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Cacao production is both economically vital and environmentally intensive, present-

ing a major sustainability challenge as a crop largely cultivated by smallholder farmers
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from cacao production. Our projections indicate that applying EW to 10% of the
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University, New Haven, Connecticut, USA cocoa harvest area gives a notably high mitigation potential. Although these findings
suggest EW could substantially offset emissions, our review emphasises the urgent
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unintended consequences. The integration of EW and agroforestry could offer a scal-

while supporting long-term agricultural resilience.
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As one of the most emission-intensive foods, chocolate presents a significant chal-

sequestration and climate resilience, this review explores the potential of agrofor-
estry and enhanced rock weathering (EW) as a dual strategy towards climate-positive
cacao. Here, we describe how agroforestry systems, particularly multi-strata systems
such as cabrucas, can enhance carbon sequestration, tolerance to global climate
change and ecosystem services. We analyse the mechanisms by which EW can aug-
ment these benefits, focusing on its impact on offsetting carbon emissions during
production, nutrient release and improved soil health. The combined efficacy of these
strategies is assessed. Research gaps and areas of concern are identified, principally
around monitoring carbon removal, biodiversity impacts and nutrient cycling. Our
review highlights the importance of integrated approaches to address the complex
challenges facing the cocoa sector. Further research is needed to quantify the

economic and social benefits of agroforestry and EW, as well as to develop best

management practices for different agro-ecological contexts.
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1 | INTRODUCTION: COCOA'S CARBON
PROBLEM

Theobroma cacao L, “Food of the Gods” has held profound social and
economic significance as a food, drink and medicine for 5,300 years
(Zarrillo et al., 2018), and this continues to the present day. The
global chocolate market was estimated at $119.39 billion in 2023
(Horizon, 2023), with a projected revenue forecast of $23.54 billion
for cacao beans by 2030. Globally, the industry supports approxi-
mately five to six million farmers, with 40 to 50 million people
depending on cacao for their income (Beg et al., 2017). With an 8.4%
compound annual growth rate expected between 2024 and 2030
(Horizon, 2023), cacao remains among the most valuable cash crops
and agro-economic commodities and production has been increasing
to meet this demand. However, over the past 60 years, a direct corre-
lation has been observed between increases in cacao bean production
and the area of land harvested (Figure 1). In contrast to typical row
crops (e.g., corn), increased production has not been invoked by
increases in yield.

Cacao has a significant yield gap problem; in 2023, the global
yield average was 480.5 kg/ha (Faostat, 2024) approximately 90%
lower than the modelled water-limited yield potential of 5,000 kg/ha
(Zuidema et al, 2005) and 84% lower than the experimentally
derived vyield potential of 3,000 kg/ha (Appiah et al., 2000). This
has been attributed to low technological adoption (Aneani &
Ofori-Frimpong, 2013), disease outbreaks (Agyeman-Boaten &
Fumey, 2021) and climate events (Gateau-Rey et al., 2018), among
other factors. Many cacao farmers (30-58%) earn a gross income
below the World Bank extreme poverty line, and the majority (73-
90%) do not earn a Living Income in the two highest cacao-producing
countries (Van Vliet et al., 2021); yield gaps and low farm-gate prices
perpetuate this cycle of poverty (Bensch et al., 2023; Tittonell &

Giller, 2013). As identified by cacao farmers in Cameroon, barriers to
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FIGURE 1 Global Cocoa Production and Yield from 1961 to

2023. Global cocoa production, yield and area harvested data
extracted from Faostat, 2024.

intensifying existing cacao farms include a lack of technical support
and knowledge, prohibitive land ownership rights, limited financial
assistance and labour and high input costs (Alemagi et al., 2015;
Kenfack Essougong et al., 2020).

Climate change is expected to exacerbate these issues given the
vulnerability of cacao to extreme weather events (Gateau-Rey
et al., 2018). Maximum dry season temperatures and water availability
are projected to become limiting factors, and climate suitability for
growing cacao is shifting (lgawa et al, 2022; Schroth, Liderach,
et al., 2016). To close the yield gap and improve livelihoods, the cacao
industry must adopt productivity adaptations that are accessible,
affordable and practical for smallholder farmers. Research on the
implementation of climate-smart agricultural practices has become
pertinent, particularly with cacao production being a driver of green-
house gas (GHG) emissions itself.

Chocolate is a GHG emissions-intensive food product, contribut-
ing to 2.4% of the food and drink sectors' GHG emissions within the
UK and 4.7% of the primary energy consumption (Konstantas
et al., 2018). The environmental impact of cacao production on GHG
emissions has been studied extensively, as shown in Table 1. Choco-
late, on average, is estimated to have a global warming potential
(GWHP) of 2.9-4.2 kg CO2 eq./kg (e.g., Konstantas et al., 2018) with
land use change and fertiliser use contributing the most to GHG
emissions (Ntiamoah & Afrane, 2008; Ortiz-R et al., 2014). Land-use
change (LUC), particularly deforestation for cacao expansion, is
estimated to increase cocoa's GWP by a factor of three to four
(Konstantas et al., 2018). Locally, deforestation can contribute up to
98% of cocoa emissions (Wiltshire et al., 2008). These high emissions
are propelled in part by the short-term economic benefits of establish-
ing new plantations on recently deforested land, rather than replant-
ing existing low-yielding areas (Benefoh et al., 2018). Productivity on
cleared virgin forests is high due to a phenomenon known as the
'Forest Rent', where soil nutrients become exposed, reducing fertiliser
requirements, until the soil becomes depleted after 20-30 years,
inciting further deforestation (Amponsah-Doku et al., 2022). Further-
more, the ever-increasing demand for cacao, with trading prices in
April 2024 spiking to a record high of $12,000 per tonne (cocoaprice,
tradingeconomics.com), could further incentivise unsustainable
cacao expansion. Cacao-driven deforestation incurs significant carbon
losses, with estimates exceeding 185 Mg C/ha-1 (Leuschner
et al., 2013) along with soil degradation and biodiversity loss in critical
hotspots (Sassen et al., 2022). Recent studies highlight the severe
environmental consequences of cacao cultivation, revealing it as the
underlying cause of over 37% of forest loss in protected areas in Cote
d'Ivoire and over 13% in Ghana between 2000 and 2020 (Kalischek
et al., 2023). These findings reflect the urgent need for sustainable
and responsible practices within the cocoa industry to mitigate its

detrimental environmental impact.
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TABLE 1
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Life Cycle Analysis (LCA) values for Global Warming Potential for 1 kg of dried cacao beans across three cacao cultivation

systems. N.A. indicates not applicable, as these values were not calculated in the cited research.

