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Ageing is the primary risk factor for Parkinson’s disease, yet the intricate interplay between these
processes remains ambiguous. This position paper, a collaborative output from the PD-AGE
consortium, addresses the urgent need for standardising methods in in vitro modelling. A panel of
international experts recommends human induced pluripotent stem cell (iPSC)-derived models, with
chemically induced ageing methods, such as the SLO cocktail, as a robust system. Furthermore, the
consortium highlights the value of direct and semi-direct reprogramming for retaining donor-specific
ageing phenotypes. The paper also outlines a prioritised panel of measurable parameters, categorised
into senescence, inflammaging, omics profiling, and mitochondrial dysfunction, providing a
consistent framework to enhance research reproducibility, investigating the nexus of ageing and
Parkinson’s. In addition, we provide links to SOPs (https://doi.org/10.5281/zenodo.15056603) [1] to
measure the key measurable ageing parameters outlined in this review to facilitate consistency and

reproducibility within the field.

Parkinson’s disease epidemiology

Parkinson’s disease (PD) affects 0.3% of the global population, 1% of the
over-60s and 5% of the over-80s population — this reflects the fact that ageing
is the chief risk factor of PD'’. PD is best characterised by its motor
symptoms: a resting tremor, postural instability, rigidity and bradykinesia;
resulting from the neurodegeneration of dopaminergic (DA) neurons in the
Substantia Nigra pars compacta (SNpc)’. Non-motor symptoms, which are
less well characterised, include: impaired REM sleep, cognitive dysfunction,
depression and anxiety are more associated with neurodegeneration of non-

dopaminergic neuronal populations™’. A main pathological hallmark of PD
is the aggregation of misfolded a-synuclein (aSyn), which is incorporated
within Lewy Body structures. The exact role of Lewy bodies in contributing
to, or otherwise ameliorating, PD pathogenesis caused by toxic soluble a-
Synspecies, remains unresolved’. DA neurons are the most affected neu-
ronal population in PD, but progressive loss of this subtype in the SNpc is
also shown to occur in normal ageing’™'. This age-associated decline in DA
neurons has been shown by a reduction in tyrosine hydroxylase (TH)
staining in the SNpc of healthy, aged non-human primates"”. This also
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suggests that though there are shared mechanisms of neurodegeneration,
particularly of DA neurons in PD and ageing, they appear to be more
pronounced in PD*",

Parkinson’s disease and ageing

There are multiple shared mechanisms in ageing and the pathogenesis of
PD, including dysregulated autophagy, genomic instability, telomere attri-
tion, impaired proteostasis, senescence, epigenetic modulation, inflamma-
tion, impaired intercellular communication, nutrient sensing, microbiota
and mitochondrial dysfunctionls’m. Of these mechanisms, mitochondrial
dysfunction, dysregulated proteostasis, inflammation and cellular senes-
cence show the greatest degree of overlap between PD and ageing'’. How-
ever, the molecular intricacies underlying these two distinct processes
remain unclear.

Mitochondrial dysfunction

Mitochondrial dysfunction in PD is linked to reduced electron transport
chain complex I activity, which has been observed in PD patient nigral tissue
homogenate'” and PD patient-derived fibroblasts'®'’. Mitochondrial dys-
function is also implicated in PD through an increase of somatic mito-
chondrial DNA (mtDNA) deletions™ and point mutations®', in the SNpc of
PD patients, resulting in impaired oxidative phosphorylation. MtDNA
deletions are also characteristic of pathological ageing within highly meta-
bolic cells, such as SNpc DA neurons™. Reactive oxygen species (ROS) are
implicated in mtDNA deletion formation. DA neurons are at a higher risk to
develop oxidative stress-associated damage, because ROS are generated
through oxidative phosphorylation and through DA metabolism”. In
addition to mutation load, mtDNA damage is independently complicit in
PD pathophysiology. Leveraged against a multi-copy genome, mtDNA
repair is more rudimentary compared with nuclear (nDNA) and lacks some
mechanisms associated with oxidative lesion repair, such as Nucleotide
Excision Repair (NER)*. Recent imaging and qPCR-based methodologies,
measuring mtDNA lesion frequency, highlight elevated oxidative mtDNA
damage in human post-mortem tissue”>** Peripheral Blood Mononuclear
Cells (PBMCs)”” and a human induced Pluripotent Stem Cell (hiPSC)-
derived neuronal model of familial PD*. The exact role of mtDNA lesions in
PD pathophysiology is not fully understood, but it has been proposed that
they could impact mitochondrial homoeostasis, as evidenced by the increase
in mtDNA biogenesis as a compensatory mechanism primarily in SNpc DA
neurons” or trigger an inflammatory response”".

