

This is a repository copy of Different transcriptional impacts of prophage within the rhizobia-legume symbiosis.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/id/eprint/232865/

Version: Published Version

Article:

Eliza, M. orcid.org/0009-0009-7304-8455, Hipperson, H. orcid.org/0000-0001-7872-105X and Harrison, E. orcid.org/0000-0002-2050-4631 (2025) Different transcriptional impacts of prophage within the rhizobia-legume symbiosis. Symbiosis, 96. pp. 249-260. ISSN: 0334-5114

https://doi.org/10.1007/s13199-025-01075-w

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

ORIGINAL PAPERS

Different transcriptional impacts of prophage within the rhizobialegume symbiosis

Mary Eliza^{1,2} · Helen Hipperson^{1,2} · Ellie Harrison^{1,2}

Received: 7 April 2025 / Accepted: 6 August 2025 / Published online: 29 August 2025 © The Author(s) 2025

Abstract

Prophages – viruses that infect and integrate into bacteria - have important effects for their bacterial hosts. These include fitness benefits, for example, through carrying adaptive traits or killing competitors, and costs due to regulatory disruption and cell lysis. Such effects can be dramatic, particularly when the bacterial hosts play key ecological roles, for instance, in pathogens where prophages can drive virulence and rapid adaptation. However, their role in non-pathogens, such as symbiotic bacteria where subtle changes may have outsized effects, has been overlooked. Here, we investigate the impact of carrying a prophage on the nitrogen-fixing symbiont, rhizobia. Rhizobia form symbioses with legumes in the form of root nodules. Their nitrogen-fixing ability has an important role in the transition to sustainable agriculture, potentially reducing the use of inorganic fertilisers. In this study, we show that prophage, vTRX32-1, has different effects on gene expression across two *Rhizobium* strains while in symbiosis with clover. While in one strain, the phage has no measurable impact whatsoever, in another strain, prophage carriage is associated with significant downregulation of many rhizobial genes, including those involved in nitrogen fixation. Moreover, phage presence has a positive effect on plant biomass at 4 weeks, which decreased slightly after 8 weeks. However, since these results were non-significant, they suggest that phage presence does not significantly affect the performance of the rhizobia-legume symbiosis. This implies that the rhizobia-legume system can be robust even in the face of prophage-induced disruption to cellular regulation.

Keywords Rhizobia-legume symbiosis · Prophages · RNA sequencing · Transcriptomics · Nitrogen fixation

1 Introduction

Prophages are bacterial viruses that integrate into the bacterial chromosome or on extra-chromosomal elements (Gama et al. 2013; Howard-Varona et al. 2017). The impact of prophages has been best described for host-associating (typically pathogenic) bacteria where they are known to impart benefits to their hosts in many ways (Paul 2008; Pfeifer et al.

☐ Mary Eliza mary.eliza@ufz.de

> Helen Hipperson h.hipperson@sheffield.ac.uk

Ellie Harrison ellie.harrison@sheffield.ac.uk

- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research, Leipzig, Germany
- School of Biosciences, The University of Sheffield, Sheffield, United Kingdom

2022); their acquisition can alter bacteria-host interactions by encoding novel traits, such as virulence factors, or drive rapid adaptation through mutagenesis (Gazitúa et al. 2021; Wang et al. 2022). They can also benefit their bacterial hosts by providing competitive advantage as 'biological weapons' against non-host related but phage-sensitive competitors (Harrison and Brockhurst 2017; Howard-Varona et al. 2017), particularly beneficial during colonisation (Brown, Inglis, and Taddei 2009). Finally, integration can provide resistance to superinfection of the same and related phages. While temperate phages provide many benefits, they, like other mobile genetic elements (MGEs) – genetic segments that can move between genomes (Frost et al. 2005) – can also incur costs to their bacterial hosts. These costs can be due to alteration of metabolic processes (Zhao et al. 2017), disruption of functional genes due to prophage integration (Coleman et al. 1991) or killing of individual host cells during induction (Harrison and Brockhurst 2017). In other cases, the vulnerability of prophage-infected cells can be exploited by competitors. This is evident by the production

of Hydrogen peroxide by *Streptococcus pneumoniae*, which can induce prophages in *Staphylococcus aureus*, leading to bacterial lysis and subsequent displacement (Pericone et al. 2003; Selva et al. 2009). Phages have the potential to play important roles in bacterial ecology, with direct and indirect implications for their hosts. However, their impact in non-pathogenic systems is less well understood but of equal importance.

As one of the main and most efficient drivers of biological nitrogen fixation (BNF), rhizobia are essential components of the soil microbiome. Rhizobia interact with legumes to form symbioses in the form of root nodules where they exchange fixed atmospheric nitrogen for carbon compounds (Cangioli et al. 2022). As legume symbionts, rhizobia contribute to the global nitrogen cycle by providing 70 million tons of nitrogen per year globally to the agricultural industry (Brockwell, Bottomley, and Thies 1995; Zahran 1999). Rhizobia interact with many MGEs in their environment, which play an important role in rhizobial ecology and evolution (Heath et al. 2022; Wang et al. 2019). Rhizobial symbiosis plasmids, pSyms, and Integrative Conjugative Elements, ICEsyms, for instance, are a major characteristic of the Rhizobium clade (Wang et al. 2019), as they carry the genes that underlie nitrogen-fixing symbioses. MGEs have also been shown to benefit rhizobia in survival (Mercado-Blanco and Toro 1996), nodule competitiveness (Abdel-Salam et al. 2013; Brom et al. 2000) and stress resistance (Cytryn et al. 2008) in different environments when inside and outside the host. But MGE presence can also be disruptive in the symbiosis. For instance, loss of plasmid RP4 was shown to improve nitrogen fixation by Rhizobium leguminosarum by viciae in peas (O'Connell et al. 1998) and curing of a Mesorhizobium loti strain of the plasmid pRlo2037 led to higher nodule competitiveness and nitrogen fixation (Pankhurst et al. 1986), suggesting interference of MGEs in these important processes.

