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Combining microstructural mechanical models with

experimental data enhances our understanding of

the mechanics of soft tissue, such as tendons. In

previous work, a Bayesian framework was used to

infer constitutive parameters from uniaxial stress–

strain experiments on horse tendons, specifically the

superficial digital flexor tendon (SDFT) and common

digital extensor tendon (CDET), on a per-experiment

basis. Here, we extend this analysis to investigate

the natural variation of these parameters across a

population of horses. Using a Bayesian mixed effects

model, we infer population distributions of these

parameters. Given that the chosen hyperelastic model

does not account for tendon damage, careful data

selection is necessary. Avoiding ad hoc methods,

we introduce a hierarchical Bayesian data selection

method. This two-stage approach selects data per

experiment, and integrates data weightings into the

Bayesian mixed effects model. Our results indicate

that the CDET is stiffer than the SDFT, probably due

to a higher collagen volume fraction. The modes of the

parameter distributions yield estimates of the product

of the collagen volume fraction and Young’s modulus

as 811.5 MPa for the SDFT and 1430.2 MPa for the

2025 The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.
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CDET. This suggests that positional tendons have stiffer collagen fibrils and/or higher collagen

volume density than energy-storing tendons.

1. Introduction
Accurate description of the nonlinear mechanical behaviour of collagen is important for

understanding and predicting the properties of a wide range of soft tissues, including arterial

walls [1,2], skin [3,4] and tendons [5–7]. This knowledge is vital for designing artificial tissues for

grafts and surgical interventions [8]. In this paper, we focus on a model for tendons; however, the

underlying approach could be extended to other soft tissues.

Bayesian inverse methods are increasingly used in biomechanics to estimate soft tissue

parameters while quantifying uncertainty. Such approaches have been applied to infer

viscoelastic properties from acoustic radiation force imaging [9] and to calibrate hyper-

viscoelastic models of brain tissue under varying experimental protocols [10]. A Bayesian

framework has also been used for model selection and sensitivity analysis in studies of the

knee meniscus [11]. These examples illustrate the value of Bayesian inference for parameter

identification in complex, heterogeneous tissues.

Tendons are fibrous tissues that connect and transfer forces between, muscles and bones [5,12].

Their complex microstructure gives rise to anisotropy and nonlinear stress–strain profiles [13–15].

An example of a typical stress–strain profile for a tendon undergoing a uniaxial stretch along

its longitudinal axis is given in figure 1. Tendons consist of collagen fibrils of varying lengths

that assume a crimped waveform within collagen fibres. The fibres are embedded within a non-

collagenous matrix (NCM), and reinforce the tendon along a preferred axis [5,16], which causes

anisotropy. A schematic representation of a tendon’s microstructure is shown in figure 2. As the

tendon is stretched, the fibrils begin to straighten and contribute to the stress response. Owing to

the fibrils having varying lengths, their recruitment is gradual, which results in the nonlinearity

of the stress profile.

The characteristic shape of the stress–strain graph has four regions: (I) toe, (II) heel, (III) linear

and (IV) damage, with each region corresponding to a different physical phenomenon. The toe,

region corresponds to the fibrils being slack, resulting in a stress profile that is approximately

linear, as governed by the NCM. In the heel region, fibrils gradually become taut and contribute

to the stress response, resulting in a nonlinear profile. In the linear region, all of the fibres have

been recruited and the stress profile is primarily governed by the fibril stress response. In the final

region, failure occurs, the tendon is damaged, fibrils begin to break gradually and the tendon no

longer deforms elastically.

In figure 1, the stress response is idealized. In reality, fibrils may begin breaking in earlier

regions (III or even II), resulting in data in region III being recorded, which is not consistent with

models which neglect damage. Typically, the data are manually trimmed to a specified limit [18].

This approach tends to include a large portion of the linear region (region III), and fitting models

to these data can lead to inaccurate estimates of various parameters in the presence of early fibril

damage. For this reason, when fitting models to tendon stress–strain data, it is beneficial to use a

more sophisticated data selection method to include as much data as possible that is valid under

the assumptions of the mechanical model used, while down-weighting the contribution of data

points that do not satisfy the model’s assumptions [19].

Models for the stress response of tendons often describe the deformation in terms of the

physical parameters of their constituents, such as the Young’s modulus and shear modulus. These

models are known as microstructural models and have been used by several authors for various

soft tissues [5,20].

One of the advantages of microstructural modelling is that the model parameters have a direct

physical meaning and can be measured experimentally. However, a problem that arises is that a

wide range of values is often reported for the same parameter. The Young’s modulus of type 1
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Figure 1. Idealized stress profile of a tendon. The four regions are: (I) toe, (II) heel, (III) linear and (IV) damage. In reality, damage

may begin occurring in region III, or even region II, due to the shorter fibrils breaking.

Figure 2. Microstructure of a typical tendon. Bundles of fibrils form fibres, which are embedded within fascicles, which make

up the tendon. The NCM is the non-collagenous portion of the tendon. Adapted from Jull et al. [17].

collagen fibrils, for example, has been reported to be as low as 32 MPa [21] and as high as 2.8 GPa

[22]. This spread of reported values could be due to several factors, such as differences in the ages

of the samples, inter-species variation, model misspecification within the inference or even that

the parameters may be poorly identifiable from the data. Owing to this, it is often not entirely

clear what the credible range for a given parameter value is, no which values are most likely.

Quantification of this spread is key to understanding the natural behaviour of soft tissues and

their constituents. In this paper, we tackle the problem of intra-species variation. That is, within

a given species, individuals can yield varying values for constitutive parameters due to naturally

occurring heterogeneity within the population. For context, the individuals in this study are horse

tendons, and the species are the superficial digital flexor tendon (SDFT) and the common digital

extensor tendon (CDET) types.

To tackle the uncertainty in the parameter values, we employ a Bayesian approach. This

provides a rigorous framework with which to combine prior knowledge, mechanical models and

data. Typically, inference is performed on data from a single individual from the population at

a time, as in previous work [16]. In this paper, we instead use data from multiple individuals to

infer the population-level variation in the constitutive parameters of a microstructural, nonlinear

elastic tendon model, through a statistical mixed effects model.

