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Societal Impact Statement

Cacao production is both economically vital and environmentally intensive, present-

ing a major sustainability challenge as a crop largely cultivated by smallholder farmers

in climate-vulnerable regions. This review synthesises evidence that integrating agro-

forestry with enhanced rock weathering (EW) may significantly reduce emissions

from cacao production. Our projections indicate that applying EW to 10% of the

cocoa harvest area gives a notably high mitigation potential. Although these findings

suggest EW could substantially offset emissions, our review emphasises the urgent

need for rigorous field trials to validate projections and explore possible synergies or

unintended consequences. The integration of EW and agroforestry could offer a scal-

able solution to align cacao production with global climate and sustainability goals

while supporting long-term agricultural resilience.

Summary

As one of the most emission-intensive foods, chocolate presents a significant chal-

lenge in meeting consumer demand and sustainability goals. Focusing on carbon

sequestration and climate resilience, this review explores the potential of agrofor-

estry and enhanced rock weathering (EW) as a dual strategy towards climate-positive

cacao. Here, we describe how agroforestry systems, particularly multi-strata systems

such as cabrucas, can enhance carbon sequestration, tolerance to global climate

change and ecosystem services. We analyse the mechanisms by which EW can aug-

ment these benefits, focusing on its impact on offsetting carbon emissions during

production, nutrient release and improved soil health. The combined efficacy of these

strategies is assessed. Research gaps and areas of concern are identified, principally

around monitoring carbon removal, biodiversity impacts and nutrient cycling. Our

review highlights the importance of integrated approaches to address the complex

challenges facing the cocoa sector. Further research is needed to quantify the

economic and social benefits of agroforestry and EW, as well as to develop best

management practices for different agro-ecological contexts.
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1 | INTRODUCTION: COCOA'S CARBON

PROBLEM

Theobroma cacao L, “Food of the Gods” has held profound social and

economic significance as a food, drink and medicine for 5,300 years

(Zarrillo et al., 2018), and this continues to the present day. The

global chocolate market was estimated at $119.39 billion in 2023

(Horizon, 2023), with a projected revenue forecast of $23.54 billion

for cacao beans by 2030. Globally, the industry supports approxi-

mately five to six million farmers, with 40 to 50 million people

depending on cacao for their income (Beg et al., 2017). With an 8.4%

compound annual growth rate expected between 2024 and 2030

(Horizon, 2023), cacao remains among the most valuable cash crops

and agro-economic commodities and production has been increasing

to meet this demand. However, over the past 60 years, a direct corre-

lation has been observed between increases in cacao bean production

and the area of land harvested (Figure 1). In contrast to typical row

crops (e.g., corn), increased production has not been invoked by

increases in yield.

Cacao has a significant yield gap problem; in 2023, the global

yield average was 480.5 kg/ha (Faostat, 2024) approximately 90%

lower than the modelled water-limited yield potential of 5,000 kg/ha

(Zuidema et al., 2005) and 84% lower than the experimentally

derived yield potential of 3,000 kg/ha (Appiah et al., 2000). This

has been attributed to low technological adoption (Aneani &

Ofori-Frimpong, 2013), disease outbreaks (Agyeman-Boaten &

Fumey, 2021) and climate events (Gateau-Rey et al., 2018), among

other factors. Many cacao farmers (30–58%) earn a gross income

below the World Bank extreme poverty line, and the majority (73–

90%) do not earn a Living Income in the two highest cacao-producing

countries (Van Vliet et al., 2021); yield gaps and low farm-gate prices

perpetuate this cycle of poverty (Bensch et al., 2023; Tittonell &

Giller, 2013). As identified by cacao farmers in Cameroon, barriers to

intensifying existing cacao farms include a lack of technical support

and knowledge, prohibitive land ownership rights, limited financial

assistance and labour and high input costs (Alemagi et al., 2015;

Kenfack Essougong et al., 2020).

Climate change is expected to exacerbate these issues given the

vulnerability of cacao to extreme weather events (Gateau-Rey

et al., 2018). Maximum dry season temperatures and water availability

are projected to become limiting factors, and climate suitability for

growing cacao is shifting (Igawa et al., 2022; Schroth, Läderach,

et al., 2016). To close the yield gap and improve livelihoods, the cacao

industry must adopt productivity adaptations that are accessible,

affordable and practical for smallholder farmers. Research on the

implementation of climate-smart agricultural practices has become

pertinent, particularly with cacao production being a driver of green-

house gas (GHG) emissions itself.

Chocolate is a GHG emissions-intensive food product, contribut-

ing to 2.4% of the food and drink sectors' GHG emissions within the

UK and 4.7% of the primary energy consumption (Konstantas

et al., 2018). The environmental impact of cacao production on GHG

emissions has been studied extensively, as shown in Table 1. Choco-

late, on average, is estimated to have a global warming potential

(GWP) of 2.9–4.2 kg CO2 eq./kg (e.g., Konstantas et al., 2018) with

land use change and fertiliser use contributing the most to GHG

emissions (Ntiamoah & Afrane, 2008; Ortiz-R et al., 2014). Land-use

change (LUC), particularly deforestation for cacao expansion, is

estimated to increase cocoa's GWP by a factor of three to four

(Konstantas et al., 2018). Locally, deforestation can contribute up to

98% of cocoa emissions (Wiltshire et al., 2008). These high emissions

are propelled in part by the short-term economic benefits of establish-

ing new plantations on recently deforested land, rather than replant-

ing existing low-yielding areas (Benefoh et al., 2018). Productivity on

cleared virgin forests is high due to a phenomenon known as the

'Forest Rent', where soil nutrients become exposed, reducing fertiliser

requirements, until the soil becomes depleted after 20–30 years,

inciting further deforestation (Amponsah-Doku et al., 2022). Further-

more, the ever-increasing demand for cacao, with trading prices in

April 2024 spiking to a record high of $12,000 per tonne (cocoaprice,

tradingeconomics.com), could further incentivise unsustainable

cacao expansion. Cacao-driven deforestation incurs significant carbon

losses, with estimates exceeding 185 Mg C/ha-1 (Leuschner

et al., 2013) along with soil degradation and biodiversity loss in critical

hotspots (Sassen et al., 2022). Recent studies highlight the severe

environmental consequences of cacao cultivation, revealing it as the

underlying cause of over 37% of forest loss in protected areas in Côte

d'Ivoire and over 13% in Ghana between 2000 and 2020 (Kalischek

et al., 2023). These findings reflect the urgent need for sustainable

and responsible practices within the cocoa industry to mitigate its

detrimental environmental impact.