While increasing numbers of prophages are being identified within rhizobial genomes (A Schwinghamer and Reinrardt 1963; Abebe et al. 1992; Dhar et al. 2013; Engelhardt et al. 2013; Ford et al. 2021; Halmillawewa et al. 2016; Joglekar et al. 2023; Sharma et al. 2019; Takahashi and Quadling 1961), their effect on legume-rhizobia symbioses is unclear. To date, no known accessory genes encoded by these prophages have been reported - though many genes remain unannotated. Other potential benefits for the host bacteria, such as competition between strains, are unlikely to be beneficial to the plants themselves as competition would reduce the diversity of potential symbionts. In contrast, prophages may disrupt rhizobial symbiosis by impacting cellular regulation or by resulting in a significant reduction of symbiont cells if prophages are actively entering lysis during nodulation and nitrogen fixation. Studies measuring the impact of prophages on the symbiosis, nodulation and nitrogen-fixing interactions of different rhizobia with their host plants show contradictory effects (Abebe et al. 1992; Dhar et al. 2013; Hatem, El -Sabbagh, and El -Didamony 2017; Uchiumi et al. 1989). For instance, studies on soybean infecting *Bradyrhizobium japonicum* (Abebe et al. 1992; Dhar et al. 2013) and *Rhizobium* infecting *Sesbania aegyptica* (Hatem et al. 2017) found no effects on symbiosis quality. However, Uchiumi et al. 1989 showed that lysogeny negatively affects nodule formation in *Rhizobium leguminosarum* by trifolii (Uchiumi et al. 1989). Thus, the impact of prophages on the rhizobia symbiosis is unclear, and no study to date has investigated what impacts prophage carriage has on the bacteria itself during nodulation.

Here, we seek to explore the transcriptional impact of prophage carriage in nodulating bacteria. Phage vTRX32-1 is a widely infectious temperate phage isolated from a rhizobial symbiont, Rhizobium leguminosarum by trifolii (Rlt) strain TRX32, found in a clover (Trifolium repens) nodule in York (Ford et al. 2021). Related prophages have subsequently been found across the world in different Rhizobium spp. showing its long evolutionary history with symbiotic Rhizobium (Ford et al. 2021). vTRX32-1 has been shown to have a wide host range within the Rhizobium leguminosarum species complex, and can form prophages in the vast majority of strains it infects (Ford et al. 2021). As a prophage, it is highly inducible with high rates of spontaneous lysis in broth culture (Ford et al. 2021). To investigate the effect of phage integration on symbiotic strains, we introduced the phage to 2 Rhizobium strains isolated from the same community – TRX19 and TRX4 (Kumar et al. 2015) – and measured (1) the transcriptional impact of the prophage in symbiotic nodules, and (2) their symbiotic quality. We find that phage impact on rhizobial gene expression varies widely for each rhizobial strain; in TRX19, the phage results in no measurable transcriptional impacts, while in TRX4, prophage carriage is associated with significant downregulation of rhizobial genes across the genome, including symbiosis genes. Despite this, prophage presence does not affect rhizobia-clover symbiosis in either strain.

2 Materials and Methods

2.1 Bacterial and phage strains

All experiments were conducted on *Rhizobium* strains TRX19 and TRX4, belonging to the *Rhizobium leguminosarum* species complex. These strains were isolated from the root nodules of white clover i.e. *Trifolium repens* in York (Kumar et al. 2015). TRX19 belongs to the species *Rhizobium ruizarguesonis* (Young et al. 2021), previously known

as genospecies C (Kumar et al. 2015) and TRX4 belongs to the genospecies D (Kumar et al. 2015). The Average Nucleotide Identity values for both the strains lie between 92.4% and 94.6% (Kumar et al. 2015). Both the strains were isolated from the same soil community (within a 1m² area) as the original host of the phage, vTRX32-1 (Ford et al. 2021). They were selected for the absence of other inducible prophages (no response to mitomycin C treatment and no inhibition of growth when supernatant is spotted on a panel of other strains).

The strains were previously labelled with gentamycin-resistant markers and either Green Fluorescent Protein (GFP) or mCherry (MC) fluorescent markers using MiniTn7 (Mendoza-Suárez et al. 2020, 2021). Temperate phage vTRX32-1 (accession number MW023914.1) was introduced into the bacteria by applying 20 µL of 10⁷ PFU/ mL concentrated single phage cultures in the middle of the bacterial lawn. The plates were incubated for 72 h at 28°C. This allows the phage to naturally integrate into the bacterial genome. Bacteria which have acquired the phage are then able to grow within the zone of clearing despite the presence of the phage, allowing isolation of lysogens by streaking (Bobay, Rocha, and Touchon 2013; Gama et al. 2013). The phage insertion site is highly conserved within a tRNA leucine in the bacterial chromosome and integration was confirmed in lysogenic clones by PCR using phage specific primers targeting the conserved maturase B gene (forward - GTCGAGTGCTTGACCTCCTC, and reverse - AC CTCTTCTTGGTCGCTTCA) and a variable phage region which is specific to vTRX32-1 (forward- CAGTCCTGCC ACCTCAATGT, and reverse - ACGAAGAAATCCGTTG CCCT). Three independently established lysogenic clones were selected for the experiment. Cultures were grown in 6 mL TY (Tryptone -6 g/L, Yeast -3 g/L) liquid medium in 30 mL glass universals at 28°C in an incubator shaken at 180 rpm for 72 h.