Conventional Monoculture
(kg CO5-eq/kg dried
cacao beans)

Country in which LCA

was conducted cacao beans)

Ghana 0.050 0.060
Ecuador N.A. 0.300
Bolivia 2.980 3.740
Ecuador 1.900 1.090
Mean 1.643 1.298
SD 1.482 1.687

Conventional Agroforestry
(kg CO,-eq/kg dried

Organic Agroforestry
(kg CO,-eq/kg dried

cacao beans) Reference

N.A. Parra-Paitan & Verburg, 2022
0.034 Caicedo-Vargas et al., 2022
1.560 Armengot et al., 2021

0.841 Pérez-Neira, Copena, et al., 2020
0.812

0.763

LCA studies were chosen for comparison based on their comprehensive impact assessment and unity in metrics -cradle to farm gate emissions.

Multi-strata

Agroforestry

Monoculture

FIGURE 2 Cacao Cultivation Systems. (Steeley, 2025).

2 | CURRENTSTRATEGIES TOWARDS
SUSTAINABLE CHOCOLATE

Although cacao production is often associated with deforestation and
environmental degradation, there is the potential for cultivation in
multi-strata systems that may mitigate these concerns. As an under-
story tree, cacao can thrive in shaded, forest-like environments such
as the Cabruca system practiced in Bahia, Brazil or the Chakra system
in Ecuador (Luna & Barcellos-Paula, 2024; Neves Cavalcante
et al, 2023). Within these systems, cacao trees are cultivated in
association with native trees in a discontinuous and random manner,
providing essential environmental services such as soil protection,
shade and pest and disease resistance (Andres et al., 2018; Neves
Cavalcante et al., 2023), refer to Figure 2. Climate resilience presents
an additional incentive for shaded cacao farms as shade trees can pro-
vide a favourable microenvironment that buffers extreme climate
events by reducing the mean annual temperature amplitude by 1.1°C
compared to monoculture systems and increasing humidity by 2.7%
(Niether et al., 2018).

While cacao agroforests do not match primary forests regarding
species richness, they can support tropical biodiversity and key eco-
system functioning species (Cassano et al., 2009; Ferreira et al., 2023;
Maney et al., 2022; Tadu & Djiéto-Lordon, 2014). In Cameroon, where
agroforestry is the predominant system, threatened trees represent
approximately 25% of total woody individuals associated with cacao,
demonstrating the conservation abilities of cacao farms for vulnerable
tree species (Saj et al., 2017). Additionally, multi-strata agroforests can

act as habitat and wildlife corridors for endemic and threatened fauna,

including primate species such as the Golden-Headed Lion Tamarin in
Brazil and the Rowloway Monkey and White-Naped Mangabey
in Ghana (Asare et al., 2014; Oliveira et al., 2010; Yao et al., 2015).
While studies report increased species biodiversity in cacao agrofor-
ests compared to other agricultural land uses, these systems continue
to be drivers of species complexity, functional diversity and specialist
loss (Jarrett et al., 2021; Maney et al., 2022; Reitsma et al., 2001).

Adoption of multi-strata cacao systems remains low in most
cacao-producing countries, largely due to the reduction in yield asso-
ciated with high levels of shading (Ruf, 2011). However, management
of shade trees can mitigate these yield penalties, with research show-
ing that the overall shade tree cover, rather than the complexity of
the shade structure, triggers yield reductions. In a study by Clough
et al. (2011) increasing shade quantity, measured by overall shade tree
cover, was correlated with a reduction in cacao yield, whereas qualita-
tive aspects of shade, such as the number of tall trees and the number
of forest tree species, were revealed to maintain species richness
without having a significant correlation with vyield (Clough
et al, 2011). Shade trees can also provide pollinator habitat, which
could increase yields, as low pollination is a known limiter of cacao
production (Forbes & Northfield, 2017; Lander et al., 2025). Conse-
quently, targeted shade management that maintains moderate shade
levels and a complex habitat structure can support high yields without
compromising biodiversity in cacao farms, along with supporting
broader environmental goals, including re-agro-forestation and
increased carbon sequestration.

Cacao agroforests planted on formerly cleared land could be a

type of “re-agro-forestation” which is the reinstatement of forest
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cover that enhances biodiversity while simultaneously maintaining
agricultural productivity. This land-sharing approach has gained inter-
est in Brazil with the Forest Act of 2012, which puts pressure on land-
owners to convert illegally deforested land, often cleared to make
way for cattle, back under forest cover (Nepstad et al., 2014; Schroth,
Garcia, et al., 2016). Cacao is considered a native tree, which this law
acknowledges as permitted reforestation if planted with other native
trees. If cacao demand and price continue, re-agro-forestation could
become economically favourable to reforest cleared land, and similar
legislation could be implemented in other countries.

Establishment of new farms with re-agro-forestation in Brazil has
been estimated to reduce emissions by 135 Mg C ha~! in comparison
to planting cacao after forest clearing (Schroth, Garcia, et al., 2016).
Cacao agroforestry can store considerable amounts of soil carbon,
recorded to be around 302 Mgha™?! to 1 m depth, in some cases
equivalent to natural forest (Gama-Rodrigues et al., 2011). Low-shade
cacao agroforests (<30%) can store 210% more above-ground carbon
than monocultures, and within multi-strata systems, a 660% increase
was documented (Blaser et al., 2018). Building on the potential of
agroforestry systems to promote biodiversity and enhance carbon
sequestration, it is equally important to consider the role of farm man-
agement practices in reducing environmental impacts.