F IGURE 1 Global Cocoa Production and Yield from 1961 to

2023. Global cocoa production, yield and area harvested data

extracted from Faostat, 2024.
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2 | CURRENT STRATEGIES TOWARDS

SUSTAINABLE CHOCOLATE

Although cacao production is often associated with deforestation and

environmental degradation, there is the potential for cultivation in

multi-strata systems that may mitigate these concerns. As an under-

story tree, cacao can thrive in shaded, forest-like environments such

as the Cabruca system practiced in Bahia, Brazil or the Chakra system

in Ecuador (Luna & Barcellos-Paula, 2024; Neves Cavalcante

et al., 2023). Within these systems, cacao trees are cultivated in

association with native trees in a discontinuous and random manner,

providing essential environmental services such as soil protection,

shade and pest and disease resistance (Andres et al., 2018; Neves

Cavalcante et al., 2023), refer to Figure 2. Climate resilience presents

an additional incentive for shaded cacao farms as shade trees can pro-

vide a favourable microenvironment that buffers extreme climate

events by reducing the mean annual temperature amplitude by 1.1�C

compared to monoculture systems and increasing humidity by 2.7%

(Niether et al., 2018).

While cacao agroforests do not match primary forests regarding

species richness, they can support tropical biodiversity and key eco-

system functioning species (Cassano et al., 2009; Ferreira et al., 2023;

Maney et al., 2022; Tadu & Djiéto-Lordon, 2014). In Cameroon, where

agroforestry is the predominant system, threatened trees represent

approximately 25% of total woody individuals associated with cacao,

demonstrating the conservation abilities of cacao farms for vulnerable

tree species (Saj et al., 2017). Additionally, multi-strata agroforests can

act as habitat and wildlife corridors for endemic and threatened fauna,

including primate species such as the Golden-Headed Lion Tamarin in

Brazil and the Rowloway Monkey and White-Naped Mangabey

in Ghana (Asare et al., 2014; Oliveira et al., 2010; Yao et al., 2015).

While studies report increased species biodiversity in cacao agrofor-

ests compared to other agricultural land uses, these systems continue

to be drivers of species complexity, functional diversity and specialist

loss (Jarrett et al., 2021; Maney et al., 2022; Reitsma et al., 2001).

Adoption of multi-strata cacao systems remains low in most

cacao-producing countries, largely due to the reduction in yield asso-

ciated with high levels of shading (Ruf, 2011). However, management

of shade trees can mitigate these yield penalties, with research show-

ing that the overall shade tree cover, rather than the complexity of

the shade structure, triggers yield reductions. In a study by Clough

et al. (2011) increasing shade quantity, measured by overall shade tree

cover, was correlated with a reduction in cacao yield, whereas qualita-

tive aspects of shade, such as the number of tall trees and the number

of forest tree species, were revealed to maintain species richness

without having a significant correlation with yield (Clough

et al., 2011). Shade trees can also provide pollinator habitat, which

could increase yields, as low pollination is a known limiter of cacao

production (Forbes & Northfield, 2017; Lander et al., 2025). Conse-

quently, targeted shade management that maintains moderate shade

levels and a complex habitat structure can support high yields without

compromising biodiversity in cacao farms, along with supporting

broader environmental goals, including re-agro-forestation and

increased carbon sequestration.

Cacao agroforests planted on formerly cleared land could be a

type of “re-agro-forestation” which is the reinstatement of forest

TABLE 1 Life Cycle Analysis (LCA) values for Global Warming Potential for 1 kg of dried cacao beans across three cacao cultivation

systems. N.A. indicates not applicable, as these values were not calculated in the cited research.

Country in which LCA

was conducted

Conventional Monoculture

(kg CO2-eq/kg dried

cacao beans)

Conventional Agroforestry

(kg CO2-eq/kg dried

cacao beans)

Organic Agroforestry

(kg CO2-eq/kg dried

cacao beans) Reference

Ghana 0.050 0.060 N.A. Parra-Paitan & Verburg, 2022

Ecuador N.A. 0.300 0.034 Caicedo-Vargas et al., 2022

Bolivia 2.980 3.740 1.560 Armengot et al., 2021

Ecuador 1.900 1.090 0.841 Pérez-Neira, Copena, et al., 2020

Mean 1.643 1.298 0.812

SD 1.482 1.687 0.763

LCA studies were chosen for comparison based on their comprehensive impact assessment and unity in metrics –cradle to farm gate emissions.

F IGURE 2 Cacao Cultivation Systems. (Steeley, 2025).
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cover that enhances biodiversity while simultaneously maintaining

agricultural productivity. This land-sharing approach has gained inter-

est in Brazil with the Forest Act of 2012, which puts pressure on land-

owners to convert illegally deforested land, often cleared to make

way for cattle, back under forest cover (Nepstad et al., 2014; Schroth,

Garcia, et al., 2016). Cacao is considered a native tree, which this law

acknowledges as permitted reforestation if planted with other native

trees. If cacao demand and price continue, re-agro-forestation could

become economically favourable to reforest cleared land, and similar

legislation could be implemented in other countries.

Establishment of new farms with re-agro-forestation in Brazil has

been estimated to reduce emissions by 135 Mg C ha�1 in comparison

to planting cacao after forest clearing (Schroth, Garcia, et al., 2016).