2.2 Plant varieties and growth conditions

White clover plants (variety=Avoca, DLF seeds Ltd.) were grown in 1 L tricorn pots containing 900 g autoclaved vermiculite and sand mix (1:4 ratio). Seeds were sterilised by immersing and shaking in 3% bleach for 30 min at room temperature. The seeds were washed 4X with sterile water to remove any traces of bleach, spread on sterile filter paper and left to germinate for 5 days at room temperature. Single seedlings were randomly selected and placed in the tricorn beakers (Simport, United Kingdom). Rhizobia free nitrogen-negative (N-) and nitrogen-positive (N+) controls were included in all experiments. N+seedlings were additionally supplied with 0.01 mL of 0.83 mM/L ammonium sulphate solution every week. This concentration is similar to

the volume of fertiliser applied to 1m³ of topsoil at the rate of 0.5 kg/hectare as it has been shown to increase herbage production (Burchill et al. 2014). The tricorn pots were covered with autoclaved sun bags (Merck) which contain a 0.2 micron filter for gas exchange, and secured tightly to prevent cross contamination. A sterilised silicon watering tube capped with a 0.45 μm sterile filter (MillexTM) was used for watering and feeding. Treatment pots were placed in a controlled environment chamber (16/8 hour day/night cycle at 22°C/20°C, 500 μmol/m²/s or Photosynthetic Photon Flux Density (PPFD). The plants were grown as described and harvested after four and eight weeks with roots processed on the same day.

2.3 Transcriptional effects of lysogeny within symbiosis

To assess the impact of lysogeny on symbiont activity within the nodule, an RNAseq experiment was conducted.

Pots were set up with either non-lysogen (without the phage) strains, TRX19 or TRX4, or lysogen strains, TRX19v32 (TRX19+vTRX32-1), or TRX4v32 (TRX4+vTRX32-1). All strains were GFP labelled to maintain consistency and to reduce any background noise due to different fluorescent labels. Three biological replicates – bacterial clones – were grown per strain. Each was inoculated onto 3 three replicate pots planted with three clover seedlings which were pooled for sequencing. This experiment thus had the following design: 2 strains X 2 phage conditions (presence/absence) X 3 biological replicate clones X 3 replicate pots, for a total of 36 samples. The seedlings were then inoculated with 100 μ L of 1 × 10⁷ CFU/ mL bacterial culture per plant, 20 mL sterile nitrogen-free Jensen media (Howieson and Dilworth 2016), and 30 mL sterile distilled water. The plants were grown as described above and harvested after 8 weeks. Roots were separated from shoots and washed in distilled water. Nodules from each replicate plant were collected separately to allow nodule counts and transferred to a sterile 2 ml eppendorf. Between 87 and 249 nodules were harvested per plant. Nodules were sterilised in 3% household bleach for 30 min to remove bacteria on the nodule surface, washed 3X in Phosphate Sucrose Magnesium (PSM) buffer (1 M K₂HPO₄, 1 M KH₂PO₄, 300 mM sucrose, 2 mM MgCl₂). The nodules from the 3 plants in each replicate pot were pooled and macerated using sterile pestles in 0.6 ml PSM and plant debris removed by centrifugation through 2 layers of sterile muslin for 2 min at 1000 rpm. 0.5 ml of supernatant was added to 1 mL RNA protect and incubated at room temperature for 5 min. Samples were centrifuged, supernatant removed and frozen at -20°C.

RNA was extracted on the following day from the nodule isolate pellets using Qiagen RNeasy mini kit. The pellets were resuspended in 350 μl RLT buffer and lysed in Tissue lyser II using 300 mg 0.1 mm silica and 100 mg 0.1 mm glass beads and centrifuged at 6000 rpm for a minute. RNA from samples was obtained using RNeasy columns following kit instructions. cDNA preparation and sequencing were performed by the Centre for Genomic Research, University of Liverpool. The sequencing library was prepared using ZymoSeq RiboFree Total RNA library preparation kit. The cDNA libraries were prepared and sequenced on the Illumina NovaSeq platform using random primers and S4 chemistry.

Raw sequence data was run through FastQC (Andrews 2010) and multiQC (Ewels et al. 2016) to visualise data quality. The data was further trimmed and filtered using Trimmomatic (Bolger et al. 2014). The trimmed and filtered data was aligned to the relevant reference genome (i.e. self-aligned) using HISAT2 (Kim et al. 2015; Pertea et al. 2016). TRX19v32-1 (with vTRX32-1) (accession number - PRJNA1190931) and TRX4 (accession number - PRJNA1176346) were used as the reference genomes HTSeq 2.0 (Putri et al. 2022) was used for absolute expression, these values were used to generate transcripts per million scores for each gene and assemble all the gene transcripts.

The RNA data was analysed using DESeq2 (version v1.34.0 and v1.46.0)(Love, Huber, and Anders 2014) in R. In addition, packages ggplot2 (version 3.3.5 and 3.5.1) (Wickham 2016), dplyr (version 1.0.8 and 2.5.0)(Wickham et al. 2021) and readr (version 2.1.2 and 2.1.5)(Wickham et al. 2024) were used for visualising data and reading files. Normalisation of data was done using DESeq2, which normalises the data by computing a scaling factor for each sample. This scaling factor is a median of the ratio of the read count of each gene in a sample and its geometric mean across all samples is called a size factor (Anders and Wolfgang 2010; Dillies et al. 2013). The commands used for the analysis are given in Supplementary text T1.