GHG emissions from conventional cacao production are high,
mainly due to chemical fertiliser use, in one study accounting for
96.7% of the carbon footprint (Miharza et al., 2023). Recent studies
have demonstrated that cacao farms managed organically can sub-
stantially lower GHG emissions compared to both conventional agro-
forestry (6.3% - 10.7%) and monoculture systems (22.7% - 34.2%) as
they are 4-5 times more energy efficient than monocultures and
require fewer chemical inputs (Pérez-Neira, Copena, et al., 2020;
Pérez-Neira, Schneider, & Armengot, 2020). Although there are dis-

crepancies among LCA studies, resulting from variations in input

parameters and system boundaries, refer to Table 1 and Figure 3. Sys-
tems that include conventional Good Agricultural Practices (GAP) are
associated with higher emissions (2.29 kg CO,e per kg of cacao),
despite assumptions of zero deforestation (Vervuurt et al., 2022). The
emissions associated with inputs and residue management aimed at
pest and disease control outweighed the increase in cacao yield. The
trade-off between high cacao yields and GHG emissions highlights
the need for a revision of GAP recommendations to better align with
climate mitigation objectives. This stresses the fact that merely boost-
ing yields in the hope of minimising land use is not sufficient to miti-
gate carbon emissions. It necessitates the implementation of CO,
removal (CDR) to reduce the industry's ecological footprint.

3 | THEPOTENTIAL OF ENHANCED ROCK
WEATHERING

Enhanced rock weathering (EW) may be a promising solution to
achieve net-zero carbon targets in the cocoa industry. EW involves
accelerating the natural process of rock weathering to sequester car-
bon dioxide (CO,) (Hartmann et al., 2013). This is accomplished by
crushing silicate rocks rich in Ca?* and Mg?*, to increase the reactive
surface area (Moosdorf et al., 2014). This rock dust can then be spread
across a range of grasslands, forests or agricultural land and incorpo-
rated into the soil, where rocks can dissolve faster under the elevated
CO,, released from roots and decomposers (Beerling et al., 2018;
Schuiling & Krijgsman, 2006). Increases in alkalinity export are driven
by increases in pH caused by the sequestration of protons by the sili-
cate matrix and the formation of monosilicic acid. The increase in pH
allows for increases in the concentration of aqueous bicarbonate ions
(HCO3 ") with CO; (o acting as a buffer. These are summarised by the

weathering equation for diopside below:

Emissions for Global Cacao Bean Production

E 10 - Conventional Monoculture
‘E—. 8- -=- Conventional Agroforestry
o Organic Agroforestry
Eg
ES o
SE
g 7
9
w 0 | I 1 ) I

'9@" '9,\\ '9%\ \&\ (&Q\ q?,\\ @,\5

Year

FIGURE 3

Estimated Emissions for Global Cacao Bean Production from 1961 to 2023. Average global warming potential (GWP) values for

1 kg of dried cacao beans at farm-level production are sourced from Table 1. These values were multiplied by the average global production value
for each year (Faostat, 2024) to calculate total GWP for three cultivation systems: conventional monoculture, conventional agroforestry and
organic agroforestry. Under each scenario, it is assumed all cacao is grown using the respective cultivation system, which is an oversimplification
of the methods used to produce cacao. See Dataset S1 for further information.
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CaMgSiZOé(S) +4C02(aq) + 6H20(|)
— C32+(aq) + Mg2+ (aq) T 4HCO;3;~ (aq) + 2H4Si04(aq> (1)

Silicate weathering reaction allows for a carbon sequestration
ratio of 2 mol CO,/mol divalent cations.

Subsequently, bicarbonate together with its counterbalancing
cations is transported through groundwater and runoff; in many cases,
ultimately makes its way to the oceans (Equation 1) (Green
et al., 2024). This leads to CO, storage as dissolved inorganic carbon
or more enduringly as carbonate compounds (Equation 2) (Knapp &
Tipper, 2022; Pokrovsky et al., 2009). This is illustrated by the forma-
tion of calcite below:

C32+(aq> +2HCO;3;~ (aq) — CaCO3(5) + COz(g) + H20(|) (2)

Silicate weathering with carbonate precipitation is unlikely to
occur in acidic tropical soils but instead occurs over a 10,000-year
timescale, leading to a carbon sequestration ratio of 1 mol CO,/mol
divalent cations and the transfer of carbon from the atmosphere to
the geologic record (Renforth, 2019).

The large-scale CDR potential of EW remains a subject of debate.
The Intergovernmental Panel on Climate Change (IPCC) estimates that
EW could sequester between 2 and 4 Gt CO, yr~! globally
(IPCC, 2022) and one modelling study projected the cumulative car-
bon sequestration potential of EW to be 215 Gt CO, with a fixed
application rate of 10 t ha™?! of basalt dust across 2006-2080 (Baek
et al., 2023). The warm and humid climates in which cacao is culti-
vated may enhance chemical weathering rates, as increased precipita-
tion and temperature facilitate mineral dissolution by lowering
activation energy (E,) barriers (Haque et al., 2023; Kump et al., 2000;
Ryan et al., 2024). However, while dissolution kinetics are more opti-
mal in these regions, the anions charge-balancing cations released
during weathering may originate from non-carbonic sources in low-
pH soils (Li & Ji, 2016; Taylor et al., 2021). In a tropical EW field trial
in Northeastern Australia, soil acidity was shown to preclude CDR, as
acids stronger than carbonic acid, mainly surface-bound protons, were
the primary weathering agents (Holden et al., 2024). Similarly, strong
acid weathering caused by nitrogenous fertilisation was shown to per-
turb CDR in a field trial with crushed returned concrete in Ireland
(McDermott et al., 2024). The mechanism for this is nitrification,
where ammonium (NH,)-based fertilisers in the presence of O, are
converted into nitrate (NO3~) by nitrifying soil bacteria, releasing
protons into the soil (Goulding, 2016; Nishio & Fujimoto, 1990).
Alternatively, NO3;™-based fertilisers (e.g., CaNO3) could be utilised as
a measure to prevent nitrification-driven acidification and strong acid
weathering (Weng et al., 2022). In the process of uptake, plants
acquiring nitrate also export bicarbonate, thus driving the alkalinisa-
tion of the surrounding soil (Haynes, 1983; Pierre & Banwart, 1973).
However, nitrogenous fertilisation in excess will cause NOs™ to leach
through the soil (Quan et al.,, 2016); caution must be exercised in
supplying reasonable rates of CaNOs fertilisation.