Inflammaging

The combination of mitochondrial dysfunction, elevated ROS, and pro-
teotoxicity, associated with overloaded protein degradation systems, are
drivers of inflammation in PD and ageing”’. Chronic inflammation, termed
“inflammaging”, is another hallmark of ageing and neurodegeneration
triggered by damage-associated molecular patterns (DAMPs), such as ROS,
ATP and extracellular mtDNA. This results in the production of cytokines
and further oxidative species, which directly damage cells and tissues”.
Inflammatory markers, such as IL-6 and IL-8, also contribute to the
senescence-associated secretory phenotype (SASP), which leads to the
induction of cellular senescence™*. Cells with a higher metabolic threshold,
such as DA neurons, are most susceptible to chronic inflammation and are
particularly prone to induced senescence™. PD is heterogeneous and arises
from a number of genetic and environmental factors™*”. A recent study
suggests that inflammaging may be specific to industrialised populations™,
whilst other work suggests that inflammatory responses with age are
common within species”*. This supports and suggests both ageing and PD
are heterogeneous and influenced by environmental factors in a manner
that is human specific*’.

Senescence

Senescence in mitotic cells is associated with irreversible cell cycle arrest in
response to oncogenic stressors such as DNA damage**, telomere
shortening™ and epigenetic perturbations®. Senescence is initiated by p16 or

p21 cyclin-dependent kinase inhibitors, which trigger cell cycle arrest in
response to the DNA damage response or telomere attrition**"”. Though the
mechanistic basis of senescence is less well defined in neurons, relative to
mitotic cells, a senescent phenotype has been reported in mouse primary
Purkinje neurons through p21 in response to DNA damage and pro-
inflammatory factors***. This p21-dependent senescence phenotype has, to
our knowledge, not been investigated in PD, although a study has reported
an increase of p21+- cells in the midbrain of PD patients, and that loss of
SATBI, a DNA-binding protein, could induce p21-dependant cellular
senescence in iPSC-derived DA neurons™. Whilst p16 levels have been
shown to be elevated in PD* and some studies have suggested telomere
attrition is predictive of PD progression and severity’™”', contradictory data
and lack of consensus on the role of telomere length in PD aetiology, limits
the use of telomere length as a robust biomarker of PD in the context of
ageing”™". SASP comprises a number of factors that contribute to the
senescent phenotype at the cellular level, these include growth factors,
chemokines and cytokines, the latter of which can also act in paracrine
fashion, spreading senescence to neighbouring cells*. The senescent phe-
notype is also characterised by mitochondrial-dependent ROS generation™,
the accumulation of senescence-associated beta-galactosidase (SA-B-gal) in
the lysosomes™”, senescence-associated heterochromatic foci (SAHF)*
and phosphorylation of the histone protein H2AX (yH2AX) in response to
double-stranded DNA breaks™. Biomarkers associated with senescence
such as SA-B-gal activation, SASP induction, loss of lamin B1, yH2AX foci
and oxidative stress have been observed in aged’**>****and paraquat-
induced Parkinsonian mouse models”. SA-B-gal and SASP biomarkers
have also been observed in rat** and non-human primate models of
ageing’”’".

Disparities between Parkinson’s disease and ageing

Whilst there is clear evidence supporting the association between PD and
ageing, there are notable differences in reported changes in DA neurons in
Parkinsonian and aged individuals. These include: the number of neurons,
levels of oxidative species, aSyn pathology, microglial activation, proteaso-
mal and lysosomal dysfunction. This suggests that the interaction between
ageing and PD pathophysiology is complex and not fully understood"””. To
better understand common and distinct mechanisms between ageing and
PD, it is necessary to standardise the way in which we conduct research in
both the fields of ageing and neurodegeneration. This includes recognising
the most appropriate disease model(s) and selecting an appropriate panel of
biomarkers to best investigate common pathways.

Cellular models of PD and ageing

Whilst animal models are an important tool to understand the mechanistic
basis of ageing and PD, a key limitation of animal models is that PD is a
uniquely human disease. The time taken for features of PD to manifest
necessitates the use of exogenous induction of certain aspects of PD
pathophysiology in animal models””” and no animal can adequately model
all facets of PD simultaneously”’. Cells sampled from patient peripheral
tissues, such as PBMCs, allow more discrete means to assay human tissue
biomarkers, but data have so far had limited reproducibility’®”. Fibroblasts
can also be cultured from patients and age-matched donors and retain age-
associated characteristics, although many features of the PD pathophy-
siology are less pronounced or not expressed in fibroblasts compared to
neurons'**"*. Features of PD pathology that have been successfully mod-
elled in fibroblasts include mitochondrial dysfunction and turnover'**™*,
lysosomal dysfunction'**** and inflammation'**>*",