Cacao agroforestry can store considerable amounts of soil carbon,

recorded to be around 302 Mg ha�1 to 1 m depth, in some cases

equivalent to natural forest (Gama-Rodrigues et al., 2011). Low-shade

cacao agroforests (<30%) can store 210% more above-ground carbon

than monocultures, and within multi-strata systems, a 660% increase

was documented (Blaser et al., 2018). Building on the potential of

agroforestry systems to promote biodiversity and enhance carbon

sequestration, it is equally important to consider the role of farm man-

agement practices in reducing environmental impacts.

GHG emissions from conventional cacao production are high,

mainly due to chemical fertiliser use, in one study accounting for

96.7% of the carbon footprint (Miharza et al., 2023). Recent studies

have demonstrated that cacao farms managed organically can sub-

stantially lower GHG emissions compared to both conventional agro-

forestry (6.3% - 10.7%) and monoculture systems (22.7% - 34.2%) as

they are 4–5 times more energy efficient than monocultures and

require fewer chemical inputs (Pérez-Neira, Copena, et al., 2020;

Pérez-Neira, Schneider, & Armengot, 2020). Although there are dis-

crepancies among LCA studies, resulting from variations in input

parameters and system boundaries, refer to Table 1 and Figure 3. Sys-

tems that include conventional Good Agricultural Practices (GAP) are

associated with higher emissions (2.29 kg CO2e per kg of cacao),

despite assumptions of zero deforestation (Vervuurt et al., 2022). The

emissions associated with inputs and residue management aimed at

pest and disease control outweighed the increase in cacao yield. The

trade-off between high cacao yields and GHG emissions highlights

the need for a revision of GAP recommendations to better align with

climate mitigation objectives. This stresses the fact that merely boost-

ing yields in the hope of minimising land use is not sufficient to miti-

gate carbon emissions. It necessitates the implementation of CO2

removal (CDR) to reduce the industry's ecological footprint.

3 | THE POTENTIAL OF ENHANCED ROCK

WEATHERING

Enhanced rock weathering (EW) may be a promising solution to

achieve net-zero carbon targets in the cocoa industry. EW involves

accelerating the natural process of rock weathering to sequester car-

bon dioxide (CO2) (Hartmann et al., 2013). This is accomplished by

crushing silicate rocks rich in Ca2+ and Mg2+, to increase the reactive

surface area (Moosdorf et al., 2014). This rock dust can then be spread

across a range of grasslands, forests or agricultural land and incorpo-

rated into the soil, where rocks can dissolve faster under the elevated

CO2 released from roots and decomposers (Beerling et al., 2018;

Schuiling & Krijgsman, 2006). Increases in alkalinity export are driven

by increases in pH caused by the sequestration of protons by the sili-

cate matrix and the formation of monosilicic acid. The increase in pH

allows for increases in the concentration of aqueous bicarbonate ions

(HCO3
�) with CO2 (aq) acting as a buffer. These are summarised by the

weathering equation for diopside below:

F IGURE 3 Estimated Emissions for Global Cacao Bean Production from 1961 to 2023. Average global warming potential (GWP) values for

1 kg of dried cacao beans at farm-level production are sourced from Table 1. These values were multiplied by the average global production value

for each year (Faostat, 2024) to calculate total GWP for three cultivation systems: conventional monoculture, conventional agroforestry and

organic agroforestry. Under each scenario, it is assumed all cacao is grown using the respective cultivation system, which is an oversimplification

of the methods used to produce cacao. See Dataset S1 for further information.
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CaMgSi2O6 sð Þþ4CO2 aqð Þþ6H2O lð Þ

!Ca2þ aqð ÞþMg2þ aqð Þþ4HCO3
�

aqð Þ þ2H4SiO4 aqð Þ ð1Þ

Silicate weathering reaction allows for a carbon sequestration

ratio of 2 mol CO2/mol divalent cations.

Subsequently, bicarbonate together with its counterbalancing

cations is transported through groundwater and runoff; in many cases,

ultimately makes its way to the oceans (Equation 1) (Green

et al., 2024). This leads to CO2 storage as dissolved inorganic carbon

or more enduringly as carbonate compounds (Equation 2) (Knapp &

Tipper, 2022; Pokrovsky et al., 2009). This is illustrated by the forma-

tion of calcite below:

Ca2þ aqð Þþ2HCO3
�

aqð Þ !CaCO3 sð ÞþCO2 gð ÞþH2O lð Þ ð2Þ

Silicate weathering with carbonate precipitation is unlikely to

occur in acidic tropical soils but instead occurs over a 10,000-year

timescale, leading to a carbon sequestration ratio of 1 mol CO2/mol

divalent cations and the transfer of carbon from the atmosphere to

the geologic record (Renforth, 2019).

The large-scale CDR potential of EW remains a subject of debate.

The Intergovernmental Panel on Climate Change (IPCC) estimates that

EW could sequester between 2 and 4 Gt CO₂ yr�1 globally

(IPCC, 2022) and one modelling study projected the cumulative car-

bon sequestration potential of EW to be 215 Gt CO₂ with a fixed

application rate of 10 t ha�1 of basalt dust across 2006–2080 (Baek

et al., 2023). The warm and humid climates in which cacao is culti-

vated may enhance chemical weathering rates, as increased precipita-

tion and temperature facilitate mineral dissolution by lowering

activation energy (Ea) barriers (Haque et al., 2023; Kump et al., 2000;

Ryan et al., 2024). However, while dissolution kinetics are more opti-

mal in these regions, the anions charge-balancing cations released

during weathering may originate from non-carbonic sources in low-

pH soils (Li & Ji, 2016; Taylor et al., 2021). In a tropical EW field trial

in Northeastern Australia, soil acidity was shown to preclude CDR, as

acids stronger than carbonic acid, mainly surface-bound protons, were

the primary weathering agents (Holden et al., 2024). Similarly, strong

acid weathering caused by nitrogenous fertilisation was shown to per-

turb CDR in a field trial with crushed returned concrete in Ireland

(McDermott et al., 2024). The mechanism for this is nitrification,

where ammonium (NH4
+)-based fertilisers in the presence of O2 are

converted into nitrate (NO3
�) by nitrifying soil bacteria, releasing

protons into the soil (Goulding, 2016; Nishio & Fujimoto, 1990).