Carbonic acid is a weak acid with a pK, of ~6.4 (Loerting &
Bernard, 2010); therefore, CDR in highly acidic soils (<pH 5.2) will

 PDP-1—

be low until proton neutralisation through continued silicate

People P

application and weathering is sufficient for carbonic acid dissociation
(Dietzen & Rosing, 2023; Holden et al, 2024; Oh &
Raymond, 2006). A correction factor for non-carbonic weathering in
soils below pH 6.3 has been proposed (Dietzen & Rosing, 2023), but
the effect of strong acids on CDR potential has not reached a
consensus.

In addition to these purely abiotic controls, rock weathering is sig-
nificantly influenced by the rhizosphere environment. A rhizosphere,
the soil region influenced by plant roots, exhibits variations in pH and
nutrient levels compared to bulk soil, with differences of up to two
units (Youssef & Chino, 1989). Plant roots, micro-organisms and
decomposing plant materials can also produce additional acidity by
releasing protons and organic acids into the soil (de Almeida Leite
et al., 2024; Fujii, 2014; Hinsinger et al, 2003; Perez-Fodich &
Derry, 2019). Organic acids can complex with metal ions, weakening
mineral surface bonds and facilitating silicate dissolution, even at
near-neutral pH levels where proton-promoted dissolution is
typically constrained (Sun et al., 2023; Welch & Ullman, 1993). While
this may increase weathering rates, organic acids and protons could
compete with carbonic acid, impeding inorganic carbon formation (Lei
et al, 2025; Taylor et al, 2021). This may be compensated by
the increase in pCO, from root and microbe respiration, which
increases bicarbonate concentrations in soil above what is expected
from carbonate solubility, promoting CDR (Bloom & Inskeep, 1986;
Poschenrieder et al., 2018).

Agroforests have additional advantages for weathering, including
deep tree roots, which regulate water fluxes and create macropores,
facilitating weathering and exportation of reaction products (Billings
et al., 2018; Wen et al., 2020). Tropical forested systems could exert
greater biological weathering rates than temperate systems. Owing
to their higher net primary productivity and faster microbial decom-
position, tropical agroforestry soils have increased CO, production
and concentrations available to react with rocks (Hashimoto
et al,, 2007). This could trigger carbon capture at greater rates in
tropical systems' soils than temperate systems, particularly in the top
0-10 cm, where rock amendment would be spread. The interplay
between strong acids, pCO, and CDR rates requires further
investigation.

Modelling studies assessing the CDR potential of EW in tropical
Brazilian croplands have estimated that deployment on over 25% and
75% of cropland could remove 0.1 and 0.2 Gt CO, yr— 2, respectively
(Beerling et al., 2020). Similar estimates have been reported elsewhere
(Jerden et al., 2024); however, field verification is lacking, as no trials
have yet spanned a decade. Long-term experimental data on CDR
potential in tropical systems, where weathering rates are expected to
be high, remain scarce. Reported CDR rates vary considerably, with a
field experiment in Malaysia estimating ~1 t CO, ha~! sequestration
after three years of basalt application (Larkin et al., 2022), and a labo-
ratory study in Costa Rica projecting 3.2 t CO, ha~! yr~? following a
50t ha=? basalt application (Ryan et al., 2024). Currently, there is
a high level of uncertainty associated with these CDR rates given the

lag time of weathering products in the soil (te Pas et al., 2025),

ASUAI SuOWIo)) aAnear) a[qearjdde ayy £q pauraAod aIe sa[oNIE YO osn JO sajnI 10§ KIeIqIT uruQ AJ[IA UO (SUONIPUOI-PUEB-SULIA}/ WO Ka1m  KIeIqi[aur[uoy/:sdny) suonipuo) pue suLa], Ay 29§ *[Sz0z/01/91] uo Areiqry auruQ Loim ‘A TAIAATHS 0 ALISYIAINN £9q £600L €ddd/z001°01/10p/woo Kapim- Kreiqrjaurfuo-yduyy:sdny woiy papeojumo( ‘0 ‘1 1972LST



s |

STEELEY ET AL.

People |

the potential re-release of CO, downstream (Zhang et al., 2022) and
the emissions associated with the mining, crushing and transportation
of rock dust (Moosdorf et al., 2014).

To assess the potential for EW to offset emissions from cacao
production, CDR rates from these studies were applied to 10% of the
available cocoa harvest area (Figure 4). This 10% scenario was selected
as it represents a pragmatic, conservative estimate of partial adoption,
allowing for a proof-of-concept scale while accommodating limitations
in implementation capacity, financial resources and policy support. The
results suggest that EW could substantially mitigate emissions from
cacao cultivation through CDR. EW could lower GHG emissions
through reduced chemical fertiliser requirements and suppressing N,O
release, but this is not considered here due to the lack of life cycle
assessments of EW with cacao production. Field trials are essential to
validate these projections and to account for strong acid weathering in
tropical soils, potential synergies with other sustainable practices, or

unintended consequences not captured in modelling studies.

4 | ENHANCED WEATHERING FOR CACAO
CULTIVATION: SOIL HEALTH, NUTRIENT
CYCLING AND SUSTAINABILITY

A relatively limited set of soil characteristics is required for productive
cacao agroecosystems, including a pH range between5.7 and 6.22,
organic carbon content close to 3%, available phosphorus and potas-
sium levels greater than 16 and 90 ppm, respectively, and a cation
exchange capacity between 9 and 15 cmol ¢/dm?, among other param-
eters (Souza et al., 2018). Beyond its role in carbon sequestration, EW
holds the potential to improve soil conditions necessary for cacao
farming, foremost providing a means to increase and buffer soil pH. In