The discovery and use of “Yamanaka” transcription factors to convert
human fibroblasts into hiPSCs, which can then be differentiated into neu-
rons, provides a means to model PD and age-associated disease in a human-
based system’*. Since then, a number of cell reprogramming strategies
have become available for the conversion of human fibroblasts into neural
cells: the differentiation of reprogrammed hiPSCs, the differentiation of
reprogrammed induced neuronal progenitor cells (iNPCs)™*'”* and finally
direct reprogramming from fibroblasts into neurons'” """’ and astrocytes'”.
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Small molecules can be used to differentiate hiPSCs into DA neurons,
which express pan-neuronal markers such as PIII-tubulin and the DA
machinery, including the marker TH'*'*. Subsequently, a range of hiPSC-
derived neuronal models of idiopathic and familial PD have been derived
from patients, including from patients harbouring SNCA, PINK1, PRKN,
LRRK2 and GBA mutations®*'”"', as well as sporadic cases”'". Tran-
scription factors, such as Neurogenin 2 (NGN2), can also be used to generate
a high induced neuron yield rapidly, bypassing the neuronal progenitor
stage'*"'*, Using this approach in combination with other transcription
factors or small molecules, the generation of iDAs has been possible'*™'”. A
further refinement of this methodology is the use of doxycycline-induced
NGN2, which improves efficiency and reduces batch heterogeneity'”’. A
next step after the development of neuronal models was brain organoids,
where midbrain organoids are of particular relevance for PD'*""**. More
recently, the level of complexity of 3D models have improved, with
assembling of midbrain and striatal organoids to mimic the nigrostriatal
pathway, as well as with the experimental induction of cellular ageing'*’. Like
iPSC-derived neuronal differentiation, which provides the basis for differ-
entiated organoid models*"*** cocktails of growth factors and small mole-
cules can be used to differentiate stem cells into cells of a specific tissue type -
such as midbrain neuronal populations"*™*’. Organoid systems offer the
potential to model a number of disease features of PD and pathological
ageing - including mitochondrial dysfunction, senescence, neuro-
inflammation and omic-signatures"*"*’, Whilst organoids themselves are
beyond the remit of this article, they do offer long term potential for
modelling ageing and neurodegenerative disease. The standardisation of
two-dimensional models will only serve to facilitate the development of
organoid models going forward.

A notable consequence of the reprogramming process into plur-
ipotency is the loss of cellular ageing signatures, including age-associated
changes in DNA methylation patterns and histone modifications, and
telomere shortening, which can affect the suitability of this approach in
modelling certain aspects of cellular ageing and neurodegenerative
diseases"**'*'. Other key age-associated features lost during rejuvenation
are the progressive impairment in oxidative phosphorylation'*, and the
age-associated impairment in autophagy'*’. To overcome this limitation,
researchers have developed several strategies to induce features of ageing
in iPSC-derived cells. These include: long-term culturing'** and induced
telomere shortening'®.

By reprogramming terminally differentiated cells directly into
somatic cells of another tissue, it is possible to circumvent the
pluripotency stage'”"'”, a methodology termed ‘direct cell reprogram-
ming’. Lineage-determining transcription factors can be used to repro-
gramme somatic cells into subtype-specific neurons, including
DA neurons' "',

The use of Yamanaka factors supplemented with neural transcription
factors, can be used to reprogramme somatic cells into tri-potent induced
neural progenitor cells (INPCs) — which can be differentiated into neurons,
astrocytes or oligodendrocytes™'”. This process of ‘semi-direct repro-
gramming’ differs from ‘direct reprogramming’ because somatic cells are
first differentiated into progenitor cells, bypassing pluripotency, before
being terminally differentiated into cells of a different lineage. This intro-
duces an intermediate step in the differentiation process with the possibility
of cryopreserving progenitor cells. The differentiation of human fibroblast-
derived iNPCs into iDAs has been demonstrated for the investigation of
metabolic and mitochondrial dysfunction in Parkinson’s disease''"*"'*".
Importantly, dermal fibroblasts harbour an endogenous heterogeneity'*’,
which can lead to issues related to the clonal nature of iPSCs, which is not the
case when using direct and semi-direct reprogramming. However, inherent
inter-individual variability can impact the yield and reprogramming effi-
ciency of directly reprogrammed cells'**"**"*", or result in phenotypically
immature neurons'”. Overall, directly or semi-directly reprogrammed cells
are less characterised than iPSC-derived cells. For all reprogramming
methods, the somatic mosaicism of the starting cell type can affect the
resulting cells. Dermal fibroblasts are thought to have more mosaicism than

PBMC’s for example; however, a comparison of the starting cell type for
reprogramming is beyond the scope of this review. Furthermore, the
composition of the culture can change over time, especially with extended
periods of culture. Hence, it is important to monitor the cellular makeup of
the cultures on which the experimental assays have been performed on.