Alternatively, NO3
�-based fertilisers (e.g., CaNO3) could be utilised as

a measure to prevent nitrification-driven acidification and strong acid

weathering (Weng et al., 2022). In the process of uptake, plants

acquiring nitrate also export bicarbonate, thus driving the alkalinisa-

tion of the surrounding soil (Haynes, 1983; Pierre & Banwart, 1973).

However, nitrogenous fertilisation in excess will cause NO3
� to leach

through the soil (Quan et al., 2016); caution must be exercised in

supplying reasonable rates of CaNO3 fertilisation.

Carbonic acid is a weak acid with a pKa of �6.4 (Loerting &

Bernard, 2010); therefore, CDR in highly acidic soils (<pH 5.2) will

be low until proton neutralisation through continued silicate

application and weathering is sufficient for carbonic acid dissociation

(Dietzen & Rosing, 2023; Holden et al., 2024; Oh &

Raymond, 2006). A correction factor for non-carbonic weathering in

soils below pH 6.3 has been proposed (Dietzen & Rosing, 2023), but

the effect of strong acids on CDR potential has not reached a

consensus.

In addition to these purely abiotic controls, rock weathering is sig-

nificantly influenced by the rhizosphere environment. A rhizosphere,

the soil region influenced by plant roots, exhibits variations in pH and

nutrient levels compared to bulk soil, with differences of up to two

units (Youssef & Chino, 1989). Plant roots, micro-organisms and

decomposing plant materials can also produce additional acidity by

releasing protons and organic acids into the soil (de Almeida Leite

et al., 2024; Fujii, 2014; Hinsinger et al., 2003; Perez-Fodich &

Derry, 2019). Organic acids can complex with metal ions, weakening

mineral surface bonds and facilitating silicate dissolution, even at

near-neutral pH levels where proton-promoted dissolution is

typically constrained (Sun et al., 2023; Welch & Ullman, 1993). While

this may increase weathering rates, organic acids and protons could

compete with carbonic acid, impeding inorganic carbon formation (Lei

et al., 2025; Taylor et al., 2021). This may be compensated by

the increase in pCO2 from root and microbe respiration, which

increases bicarbonate concentrations in soil above what is expected

from carbonate solubility, promoting CDR (Bloom & Inskeep, 1986;

Poschenrieder et al., 2018).

Agroforests have additional advantages for weathering, including

deep tree roots, which regulate water fluxes and create macropores,

facilitating weathering and exportation of reaction products (Billings

et al., 2018; Wen et al., 2020). Tropical forested systems could exert

greater biological weathering rates than temperate systems. Owing

to their higher net primary productivity and faster microbial decom-

position, tropical agroforestry soils have increased CO₂ production

and concentrations available to react with rocks (Hashimoto

et al., 2007). This could trigger carbon capture at greater rates in

tropical systems' soils than temperate systems, particularly in the top

0–10 cm, where rock amendment would be spread. The interplay

between strong acids, pCO₂ and CDR rates requires further

investigation.

Modelling studies assessing the CDR potential of EW in tropical

Brazilian croplands have estimated that deployment on over 25% and

75% of cropland could remove 0.1 and 0.2 Gt CO₂ yr�1, respectively

(Beerling et al., 2020). Similar estimates have been reported elsewhere

(Jerden et al., 2024); however, field verification is lacking, as no trials

have yet spanned a decade. Long-term experimental data on CDR

potential in tropical systems, where weathering rates are expected to

be high, remain scarce. Reported CDR rates vary considerably, with a

field experiment in Malaysia estimating �1 t CO₂ ha�1 sequestration

after three years of basalt application (Larkin et al., 2022), and a labo-

ratory study in Costa Rica projecting 3.2 t CO₂ ha�1 yr�1 following a

50 t ha�1 basalt application (Ryan et al., 2024). Currently, there is

a high level of uncertainty associated with these CDR rates given the

lag time of weathering products in the soil (te Pas et al., 2025),
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the potential re-release of CO₂ downstream (Zhang et al., 2022) and

the emissions associated with the mining, crushing and transportation

of rock dust (Moosdorf et al., 2014).

To assess the potential for EW to offset emissions from cacao

production, CDR rates from these studies were applied to 10% of the

available cocoa harvest area (Figure 4). This 10% scenario was selected

as it represents a pragmatic, conservative estimate of partial adoption,

allowing for a proof-of-concept scale while accommodating limitations

in implementation capacity, financial resources and policy support. The

results suggest that EW could substantially mitigate emissions from

cacao cultivation through CDR. EW could lower GHG emissions

through reduced chemical fertiliser requirements and suppressing N2O

release, but this is not considered here due to the lack of life cycle

assessments of EW with cacao production. Field trials are essential to

validate these projections and to account for strong acid weathering in

tropical soils, potential synergies with other sustainable practices, or

unintended consequences not captured in modelling studies.