DESeq2 uses negative binomial distribution to calculate the means and variance of the two groups. It further uses the Wald t-test to calculate the adjusted p-values. To compare phage and chromosomal genes in lysogen samples, Trimmed Mean of M-values (M refers to gene-wise log fold changes) (TMM) normalised values from EdgeR (version 3.36.1 and 4.4.2) were used (Robinson, McCarthy, and Smyth 2009). TMM estimates the ratio of RNA production using weighted trimmed mean of the log expression ratios (Chen et al. 2008; Robinson and Oshlack 2010). We used TMM as it is usually recommended for comparisons within the samples (here, we compared lysogen samples) believed to have no differential expression, this is because EdgeR

normalises the library sizes rather than the size factors as described above (Chen et al. 2008; Robinson et al. 2009).

2.4 Measuring symbiotic effectiveness

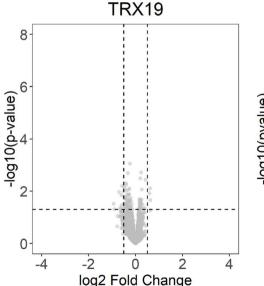
To assess the impact of lysogeny on the effectiveness of the symbiosis we measured plant growth and nitrogen content in a separate pot experiment. 12 replicate pots were established per treatment with 6 replicates harvested at 8 weeks as above and 6 harvested at 4 weeks to investigate if potential effects are manifested throughout growth or only at later timepoints.

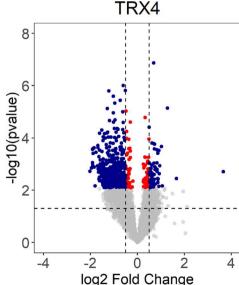
Clover seedlings were grown singly in separate pots and inoculated with 200 μL of 1×10⁷ CFU/mL TRX19, TRX4, TRX19v32 or TRX4v32 cultures. Half of the replicates were GFP labelled and half were mCherry labelled to help identify possible cross-contamination, by confirming each pot contains the expected marker, and background noise, by ensuring all isolates are labelled. The negative control and positive nitrogen controls were applied with 200 µl of sterile water. This experiment thus had the following design: 2 strains X 6 biological replicates X 2 phage conditions (presence/absence) X 2 time points X 2 controls for a total of 72 pots. The plants were grown as described above. Roots were separated from shoots and washed in distilled water. Root nodules were carefully removed from the roots, washed and counted. Bulk soil from each replicate was transferred to falcon tubes containing root wash solution i.e. 10 mM MgSO₄ and 0.1% Tween and mixed with 4 g of sterile glass bead mix (diameters – 2 mm and 4 mm). Soil was vortexed for a minute, left for 30 min and vortexed again for a minute. The soil wash supernatant was diluted and plated onto TY agar plates supplemented with 3 ng/mL gentamycin and 1 μg/mL cycloheximide (to prevent fungal growth) and kept in incubator at 28°C. Root nodules from each replicate were collected and transferred to a 2 ml eppendorf. The nodules were sterilised in 2 ml of 3% bleach solution and shaken for 30 min at room temperature. The nodules were washed 6X with sterile distilled water and crushed into 0.5 ml of TY media (5 g/L yeast extract, 6 g/L tryptone, 0.5 g/L CaCl₂). The supernatant was diluted and plated onto TY agar plates supplemented with 3 ng/mL gentamycin and 1 µg/mL cycloheximide. The plates were incubated at 28°C for 72 h and CFUs counted. The soil wash and nodule wash results have not been presented here as there were no significant differences observed within the treatments. The roots and shoots were kept in drying oven at 60°C for 48 h and weighed.

Natural abundance of ¹⁵N method was used to calculate the amount of Nitrogen fixed by rhizobia (He et al. 2009). % ¹⁵N of each sample was measured, which is the absolute number of ¹⁵N atoms in 100 atoms of total nitrogen. It is calculated as:

$$\% 15N = \frac{N15}{N14 + N15}$$

% ¹⁵N was converted into milligram of Nitrogen per gram of dry weight plant sample using the following equation:


mg N/gm Dry weight =
$$\frac{\% \text{ N X } 10}{\text{Dry Weight of Plant in grams}}$$


To measure the total Nitrogen and Carbon: Nitrogen ratio, dried shoot material from each treatment was used for Isotope Ratio Mass Spectroscopy (IRMS). Each sample was powdered in Qiagen tissue lyser II using 5 mm tungsten beads. The powdered sample was weighed and packed in a 51 mm X 51 mm tin foil. The tin foil was closed tightly into a pellet and sent for IRMS sampling to Faculty of Science Mass Spectrometry Centre, University of Sheffield. The sampling was done using an ANCA GSL 20–20 Mass Spectrometer made by Sercon PDZ Europa (Cheshire).

2.5 Statistical analyses

The plant dry weight, total shoot nitrogen and carbon to nitrogen ratio data were analysed using linear models i.e. $lm(x \sim y, data)$ and groups were compared using fit.contrast(). Specifically, pairwise comparisons within each strain were done i.e. lysogens and non-lysogens from each strain was compared. The package limma (version 3.50.0 and 3.62.2) (Ritchie et al. 2015) was used to do the analyses. All statistics were performed in R studio - R version 4.1.3 and 4.4.2 (R Core Team 2021).