Since fibril damage occurs at different points for different individuals, we are prompted to

use a more sophisticated data selection technique than uniform trimming of all datasets (for

example, after a certain strain has been reached [18]). We implement a hierarchical Bayesian
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data selection technique, which allows us to infer which data are consistent with the chosen

microstructural model [19]. We use a two-stage approach. The first stage involves data selection

on a per-individual basis, leading to a re-weighting of each of the observations in the likelihood,

along with an automatically chosen truncation of the data. The second stage uses the data from all

individuals (the population), with re-weighted observations and truncations, in the population-

level inference, which computes the population posterior distribution for the microstructural

model parameters. The reason for performing the inference in two stages is that it would be

prohibitively costly to simultaneously perform data selection and calculation of mixed effects

posteriors. Moreover, the trimming of data with low weightings which have large discrepancies

with the chosen mechanistic model improves overall model fit and reduces the bias in the overall

inference [19].

We employ a mixed effects model to infer from multiple individuals simultaneously. This

allows us to pool information and build knowledge of population-level distributions of the

parameters in addition to the parameter distributions of each individual. Mixed effects models

have previously been used to study soft tissue mechanical parameters [23,24], as has the Bayesian

framework [12,16,25]; however, to the authors’ knowledge, there are no examples of a Bayesian

mixed effects model being used for soft tissue inference in the literature. Wang et al. [24] used

a linear mixed effects model to infer model parameters without any Bayesian modelling, while

Wang et al. [25] used Bayesian modelling to infer model parameters without incorporating mixed

effects. Bayesian mixed effects models have been used across many other areas of study, however,

such as in recommender systems [26], neurology [27] and pharmacokinetics [28].

The structure of the paper is as follows. In §2a, we introduce the microstructural model.

To quantify the variability and uncertainty in the model parameters, we describe the Bayesian

approach in §2b. The data we use in this study are outlined in §2c. To calculate the resulting

posterior distributions, we use Markov chain Monte Carlo (MCMC) sampling. We ensure

that we are inferring model parameters using data where the microstructural model is valid,

for example, before a considerable amount of damage has occurred, by implementing a

Bayesian data selection technique, described in §2d. To model the heterogeneity of the physical

parameters across individuals in the population, a mixed effects model is used, which we

discuss in §2f. We discuss our choice of priors for the parameters in §2g, and in §2h, we

discuss the implementation of the Hamiltonian Monte Carlo (HMC) sampler using the Stan

package [29] and also discuss sampler parameter tuning to ensure convergence of the Markov

chains. The results of our modelling approach are given in §3. We conclude with a discussion

in §4.

2. Methods
In this paper, we consider the inverse problem of inferring model parameters from observational

data. There are many approaches to tackling inverse problems, including maximum-likelihood

estimation and Bayesian maximum a posteriori estimation. In many circumstances, quantifying

the uncertainty in parameter estimates is of interest, for example, by estimating credible ranges

for the model parameters. One approach to achieving this is to use a Bayesian framework to

determine model parameter posterior distributions from the data. Typically, these distributions

are not analytically computable and require approximation via numerical methods such as

MCMC. While MCMC is the gold standard for Bayesian inverse problems, it incurs a high

computational cost due to the large number of forward model evaluations required. However, if

it is computationally feasible to implement for a given model, the samples produced can be used

to provide detailed statistical information, including credible regions for the model parameters

[30].

We also consider the problem of selecting data for inference where a subset of the data is

known not to be consistent with the model. To do this, we again employ a Bayesian framework,

this time to infer the values of parameters which convey how well the model fits each data point.

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 1

5
 O

ct
o
b
er

 2
0

2
5
 



5

royalsocietypublishing.org/journal/rspa
P
ro
c.
R
.So

c.
A
481:20250034

..........................................................

These parameters can then be used to tune out data with mild discrepancies or to trim data with

moderate to severe discrepancies with the model.

(a) Microstructural tendon model

To study the deformation of tendons, we use the microstructural model introduced by Haughton

et al. [16]. We assume the tendons under consideration can be modelled as circular cylinders,

with fibres oriented along their long axes. Using cylindrical polar coordinates and denoting the

deformed and undeformed configurations with lower- and upper-case letters, respectively,

the deformation can be described as (r, θ , z) = (λ− 1
2 R, Θ , λZ), where λ is the longitudinal stretch.

The deformation gradient is defined as the gradient of the deformed position vector x with respect

to the undeformed coordinates, denoted

F = ∇x, (2.1)

where ∇ is the gradient operator with respect to the undeformed coordinates. For the prescribed

uniaxial deformation, it takes the form

F =

⎛

⎜

⎝

λ
− 1

2 0 0

0 λ− 1
2 0

0 0 λ

⎞

⎟

⎠
. (2.2)

From F, we can calculate the left Cauchy–Green strain tensor B = FFT. Denoting the

undeformed fibril orientation as M, we can calculate the deformed fibril orientation m = FM and

define invariants of the deformation I1, I2, I3, I4, and I5 as

I1 = tr(B),

I2 = 1

2
(tr(B)2 − tr(B2)),

I3 = det(B),

I4 = M · BM

and I5 = M · B2M.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(2.3)

We assume that tendons are incompressible, so that I3 = 1, and follow the widely used

assumption that the deformation of the NCM can be described solely in terms of I1 and that

of the collagen fibrils in terms of I4 [5,16,31]. Furthermore, we assume that the strain energy

function decomposes additively into contributions from the NCM and the fibrils, each scaled

by their respective volume fractions. Denoting φ as the collagen volume fraction, these are 1 − φ

and φ, respectively. It is assumed that the NCM is neo-Hookean with shear modulus µ, while the

fibrils are assumed to be Hookean, with Young’s modulus E, after the macroscale stretch reaches a

critical value λC, which is treated as a random variable (the value of λC corresponds to the length

of each fibril relative to the section of tendon in which it is embedded, with longer fibrils having

higher values of λC). The critical stretch is assumed to have a triangular distribution, with lower

limit a, upper limit b and mode c.

From these assumptions, the resulting strain energy function [16] is given by

W(I1, I4) = (1 − φ)
µ

2
(I1 − 3) + φE

(

A(I4, a, b, c)

2
log I4 + (B(I4, a, b, c) − D(I4, a, b, c))

√

I4

+C(I4, a, b, c)

2
I4 + D(I4, a, b, c)

2

√

I4 log I4 + G(I4, a, b, c)

)

, (2.4)

where A, B, C, D and G are piecewise constant functions of I4, which are defined in [16]. Using

this strain energy function, the only non-trivial entry of the engineering stress tensor, N, can be
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calculated in terms of the applied stretch λ as

N(λ, (1 − φ)µ, φE, a, b, c) = (1 − φ)µ

(

λ − 1

λ2

)

+ φE

λ
(A(λ2, a, b, c) + B(λ2, a, b, c)λ

+ C(λ2, a, b, c)λ2 + D(λ2, a, b, c)λ log λ). (2.5)

A full derivation of this relationship is available in [16]. For our statistical inference, we use the

stress–stretch formula N(·) as the response function.