4 | ENHANCED WEATHERING FOR CACAO

CULTIVATION: SOIL HEALTH, NUTRIENT

CYCLING AND SUSTAINABILITY

A relatively limited set of soil characteristics is required for productive

cacao agroecosystems, including a pH range between5.7 and 6.22,

organic carbon content close to 3%, available phosphorus and potas-

sium levels greater than 16 and 90 ppm, respectively, and a cation

exchange capacity between 9 and 15 cmol c/dm3, among other param-

eters (Souza et al., 2018). Beyond its role in carbon sequestration, EW

holds the potential to improve soil conditions necessary for cacao

farming, foremost providing a means to increase and buffer soil pH. In

tropical regions, where soil acidity frequently arises from high rainfall

and leaching (Ng et al., 2022), the application of EW feedstocks could

serve as an alternative to conventional agricultural lime (CaCO₃)

(Edwards et al., 2017). Silicate rocks, which are rich in bases, could

neutralise excess hydrogen ions (H+) in the soil solution, thereby rais-

ing soil pH and improving conditions for nutrient uptake (Guo

et al., 2023). Further, the solubility and consequently, the mobility of

heavy metals such as nickel (Ni), lead (Pb), cadmium (Cd) and mercury

(Hg), are strongly influenced by pH, reducing their solubility as the pH

rises (Omokaro et al., 2025; Villalaz-Pérez et al., 2024). Corroborating

this, numerous studies have highlighted the importance of maintaining

soil pH to reduce the mobility of potentially toxic trace elements in

cacao plantations (Araujo et al., 2018; Doe et al., 2022). Soil alumin-

ium (Al) levels, which can be a problem in highly acidic soils, pose a

significant concern for cacao cultivation. Elevated Al concentrations

can adversely affect shoot and root biomass, stem height, root

length, relative growth rate and net assimilation rate (Baligar &

Fageria, 2005). Increasing soil Al saturation further inhibits the uptake

of essential nutrients, including potassium, calcium and magnesium

(Bossolani et al., 2020). The application of dolomite lime to acidic soils

reduced exchangeable Al levels from 26 to 0.2 cmol kg�1 and

increased root and shoot biomass in cacao by 1.31 and 0.39 g plant�1,

respectively (Baligar & Fageria, 2005). These findings have prompted

further research into soil amendments aimed at preventing trace

metal toxicity through pH regulation (Ramtahal et al., 2019). A study

by Shamshuddin et al. (2011) demonstrated that the application of

ground basalt, a key rock type for EW, at a rate of 20 t ha�1 increased

pH, reduced exchangeable Al in infertile Oxisols, and simultaneously

promoted cacao dry matter weight from 709 to 873 g pot�1. These

findings have been supported by additional studies (Shamshuddin

et al., 2015).

Depending on the mineralogical composition of the applied rock,

EW may also elevate nickel and chromium concentrations in soils

F IGURE 4 Predicted Global CO2 Emissions for 2023 Dried Cacao Bean Production with Enhanced Weathering. Average production

emissions were calculated using the same method as above. Error bars represent the Standard Error Mean. The potential of Enhanced Rock

Weathering (EW) to mitigate carbon dioxide emissions was calculated using two carbon removal (CDR) rates (Larkin et al., 2022; Ryan

et al., 2024), representing a high and low scenario. The CDR rates were multiplied by 10% of the global harvested area for cacao cultivation

(Faostat, 2024) to generate a mitigation value, which was subtracted from the original average production emissions for each system. See Dataset

S1 for further information.
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(Vienne et al., 2022). To address these concerns, Brazil, recognised as

a global leader in the application of natural rock powders for soil remi-

neralisation, has implemented regulatory measures to manage the

chemical risks associated with rock dust applications in agriculture

(Presidncia da Repblica, 2013). Careful selection of rock sources,

combined with rigorous and transparent monitoring of trace element

concentrations, is crucial for balancing the climate mitigation potential

of EW with its social acceptance and environmental safety consider-

ations (Levy et al., 2024).

The slow release of nutrients from EW necessitates the presence

of healthy soil organic matter (SOM) to support sustained plant

growth and heterotrophic soil respiration, which in turn elevates CO₂

levels in the soil air, increasing EW efficiency for soil carbon seques-

tration (Bertagni et al., 2025). Evidence suggests that finely ground

silicate rock residues can increase mineral-associated SOM by 22%, as

a result of the release of Al and Fe forming poorly crystalline minerals

(e.g., imogolite, allophane, ferrihydrite) which interact with SOM to

form complexes protected from microbial decomposition (Buss

et al., 2024; Xu et al., 2024). Similarly, a study reported a positive cor-

relation between weathering rates and soil organic carbon storage in

regions characterised by high humidity and mineral abundance at tem-

perate locations (Slessarev et al., 2022). However, redox fluctuations

characteristic of tropical systems with alternating dry and wet seasons

put into question the stability of the newly formed complexes, neces-

sitating further research into rock weathering-SOM interactions at

tropical EW trials (Chen et al., 2020).

An incubation experiment reported a substantial increase in soil

CO₂ efflux following the application of wollastonite, a widely

used mineral in EW, suggesting faster SOM decomposition (Yan

et al., 2023). These findings suggest that EW may accelerate SOM

mineralisation, especially in acidic soils, and potentially induce a “prim-

ing effect,” whereby microbial activity stimulates the decomposition

of existing SOM (Fang et al., 2023). A two-year trial conducted in the

United States observed a decline in mineral-associated organic matter

following silicate rock application; however, this was not accompanied

by a corresponding reduction in soil organic carbon (Sokol

et al., 2024). This could be understood by the increase in soil pH,

influencing the decomposition of organic matter and microbial activity,

responsible for the degradation and mineralisation of carbon. Con-

versely, there is evidence to suggest that in agroforestry systems, an

increase in pH is associated with greater organic carbon retention,

increased biomass and microbial activity, favouring the stabilisation of

organic carbon (Soilueang et al., 2025).

Application of crushed silicate rock has the potential to enhance

soil fertility and cation exchange capacity (CEC) in highly weathered

tropical Oxisols (Gillman, 1980). Soil CEC is a measure of the negative

charge of the solid phase of soil balanced by exchangeable cations

(mEq/100 g) and describes the number of cations in the soil solution

that are exchangeable, and therefore available for uptake by plant

roots (Reganold & Harsh, 1985; Wang et al., 2023). Understanding soil

nutrient dynamics is essential for optimising agricultural practices and

meeting the increasing global demand for cacao. Although studies are

limited, under field conditions, basalt application can significantly

increase cocoa growth, as evidenced by increasing stem height and

diameter over 24 months (Anda et al., 2013). Building on these find-

ings that basalt amendments enhance overall soil nutrient status and

promote cacao growth, it is crucial to examine the role of individual

macronutrients in sustaining and further improving cacao production.