The PD-Age network

Accurately measuring ageing in the cellular models of PD is a complex
challenge, which demands a collaborative, interdisciplinary approach. The
PD-Age network fosters partnership and knowledge sharing among
researchers to identify the most valid, reliable and scalable methodologies of
assessment of the interplay between PD and ageing. Working group 2
empbhasised the pressing necessity for robust and standardised methods to
elucidate the overlapping mechanisms to establish the best practices for
incorporating ageing into patient-derived cellular models used for PD
research. With the aim of harmonising methodologies across studies, the
group discussion was divided into two main objectives.

The PD-age network: standard operating procedures development.
Firstly, the PD-Age Network developed rigorous methodological fra-
meworks of the Standard Operating Procedures (SOPs) utilised for
assessing key cellular processes involved in ageing and PD'*. The group
reached a consensus on the importance of methodological precision of
SOPs for measuring senescence, inflammaging, telomere length detec-
tion and mitochondrial function. The group discussed which pathways
should be included in the SOP list, deciding to focus on pathways that had
wide applicability and would be accessible to a wide number of labs
worldwide. Detailed protocols for assessment of these changes were
developed cooperatively, including equipment and reagents neces-
sary, software and step-by-step experimental procedures. This
selection of cellular mechanism categories is not exhaustive but does
reflect a representative cross-section of pathways that are compatible
with commonly available methodologies and align with the collective
expertise of the working group members. Moreover, various factors
were taken into consideration when deciding on the relevant meth-
ods, including but not limited to: feasibility and scalability, sensi-
tivity, reliability, practicability, ease of adoption and robustness
across sites and levels of expertise required. These SOPs can be found
at: https://doi.org/10.5281/zenodo.15056603'%.

The PD-age network: choosing the reprogramming route. The sec-
ond focus of this working group was to develop structured and consistent
experimental frameworks for measuring PD- and age-relevant changes
in vitro to minimise challenges which may be associated with it. This was
done via workshops, questionnaires and literature reviews, to reach
consensus on the most appropriate cellular reprogramming models and
biomarkers for investigating both ageing and PD. Several measurable
markers have been observed in cellular models of PD and ageing, which
can largely be categorised as either inflammatory'™, metabolic'*®, (multi)
omic”® or senescent'”’. This part of the discussion centred on the
importance of selecting the appropriate method to ensure that the cellular
model captures the age-dependent vulnerabilities, which characterise PD
pathology, while also recapitulating the disease phenotype. The working
group undertook an in-depth comparison of iPSC (and iPSC with exo-
genously induced ageing phenotype), direct and semi-direct routes of
reprogramming, to ensure the most appropriate method is chosen.
Here, we document the outputs from these sessions, made up of a panel
of researchers with expertise in ageing and PD, to facilitate the standardi-
sation of methodologies for the benefit of researchers of all experience levels
wishing to conduct research into the impact of ageing on PD progression.

Choosing cell reprogramming route

iPSCs as a versatile tool for modelling neurodegenerative diseases.
To date, many protocols have been established to differentiate iPSCs into
various cell types of the brain, utilising developmental signalling cues—
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such as proteins, small molecules, and transcription factors—that are
active during embryonic development. Although efficiency and best
practices to differentiate various lineages of neuronal and glial cells have
not been discussed by the panel, we recommend the book “Induced
Pluripotent Stem Cells - Methods and Protocols”, for material and
reagents, step-by-step protocols, and troubleshooting strategies'”". Since
differentiation protocols mimic natural developmental trajectories, cells
differentiated from iPSCs typically resemble primary cell types more
closely than those that are directly reprogrammed from fibroblasts.

Due to their pluripotent nature, iPSCs can be expanded in vitro
prior to differentiation, thus resulting in a high yield of both pluripotent
and differentiated cells, and the possibility to scale-up experiments to
perform large-scale screens, deep phenotyping experiments or large-scale
omics-related studies. As a direct consequence, iPSCs have been char-
acterised in detail, and in some instances, their differentiation paths have
been better described than the corresponding processes that control
direct reprogramming. Therefore, iPSCs constitute the method of choice
when setting up co-culture experiments"”'”’, microfluidic-based organ-
on-a-chip cultures'® ™" and 3D cultures'® ', The advent of efficient
gene editing methods expanded iPSC’s versatility, allowing the genera-
tion of genetically modified cell lines carrying known pathological
mutations or risk variants or correcting such mutations in patient-
derived iPSCs, to produce isogenic control lines'”. Finally, iPSC-derived
precursor cells show great structural and functional integration when
engrafted, and have been used in clinical trials, further consolidating their
biological and translational relevance™'*"'”.