(i) The linear modulus

The linear modulus is the gradient of the stress in the linear region. Assuming a small contribution

of the NCM to the stress response (typically E/µ ≈ 106 [18]), the linear region is dominated by the

fibril stress. Under this assumption, the linear modulus, LM, can be calculated by Taylor series

expanding the linear region of the fibril contribution to the engineering stress,

Nlinear(λ) = φE

λ

(

−1 + 4λ
a log{a/c} + b log{b/c}

(a − b)2

)

, (2.6)

about the stretch at which it is being calculated, λ̄, say, and taking the coefficient of the linear term,

which gives

LM = dNlinear(λ)

dλ

∣

∣

∣

∣

λ=λ̄

= φE

λ̄2
. (2.7)

We see that in the linear region of our model, the linear modulus is proportional to φE, but since

λ̄ > 1, it will always be less than φE. In §3b, we will compare direct estimates of the linear modulus

with our inferred values of φE.

(b) Bayesian inference

We wish to infer the unknown model parameter values, given the data y, using the model

N(·). To simplify the model and to reduce the dimension of the target parameter space, we

assume that the distribution of the critical stretch is symmetric, meaning that the parameter c

is completely determined by a and b as c = (a + b)/2, and we, therefore, infer the parameters

using the model M(λ, (1 − φ)µ, φE, a, b) = N(λ, (1 − φ)µ, φE, a, b, (a + b)/2). We denote the model

parameters of interest as θ = [(1 − φ)µ, φE, a, b] ∈ R
2
≥0 × R

2
≥1. Based on initial exploration, we

concluded that the parameter φ was not identifiable from the data, and so we cannot infer φ,

µ and E independently. Fortunately, measurements and estimations of φ can be made in a lab

setting; however, this is a destructive process and therefore separate representative samples must

be destroyed to measure φ [32].

In the Bayesian framework, our knowledge about the parameters θ is captured via the

posterior probability distribution, whose density π (θ | y; M) is obtained by combining prior

knowledge with information from the observed data, y. Prior knowledge is encoded through

the choice of an appropriate prior distribution, whose probability density we denote as π0(θ). The

contribution from the data is captured by the likelihood, denoted L(y|θ ; M). Bayes’ theorem then

allows us to express the posterior density as

π (θ | y; M) ∝L(y | θ ; M) π0(θ ), (2.8)

which yields an expression for the unknown density π (θ | y; M) in terms of the known densities

L(y | θ ; M) and π0(θ ), up to a constant of proportionality. Since we only consider a single model

in this study, henceforth, the dependence on the model is left implicit.

(c) Data

The experimental data that we use to infer the constitutive parameters of our tendon model,

which was collected by Thorpe et al. [33], consists of tensile tests applied to two types of tendons

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 1

5
 O

ct
o
b
er

 2
0

2
5
 



7

royalsocietypublishing.org/journal/rspa
P
ro
c.
R
.So

c.
A
481:20250034

..........................................................

Figure 3. Plots of experimental tensile test data for the two tendon types: SDFT (left) and CDET (right). The dataweremanually

trimmed to 20% strain (equivalent to a stretch of 1.2). Each experiment is labelled ‘hXX’, where XX are numbers that refer to the

label given to each horse by Screen et al. [33].

harvested from 18 different horses. The two types of tendons were the SDFT and the CDET. SDFTs

are energy-storing tendons, whereas CDETs are positional tendons [33]. Figure 3 shows plots of

all 18 tests for the 2 tendon types, manually trimmed to 20% strain. It is clear that there is a

common trend in the stress profiles of each experiment which indicates that it may be possible to

use the same model of deformation to infer subject-specific model parameters for each individual

tendon. Heterogeneity of the model parameters is present, as can be seen by the data having

varying gradients in the linear region (region III, governed by the product φE), and the onset

of the heel region (region II, governed by the parameters of the triangular distribution a and b).

Since the data were collected by the same team using the same equipment, we assume that all

experiments have the same observational noise.

Another feature of the data is heterogeneity in the suspected onset of damage between

experiments, as indicated by the changing gradient, and differing failure stretches. For most

experiments, the damage region appears to begin somewhere in the stretch range of 1.06–1.10,

whereas a few experiments appear to have damage potentially occurring much earlier, at stretches

of approximately 1.03. Clearly, trimming all of the experiments to a singular stretch value would

not accurately remove the entire damage region for all tendons without also removing large

portions of the elastic region for many of them. Using subjective methods to pick the point at

which to trim the data for each experiment has the potential to lead to biased and/or more

uncertain estimates of the model parameters, depending on whether the truncation is under-

or over-zealous. We are, therefore, motivated to explore a more sophisticated methodology to

quantify where the data can and cannot be well represented by the chosen mechanistic model. To

do so, in the next section, we adapt a hierarchical Bayesian data selection method, as laid out in

[19], to identify the regions of data where damage has occurred and the data-model discrepancy

is high. These methods were first applied to unlabelled landmark matching of digital images,

specifically matching biological cell clusters imaged via different modalities [34].

(d) Bayesian data selection

In previous work by Haughton et al. [16], a Bayesian framework was used to infer the

microstructural model parameters and their associated uncertainty. In an attempt to remove

data where the fibrils had started to be damaged, the data were truncated at 10% strain. In the

entire population dataset shown in figure 3, however, it is evident that, in some tendons, damage

initiates prior to 10% strain, and thus an elastic model would not fit all of this data well, whereas

in other cases, the elastic region appears to continue beyond 10% strain and thus there would

potentially be unused valid data if all curves were truncated at 10%.
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In this work, we aim to use the data from all 18 of the tensile experiments on two types

of horse tendon, and we are, therefore, required to select data from a total of 36 experiments.