tropical regions, where soil acidity frequently arises from high rainfall

Mitigation Potential of
Enhanced Weathering

and leaching (Ng et al., 2022), the application of EW feedstocks could
serve as an alternative to conventional agricultural lime (CaCO,)
(Edwards et al., 2017). Silicate rocks, which are rich in bases, could
neutralise excess hydrogen ions (H™) in the soil solution, thereby rais-
ing soil pH and improving conditions for nutrient uptake (Guo
et al., 2023). Further, the solubility and consequently, the mobility of
heavy metals such as nickel (Ni), lead (Pb), cadmium (Cd) and mercury
(Hg), are strongly influenced by pH, reducing their solubility as the pH
rises (Omokaro et al., 2025; Villalaz-Pérez et al., 2024). Corroborating
this, numerous studies have highlighted the importance of maintaining
soil pH to reduce the mobility of potentially toxic trace elements in
cacao plantations (Araujo et al., 2018; Doe et al., 2022). Soil alumin-
ium (Al) levels, which can be a problem in highly acidic soils, pose a
significant concern for cacao cultivation. Elevated Al concentrations
can adversely affect shoot and root biomass, stem height, root
length, relative growth rate and net assimilation rate (Baligar &
Fageria, 2005). Increasing soil Al saturation further inhibits the uptake
of essential nutrients, including potassium, calcium and magnesium
(Bossolani et al., 2020). The application of dolomite lime to acidic soils
reduced exchangeable Al levels from 26 to 0.2 cmol kg™! and
increased root and shoot biomass in cacao by 1.31 and 0.39 g plant™2,
respectively (Baligar & Fageria, 2005). These findings have prompted
further research into soil amendments aimed at preventing trace
metal toxicity through pH regulation (Ramtahal et al., 2019). A study
by Shamshuddin et al. (2011) demonstrated that the application of
ground basalt, a key rock type for EW, at a rate of 20 t ha~! increased
pH, reduced exchangeable Al in infertile Oxisols, and simultaneously
promoted cacao dry matter weight from 709 to 873 g pot™ 1. These
findings have been supported by additional studies (Shamshuddin
etal, 2015).

Depending on the mineralogical composition of the applied rock,
EW may also elevate nickel and chromium concentrations in soils

e NoEW

EW on 10 % of Harvested Area,
Lower CDR Rate (Larkin et al., 2022)

EW on 10 % of Harvested Area,
Higher CDR Rate (Ryan et al., 2024)

» 15
c
=)
ow
© 0
g E o 107 .
N
otg ' ‘
g O w |
0+ E 5+ A
= 0 - L4
(D.g |
2
o 0 1 1 1
N N X<
2 2 Q
& @ & >
0\\0 \‘\9‘ N J 0"’@ 0‘0‘? ef:'@
RO &N o
&0 & & &
& & < & &
~ v v

FIGURE 4 Predicted Global CO, Emissions for 2023 Dried Cacao Bean Production with Enhanced Weathering. Average production
emissions were calculated using the same method as above. Error bars represent the Standard Error Mean. The potential of Enhanced Rock
Weathering (EW) to mitigate carbon dioxide emissions was calculated using two carbon removal (CDR) rates (Larkin et al., 2022; Ryan

et al., 2024), representing a high and low scenario. The CDR rates were multiplied by 10% of the global harvested area for cacao cultivation
(Faostat, 2024) to generate a mitigation value, which was subtracted from the original average production emissions for each system. See Dataset

S1 for further information.
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(Vienne et al., 2022). To address these concerns, Brazil, recognised as
a global leader in the application of natural rock powders for soil remi-
neralisation, has implemented regulatory measures to manage the
chemical risks associated with rock dust applications in agriculture
(Presidncia da Repblica, 2013). Careful selection of rock sources,
combined with rigorous and transparent monitoring of trace element
concentrations, is crucial for balancing the climate mitigation potential
of EW with its social acceptance and environmental safety consider-
ations (Levy et al., 2024).

The slow release of nutrients from EW necessitates the presence
of healthy soil organic matter (SOM) to support sustained plant
growth and heterotrophic soil respiration, which in turn elevates CO,
levels in the soil air, increasing EW efficiency for soil carbon seques-
tration (Bertagni et al., 2025). Evidence suggests that finely ground
silicate rock residues can increase mineral-associated SOM by 22%, as
a result of the release of Al and Fe forming poorly crystalline minerals
(e.g., imogolite, allophane, ferrihydrite) which interact with SOM to
form complexes protected from microbial decomposition (Buss
et al., 2024; Xu et al., 2024). Similarly, a study reported a positive cor-
relation between weathering rates and soil organic carbon storage in
regions characterised by high humidity and mineral abundance at tem-
perate locations (Slessarev et al., 2022). However, redox fluctuations
characteristic of tropical systems with alternating dry and wet seasons
put into question the stability of the newly formed complexes, neces-
sitating further research into rock weathering-SOM interactions at
tropical EW trials (Chen et al., 2020).

An incubation experiment reported a substantial increase in soil
CO, efflux following the application of wollastonite, a widely
used mineral in EW, suggesting faster SOM decomposition (Yan
et al., 2023). These findings suggest that EW may accelerate SOM
mineralisation, especially in acidic soils, and potentially induce a “prim-
ing effect,” whereby microbial activity stimulates the decomposition
of existing SOM (Fang et al., 2023). A two-year trial conducted in the
United States observed a decline in mineral-associated organic matter
following silicate rock application; however, this was not accompanied
by a corresponding reduction in soil organic carbon (Sokol
et al., 2024). This could be understood by the increase in soil pH,
influencing the decomposition of organic matter and microbial activity,
responsible for the degradation and mineralisation of carbon. Con-
versely, there is evidence to suggest that in agroforestry systems, an
increase in pH is associated with greater organic carbon retention,
increased biomass and microbial activity, favouring the stabilisation of
organic carbon (Soilueang et al., 2025).

Application of crushed silicate rock has the potential to enhance
soil fertility and cation exchange capacity (CEC) in highly weathered
tropical Oxisols (Gillman, 1980). Soil CEC is a measure of the negative
charge of the solid phase of soil balanced by exchangeable cations
(mEqg/100 g) and describes the number of cations in the soil solution
that are exchangeable, and therefore available for uptake by plant
roots (Reganold & Harsh, 1985; Wang et al., 2023). Understanding soil
nutrient dynamics is essential for optimising agricultural practices and
meeting the increasing global demand for cacao. Although studies are
limited, under field conditions, basalt application can significantly

People P

increase cocoa growth, as evidenced by increasing stem height and
diameter over 24 months (Anda et al., 2013). Building on these find-
ings that basalt amendments enhance overall soil nutrient status and
promote cacao growth, it is crucial to examine the role of individual
macronutrients in sustaining and further improving cacao production.