Fig. 1: Transcriptional effects of lysogeny are strain specific. Transcriptional response to prophage carriage in two Rhizobium strains isolated from nodules - (a) TRX19, (b) TRX4. The x-axis shows Log, fold change while the y-axis shows -Log10 of p-value. The points represent individual genes with colour denoting significance: Grey shows nonsignificant genes; Red shows significant (p adjusted≤0.05); Dark blue shows significant and differentially regulated (p adjusted≤0.05, log₂fold change ≥ 0.5)

3 Results

3.1 Transcriptional effects of lysogeny are strain specific

Differential gene expression of TRX19v32 and TRX4v32 relative to their non-lysogenic controls showed very different responses driven by phage carriage between these two strains. In TRX19, out of the 3560 annotated genes, no genes were found to be significantly differentially regulated in response to the phage (Fig. 1 (a)). In TRX4, however, out of the 3494 annotated genes, 410 genes were found to be downregulated and 64 genes were found to be upregulated in response to phage carriage when Log₂FC was set to ≥ 0.5 and adjusted p value was set up to ≤ 0.05 (Fig. 1 (b)).

3.2 Functional analysis on differentially expressed genes

Differentially expressed genes in TRX4 were first investigated using Gene Ontology (GO) functional enrichment analysis to identify significant functional groups affected by lysogeny. In this study, the biological process terms for acetyl-CoA biosynthesis, SOS response/distress signal response and fatty acid biosynthesis were most significant while in the cellular component, cytoplasm associated genes were found to be enriched among differentially expressed genes. In molecular processes, magnesium binding as well as ATP and GTP binding were significantly enriched. In addition to these functional groupings, many individual genes involved in nitrogen fixation, nitrogen regulation as well as key symbiosis genes were altered. Full details of affected genes are given in Supplementary Table 1 with key genes of interest highlighted below. The average distribution

of differentially expressed genes and non-expressed genes across the genomes of TRX19 and TRX4 lysogens is shown in Supplementary figure S2.

3.2.1 Nodulation and nitrogen-fixing genes

Many genes involved in nodulation, nitrogen fixation and symbiosis were significantly affected by phage presence in TRX4. Calcineurin-like B protein producing cbl genes are Calcium sensors, which perceive NF (nodulating factors) signals and spike calcium ions (Arthikala et al. 2023). The cbl gene thus, plays a major role in the initiation of symbiosis and was upregulated, resulting in a Log, Fold Change (LFC) of 1.38. In contrast, nodD2 1 and nodD2 3, which are copies of *nodD2* were significantly downregulated (LFC = -1.24 and LFC = -2.48, respectively). The nodD2 gene plays a critical role in detecting plant-derived flavonoids by acting as transcriptional regulators to trigger the synthesis of other nodulation-related proteins (Ferguson et al. 2020; Schultze and Kondorosi 1998). Both changes in cbl and nodD2 1 and 2 might be expected to increase the response of the bacteria to plant signalling. However, other copies of nodD2, nodD2 3 and nodD2 4; and nod genes potentially regulated by NodD2 - nodA, nodM and nodF - were not differentially expressed.

Nitrogen fixation genes were also significantly downregulated. These include genes involved in the biosynthesis of nitrogenase and its associated complexes such as *nifB* (LFC = -3.27), involved in adding metal compounds to nitrogenase (Cebolla and Palomares 1994) and fixP (LFC = -2.69), part of larger nitrogenase-associated complexes. The fixP gene is specifically part of the membrane-bound cytochrome oxidase (Cebolla and Palomares 1994) that is essential for nitrogenase functioning. The gene mopA (LFC = -2.00) was also downregulated. mopA belongs to the mopA-modABC operon, part of the large nitrogen fixation gene cluster containing the structural genes of Mo-nitrogenase, nifHDK (Demtröder et al. 2019). In addition, key regulators were also found to be downregulated such as nifA (LFC = -3.31), a positive regulator of fix and nif genes and; regA (LFC = -2.95), part of regB/regA transduction synthesis, which may have an indirect role in the regulation of *nifHDK*. Finally, genes involved in the regulation of cellular nitrogen - glnK, glnB and ntrC (LFC = -1.98, LFC = -3.09 and LFC = -1.17, respectively), were also downregulated. In total, $\sim 7\%$ of the TRX4 genome was downregulated.

3.2.2 Additional Upregulated genes and their involvement in symbiosis

About~1% (annotated genes) of the TRX4 genome was upregulated. Upregulated genes were involved in processes

such as general stress response, nucleotide synthesis, protein synthesis, glutathione synthesis, amino acid synthesis, RNA synthesis, carbohydrate metabolism, chemotaxis and motility; ribose, potassium and C4-dicarboxylate transport. *pspA*, a phage shock protein had the highest upregulated value, LFC=7.31. *pspA* is involved in maintaining membrane stability against stresses such as high temperature and phage infection (DeAngelis et al. 2019). However, not all significant genes associated with phage infection were upregulated; a phage-resistant gene, *wcaJ* (de Melo, Morency, and Moineau 2024; Tan et al. 2020), was significantly downregulated with LFC = -2.35.

Some of the upregulated genes found have been reported to be important for symbiosis - *iolB_2*, (LFC=1.67) and *iolG_15* (LFC=1.02), are involved in myoinositol catabolism and nodulation competitiveness of rhizobia (Fry et al. 2001). Similarly, adenine utilizing gene, *ade_2*, (LFC=1.26) has been found as important for the nodulation of roots (George and Robert 1991).