To do this in an automated and objective manner, we employ hierarchical Bayesian data

selection, which enables identification of regions where there is good agreement between the

model and data, thereby eliminating the need for subjective manual truncation of the data

prior to model fitting. The method involves the introduction of parameters which indicate

the fidelity of the model for each data point, and thus greatly increases the dimensionality of

the target distribution. Unfortunately, this means that it becomes computationally infeasible to

simultaneously incorporate both Bayesian data selection and the mixed effects model, which

we describe in §2f. Instead, we propose a two-stage process in which we first conduct Bayesian

data selection on a per-individual basis, identifying which data to trim, and re-weighting the

remaining data in the likelihood. In the second stage, we use trimmed data, and the posterior

means of the fidelity weights, within the mixed effects model.

(i) Definition of the likelihood

Each experiment corresponds to a single tendon and consists of a sequence of measurements

of the stress, yj, required to achieve stretch λj (j = 1, . . . , N), where N ∈ N is the number of

observations in the data. We assume that each observation is subject to additive, zero mean,

Gaussian, independent and identically distributed noise, that is:

yj =M(λj, θ ) + ηj, ηj ∼N (0, σ 2
obs), (2.9)

and we let y = [y1, . . . , yN]⊤. Therefore, the likelihood without data selection is given by

L(y | θ , σ 2
obs) =

N
∏

j=1

1
√

2πσ 2
obs

exp

(

− 1

2σ 2
obs

|yj − M(λj, θ )|2
)

. (2.10)

We fix σ 2
obs to a value that was estimated by fitting the model to very low strain data for

all tendons. Then we introduce ‘fidelity’ parameters for each data point, following the naming

convention of previous works [19,34], which indicate the model’s ability to represent a single

observation in the data. The fidelity parameters take values γ ∈ (0, 1)N , where values close to 0

correspond to tuning out that data point’s contribution to the likelihood and values close to 1

correspond to a standard contribution to the likelihood (as in the absence of data selection). This

is implemented through a modification to the likelihood:

L(y | θ , σ 2
obs, γ ) =

N
∏

j=1

1
√

2πσ 2
obsγ

−1
j

exp

(

−
γj

2σ 2
obs

|yj − M(λj, θ )|2
)

(2.11a)

∝
N
∏

j=1

√
γj

σobs
exp

(

−
γj

2σ 2
obs

|yj − M(λj, θ )|2
)

. (2.11b)

This approach is similar to that of power likelihoods in a generalized Bayesian framework [35],

except that instead of picking a single value for the exponent of the likelihood, we have the

additional flexibility of having different values of the likelihood exponent for each individual

observation in the data. Our aim in hierarchical Bayesian data selection is to infer the values of

the γj.

(ii) Data selection prior

By invoking Bayes’ rule, the posterior is given by

π (θ , σ 2
obs, γ ) ∝ π0(θ )π0(γ )

N
∏

j=1

√
γj

√

2πσ 2
obs

exp

(

−
γj

2σ 2
obs

|yj − M(λj, θ )|2
)

, (2.12)
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where π0(θ ) is the prior for the microstructural parameters θ as described in §2g, and π0(γ ) is the

prior on the fidelity parameters.

The prior we define on γ must be supported on (0, 1)N , encode some correlation between γj

and γj′ as a function of |λj − λj′ |, dependent on a given length scale and reflect our knowledge

that there is unlikely to be damage occurring within the region of data with less than 5% strain.

We adopt a logit Gaussian process prior for the fidelity field, which describes the prior fidelity

at all possible points in the observation space [19]. Since we are only interested in the values of

the fidelity field at our observation points, this logit Gaussian process prior collapses to a logit

multivariate normal prior on γ , where the logit function is applied element-wise. Therefore, the

prior on the transformed fidelity parameters, χγ = logit(γ ), is given by a multivariate normal

distribution with mean µ and covariance matrix Σγ .

One problem that can occur if naively applying Bayesian data selection is that, in some

experiments, there is some early damage and then a considerable amount of additional strain

before further damage or failure occurs. In this scenario, without the application of an appropriate

prior, the Bayesian data selection posterior may select the data following the initial damage,

leading to low fidelity means for the early observations, which we know are unlikely to have been

subject to damage. To mitigate this, we choose µ and σγ , which define the multivariate normal

prior on the transformed fidelity parameters, such that the fidelity parameters have higher mean

values for observation points with low strain.

Therefore, we allow µγ (λ), as well as the standard deviation, σγ (λ), to vary with strain. We

relate the mean and standard deviations to strain via

µγ (λ) = Aµ + Kµ − Aµ

1 + exp(−B(λ − λ0))
(2.13a)

and

σγ (λ) = Aσ + Kσ − Aσ

1 + exp(−B(λ − λ0))
, (2.13b)

where Aµ, Aσ and Kµ, Kσ are the left/right asymptotic values of µ or σ , respectively, B is the rate

of decrease/increase between the two asymptotes, and λ0 is chosen as the strain value at which

we believe that damage is likely to have started to have an effect.

To construct the covariance matrix, Σγ , which is N × N and encodes the correlation between

fidelity parameters, we use a vertical scaling of a squared exponential kernel such that

Σγ [j, j′] = σγ (λj) · σγ (λj′ ) · exp

(

−
|λj − λj′ |22

2l2

)

, (2.14)

where l is the length scale of the kernel and describes the length of correlation between

fidelity parameters, and σγ (·) is the standard deviation at a given strain value according to

equation (2.13b). We choose Aµ = 4, Kµ = 1, Aσ = 0.25, Kσ = 1, B = 50, λ0 = 1.1, l = 0.05 to ensure

we have high prior mean and low variance for strains less than 5% where we expect significant

damage to the tendon to be rare, and high variance (and therefore lower mean) for strains above

10% where damage is likely to have started to have an effect (see figure 4).

Without careful tuning of these parameters, we do see the data selection method fitting

primarily to the yield region rather than the undamaged linear region for some of the

experiments, which is unwanted. The heterogeneity of the onset of damage does make this a

challenging data selection problem. However, the prior we arrive at aligns with our prior beliefs,

in which we know that it is extremely unlikely for the tendon to have become damaged (and

therefore not align with our model) at low strains.

(iii) Markov chain Monte Carlo to infer fidelity parameters

We implemented a Metropolis-within-Gibbs framework to sample from the data selection

posterior (equation (2.12)), alternating between updating the microstructural parameters and the

fidelity parameters. The random walk step-sizes were tuned for the model and fidelity parameters
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Figure 4. Twenty realizations of the logit-multivariate normal prior on the data fidelity parameters with respect to tendon

strain. Dashed line represents the 95% confidence interval of the prior samples.

independently to achieve 23.4 ± 5% acceptance [36]. Three chains were initialized randomly for

each dataset, with a burn-in of 2.5 × 106 iterations and 5 × 106 iterations post-burn-in.