Potassium (K) is a key macronutrient for cacao production, pro-

moting root development (Nguyen et al., 2002) and enhancing water

stress tolerance, which improves the plant's resilience to environmen-

tal conditions (Boyer, 1973). Potassium is also essential for pod and

bean development, with cacao pods containing 4.2–5.5% K in dry

matter and beans containing 2.2–2.4% K (Mengel, 1980). Given that

cacao cultivation depletes K from trees, it has long been established

that K replacement requirements are directly linked to yield

(Mengel, 1980). Field trials have demonstrated that K supplementa-

tion enhances cacao growth (Kaba et al., 2022). Basalt application as

an EW amendment has been proposed as a source of K for cacao cul-

tivation. Studies indicate that plants in tropical soils can access K from

silicate rock amendments (Manning et al., 2017). A four-year field trial

in the U.S. Corn Belt found that annual applications of crushed basalt

(50 t ha�1) released at least 23 kg K ha�1 y�1 (Beerling et al., 2024), in

addition to potential increases in available K due to changes in soil

pH. While this amount may be sufficient for average-yielding cacao

trees, it is unlikely to meet the K demands of high-yielding trees or

those in K-deficient soils (Mengel, 1980; Snoeck et al., 2016). How-

ever, there is an obvious need to generate K release rates during EW

with a range of feedstocks in cacao agroecosystems.

The effectiveness of basalt as an alternative to chemical K

fertilisers may depend on the specific agricultural system. Bahia et al.

(2021) found that in shaded systems, there was a lower need for N, P

and S and a greater need for K by cocoa trees compared to cacao

grown in full-sun systems. Consequently, shade levels must be consid-

ered when assessing the fertilisation potential of EW, as responses

may vary across different management systems (Ahenkorah

et al., 1987). Given these factors, basalt application may be most

effective as a supplement to conventional fertilisers, potentially

reducing environmental impacts and costs associated with chemical

fertilisation.

Phosphorus (P) is also a critical, commonly limiting nutrient in

cacao cultivation, contributing to flowering, dry matter production

and canopy development, which enhances light capture and photo-

synthetic efficiency (Asomaning et al., 1971). However, P availability

in tropical soils is often limited due to fixation in unavailable forms,

particularly in highly weathered, acidic conditions (Chacón

et al., 2008). Soil pH plays a key role in regulating phosphate availabil-

ity, as it influences the adsorption of phosphate anions onto soil col-

loids (Devau et al., 2009). Higher pH levels increase the solubility of

iron and aluminium phosphates, reducing phosphate fixation and

improving P availability (Sandim et al., 2014). Given these constraints,

P deficiencies can limit cacao productivity, necessitating effective fer-

tilisation strategies that align with the agricultural practices and tree

health. Older, unshaded cacao plantations require higher P inputs than

younger trees grown under shade (Ahenkorah et al., 1974; Ahenkorah

et al., 1987). Additional studies have shown that P supplementation
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can enhance productivity and improve the effects of N, particularly in

low-yielding trees (Isaac et al., 2011; Snoeck et al., 2010;

Wessel, 1971).

Given the challenges of P fixation in tropical soils, EW may

improve P availability over time. Silicon-rich rock amendments have

been shown to increase soil P availability by promoting competition

between silicate and phosphate anions for adsorption sites (Sandim

et al., 2014). In a tropical rubber plantation, EW using wollastonite

increased total soil P levels and P availability through enhanced micro-

bial P cycling and the release of root exudates in a two-year field

experiment (Bi et al., 2024). Basalt, which shares similar mineral prop-

erties with wollastonite, may also serve as a slow-release source of

P. A four-year field trial in the U.S. Corn Belt found that annual appli-

cations of crushed basalt (50 t ha�1) released at least 7 kg P ha�1 y�1

(Beerling et al., 2024), but as with K, release rates are needed for

cacao sites.

Nitrogen (N) fertilisation stimulates leaf flushing, canopy forma-

tion and vegetative growth, influencing cacao yield, especially in

younger trees (Cañarte et al., 2023). While basalt application will not

directly increase levels of N through its mineralogy, it has been shown

to significantly reduce N leaching from the soil. The average decrease

in N leaching has been estimated to be as high as 45% upon basalt

amendment (Vienne et al., 2022), possibly due to Mo released during

weathering, which is a central co-factor in the nitrogenase enzymes of

bacteria involved in N2-fixation to ammonia (Seefeldt et al., 2009;

Epihov et al., 2017). Additionally, basalt application can enhance N

assimilation and nitrogen use efficiency (Beerling et al., 2024). This

may be through increased availability of soil Mo for plant uptake,

which is often limited in acidic tropical soils (Barron et al., 2009). At a

long-term trial in the US corn belt, Mo was shown to mechanistically

increase nitrogen use efficiency through upregulated expression of a

Mo co-factor, important for N cycle enzymes, within plants in

response to basalt treatment (Beerling et al., 2024). Increases in avail-

able Mo may therefore enhance asymbiotic N2-fixation by free-living

soil bacteria (Epihov et al., 2021) and further contribute to the N nutri-

tion of cacao, particularly in unfertilised or organic settings.