Induction of cellular ageing in iPSC-derived cells: where do
we stand. Historically, the most used methods were based on replicative
stress', ionizing gamma-ray irradiation'”’” or ectopic expression of
progerin®, a truncated, pathogenic version of the nuclear lamina protein
Lamin A. Although very efficient, those methods present caveats and
limitations that weaken their relevance in the study of brain ageing in
neurodegenerative diseases. For instance, replicative stress is not com-
patible with post-mitotic cells such as neurons, which also exhibit a high
resistance to ionizing gamma-ray irradiation. While the progerin-based
approach affects the nuclear envelope, it does not reproduce epigenetic
reprogramming, and it has been shown to lack the full complexity of age-
related epigenetic drift'””®. Moreover, this approach can trigger acute
cellular stress, such as apoptosis and rapid senescence, which may mask
or exaggerate the induced ageing and disease phenotypes.

More recent studies have identified alternative methods to induce
ageing in iPSC-derived models. It has been proposed that genetic inacti-
vation of SATB1'”, a transcriptional regulator whose expression is reduced
in DA neurons of PD patients, could be used to investigate the drivers of
ageing specifically occurring in PD as opposed to the broad ageing phe-
notype. RNage'®’, an RNA-seq-based method to calculate ageing scores, can
be used to both validate and compare existing protocols and as a screening
tool to identify novel strategies. When used to study gene expression profiles
from cells treated with several hundreds of compounds, it showed that a few
of them, including Fludarabine, could induce an increased RNage score, and
cause typical markers of cellular ageing. Similarly, a CRISPR-based whole
genome screening'*' can also be used to identify regulators of ageing. This
approach in iPSC-derived neurons helped identify the neddylation pathway
as a potential regulation of ageing in Alzheimer’s disease (AD) and could be
used to model late-onset phenotypes in PD models. Although promising,
these techniques need to be validated in different systems, and further
optimization is also required. All methods, along with a more detailed
description of their specific pros and cons can be found in Fig. 1.

Among the discussed strategies, we identified the administration of
small molecules targeting known ageing-related molecular pathways as the
most relevant method to induce ageing in iPSC-derived models of PD'".
This strategy has multiple advantages: it is easy to use and accessible, time-
and cost-effective and very versatile, as the used compounds and their
dosage can be adapted based on their relevance to the cell type of choice and

the disease to be modelled. Furthermore, simultaneously targeting multiple
pathways better mimics the effects of ageing on overall cell health, thus
providing many features associated with ageing. To date, the most pro-
mising treatment is the SLO cocktail, which combines three molecules, SBI-
0206965, Lopinavir and O-151, that respectively target autophagy, Lamin A
biogenesis and DNA glycosylase and together base excision repair'™'™.
Defective autophagosomes lead to impaired mitochondrial clearance and
increased oxidative stress, whereas DNA glycosylase and Lamin A bio-
synthesis impairment affect nuclear architecture and lead to DNA damage
accumulation. Although it has not yet been tested on DA neurons, the SLO
cocktail has been successfully applied to age iPSC-derived cortical
neurons'”, and human microglia'®’, suggesting the method has the potential
to be used with many other PD-relevant cell types. As such, the working
group recommends the SLO cocktail treatment as the preferred method to
age iPSC-derived brain cells.

Preserving the ageing signature with semi-direct and direct
reprogramming

Although our working group established that iPSC-derived models with
accelerated ageing should be the system of choice to study the effects of
ageing on PD, there are a few instances where preserving the ageing sig-
nature of the donor should be preferred. Neurons and astrocytes directly or
semi-directly reprogrammed from patient-derived skin fibroblasts maintain
the ageing signature of the donor"*"**'¥",

Directly reprogrammed induced neurons (iNs) retain their age-
associated epigenetic and transcriptomic signatures, Oxidative Phosphor-
ylation (OXPHOS) and autophagy impairment'****"**", DNA damage'*'"
and expression of mature TAU isoforms'*'"*". A select number of studies
using directly or semi-directly reprogrammed iNs have successfully mod-
elled mitochondrial and lysosomal dysfunction associated with ageing or
neurodegenerative disease, including PD'%! >/ 518218192193