3.2.3 SOS response/distress signal

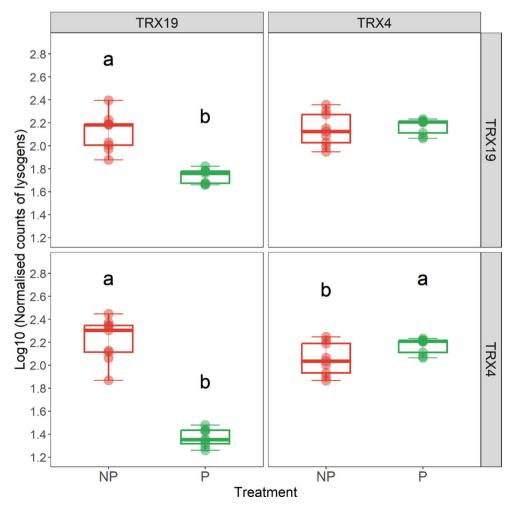
Apart from some general stress proteins - gspA (LFC = -1.65), msrA (LFC = -2.59), $oxyR_4$ (LFC = -1.99) and; heat shock proteins - hrp1 (LFC = -2.72), hspQ (LFC = -3.77), hrcA (LFC = -1.27), many SOS genes were also downregulated.

The genes, recA (LFC=-3.35), lexA_1 (LFC=-2.61) and lexA_2 (LFC = -3.26) are central components of the SOS response and responsible for DNA damage repair. RecA is an inducer of LexA, which represses the expression of SOS response genes but has also been shown to regulate MGEs, including phage expression. Both, RecA and LexA are known to play a major role in maintaining lysogeny in pathogenic bacteria (Burrus and Waldor 2003; Waldor and Friedman 2005). Down-regulation of lexA would be expected to increase the expression of SOS and phage genes resulting in lysis. However, uvrB a central gene involved in DNA repair as part of the SOS response was also downregulated (LFC = -1.98), in contrast to the expected response to elevated LexA levels.

3.3 Phage and Chromosomal gene expression vary in the two strains

To assess the level of activity of phages in these two genomes, the normalised expression of phage genes within each lysogen genome was compared to the expression of non-phage genes using EdgeR. As TRX4 and TRX19 differ somewhat in gene content the genomes were aligned to both references, TRX19v32-1 and TRX4v32-1, separately to ensure the outcome was not dependent on the chosen

reference. The expression of different phage genes within the genomes of the lysogens in the two strains was quite similar. Most of the genes expressed were hypothetical but others were structural. Some of these genes were highly expressed such as the gene producing DNA directed RNA polymerase while others were lowly expressed such as the gene producing the major capsid protein. There were also genes that lay in the middle such as genes producing an endolysin and an endonuclease. Moreover, only 24 of the phage genes were expressed in TRX19 as compared to 40 in TRX4. Some of the structural genes (such as the tyrosine recombinase and DNA directed DNA polymerase) present in TRX4 were thus absent in TRX19. Phage gene expression in TRX19 was significantly lower than the rest of the genome (p < 0.05) regardless of which reference genome was used. In comparison, in TRX4, phage gene expression was the same as - or, where the TRX4v32-1 genome was the reference, slightly higher than the chromosomal gene expression ($p \le 0.05$) (Fig. 2).


3.4 Plant dry weight and total nitrogen fixed

3.4.1 Plant dry weight is not affected by phage presence

The biomass of four week and eight week old clover plants growing in N-free substrate was compared for the following treatments – phage free TRX19 and TRX4, phage carrying TRX19v32 and TRX4v32, rhizobia-free controls both with (N+) and without (N-) nitrogen. The total biomass i.e. shoot and root biomass, varied significantly among treatments after 4 weeks (Fig. 3 (a) : $p \le 0.001$, $F_{5,27} = 6.78$) driven primarily by the N- control. In pairwise comparisons, all rhizobial treatments grew significantly larger compared to the negative control ($p \le 0.05$) as well as the N+control ($p \le 0.05$), except TRX4 (p > 0.05). Surprisingly, plants inoculated with lysogens grew, if anything, larger than those inoculated with non-lysogens.

However, pairwise comparisons using fit.contrasts() between rhizobial treatments found no effect of lysogeny for TRX19 (t = -0.54, p = 0.59) and a marginal but non-significant effect for TRX4 (t = -2.01, p = 0.054).

Fig. 2: Expression of phage and bacterial genes significantly vary in the two strains. Average expression of phage and bacterial genes within TRX19 lysogens and TRX4 lysogens. The x-axis shows the different gene groups (phage and non-phage) while the y-axis shows the log 10 of normalised counts where normalised counts refer to Trimmed means of M-values (TMM). The top grey column titles show the strains whose genomes were compared while the right grey row titles show the reference genomes. Different alphabets denote significant difference

Treatment

(a)

Fig. 3: Presence of phage vTRX32-1 in the two rhizobium strains does not affect the plant biomass as compared to their non-lysogenic counterparts. The plant dry weight of control, nitrogen control, TRX19, TRX19v32, TRX4 and TRX4v32 after (a) 4 weeks and (b) 8 weeks. Different colours represent the different replicates within the treatments, grev shows negative control (N-), black shows rhizobia free nitrogen positive control (N+), red show phage free treatments while green show phage treatments. Different alphabets denote significant difference

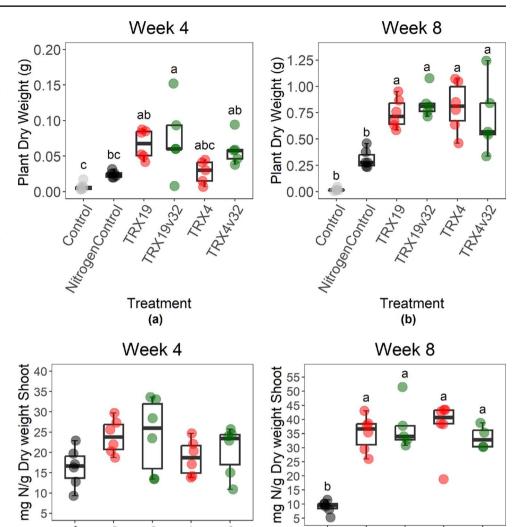


Fig. 4: Nitrogen fixed by rhizobia is significantly higher than fertiliser treatments after week 8. Total nitrogen measured in nitrogen control, TRX19, TRX19v32, TRX4 and TRX4v32 as mg N/g dry weight after (a) 4 weeks and **(b)** 8 weeks. Different colours represent the different replicates within the treatments, black shows rhizobia-free nitrogen positive (N+) control, red shows phage-free treatments and green shows phage treatments. Different alphabets denote significant difference