Potassium (K) is a key macronutrient for cacao production, pro-
moting root development (Nguyen et al., 2002) and enhancing water
stress tolerance, which improves the plant's resilience to environmen-
tal conditions (Boyer, 1973). Potassium is also essential for pod and
bean development, with cacao pods containing 4.2-5.5% K in dry
matter and beans containing 2.2-2.4% K (Mengel, 1980). Given that
cacao cultivation depletes K from trees, it has long been established
that K replacement requirements are directly linked to vyield
(Mengel, 1980). Field trials have demonstrated that K supplementa-
tion enhances cacao growth (Kaba et al., 2022). Basalt application as
an EW amendment has been proposed as a source of K for cacao cul-
tivation. Studies indicate that plants in tropical soils can access K from
silicate rock amendments (Manning et al., 2017). A four-year field trial
in the U.S. Corn Belt found that annual applications of crushed basalt
(50 t ha™Y) released at least 23 kg K ha=* y~* (Beerling et al., 2024), in
addition to potential increases in available K due to changes in soil
pH. While this amount may be sufficient for average-yielding cacao
trees, it is unlikely to meet the K demands of high-yielding trees or
those in K-deficient soils (Mengel, 1980; Snoeck et al., 2016). How-
ever, there is an obvious need to generate K release rates during EW
with a range of feedstocks in cacao agroecosystems.

The effectiveness of basalt as an alternative to chemical K
fertilisers may depend on the specific agricultural system. Bahia et al.
(2021) found that in shaded systems, there was a lower need for N, P
and S and a greater need for K by cocoa trees compared to cacao
grown in full-sun systems. Consequently, shade levels must be consid-
ered when assessing the fertilisation potential of EW, as responses
may vary across different management systems (Ahenkorah
et al., 1987). Given these factors, basalt application may be most
effective as a supplement to conventional fertilisers, potentially
reducing environmental impacts and costs associated with chemical
fertilisation.

Phosphorus (P) is also a critical, commonly limiting nutrient in
cacao cultivation, contributing to flowering, dry matter production
and canopy development, which enhances light capture and photo-
synthetic efficiency (Asomaning et al., 1971). However, P availability
in tropical soils is often limited due to fixation in unavailable forms,
particularly in  highly weathered, acidic conditions (Chacén
et al., 2008). Soil pH plays a key role in regulating phosphate availabil-
ity, as it influences the adsorption of phosphate anions onto soil col-
loids (Devau et al., 2009). Higher pH levels increase the solubility of
iron and aluminium phosphates, reducing phosphate fixation and
improving P availability (Sandim et al., 2014). Given these constraints,
P deficiencies can limit cacao productivity, necessitating effective fer-
tilisation strategies that align with the agricultural practices and tree
health. Older, unshaded cacao plantations require higher P inputs than
younger trees grown under shade (Ahenkorah et al., 1974; Ahenkorah
et al., 1987). Additional studies have shown that P supplementation
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can enhance productivity and improve the effects of N, particularly in
low-yielding trees (lsaac et al., 2011; Snoeck et al, 2010;
Wessel, 1971).

Given the challenges of P fixation in tropical soils, EW may
improve P availability over time. Silicon-rich rock amendments have
been shown to increase soil P availability by promoting competition
between silicate and phosphate anions for adsorption sites (Sandim
et al, 2014). In a tropical rubber plantation, EW using wollastonite
increased total soil P levels and P availability through enhanced micro-
bial P cycling and the release of root exudates in a two-year field
experiment (Bi et al., 2024). Basalt, which shares similar mineral prop-
erties with wollastonite, may also serve as a slow-release source of
P. A four-year field trial in the U.S. Corn Belt found that annual appli-
cations of crushed basalt (50 t ha™?) released at least 7 kg P ha=?! y*1
(Beerling et al., 2024), but as with K, release rates are needed for
cacao sites.

Nitrogen (N) fertilisation stimulates leaf flushing, canopy forma-
tion and vegetative growth, influencing cacao vyield, especially in
younger trees (Cafarte et al., 2023). While basalt application will not
directly increase levels of N through its mineralogy, it has been shown
to significantly reduce N leaching from the soil. The average decrease
in N leaching has been estimated to be as high as 45% upon basalt
amendment (Vienne et al., 2022), possibly due to Mo released during
weathering, which is a central co-factor in the nitrogenase enzymes of
bacteria involved in N,-fixation to ammonia (Seefeldt et al., 2009;
Epihov et al., 2017). Additionally, basalt application can enhance N
assimilation and nitrogen use efficiency (Beerling et al., 2024). This
may be through increased availability of soil Mo for plant uptake,
which is often limited in acidic tropical soils (Barron et al., 2009). At a
long-term trial in the US corn belt, Mo was shown to mechanistically
increase nitrogen use efficiency through upregulated expression of a
Mo co-factor, important for N cycle enzymes, within plants in
response to basalt treatment (Beerling et al., 2024). Increases in avail-
able Mo may therefore enhance asymbiotic N,-fixation by free-living
soil bacteria (Epihov et al., 2021) and further contribute to the N nutri-
tion of cacao, particularly in unfertilised or organic settings.

A further co-benefit of N retention could be a reduction in N,O
emissions, a potent GHG with a GWP of up to 298 times that of CO,
(Mosca et al., 2014). One modelling study using field observations in
the US predicted N,O emissions could decrease by 16% in maize and
9% in miscanthus (Blanc-Betes et al., 2020). This result is supported
by a maize mesocosm in the US in which cumulative N,O emissions
were reduced by 29-32% upon a basalt application of 5 t acre, likely
caused by increased soil alkalinity and changes in soil structure
(Chiaravalloti et al., 2023). Extrapolating to five regions that have high
CDR potential (North America, Brazil, Europe, India and China), EW
was shown in one model to reduce emissions from N,O and NO by
18% but increase NH3 by 2% (Val Martin et al., 2023). Despite limited
corroboration from field trials, the curtailment of non-CO, emissions
offers an additional mechanism to reduce the GHG footprint of cacao
production.