To handle the constraints on the parameters we first transformed to an unbounded scale,

giving

χγ = T −1
γ (γ ) = logit(γ ) ∈ R

N

and ξ = T
−1
θ (θ ) ∈ R

4.

⎫

⎬

⎭

(2.15)

For full details of Tθ see appendix A. The posterior in the transformed space is

π̃ (ξ , χγ | y) ∝ π̃0(ξ )π̃0(χγ )L(y |Tθ (ξ ), σ 2
obs,Tγ (χγ )), (2.16)

where

π̃0(ξ ) =N (ξ ; µ, σ2
obs) (2.17a)

and

π̃0(χγ ) =N (χγ ; µγ , Σγ ), (2.17b)

and L(y |Tθ (ξ ), σ 2
obs,Tγ (χγ )) is as defined in equation (2.11b).

We employed the random walk Metropolis proposal within the Metropolis-within-Gibbs

method to sample from the posterior distribution, with proposals made separately for the model

parameters and the fidelity parameters. The covariance of the microstructural parameters was

learned during sampling with the proposal covariance adjusted accordingly in an adaptive

manner. The covariance matrix of the proposal distributions for the fidelity parameters was

chosen to be proportional to the prior covariance matrix.

(e) Data truncation

Following successful characterization of the posterior distributions of the fidelity parameters, we

need to truncate the data. The reason for this is twofold. Firstly, it is required as there are many

observations with extremely small fidelity parameters whose effect on the posterior is negligible,

but whose effect on the cost of computing the posterior is significant. Secondly, as has been seen

in previous work, including data on the boundaries of regions with low posterior fidelity can

lead to significant bias in the parameter estimates [19]. As such, we take the same approach

as in [19], trimming all data from the first observation with posterior fidelity mean below 0.3.

Using a threshold below 0.3 leads to significant shifts in the peaks of the parameter distributions,

indicating bias caused by model-data discrepancies. Increasing the threshold above 0.3 leads to

the removal of data in regions where the data-model fit is still very good, lowering the information

gain and increasing uncertainties.
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(f) Inferring population-level natural variation via a mixed effects model

Figure 3 clearly demonstrates that the values of key constitutive parameters vary between

individuals. To account for and quantify this data heterogeneity, we assume that the ith tendon

has its own individual parameters θ i ∈ R
2
≥0 × R

2
≥1 for i ∈ {1, 2, . . . , Ne} where Ne is the number of

individuals within the population. In our case, Ne = 18 for each of the two populations, SDFT and

CDET, which we model separately. We denote the truncated observed stresses of the ith individual

as ŷi ∈ R
Ni and λ̂i ∈ R

Ni as the set of stretches for which ŷi was measured. The associated fidelity

parameters are denoted γ i ∈ [0.3, 1)Ni . In the following, it is assumed that the data have been pre-

processed and trimmed using the fidelity threshold of 0.3 such that Ni represents the length of the

data after trimming. The inferred fidelity parameters are given in §3a.

By letting λ̂ij be the jth value of the stretch λ̂i corresponding to the jth measured data point

of the i-th experiment ŷij, along with the jth fidelity parameter γij, the likelihood for the ith

experiment can be expressed as

L(ŷi | θ i, σobs; λ̂i, γ i) ∝
Ni
∏

j=1

1

σobs
exp

{

−
γij

2σ 2
obs

(ŷij − M(λ̂ij, θ i))
2

}

. (2.18)

Experiments on different tendons are conditionally independent given the tendon-specific

parameters; therefore, the joint likelihood of all experiments is the product of the likelihoods

for each individual tendon. From now on, the value of σ 2
obs is chosen to be fixed with a value of

0.15 MPa2 and shall be dropped from future notation.

To facilitate the specification of the random effects distribution, we transform the tendon-

specific parameters to an unbounded scale using the same reparametrization as in §2d(iii),

giving
⎛

⎜

⎜

⎜

⎝

φEi

(1 − φ)µi

ai

bi

⎞

⎟

⎟

⎟

⎠

= θ i = Tθ (ξ i) ⇐⇒

⎛

⎜

⎜

⎜

⎝

νi

ηi

τi

ρi

⎞

⎟

⎟

⎟

⎠

= ξ i = T
−1
θ (θ i). (2.19)

We assume that the unbounded parameters are samples from a common population, and model

the population with a normal distribution with mean µpop and covariance Σpop, which is

a common choice for the population distribution [37–39]. The parameters ξ i are assumed to

be conditionally independent and are distributed as ξ i | µpop, Σpop ∼N (µpop, Σpop). We define

πpop(· | µ, Σ) to be the probability density function (PDF) of a normal distribution with parameters

µ and Σ such that πpop(ξ i | µpop, Σpop) is the PDF of the population distribution.

The joint prior density of the unconstrained parameters π (ξ1, . . . , ξNe
) can be expressed [40] as

the conditionally independent, continuous mixture

π (ξ1, . . . , ξNe
) =

∫

π
µ,Σ
0 (µpop, Σpop)

Ne
∏

i=1

πpop(ξ i | µpop, Σpop) dµpop dΣpop.

For conciseness, we denote the list of parameters ξ1, . . . , ξNe
as {ξ i}Ne

i=1, and use similar notation

for other parameters.

In a Bayesian context, we can simultaneously infer the per-individual parameters and the

population parameters and then marginalize out the population parameters from the distribution.

We can write the joint prior distribution of the per-individual parameters and population

parameters as

π ({ξ i}Ne

i=1, µpop, Σpop) = π
µ,Σ
0 (µpop, Σpop)

Ne
∏

i=1

πpop(ξ i | µpop, Σpop).

Finally, we must set priors for the population parameters to complete the statistical model.