By replicating the exact ageing profile in a patient-specific matter, these
strategies represent a powerful tool to study disease mechanisms in an
ageing context. However, direct reprogramming methods were not selected
as the preferred reprogramming route because of the current challenges
associated with their use. Since iNs become post-mitotic early in the con-
version process'”, any study necessitating a high neuronal yield requires
extensive expansion of fibroblasts, which can lead to replicative senescence
or metabolic changes in parental cells impacting on the reprogramming
efficiency and the generated cell product'”. However, semi-reprogramming
methods effectively overcome yield limitations, enabling the production of
large quantities of neurons'*’. Heterogeneity between batches'*'*’ and lack
of protocol standardisation are also prominent limitations of these models.
A detailed list of advantages and disadvantages of direct- and semi-direct
reprogramming is reported in Fig. 2.

A feature of PD pathology and ageing not successfully modelled by any
of the cell reprogramming methods described so far, is the interaction
between distinct cell types within the brain. This could potentially be
achieved by the co-culture of different reprogrammed cell types, but success
in this area has thus far been limited'**'*>'**%*"”,

In conclusion, iPSC-derived models, and direct and semi-direct
reprogramming all present advantages and disadvantages (Fig. 1). While
direct and semi-direct reprogramming is generally more time and cost-
effective and present the clear advantage of retaining the donor ageing
signature, iPSC-based models are overall more standardised, high-
throughput and versatile. Thus, selecting the appropriate method should
be driven by the specific objectives and needs of the study at hand.

Assessing ageing in cellular models

Selection and prioritisation of ageing assays

To comprehensively evaluate assays that can be used to evaluate cellular age
in in vitro models of PD, the working group identified commonly used
assays across four key areas: senescence and inflammaging, omics profiling
and mitochondrial function. These key areas were prioritised because they
have been clearly linked to ageing'****"" but, except for mitochondrial
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Advantages Disadvantages

Often results in uncontrolled cellular stress in vitro

Long-term e Easy to implement Insufficient time in culture for development of

culture ¢ Validated in iPSC-derived models adult forms of protein (such as Tau)
¢ Not compatible with slow- or non- proliferating
cell types
e Causes a broad array of consequences, making it
difficult to discriminate between primary and
y-Ray o Very efficient secondary effects
Irradiation e Validated in iPSC-derived models .

Non-homogenous exposure causes heterogeneity of
responses

Not physiologically relevant as brain cells only
receive low doses of irradiation

Post-mitotic neurons are highly resistant to radiation

Lamin A is not strongly expressed in young neurons,
thus may not mimic brain-specific signs of ageing

Progerin e Combined with PD-related mutations, it e Progerin accumulation causes very severe
recapitulates Parkinson's disease responses
phenotypes o Extent of representation of chronological ageing
requires further characterisation
¢ Induced ageing and disease phenotypes may be
difficult to discriminate
SATB1 ) . . . . : e Requires genetic manipulation
downregulation ¢ Validated in dopaminergic neurons in PD « Not easily applicable in other cell types
Fludarabine ¢ Validated in neurons e Requires validation for PD modelling
Neddylation ¢ Tested in PD-specific models (such ¢ Requires further validation for PD modelling

as LRRK2)

¢ Validated in multiple modules
Small molecqles S it ard coot efchtive o Mostly tested in ALS, further validation needed in
- SLO cocktail . PD

e Easy to implement

o Versatile
Small molecules -
SBI-026965 ¢ Has been shown to cause the o Effects of the small molecule may be difficult
Lysosomal/ strongest changes in iPSC-derived to distinguish from PD-specific features
autophagy pathway neurons
inhibition

Fig. 1 | Methods of age induction in iPSC-derived models of PD. Each method is  key senescence genes and ageing pathways; Fludarabine'*’, can cause signs of ageing
defined as follows: Long-term culture"’, cells are maintained in culture and fre- in hiPSCs by interfering with DNA synthesis; Neddylation'* loss of function in

quently passaged until their proliferative potential is exhausted; y-Ray irradiation'”’,  iPSC-derived neurons leads to increased hallmarks of ageing and exacerbates neu-
sublethal doses are used to induce DNA-damage and trigger senescence; Progerin®,  ronal loss in AD and PD neurons; Small molecules'*'*
the ectopic expression of this mutant form of lamin A is used to mimic the effect on  target autophagy, exclusively (SBI-026965) or in combination with nuclear lamina

cells of the Hutchinson-Gilford Progeria Syndrome; SATB1'”’, genetic down- formation and DNA repair (SLO cocktail), induce signs of ageing in iPSC derived
regulation of this chromatin remodeller in the context of PD leads to the activation of ~ neuronal and glial cells.

that pharmacologically
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Fig. 2 | Advantages and disadvantages of direct and
semi-direct reprogramming in the study of
ageing in PD.