Calcium (Ca) and magnesium (Mg) are necessary for healthy

cacao seedlings and plant vigour (Carmona Rojas et al, 2022).

Calcium, among a wide range of critical functions in cacao (see Lubis
et al., 2022), contributes to cell wall integrity (Van Stkveninck, 1965)
and disease resistance (Butler & Engelhard, 1990). For instance, higher
Ca levels can reduce susceptibility to pathogens such as Phytophthora
spp. (Campanella et al., 2002). Meanwhile, Mg is essential for chloro-
phyll synthesis and enzyme activation, facilitating photosynthetic
activity and metabolic processes within the plant (Ishfaq et al., 2022).
Basalt applications have been demonstrated to elevate levels of both
Ca and Mg in the soil solution through multiple trials (Conceicdo
et al, 2022; Plata et al., 2021). In fertiliser trials, specific nutrient
ratios of Ca/Mg have exhibited positive correlations with cacao yield
(Marrocos et al., 2020), and rock dissolution could impact these crucial
ratios.

The essential micronutrients (B, Cl, Cu, Fe, Mn, Mo, Ni and Zn)
and the elements not yet widely recognised as essential but which
can contribute to the development of crops (Co, Se, Na and Si), are of
vital importance for cultivated plants (Chepote et al., 2013; Epstein &
Bloom, 2004; Souza et al., 2018; Taiz et al., 2014). Of these, zinc
(Zn) is the micronutrient with the highest frequency of deficiency in
soils cultivated with cocoa trees; essential for auxin prevention,
enzyme activation, carbohydrate formation and indoleacetic acid
(IAA); its deficiency results in shortening of the internodes and cell
reduction (Chepote et al., 2013; Souza et al., 2018). The use of silicate
rocks on soils with low starting TE contents may induce a ‘micronutri-
ent fertilisation effect’ and alleviate issues associated with zinc defi-
ciency (Dupla et al., 2023).

Except for Fe, Cl, Mo and Ni, whose demand for cacao is often
met due to low requirements or indirect supply, other micronutrients
require regular supplementation. In this context, the application of
silicate rocks, containing traces of micronutrients in their composi-
tion, represents a viable alternative to complement the supply of
these elements. Sodium (Na), classified as a beneficial element, may
perform functions similar to those of potassium (K) (Epstein &
Bloom, 2004). Gattward et al. (2012) demonstrated that, in clonal
cocoa seedlings, the partial replacement of K by Na resulted in
greater net photosynthesis and water use efficiency. In addition,
studies indicate that the application of small doses of Na can stimu-
late the rooting and production of cocoa fruits, without compromis-
ing clay flocculation, soil aggregation and porosity (Erwiyono
et al., 2002). These findings highlight the need for further research
on the role of Na in cocoa cultivation, especially considering its pres-
ence in silicate rocks.

Silicon (Si) application to cacao can increase photosynthesis, for-
mation of lignin, stomatal density (Fantinato et al., 2018) and protec-
tion from harmful UV-B radiation (Zanetti et al., 2023), leading to
structural integrity in cacao plants. Importantly, Si content in plants is
essential for disease defence (Fantinato et al., 2018) and stress resis-
tance (Eneji et al., 2008), along with tolerance to heavy metals (Liu
et al., 2020). However, cacao is often grown on highly weathered
soils, and the reservoir of silicate minerals is frequently in crystalline
structures with slow dissolution rates (De Tombeur et al., 2020) and
plant-available Si pools can become depleted over time (De Tombeur
et al., 2020). The potential of EW to increase plant-available Si
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remains a subject of debate. While silicate rock dust dissolution can release rates vary depending on soil type, as pH influences the reac-
release Si into the soil (Reynaert et al., 2023), the associated increase tivity of different soil Si pools (Lim et al., 2023). Nonetheless, studies

in soil pH may reduce Si bioavailability (Meunier et al., 2018). Si on basalt (Kelland et al., 2020) and wollastonite (Jariwala et al., 2022)
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FIGURE 5 Potential Co-benefits of Enhanced Weathering for Cacao-Agroforestry. (Steeley, 2025).
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FIGURE 6 Global lithology distribution map of Basic and Intermediate rock. Rock sources were identified from the GLiM rock database and
rock class is classified as detailed in Hartmann et al., 2013. Cacao production was retrieved from International Food Policy Research Institute
(IFPRI)., 2024. Map was created in QGIS software (https://qgis.org) and with Natural Earth physical vectors (scale 1:10 m). Map does not
represent all silicate rock deposits or cacao producing areas.

puoD pue swid, 31 23 [$Z0T/01/91] U0 Areiqr auruQ KM ‘A THIAIHHS 40 ALISYHAINN 49 £600L €ddd/z001°01/10p/wod Kopim Areiqrpaurjuoyduy/:sdny wouy papeojumod ‘0 ‘11922LST

10)/W0d* K3[1m° Kreaqrpaur[uoy/:sdny)

p

2SULDIT SUOWWO)) 2ANEAI) dqesrdde ayy Aq pauIaAos are Sa[oNIE () fasn Jo sa[nI J0j AIRIQIT AuIjuQ) K3[IA UO (


https://qgis.org

STEELEY ET AL.

10 | P

have demonstrated increased plant-available Si in the short term dur-

People Pla

ing mesocosm incubations, as pH increases are relatively limited after
a single rock dust application. However, long-term trials in the US
Corn Belt (Beerling et al., 2024) and Malaysia (unpublished data) show
that basalt-amended crops do not benefit from increases in biomass
Si, as the stable 0.5-1.0 pH unit increase in soil promotes Si adsorp-
tion into an amorphous opaline pool not immediately available to
plants. These findings suggest that silicate rock weathering may offer
a viable and sustainable strategy for replenishing depleted Si pools in
agricultural soils.