These are discussed in §2g and, for now, are denoted π
µ,Σ
0 (µpop, Σpop). The posterior distribution

can be constructed, therefore, from three parts: (1) the per-individual likelihood, (2) the
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population model, (3) the priors [38]. In terms of the unconstrained parameters, the posterior

distribution is given by

π ({ξ i}Ne

i=1, µpop, Σpop | {ŷi}
Ne

i=1, {γ i}
Ne

i=1, σobs) ∝
Ne
∏

i=1

L(ŷi |Tθ (ξ i), λ̂i, γ i, σobs)

·
Ne
∏

i=1

πpop(ξ i | µpop, Σpop) · π
µ,Σ
0 (µpop, Σpop). (2.20)

To obtain the posterior distribution in terms of the constrained, untransformed parameters

θ i, the parameters ξ i are transformed back to the constrained scale, which requires a Jacobian

adjustment of the posterior distribution in equation (2.20) due to the transform Tθ (·), resulting in

the posterior distribution of the untransformed parameters:

π ({θ i}Ne

i=1, µpop, Σpop | {ŷi}
Ne

i=1, {γ i}
Ne

i=1, σobs) ∝
Ne
∏

i=1

L(ŷi | θ i, λ̂i, γ i, σobs)

·
Ne
∏

i=1

πpop(T −1
θ (θ i) | µpop, Σpop)

∣

∣

∣

∣

∣

dT −1
θ (θ i)

dθ i

∣

∣

∣

∣

∣

· π
µ,Σ
0 (µpop, Σpop). (2.21)

To understand the population variability in the mechanical parameters, we compute the

posterior predictive distribution of the parameters θ∗ for a future randomly selected tendon from

the same population. This takes into account both population variability of the parameters and

our uncertainty about that variability due to limited data.

(g) Mixed effects model prior selection

Eliciting priors for use in a Bayesian context is often a non-trivial task requiring expert knowledge

of the domain to inform the choice of distributions and the parameters of those distributions

[41–43]. To evaluate the posterior density equation (2.20), we must first set priors for the

parameters µpop, and Σpop. Furthermore, following common practices [37,39], we do not infer

the covariance matrix directly but rather a scale matrix, S, and correlation matrix, C, such that

Σpop can be written as

Σpop = SCS.

The scale matrix, S, is a diagonal matrix containing the population standard deviations for each

component of ξ i. The Cholesky factorization of Σpop is, therefore, SLC, where LC is the Cholesky

factor of the correlation matrix, C.

Given the posterior distribution in equation (2.21) and the above discussion, we must choose

the prior distribution π
µ,S,C
0 (µpop, S, C). We assume that the population parameters µpop, S, and

C are independent and, therefore, the prior distribution decomposes into the product of the priors

of each parameter π
µ

0 (µpop)πS
0 (S)πC

0 (C).

In previous work [16], priors were set on the model parameters, θ , using distributional

parameters informed by values found in the literature. Due to the hierarchical model used in

this paper, we are unable to set priors directly on the θ i as these parameters are governed by the

population distribution. Instead, priors that were previously set on the model parameters are now

placed on µpop = [νpop, ηpop, τpop, ρpop]T. Following the previous work, a transformation is used

based on the natural bounds of the parameters, as described in appendix A.

Conveniently, the transformation used in the previous work, which was used to boost

computational efficiency by matching the support of the parameters and the MCMC transition

kernel is also an invertible transformation, as given in equation (2.19), which is required for the

mixed effects model.
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We set the following independent priors on the entries of µpop:

νpop ∼N (1.05309738, 1.309270562),

ηpop ∼N (6.83672018, 0.471917732),

τpop ∼N (−3.80045123, 0.643870232)

and ρpop ∼N (−3.59771868, 0.73101652).

The prior distributional parameters were derived using values from Silver [44], Purslow [45]

and Goh [46]. We reduced the variance of the prior distributions in comparison to the previous

study [16] due to regions of high probability density of the priors coinciding with relatively

unphysical parameter ranges of the model parameters in that study.

Setting priors for a correlation matrix is non-trivial. Many distributions have been proposed

as priors for correlation matrices [43], such as the Jeffreys prior, per-entry uniform priors and a

per-entry Gaussian process prior [47]. An increasingly common choice for correlation priors is the

Lewandowski–Kurowicka–Joe (LKJ) distribution [48,49] with parameter κ > 0. We set an LKJ(1)

prior on the correlation matrix, which is the default recommendation of the brms R package [50].

Finally, for the entries of the scale matrix, S, we set half Student’s t prior with three degrees of

freedom, mean zero and unit scale, in line with the brms defaults [50].

Since our data appear to be very informative about the parameters in our model, the posterior

is not overly sensitive to the choice of priors used here. The prior was chosen to cover values from

the literature, including those collagen from skin rather than tendons, and to be overdispersive,

so as to cover all possibilities and prevent an overinformative prior.

(h) Posterior sampling implementation

To characterize the mixed effects posterior distribution equation (2.21), we use the Stan library

[29]. Below, we discuss the specific configuration of Stan used for the inference. The sampling

algorithm used in Stan is based on the HMC algorithm [51] and its extension, the No-U-Turn

sampler (NUTS) [52].

In classical HMC sampling, the proposal vector θ ′ obtained by integrating Hamilton’s

equations is conditionally accepted using the Metropolis acceptance ratio. In comparison, the

HMC+NUTS algorithm builds a binary tree along the integrated Hamiltonian by integrating

forwards and backwards with respect to the ‘time’ variable. Rather than using a Metropolis

acceptance step, the proposed state θ ′ is taken to be the point along the integrated trajectory

that is furthest away from the initial state where the integration began, where integrating the

Hamiltonian any further would cause the path to ‘turn back’ on itself [52]. The number of points

generated along the trajectory is controlled by a parameter jmax ≥ 1 that limits the maximum

depth of the tree generated to be no more than 2jmax − 1. In Stan, this parameter is called

max_tree_depth and defaults to 10.

Stan automatically tunes the leapfrog parameters and the Euclidean metric during an adaptive

warm-up period before sampling. More information about these parameters, and what they

mean in the context of the HMC+NUTS algorithm can be found in the Stan user manual [29].

The user is able to control the adaptation of the integrator parameters by changing the values

of user-facing parameters called step_size and adapt_delta. The step_size parameter

defines the starting guess for the integration step size before the adaptation phase. The parameter

adapt_delta acts as a surrogate for a target Metropolis acceptance ratio and controls the

adaptation of the number of integration steps, the estimation of the Euclidean metric and the

integration step size.

If the HMC+NUTS parameters are not set properly or are unable to adapt to optimal values,

then the integrator will accrue enough errors that the integrated Hamiltonian trajectory will not

follow the true trajectory. This divergence from the true trajectory is reported to the user, and

divergences indicate poor exploration of the state space and the simulation cannot be trusted.
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With the posterior distribution we are sampling from in this study, the default parameter values

resulted in divergences, poor effective sample sizes and non-convergence to the posterior as

reflected by the split R-hat statistic. Instead, we used the following values for the parameters:

step_size = 0.01, adapt_delta = 0.99, and max_tree_depth = 14. To interface with Stan, we

used cmdstanr [53] with a modified Stan script generated from brms [50].