These results were reversed in the 8 week grown plants, where lysogen-inoculated plants were on average smaller than non-lysogen inoculated plants – but again these effects were non-significant (Fig. 3 (b); p>0.05). All the rhizobial treatments, including TRX4, were significantly larger than the N- and the N+controls (F_{5.28} = 18.11, $p \le 0.05$).

3.4.2 Total shoot nitrogen in plants is significantly higher in rhizobium treatments after 8 weeks

Total shoot nitrogen in the plants was measured after 4 weeks and 8 weeks. Nitrogen positive controls were used as the controls in the models. There was no significant

difference in the treatments after 4 weeks (Fig. 4 (a): $F_{4,25} = 1.905$, p > 0.05). After 8 weeks, however, there was a significant difference between all the rhizobial treatments and the N+control (Fig. 4 (b): $F_{4,22} = 19.08$, $p \le 0.001$). The nitrogen added plants had 25% less nitrogen as compared to the rhizobial treatments. There was no significant difference (p > 0.05) observed in strain specific comparisons amongst lysogens and phage free treatments (Fig. 4). A similar pattern was observed for Carbon: Nitrogen ratio, which was higher for nitrogen control plants than those inoculated at 8 weeks ($F_{4,22} = 177.52$, $p \le 0.0001$; Supplementary figure S1).

Treatment

(b)

4 Discussion

The interactions of rhizobia with MGEs such as ICEs and plasmids (Wardell et al. 2021; Zahran 2017) are well studied but other MGEs still need further exploration. Here, we show that prophage vTRX32-1 can have very different impacts on their hosts depending on genotype. While in one strain, TRX4, major transcriptional effects on the host rhizobia were observed, the same phage produced no effects in another host, TRX19.

One possible explanation for this difference in outcome is in the level of phage gene expression in these two hosts. The majority of phage genes are tightly repressed during lysogeny and expressed only on entering lysis (Owen et al. 2020), thus expression of phage genes implies that phages are in active lysis. Under expression of phage genes relative to chromosomal genes in TRX19 implies the phage was more tightly repressed in this strain, while in TRX4 higher expression of phage genes indicates greater lytic activity in this strain.

Greater lytic activity would be consistent with changes in regulation in SOS gene, as observed here. The interaction between lysogeny and the RecA-LexA controlled SOS response has been well described in other phage systems and can both trigger (Sedgwick, Yarranton, and Heath 1981) and be triggered by phage lysis (Campoy et al. 2006). However, down-regulation of both *lexA* as well as its antagonist *recA*, makes it challenging to infer the outcome of these changes. Reduced LexA production is expected to increase expression of the SOS response, however, reduced RecA levels would be expected to buffer this effect by reducing the rate of LexA cleavage. High recA expression, through initiation of the SOS response or direct interaction with phage repressors has been shown to increase phage induction (Quinones et al. 2005; Sedgwick et al. 1981), Interestingly *uvrB* – a key SOS response gene – was also downregulated. This implies that overall, the SOS response was, if anything, dampened in TRX4.

The significant downregulation of many key symbiosis genes was also unexpected. Again, the direction of regulatory change makes the impact of these changes unclear. Downregulation of *nodD2*, for example would be expected to increase bacteria-plant signalling and nodulation rates (Ferguson et al. 2020; Honma et al. 1990; Schultze and Kondorosi 1998). Reduced lipid A biosynthesis meanwhile has been shown to delay nodule formation with smaller white, irregularly shaped nodules due to unstable cell membranes (Bourassa et al. 2017; Brown et al. 2011). And of course, downregulation of genes involved in nitrogenase functioning and nitrogen uptake suggests reduced symbiotic functions once in the nodule.

However, despite these changes in TRX4 – or lack thereof in TRX19 – we saw no significant impact of lysogeny on the outcome of the symbiosis between strains. It is possible that the high level of natural variance in plant growth experiments may have hindered evidence of marginal effects - the slight increase at 4 weeks and subsequent decrease in biomass of TRX4 lysogens relative to non-lysogens is intriguing. However, these subtle effects would remain in contrast to the extent of the changes in symbiosis-related gene expression. One possibility is that the transcriptional response seen in TRX4 represents a recent shift in the phage population prior to the sampling point rather than a persistent state throughout symbiosis. At 8 weeks post-inoculation (which is the typical timespan over which to measure symbiotic performance (Mendoza-Suárez et al. 2020; Westhoek et al. 2017)), plants are entering flowering and fruiting stage - representing a point of peak nitrogen fixation and it is possible that the effects of lysogeny in TRX4 would have been detectable later in the growth season.

This finding that the phage vTRX32-1 does not disrupt rhizobia-legume symbiosis has important implications in rhizobia research for expanding our understanding of the role of phage in rhizobial populations generally, and the potential of phages to enhance rhizobial inoculants. However, prophages could provide other advantages, for instance, in competition with other bacteria, that would make them useful agents for improving the success of inoculant strains. The absence of negative effects, in a range of bacterial hosts with very different interactions with the phage is key to ensuring that there are no negative impacts on the symbiosis. However, an understanding of the transcriptional responses, and their impacts on symbiosis over time is clearly needed to understand these effects comprehensively.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s13199-025-01075-w.