Direct Reprogramming

Semi-direct Reprogramming
The epigenetic signature mostly maintained

More time-efficient than iPSC-based methods

Produce a single-cell type with higher fidelity than iPSC-based methods

ADVANTAGES

More idiopathic PD fibroblasts available compared to iPSCs

Can be used in rejuvenation studies

Identifiable and modifiable idiopathic and sporadic PD phenotypes

Relevant protocols for studying the interplay between ageing and PD as the iPSC-
derived cells lack the age- and disease- specific features

Standardisation of methodology may allow researchers from different backgrounds
achieve greater success in differentiating disease-specific cell types

Bypasses the pluripotency stage, allowing
a more direct lineage conversion

Lower risk of tumorigenesis as cells skip
the highly proliferative pluripotent stage

Allows bulking and long-term storage of
reprogrammed NPCs

Allows convenient distribution of NPCs
with collaborators with easily implemented
protocols

Technically challenging, resulting in smaller yields

Lack of standardised protocols, increasing variability between studies - highlights the

need for further validation

Fibroblasts carrying mosaic somatic mutations may misrepresent the genetic profile of

DISADVANTAGES

the donors

Varying levels of genome instability might affect proliferation and reprogramming

efficiency

Heterogenous nature of fibroblasts (including factors such as origin and metabolic

state) may increase variability

Less susceptible to gene editing

Fibroblasts from the elderly are often senescent and do not reprogram efficiently

Limited to closely related lineages (e.g.
mesodermal fibroblasts create
mesodermal neurons)

Limited range of cell types which can be
generated

function, remain distinct from the aetiology of heritable PD***. Subse-
quently, the collective expertise of the working group members was sur-
veyed to establish a prioritised list of assays that are robust and can be used to
validate ageing phenotypes in cellular models. Figure 3 summarises the
selected tests and their corresponding functionalities.

To further support researchers looking to perform these assays in their
own laboratories, we have generated a standardised web platform to share
protocols (SOPs) for key assays. Standardisation will help ensure con-
sistency and reproducibility across research groups and provide guidance
when there are multiple different methods that can be used to measure an
age-related change The web platform can be found here: https://doi.org/10.
5281/zenodo.15056603'.

Senescence and Inflammaging

Cellular senescence phenotypes are highly heterogeneous and vary based on
both cell type and the senescence-initiating stimulus. As such, there is no
single assay that can be used to define senescence; rather a combinatorial
approach should be used with careful consideration paid to cell type (Fig. 4).
Notably, neurons require a tailored approach as they are post-mitotic and

therefore it is not appropriate to measure senescence using assays that are
directly tied to replication potential. Following discussion by the working
group, we recommend prioritising SA-p-Gal (fluorescent probe), yH2AX
(immunocytochemistry) and SASP (ELISA) when establishing assays to
measure senescence and DNA damage. The group recognised this is not an
exhaustive list and additional assays that can be used to further strengthen
evidence of senescence are outlined in Fig. 4 and include p16 and p2land
loss of HMGBI1 and Lamin B1.

Inflammaging is defined as an increase in proinflammatory cytokines
as individuals age. Proinflammatory cytokines are also components of
SASP. As outlined in Fig. 4, key SASP factors have not been well described
across neuronal and glial types and further characterisation and validation
are necessary. While IL-6, IL-8, and IL-1f are likely to be relevant, gene
expression studies and multiplex cytokine arrays should be used to establish
cell type and stimuli-specific profiles of cell types of the brain.

Omics
Omics-related technologies represent fast-moving and evolving tools to
measure ageing. DNA methylation clocks are the most established ageing
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Fig. 3 | Models of ageing: strengths and weaknesses. Each criteria is defined as
follows: time effective, how quickly the method produces the cell type of interest; cost
effective, relative expense of the approach; easy to implement, overall complexity of
the method; protocol standardization, availability of standard procedures; quality
controlled parental cells, ability to maintain high-quality cells without unwanted
mutations or inconsistencies, and accessibility of quality control assays; retention of
donor epigenetic age, whether the method preserves age related epigenetic mod-
ifications; high yield, efficiency of producing a large number of viable cells; com-
patibility with high throughput screening, assesses if the method can be used for
large-scale drug and guide screening and automated testing; compatibility with

Direct reprogramming Semi-direct

reprogramming

- +
+ 4 e

- +

- +

+ +

4 )