For our analysis, we generated 4000 samples per chain, with 10 chains running in parallel, for

a total of 40,000 posterior samples. The average sampling time per chain was approximately 60 hr

between both runs using a server with an Intel(R) Xeon(R) CPU E5-4627 v2 @ 3.30 GHz (32 core)

with 64 GB memory, with each chain utilizing one core.

3. Results
We provide numerical results for the data selection method, introduced in §2d, in §3a. Using these

results, we truncate the data as explained in §2e, and feed the truncated data into the mixed effects

inference. Results for the mixed effects model, using the data fed from the data selection method,

are given in §3b.

(a) Data selection results

Each individual tendon sample dataset was fitted using the microstructural model with data

selection. Stress–strain data were extracted up to the point of maximum stress as the model

is elastic and, therefore, not capable of describing subsequent decreases in stress that are

associated with damage. The model and fidelity parameters were inferred using the MCMC

methodology outlined in §2d(iii). Here, we focus on the fidelity parameter marginal means, which

are subsequently used within the mixed effects model. The majority of samples exhibited fidelity

parameter profiles which started at values close to unity and decreased to zero at some point

between 5% and 10% strain (see figures 5 and 6a). Some fidelity profiles, however, exhibited

a secondary, smaller increase beyond 10% strain. This was simply due to the model and data

crossing at larger strains. It was evident that the model had already diverged from the data by

this point and the increase was simply an artefact of model extrapolation (see figure 6b).

Interestingly, the fidelity parameters of all the tendons reduced to values below 0.3 before

10% strain, indicating a significant reduction in the contribution of the data to the likelihood

beyond this point. This is shown in figure 7 where the stress–strain profiles of the SDFTs and

CDETs have been trimmed to the point where the fidelity parameters first go below 0.3. There

is considerable variability in the strain at which the fidelity parameters first reduce below 0.3, in

both the SDFTs and CDETs. This further supports our approach of using data selection and the

inference of fidelity parameters as opposed to homogeneous manual trimming of the data.

(b) Mixed effects model results

Next, we use the truncated data and fidelity parameter posterior means to infer the population-

level distributions of the constitutive parameters. We used the MCMC methods described in

§2h to sample from the posterior distribution of the mixed effects model as outlined in §2f.

The mechanical model consists of two elastic parameters, (1 − φ)µ and φE, and two structural

parameters, a and b. Owing to the nature of the transformation Tθ (·) and the priors, the posterior

predictives for the parameters are best understood through their modes and not their means. This

is because the posterior distributions are heavy tailed and may not necessarily have finite means

or variances.

(i) Posterior predictives for model parameters

The posterior predictives of the model parameters are compared for the SDFTs and CDETs in

figure 8. For the CDET distributions, φE has a peak at 1430.2 MPa, whereas the corresponding

peak for the SDFT lies at 811.5 MPa. In addition, the CDET population distribution for (1 − φ)µ
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Figure 5. Posterior means of the fidelity parameters against strain for (a) SDFT and (b) CDET tendon samples. Each line

represents a fidelity profile for a single tendon.

Figure 6. Comparison of the model fit for two SDFTs and the fidelity parameter profiles. (a) A tendon (H16 SDFT) where the

fidelity parameters decrease with strain and (b) a tendon (H15 SDFT) where the fidelity parameters decrease but then increase

again at a larger strain due to model-data crossing.

Figure 7. Plots of experimental tensile test data for SDFT (left) and CDET (right), trimmed automatically using Bayesian data

selection and a fidelity threshold of 0.3.

has density closer to zero in comparison to the SDFT population distribution. Both of these

quantities include the non-identifiable structural parameter φ. There are two possible causes,

which in some combination could give rise to the differences that we see in the mechanical
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Figure 8. Comparison of the marginal posterior predictive distribution for each model parameter.

parameter distributions. The CDET could contain fibres that are stiffer than those found in the

SDFT and/or the CDET could contain a larger volume fraction of fibrils than the SDFT.

For the structural parameters, a and b, the distributions for the SDFT tend to favour higher

values than those of the CDET. The parameter, b, has peak probability density at a value of 1.05

for the SDFT, a larger value than the CDET peak density value of 1.04, and the spread of values is

larger for the SDFT than the CDET.

These differences in peak probability density relate to the biological functions of the tendons.

As the SDFT is an energy-storing tendon that extends and contracts to facilitate locomotion [33],

the higher values for the structural parameters reflect the larger range of strains the tendon

operates over and the correspondingly longer collagen fibril lengths. The lower values of the

mechanical parameters indicate lower stiffness, complementing the functionality of the tendon.

The higher stiffness and lower values for structural parameters of CDET reflect their relative

inextensibility, which facilitates the transfer of force between muscle and bone.

Note that these distributions do not solely represent the natural variation of the parameters in

the population but also the uncertainty in these distributions due to the relatively small number

of individuals that have been used in the inference. As such, it is likely that these distributions are

overdispersed compared to the true underlying distributions. It is infeasible to disentangle this

uncertainty from the natural variation of the parameters, but with the addition of further data,

the posterior would probably contract further.

The tangent modulus in the linear region of a tendon’s stress–strain curve is often reported as

an important mechanical quantity [33]. As a naive estimate, the linear modulus might be used

as an approximation of φE; however, as we showed in §2a(i), an exact calculation of the linear

modulus of our model shows that it will be strictly less than φE. To explore whether the linear

modulus can be used as a reasonable estimate of φE, we compare our posterior distributions to

distributions of the linear modulus of the respective tendon type. To define the linear region,

for the upper bound, we used the cut-off stretch as calculated in §3a, and for the lower bound,

the posterior mean of samples of b from independent inferences of each dataset was used. For the

SDFT, 12 of the 18 datasets had valid detected linear regions, where the lower bound is less than

the upper bound, and 16 of the 18 data for the CDET had valid detected linear regions. From

the data with valid linear regions, we used linear regression to find the gradient of a straight

line fit to the data as the linear modulus. Then, motivated by φE being strictly non-negative, and

the lognormal-like priors as described in §2g along with the parameter transform described in

appendix A, in figure 9, we plot lognormal distributions for the linear moduli with mean and

variance equal to the mean and variance of the linear moduli calculated from the regression data.
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Figure 9. Estimates of the posterior distributions of φE for the SDFT (left, blue) and CDET (right, green) compared with

lognormal distributions with prescribedmeans and variances equal to themean and variance of the linear moduli as calculated

from the data (both, red). The means of each distribution are indicated with vertical lines (linear modulus: dotted; SDFT/CDET:

dashed) in the corresponding colours for their respective distributions.