A further co-benefit of N retention could be a reduction in N2O

emissions, a potent GHG with a GWP of up to 298 times that of CO2

(Mosca et al., 2014). One modelling study using field observations in

the US predicted N2O emissions could decrease by 16% in maize and

9% in miscanthus (Blanc-Betes et al., 2020). This result is supported

by a maize mesocosm in the US in which cumulative N2O emissions

were reduced by 29–32% upon a basalt application of 5 t acre, likely

caused by increased soil alkalinity and changes in soil structure

(Chiaravalloti et al., 2023). Extrapolating to five regions that have high

CDR potential (North America, Brazil, Europe, India and China), EW

was shown in one model to reduce emissions from N2O and NO by

18% but increase NH3 by 2% (Val Martin et al., 2023). Despite limited

corroboration from field trials, the curtailment of non-CO2 emissions

offers an additional mechanism to reduce the GHG footprint of cacao

production.

Calcium (Ca) and magnesium (Mg) are necessary for healthy

cacao seedlings and plant vigour (Carmona Rojas et al., 2022).

Calcium, among a wide range of critical functions in cacao (see Lubis

et al., 2022), contributes to cell wall integrity (Van Stkveninck, 1965)

and disease resistance (Butler & Engelhard, 1990). For instance, higher

Ca levels can reduce susceptibility to pathogens such as Phytophthora

spp. (Campanella et al., 2002). Meanwhile, Mg is essential for chloro-

phyll synthesis and enzyme activation, facilitating photosynthetic

activity and metabolic processes within the plant (Ishfaq et al., 2022).

Basalt applications have been demonstrated to elevate levels of both

Ca and Mg in the soil solution through multiple trials (Conceição

et al., 2022; Plata et al., 2021). In fertiliser trials, specific nutrient

ratios of Ca/Mg have exhibited positive correlations with cacao yield

(Marrocos et al., 2020), and rock dissolution could impact these crucial

ratios.

The essential micronutrients (B, Cl, Cu, Fe, Mn, Mo, Ni and Zn)

and the elements not yet widely recognised as essential but which

can contribute to the development of crops (Co, Se, Na and Si), are of

vital importance for cultivated plants (Chepote et al., 2013; Epstein &

Bloom, 2004; Souza et al., 2018; Taiz et al., 2014). Of these, zinc

(Zn) is the micronutrient with the highest frequency of deficiency in

soils cultivated with cocoa trees; essential for auxin prevention,

enzyme activation, carbohydrate formation and indoleacetic acid

(IAA); its deficiency results in shortening of the internodes and cell

reduction (Chepote et al., 2013; Souza et al., 2018). The use of silicate

rocks on soils with low starting TE contents may induce a ‘micronutri-

ent fertilisation effect’ and alleviate issues associated with zinc defi-

ciency (Dupla et al., 2023).

Except for Fe, Cl, Mo and Ni, whose demand for cacao is often

met due to low requirements or indirect supply, other micronutrients

require regular supplementation. In this context, the application of

silicate rocks, containing traces of micronutrients in their composi-

tion, represents a viable alternative to complement the supply of

these elements. Sodium (Na), classified as a beneficial element, may

perform functions similar to those of potassium (K) (Epstein &

Bloom, 2004). Gattward et al. (2012) demonstrated that, in clonal

cocoa seedlings, the partial replacement of K by Na resulted in

greater net photosynthesis and water use efficiency. In addition,

studies indicate that the application of small doses of Na can stimu-

late the rooting and production of cocoa fruits, without compromis-

ing clay flocculation, soil aggregation and porosity (Erwiyono

et al., 2002). These findings highlight the need for further research

on the role of Na in cocoa cultivation, especially considering its pres-

ence in silicate rocks.

Silicon (Si) application to cacao can increase photosynthesis, for-

mation of lignin, stomatal density (Fantinato et al., 2018) and protec-

tion from harmful UV-B radiation (Zanetti et al., 2023), leading to

structural integrity in cacao plants. Importantly, Si content in plants is

essential for disease defence (Fantinato et al., 2018) and stress resis-

tance (Eneji et al., 2008), along with tolerance to heavy metals (Liu

et al., 2020). However, cacao is often grown on highly weathered

soils, and the reservoir of silicate minerals is frequently in crystalline

structures with slow dissolution rates (De Tombeur et al., 2020) and

plant-available Si pools can become depleted over time (De Tombeur

et al., 2020). The potential of EW to increase plant-available Si
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remains a subject of debate. While silicate rock dust dissolution can

release Si into the soil (Reynaert et al., 2023), the associated increase

in soil pH may reduce Si bioavailability (Meunier et al., 2018). Si

release rates vary depending on soil type, as pH influences the reac-

tivity of different soil Si pools (Lim et al., 2023). Nonetheless, studies

on basalt (Kelland et al., 2020) and wollastonite (Jariwala et al., 2022)

F IGURE 5 Potential Co-benefits of Enhanced Weathering for Cacao-Agroforestry. (Steeley, 2025).

F IGURE 6 Global lithology distribution map of Basic and Intermediate rock. Rock sources were identified from the GLiM rock database and

rock class is classified as detailed in Hartmann et al., 2013. Cacao production was retrieved from International Food Policy Research Institute

(IFPRI)., 2024. Map was created in QGIS software (https://qgis.org) and with Natural Earth physical vectors (scale 1:10 m). Map does not

represent all silicate rock deposits or cacao producing areas.
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have demonstrated increased plant-available Si in the short term dur-

ing mesocosm incubations, as pH increases are relatively limited after

a single rock dust application. However, long-term trials in the US

Corn Belt (Beerling et al., 2024) and Malaysia (unpublished data) show

that basalt-amended crops do not benefit from increases in biomass

Si, as the stable 0.5–1.0 pH unit increase in soil promotes Si adsorp-

tion into an amorphous opaline pool not immediately available to

plants. These findings suggest that silicate rock weathering may offer

a viable and sustainable strategy for replenishing depleted Si pools in

agricultural soils.

These findings highlight the potential of EW materials in cacao

cultivation, although current research has primarily focused on short-

term effects, necessitating long-term studies for sustainability

assessment. Variability in silicate rock composition and soil-specific

interactions requires further investigation, urging comprehensive geo-

chemical analyses. Evaluating rock dust's influence on soil microbial

communities and resilience to climate change stressors is imperative.