These findings highlight the potential of EW materials in cacao
cultivation, although current research has primarily focused on short-
term effects, necessitating long-term studies for sustainability
assessment. Variability in silicate rock composition and soil-specific
interactions requires further investigation, urging comprehensive geo-
chemical analyses. Evaluating rock dust's influence on soil microbial
communities and resilience to climate change stressors is imperative.
In conclusion, while previous studies have addressed the potential
benefits of EW application in cacao farming, ongoing research is
essential to fully understand its impact on soil health, productivity and

nutrient cycling; refer to Figure 5.

5 | FEASIBILITY

The feasibility of implementing EW practices in cacao farming
depends, in part, on the proximity of farms to sources of weatherable
silicate rock feedstock (e.g., basalt, gabbro, andesite, pyroxenite), as
this relationship influences both transportation costs and the GHG
emissions associated with material distribution (Eufrasio et al., 2022).
Geographic separation introduces logistical and economic complexi-
ties for EW implementation. For instance, in a life cycle assessment of
EW in S3o Paulo State, 990 + 116 km was the limit for basalt trans-
port above which the emissions associated with transport severely
limit the potential capture (Lefebvre et al., 2019). By strategically uti-
lising existing infrastructure for agricultural lime distribution and
repurposing basalt waste, disruption to established practices can be
minimised while reducing environmental impact. For cases where nat-
ural silicate rock deposits are located far from established cacao farms,
refer to Figure 6; alternative CDR and sustainability strategies may be
more appropriate. As demonstrated by Eufrasio et al. (2022), a clean
energy mix and electrification of transport and rock grinding pro-
cesses will improve the environmental and sustainability capacity of
EW. Therefore, the CDR potential of EW on cacao farms needs to be
determined holistically. Addressing these logistical tasks could support
a challenging but potentially transformative solution for carbon

sequestration in the cocoa industry.

6 | ADOPTION AND APPLICATION

EW could sustainably boost yields and reduce liming and fertilisation

costs, with carbon credits helping to offset silicate rock application

expenses and improve financial viability for farmers. However, as
seen with other sustainability payment initiatives such as the Ghana
Cocoa REDD+ (Reducing Emissions from Deforestation and Forest
Degradation), engagement and uptake will be low if policy backing is
weak and the financing does not improve living income for farmers
and cover costs to transition (Dugasseh & Zandersen, 2025). Using
current technologies to track CDR, monitoring and verification
(MRV) processes for EW is labour-intensive, along with the physical
spreading of the rock dust. Interventions to improve yield in small-
holder farmers, including pest and disease management, received
poor uptake when the increased production was not sufficient to
cover the labour costs associated with the management practice
(Scudder et al., 2022). Therefore, to increase adoption, low-cost
MRV needs to be developed along with careful design of rock appli-
cation rates. To minimise the machinery and labour costs associated

with spreading, high rates, representing multiple applications of rock

TABLE 2 Knowledge Gaps in Enhanced Rock Weathering.
Knowledge Gap Description
Quantifying Carbon Accurate measurement of carbon removal

(CDR) through enhanced rock weathering
(EW) remains challenging. Robust
methodologies are needed to assess
weathering rates, carbon storage and
associated co-benefits, particularly in
diverse agroforestry settings.

Sequestration

The potential effects of EW on biodiversity
within cocoa agroforestry systems,
including shade trees and associated fauna,
require further investigation.

Biodiversity Impacts

A deeper understanding of EW's impact on
nutrient cycling, including nitrogen (N)
dynamics, phosphorus (P) availability, and
the release of potentially toxic elements, is
crucial for optimising its application in
cocoa production.

Nutrient Cycling
Dynamics

Soil & Rock Grain
Microbial Interactions

The interplay between EW, soil properties
and microbial communities remains poorly
understood. Research is needed to
determine how EW influences microbial
activity, organic matter decomposition and
nutrient availability.

Most studies focus on short-term impacts.
Long-term field trials are needed to assess
the sustainability of EW practices and their
effects on soil health, crop productivity and
ecosystem services.

Long-Term Effects

The impact of EW on N,O emissions is
under-researched and could present an
additional pathway to reducing cacao's
climate impacts.

N,O Emissions

Research is needed to evaluate the
economic feasibility and social acceptability
of EW for cocoa farmers, including
equitable benefit-sharing mechanisms and
strategies to mitigate social and
environmental risks.

Socioeconomic
Considerations
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dust, could be spread before the trees are planted, with further
applications being targeted around the base of the tree, at the width
of the canopy, where root density and therefore agronomic benefits
will be highest.

Beyond logistical considerations, the application of finely crushed
rock dust poses potential risks to human health, particularly for indi-
viduals directly involved in its handling and distribution. Fine particu-
late matter has been associated with respiratory risks, including
silicosis, a condition linked to the inhalation of silica particles (Merget
et al., 2002). Such risks may be higher without appropriate protective
equipment, such as masks or respirators. For smallholder farmers in
resource-limited settings, limited access to safety measures could
increase the likelihood of adverse health outcomes. Addressing these
challenges may require investment in technologies and training pro-
grams tailored to the needs of smallholder farmers, along with the
provision of protective equipment, to mitigate health risks associated

with rock dust application.

7 | KNOWLEDGE GAPS IN ENHANCED
ROCK WEATHERING FOR COCOA
AGROFORESTRY

This review highlights several critical knowledge gaps that hinder the
effective implementation of EW in cocoa agroforestry systems, which
are listed in Table 2.

8 | CONCLUSION

Cacao production faces complex and interlinked challenges, including
low vyields, poverty among smallholder farmers and substantial envi-
ronmental impacts caused by land-use change and input-intensive
practices. This review highlights the potential of integrated climate-
smart strategies, specifically agroforestry and enhanced rock weather-
ing, to mitigate greenhouse gas emissions, enhance soil health and
improve climate resilience. However, key knowledge gaps persist
regarding long-term effects, nutrient cycling and the socio-economic
feasibility of these approaches. Given the multidimensional nature of
these challenges, multifaceted, systemic responses are essential. The
cocoa sector must adapt through scalable, evidence-based interven-
tions that align environmental sustainability with the economic reali-

ties of smallholder farming systems.
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