Figure 10. Posterior predictives for the CDET datasets h15 and h17. For h15, there are not many data points as determined by

the fidelity threshold chosen, whereas h17 has many data points. The difference in inferential power is seen by the 95% spread

of the predictive. The large spread is due to the lack of information about the mechanical parameters (1 − φ)µ andφE.

The means of the plotted distributions are shown as vertical lines. As anticipated, using the linear

modulus as a direct estimate of φE underestimates its value compared to the inferences from our

model; however, there is considerable overlap in the assumed distribution of the linear modulus

and our posterior distributions for φE.

(ii) Posterior predictives for the stress

To visualize the fit and the amount of data included in the inference in context, we considered

the posterior predictive distribution for the response of each tendon. This can be understood

as the marginal posterior distribution of new stresses y∗
i observed in a hypothetical replication

of the experiment for the ith tendon at the same stretch levels as in the original data, and can

be simulated by evaluating the microstructural model M(·) at the observed stretches λi, using

posterior samples for the model parameters θ i.

Figure 10 shows posterior predictives for the response of two CDET individuals that have

differing numbers of data points after being trimmed using our data selection method. We see

that, for data with fidelity parameters that do not decay until well within region III of the stress

response, there is a very tight predictive with a small standard deviation about the median.

By contrast, where much of the data have been removed in the selection process, the inference

results in a diffuse predictive with a high standard deviation. The reduction in the amount

of inferred data included in the inference greatly increases the uncertainty in the posterior

predictive distributions of the parameters in experiments with small Ni. However, the data

selection methodology enabled us to fit our model to regions where the probability of the data
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being consistent with the chosen model was highest, ultimately giving a truer reflection of the

constitutive parameter values.

4. Discussion
In this paper, we introduced a two-stage process for producing higher-quality inferences from

stress–strain tests to failure, where the mechanical model that we fitted to the data does not

account for damage or failure. Several studies have proposed methods to identify the start of

the yield region, often relying on curve-fitting or localized gradient estimates. Techniques such

as moving-average smoothing of tangent moduli [33], spline fitting for yield point detection [54]

and polynomial fitting to identify inflection points [55] offer practical means of identifying which

data should be used for inference, though they rely on heuristic choices. Others have noted that

there can be challenges in parameter identifiability, particularly when relying on uniaxial data

alone [56].

The first stage of our approach involved inferring fidelity parameters which measure how

consistent the model is with the data. By using a Gaussian process prior for the underlying fidelity

field, we were able to learn the different regions of observation space for which the model is not

valid. After inferring fidelity parameters independently for each dataset, a fidelity threshold was

chosen which was used to trim each dataset automatically, and the observational noise value for

each observation was scaled by its fidelity value, effectively tuning out data points which are less

consistent with the model. As used in previous work [19], we chose a threshold of 0.3.

Using the Bayesian data selection method, we obtained higher-quality inferences which

accurately trimmed the data on a per-individual basis, to minimize bias and maximize

information quality. This was necessary because of the heterogeneity of the data between

experiments, leading to the model being a valid representation of the data for different strain

ranges in each case. This research provides a basis for improving the predictive power of

results derived from Bayesian inferences and point estimates as our data selection method is

agnostic to the statistical method chosen in the second stage. It is clear from figures 3 and 7 that

capturing the heterogeneity in damage is important in the modelling process and ignoring it

will skew parameter estimates away from their true values. It is important to note the additional

computational cost of our approach; an additional inference was required for each of the tendon

experiments to appropriately trim the data. However, these can be conducted in parallel, and on

modern computer infrastructures this can be achieved straightforwardly. The additional cost of

the data selection is still relatively small in comparison with the cost of characterizing the Bayesian

mixed effects posterior, which has a large number of correlated parameters that make mixing of

the Markov chain challenging.

Following the data selection stage, the trimmed and re-weighted data were fed into a Bayesian

mixed effects statistical model which was used to infer population-level parameters for the

mechanical model. We found that the product of the collagen volume fraction and collagen fibril

Young’s modulus, φE, has posterior modal values of 811.5 MPa for the SDFT and 1430.2 MPa for

the CDET. We found that CDETs are stiffer than SDFTs, due either to having stiffer fibrils, a higher

collagen volume fraction or both. We also found that the SDFTs have longer fibrils on average.

The better a model is at representing data, the more of the data can be used to infer its

parameters. For example, using models which attempt to model damage or failure of the tendon

[57,58] will increase the number of data points that are valid under the assumptions of the

model, and therefore less data will be lost to trimming. The use of a more computationally

costly mechanical model, however, will add to the computational complexity of characterizing

the posterior distribution. In addition, it is very likely that however sophisticated and flexible the

chosen model is, the experimental data will still require some level of selection prior to analysis to

arrive at accurate parameter estimates. Combining sophisticated data selection methodology with

mixed effects models enabled us to analyse the natural variability of parameters which define the

physical properties of horse tendons more accurately than previous approaches.
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Appendix A. Parameter transform
In [16], a transformation of the model parameters θ was used to improve the computational

efficiency of the random walk Metropolis–Hastings algorithm. The transformation arises from

considering the natural bounds on the model parameters. The parameters, E and µ, are greater

than 0, and φ is a parameter constrained to the interval [0, 1]; therefore, (1 − φ)µ and φE are non-

negative. Thus, a logarithmic transform is appropriate. The structural parameter, a, is greater than

1, and b is greater than a, so we consider the parameters a − 1 and b − a which are both greater

than 0 and such that their logarithms exist on the entire real line. The transform Tθ (·) and its

inverse T
−1
θ (·) is therefore given by

T
−1
θ (θ ) = ξ =

⎛

⎜

⎜

⎜

⎝

ν

η

τ

ρ

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

ln{(1 − φ)µ}
ln{φE}

ln{a − 1}
ln{b − a}

⎞

⎟

⎟

⎟

⎠

⇐⇒ θ = Tθ (ξ ) =

⎛

⎜

⎜

⎜

⎝

exp{ν}
exp{η}

exp{τ } + 1

exp{ρ} + exp{τ } + 1

⎞

⎟

⎟

⎟

⎠

.
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