In conclusion, while previous studies have addressed the potential

benefits of EW application in cacao farming, ongoing research is

essential to fully understand its impact on soil health, productivity and

nutrient cycling; refer to Figure 5.

5 | FEASIBILITY

The feasibility of implementing EW practices in cacao farming

depends, in part, on the proximity of farms to sources of weatherable

silicate rock feedstock (e.g., basalt, gabbro, andesite, pyroxenite), as

this relationship influences both transportation costs and the GHG

emissions associated with material distribution (Eufrasio et al., 2022).

Geographic separation introduces logistical and economic complexi-

ties for EW implementation. For instance, in a life cycle assessment of

EW in São Paulo State, 990 ± 116 km was the limit for basalt trans-

port above which the emissions associated with transport severely

limit the potential capture (Lefebvre et al., 2019). By strategically uti-

lising existing infrastructure for agricultural lime distribution and

repurposing basalt waste, disruption to established practices can be

minimised while reducing environmental impact. For cases where nat-

ural silicate rock deposits are located far from established cacao farms,

refer to Figure 6; alternative CDR and sustainability strategies may be

more appropriate. As demonstrated by Eufrasio et al. (2022), a clean

energy mix and electrification of transport and rock grinding pro-

cesses will improve the environmental and sustainability capacity of

EW. Therefore, the CDR potential of EW on cacao farms needs to be

determined holistically. Addressing these logistical tasks could support

a challenging but potentially transformative solution for carbon

sequestration in the cocoa industry.

6 | ADOPTION AND APPLICATION

EW could sustainably boost yields and reduce liming and fertilisation

costs, with carbon credits helping to offset silicate rock application

expenses and improve financial viability for farmers. However, as

seen with other sustainability payment initiatives such as the Ghana

Cocoa REDD+ (Reducing Emissions from Deforestation and Forest

Degradation), engagement and uptake will be low if policy backing is

weak and the financing does not improve living income for farmers

and cover costs to transition (Dugasseh & Zandersen, 2025). Using

current technologies to track CDR, monitoring and verification

(MRV) processes for EW is labour-intensive, along with the physical

spreading of the rock dust. Interventions to improve yield in small-

holder farmers, including pest and disease management, received

poor uptake when the increased production was not sufficient to

cover the labour costs associated with the management practice

(Scudder et al., 2022). Therefore, to increase adoption, low-cost

MRV needs to be developed along with careful design of rock appli-

cation rates. To minimise the machinery and labour costs associated

with spreading, high rates, representing multiple applications of rock

TABLE 2 Knowledge Gaps in Enhanced Rock Weathering.

Knowledge Gap Description

Quantifying Carbon

Sequestration

Accurate measurement of carbon removal

(CDR) through enhanced rock weathering

(EW) remains challenging. Robust

methodologies are needed to assess

weathering rates, carbon storage and

associated co-benefits, particularly in

diverse agroforestry settings.

Biodiversity Impacts The potential effects of EW on biodiversity

within cocoa agroforestry systems,

including shade trees and associated fauna,

require further investigation.

Nutrient Cycling

Dynamics

A deeper understanding of EW's impact on

nutrient cycling, including nitrogen (N)

dynamics, phosphorus (P) availability, and

the release of potentially toxic elements, is

crucial for optimising its application in

cocoa production.

Soil & Rock Grain

Microbial Interactions

The interplay between EW, soil properties

and microbial communities remains poorly

understood. Research is needed to

determine how EW influences microbial

activity, organic matter decomposition and

nutrient availability.

Long-Term Effects Most studies focus on short-term impacts.

Long-term field trials are needed to assess

the sustainability of EW practices and their

effects on soil health, crop productivity and

ecosystem services.

N2O Emissions The impact of EW on N2O emissions is

under-researched and could present an

additional pathway to reducing cacao's

climate impacts.

Socioeconomic

Considerations

Research is needed to evaluate the

economic feasibility and social acceptability

of EW for cocoa farmers, including

equitable benefit-sharing mechanisms and

strategies to mitigate social and

environmental risks.
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dust, could be spread before the trees are planted, with further

applications being targeted around the base of the tree, at the width

of the canopy, where root density and therefore agronomic benefits

will be highest.

Beyond logistical considerations, the application of finely crushed

rock dust poses potential risks to human health, particularly for indi-

viduals directly involved in its handling and distribution. Fine particu-

late matter has been associated with respiratory risks, including

silicosis, a condition linked to the inhalation of silica particles (Merget

et al., 2002). Such risks may be higher without appropriate protective

equipment, such as masks or respirators. For smallholder farmers in

resource-limited settings, limited access to safety measures could

increase the likelihood of adverse health outcomes. Addressing these

challenges may require investment in technologies and training pro-

grams tailored to the needs of smallholder farmers, along with the

provision of protective equipment, to mitigate health risks associated

with rock dust application.

7 | KNOWLEDGE GAPS IN ENHANCED

ROCK WEATHERING FOR COCOA

AGROFORESTRY

This review highlights several critical knowledge gaps that hinder the

effective implementation of EW in cocoa agroforestry systems, which

are listed in Table 2.

8 | CONCLUSION

Cacao production faces complex and interlinked challenges, including

low yields, poverty among smallholder farmers and substantial envi-

ronmental impacts caused by land-use change and input-intensive

practices. This review highlights the potential of integrated climate-

smart strategies, specifically agroforestry and enhanced rock weather-

ing, to mitigate greenhouse gas emissions, enhance soil health and

improve climate resilience. However, key knowledge gaps persist

regarding long-term effects, nutrient cycling and the socio-economic

feasibility of these approaches. Given the multidimensional nature of

these challenges, multifaceted, systemic responses are essential. The

cocoa sector must adapt through scalable, evidence-based interven-

tions that align environmental sustainability with the economic reali-

ties of smallholder farming systems.
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