+ -
++ +

parallel cell line handling, easiness to process multiple cell lines at the same time;
derived cell type identity and functionality, whether the produced cells accurately
resemble there in vivo counterpart; versatility, ability to produce a variety of different
cell types; compatibility with gene editing, how well the method supports genome
editing techniques; availability of patient-derived cell lines, assesses the availability
of cell lines derived from human patients, as well as centralised cell banks and
depositories; compatibility with rejuvenation studies, whether the method is suited
to test strategies to reverse cellular ageing. The + represents if the reprogramming
method has this criterion, with more + the better. - represents the method does not
have that criterion.

clocks and the recently published Universal ageing clock’” represents an
important step forward in using this technology to measure age in cultured
cells such as neurons, and glia. We would point researchers wanting to use
this tool to the consortia website (https://clockfoundation.org) for further
information. Rapid progress is also being made to develop transcriptomic,
proteomic and metabolomic-based clocks. Researchers should stay updated
with evolving technologies and remain open to the limitations and context-
specific applications of these omics approaches.

Mitochondria in ageing

Mitochondria have critical roles in both ageing and PD. To measure
mitochondrial function, it is recommended that the following assays be
prioritised by researchers: mtDNA damage Detection, Mitochondrial
Morphology Analysis, and Mitochondrial Respiration. However, mito-
chondrial dysfunction is a key pathology in PD and all the suggested assays
have also been used to study PD in the absence of age. Therefore, results

should be interpreted carefully, and controls included that allow the impact
of the disease model and age to be distinguished.

Key findings and future directions

Age is the single most important risk factor for PD, but the complexity of the
interplay between ageing and PD is yet to be fully determined. The various
available in vitro models for this investigation provide a distinct set of
advantages and disadvantages. By discussing these properties, the PD-Age
network identified an urgent need for methodological rigour to strengthen
the understanding of common mechanisms behind ageing and PD.

Out of the wide range of overlapping mechanisms implicated in both
ageing and PD studies, this consortium has prioritised protocols utilised for
the investigation of senescence, inflammaging, omics profiling and mito-
chondrial ~ dysfunction  (https://doi.org/10.5281/zenodo.15056603'%).
Therefore, the standardisation of the in vitro techniques utilised to inves-
tigate the underlying pathways will not only reinforce individual studies
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Fig. 4 | Outline of the key measurable age related
cellular changes recommended by the consortium.
SOPs for the methods in bold can be found at https://
doi.org/10.5281/zenodo.15056603"".
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within this field but also provide a robust framework to minimise variability
and improve reproducibility.

While the current most preferred approach to studying PD-related
changes, the iPSC cell reprogramming route, is well characterised, the
benefits of other in vitro models conserving the epigenetic signature of the
donor should be considered. This versatile tool is a method choice of a
majority of the in vitro studies into neurodegeneration. With multiple
techniques of induction of the ageing features into the iPSC-derived cells,
further standardisation is necessary to increase the ability to compare
findings across studies. On the contrary, the less characterised practice of
obtaining cultured cells carrying the original ageing profile of the donor,
have been shown to be a powerful tool for investigating age-related diseases.
Despite the advantages of utilising the direct and semi-direct reprogram-
ming approaches of generating cells and maintaining the biological back-
ground of the individual biopsy donor, robustness is necessary in the
developing procedures. Uniform and efficient protocols will facilitate
greater consistency and more accurate comparisons across studies from
various institutions.

However, there are multiple outstanding questions future research
should continue to explore to advance the ageing research in PD. One of the
crucial challenges facing this field is distinguishing the age-specific effects
from the PD-specific effects in vitro. This issue, especially vital in distin-
guishing mitochondrial characteristics and their age- and PD-specific
changes will require further elucidation. Secondly, modelling disease pro-
gression in the context of ageing still requires refinement, as the current
cellular models are unable to fully capture the gradual progression of the
disease. Therefore, while the outlined practices may create a solid founda-
tion for ageing and PD studies, avenues such as multi-cellular models, time-
lapse investigations and incorporation of risk factors will be critical in the
general standardisation across the field.

While the harmonisation of research practices is essential, its chal-
lenges should also be considered. For the research community to be able to
draw meaningful conclusions achieved from standardised frameworks, the
heterogeneity of research settings must be reviewed. Moreover, a key factor
to evaluate during this process is the high level of complexity of PD and
ageing, their various pathways of pathophysiology and the variability in
their presentation across individuals. To overcome this, the process must be
adaptable and constantly updated. Also, while great effort was implicated in
the selection of methods for measuring the chosen parameters to include the
most common laboratory equipment, the differences in technology and
resource access may decelerate the standardisation process across regions.
Therefore, the PD-Age network emphasises the importance of international
partnership and technological unification as indispensable means for
establishing these common protocols.
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