wave 
action and prevailing wind) is a prominent driving force for 
structuring intertidal communities (Williams 1993) and varies 
substantially across UK sites. Our work supports the concept 
that communities detected by eDNA decrease in similarity as 
they become further apart (O'Donnell et  al.  2017) and eDNA 
signals, while not necessarily endogenous to a shore height, are 
probably endogenous to the site (Kelly et al. 2018).

Although less pronounced, unique eDNA signals were neverthe-
less found at the local scale, with greater similarity among sam-
ples from the same shore height and the highest dissimilarity 
between the extremes of the shore (i.e., between open water and 

high shore rockpools). These findings demonstrate that unique 
eDNA signals can develop at different areas of the same shore—a 
pattern also observed by Shea and Boehm (2024)—although we 
find elements of similarity persist over very small distances (e.g., 
approximately 10 m apart). This rationale is further supported 
by the consistent proportional decline in taxa found outside 
their expected shore height with distance. In addition, few taxa 
were shared exclusively between high and low shore samples 
without also being detected in the open water, suggesting that 
shore- wide similarity is primarily driven by the persistence of 
DNA from tidal wash- in during high tide, rather than by direct 
transfer between rockpools. Thus, unique signals in rockpools 
may persist even after they become physically connected to 
the rest of the shore, as also found in Shea and Boehm (2024). 
Our work contributes to the growing body of evidence indicat-
ing that eDNA signals can exhibit spatial discreteness across 
sites in dynamic coastal environments (Jeunen et  al.  2019; 
Larson et al. 2022; Scriver et al. 2024; Shea and Boehm 2024; 
West et al. 2020). However, community discreteness is less pro-
nounced at short distances within sites, particularly in the con-
text of a multisite study such as ours.

4.3   |   eDNA Signals Reflect Known Rocky Shore 
Ecology

eDNA signals correspond with established patterns in rocky 
shore ecology at both local and national scales. At the local 
scale, species richness declined from the open water toward the 
high shore and with increasing temperature. This finding could 
reflect changes in species richness driven by the abiotic stress 
gradient commonly observed in intertidal environments, a key 
factor in shaping local biodiversity (Menge et al. 2002). For ex-
ample, high shore areas are exposed to desiccation and extreme 
temperature fluctuations due to prolonged exposure at low tide, 
which limit the survival of less heat- tolerant species (Scrosati 
et al. 2011). Temperature is known to accelerate eDNA degrada-
tion in aquatic systems (Strickler et al. 2015); however, DNA has 
been shown to persist for at least 24 h after shedding (Holman 
et  al.  2022), even at temperatures above 20°C (McCartin 
et  al.  2022). Furthermore, considering most rocky shore mac-
roinvertebrates and macroalgae are sessile, it is unlikely that 
individuals inhabiting a rockpool would have relocated within 
a tidal cycle period, and hence are expected to continually shed 
DNA over the detection period. Thus, we propose that the decline 
in richness with increasing temperature reflects the increased 
stress of warmer areas, which are less favorable to a broader 
range of species (Satyam and Thiruchitrambalam  2018). We 
suggest the absence of patterns observed by the Shannon diver-
sity index reflects the lack of concordance between sequencing 
reads and true abundance. Therefore, caution is needed when 
using abundance- based diversity indices to interpret metabar-
coding data, unless techniques are applied to account for dis-
crepancies between amplicon counts and true taxon abundance, 
such as PCR- mechanistic statistical models (Shelton et al. 2023).

Ecological expectations were also met at a regional scale, with 
detections of cold- affinity boreal species increasing with latitude, 
whilst warm- affinity lusitanian species declined with latitude. The 
high proportion of boreal species in Scotland is consistent with its 
unique geological history and more northern latitude relative to 
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other UK Regional Seas (Hall et al. 2019). In addition, the detec-
tion of a high proportion of invasive species in southwest England 
aligns with current understanding of invasive species distribu-
tions in the UK (Eno et al. 1997), detecting the presence of non- 
native species such as the red alga Asparagopsis armata (Harpoon 
weed), the arthropod Austrominius modestus (Modest barnacle), 
the brown alga Colpomenia peregrina (Oyster thief), and the red 
alga Grateloupia turuturu (Devil's tongue weed). While moderate 
overlap of detections was found using eDNA across regions, ubiq-
uitous taxa are common within UK rocky shore communities. 
Hence, it is likely the observed patterns reflect the true ecology of 
the system, though direct comparisons to visual observations at 
the same spatial scales are needed for validation.

4.4   |   Implications for Monitoring Intertidal 
Biodiversity Using eDNA

We offer recommendations for optimizing sampling practices 
to monitor intertidal biodiversity using eDNA- based methods. 
Due to the evidence presented that eDNA- derived communities 
are less discrete at small spatial scales (i.e., within sites), scale- 
appropriate sampling protocols should be tailored to the specific 
monitoring objectives. For example, when investigating changes 
in small- scale biodiversity (e.g., microhabitats across a single 
shore), sampling at the point of greatest physical isolation (i.e., 
low tide) will help identify unique ecological signals across dif-
ferent areas. To capture all species present at a given site (i.e., 
conducting a BioBlitz as described in Robinson et al. 2013), we 
recommend increasing local- scale replication, such as by taking 
multiple samples from the same rockpool, to reduce the likeli-
hood of false negatives. Sampling from various media such as 
rock scrapes in addition to seawater could enhance detection 
rates and capture different communities, as shown in other ma-
rine studies (Brandt et al. 2021).

Whilst eDNA- based methods have utility for fine- scale monitor-
ing, our findings suggest that sampling at larger scales is more 
effective at capturing biogeographical shifts in intertidal com-
munities. For example, when assessing the overall biodiversity 
at a site without the need to differentiate between specific local 
areas, sampling at high tide from open water will increase the 
likelihood of capturing a broader range of DNA and improve 
sampling efficiency. This is based on our findings that show 
open water samples detected the most unique taxa and showed 
considerable overlap in detections with other shore heights. 
Increasing site- wide replication or employing larger- scale filters 
(e.g., autosamplers) over a tidal cycle will improve sampling ef-
fort and DNA capture. When targeting a particular species, such 
as an invasive species, the use of more specific primers and in-
creased site- level replication may be necessary. Moreover, when 
interest extends beyond the site itself, sampling in open water 
could offer broader applicability for marine surveys, as rocky 
shores are more accessible and cost- effective for sampling com-
pared to offshore environments.

5   |   Conclusion

Our broad geographic study demonstrates the effectiveness of 
a multi- marker eDNA metabarcoding approach to characterize 

coastal biodiversity and its potential for multiscale monitoring 
in highly connected marine environments. Observed differences 
in communities across shore heights and regions were consistent 
with known ecological patterns, suggesting that eDNA methods 
can accurately capture true community structure. eDNA signals 
were more strongly structured by geographic location than by 
vertical shore height, reflecting greater DNA homogenization at 
smaller spatial scales, with potential implications for application 
in ecological studies. Thus, we recommend the adoption of scale- 
appropriate sampling protocols tailored to specific monitoring 
objectives. For large- scale biodiversity assessments, prioritizing 
open water sampling at high tide could optimize broad site- level 
detections. Alternatively, sampling at a rockpool scale at low tide 
could be more effective at capturing local patterns. Overall, our 
findings suggest that onshore eDNA- based approaches could be 
utilized in multiscale ecological studies to monitor broad ma-
rine biodiversity beyond the specific target taxa of this study, 
although future work should further validate detections through 
direct comparisons with visual surveys.
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