Acknowledgements We thank Dr Heather Walker and Professor Duncan Cameron for helping with the Isotope Ratio Mass Spectroscopy.

Author contributions Conceptualization: Ellie Harrison and Mary Eliza; Methodology: Ellie Harrison and Mary Eliza; Formal Analysis and Investigation: Mary Eliza and Helen Hipperson; Writing: Mary Eliza; Writing-review and editing: Ellie Harrison and Helen Hipperson; Funding acquisition: Ellie Harrison; Resources: Ellie Harrison and Helen Hipperson; Supervision: Ellie Harrison.

Funding This work was supported by funding from the Institute for Sustainable Food, The University of Sheffield.

Data availability The reference genomes used in RNA sequencing, TRX19 (with vTRX321) and TRX4 were deposited in the NCBI BioProject database under the accession numbers PRJNA1190931 and PRJNA1176346, respectively. The phage vTRX321 data is available under the accession number MW023914.1. The raw data from

RNA sequencing, total Nitrogen, Carbon and dry weight is available on the European Nucleotide Archive under the accession number PRJEB82617.

Declarations

Competing interests The authors declare no competing interests to declare that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

References

- Schwinghamer A, E., and DJ Reinrardt (1963) Lysogeny in rhizobium leguminosarum and rh. Trifolii. Australian J Biol Sci 16(3):597. h ttps://doi.org/10.1071/bi9630597
- Abdel-Salam MS, Abd El-Halim MM, Ibrahim SA, Badawy FM, Abo-Aba SEM (2013) 'Extension of rhizobial/ plant host range and symbiosis improvement via plasmid transfer'. Life Sci J 10(2)
- Abebe HM, Sadowsky MJ, Kinkle BK, Schmidt EL (1992) Lysogeny in Bradyrhizobium Japonicum and its effect on soybean nodulation. Appl Environ Microbiol 58(10):3360–3366. https://doi.org/ 10.1128/aem.58.10.3360-3366.1992
- Anders S, Wolfgang H (2010) Differential expression analysis for sequence count data. Genome Biol 11(10). https://doi.org/10.10 74/jbc.272.7.4310
- Andrews S (2010) . 'FastQC: A Quality Control Tool for High Throughput Sequence Data'. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
- Arthikala M, Kumar L, Blanco Xóchitl, Alvarado-Affantranger J, Márquez-Guzmán M, Lara, and Kalpana Nanjareddy (2023) Identification of CBL and CIPK gene families and functional characterization of PvCIPK7 as an essential regulator of root nodule development and nitrogen fixation in phaseolus vulgaris. J Plant Biology 66(6):535–549. https://doi.org/10.1007/s12374-0 23-09402-8
- Bobay L, Marie EPC, Rocha, and Marie Touchon (2013) The adaptation of temperate bacteriophages to their host genomes. Mol Biol Evol 30(4):737–751. https://doi.org/10.1093/molbev/mss279
- Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170
- Bourassa DV, Kannenberg EL, Janine Sherrier D, Jeffrey Buhr R, and Russell W. Carlson (2017) The lipopolysaccharide lipid a Long-Chain fatty acid is important for rhizobium leguminosarum growth and stress adaptation in Free-Living and nodule environments. Mol Plant Microbe Interact 30(2):161–175. https://doi.org/10.1094/MPMI-11-16-0230-R
- Brockwell J, Peter J, Bottomley, Thies JE (1995) Manipulation of rhizobia microflora for improving legume productivity and soil

- fertility: A critical assessment. Plant Soil 174(1–2):143–180. https://doi.org/10.1007/BF00032245
- Brom S, Alejandro García-De Los Santos, Cervantes L, Palacios R, Romero D (2000) 'In Rhizobium Etli Symbiotic Plasmid Transfer, Nodulation Competitivity and Cellular Growth Require Interaction among Different Replicons'. Plasmid 44(1):34–43. https://doi.org/10.1006/plas.2000.1469
- Brown DB, Huang YC, Kannenberg EL, Janine Sherrier D, Carlson RW (2011) An AcpXL mutant of rhizobium leguminosarum bv. Phaseoli lacks 27-Hydroxyoctacosanoic acid in its lipid a and is developmentally delayed during symbiotic infection of the determinate nodulating host plant phaseolus vulgaris. J Bacteriol 193(18):4766–4778. https://doi.org/10.1128/JB.00392-11
- Brown SP, Fredrik Inglis R, François, Taddei (2009) Evolutionary ecology of microbial wars: within-host competition and (incidental) virulence. Evol Appl 2(1):32–39. https://doi.org/10.1111/j.1752-4571.2008.00059.x
- Burchill W, James EK, Li D, Lanigan GJ, Williams M, Iannetta PPM, Humphreys J (2014) Comparisons of biological nitrogen fixation in association with white clover (Trifolium repens L.) under four fertiliser nitrogen inputs as measured using two 15 N techniques. Plant Soil 385(1–2):287–302. https://doi.org/10.1007/s11104-014-2199-1
- Burrus V, Waldor MK (2003) Control of SXT integration and excision. J Bacteriol 185(17):5045–5054. https://doi.org/10.1128/JB.185.17.5045-5054.2003
- Campoy S, Hervàs A, Busquets Núria, Erill I, Teixidó L, Jordi, Barbé (2006) Induction of the SOS response by bacteriophage lytic development in Salmonella enterica. Virology 351(2):360–367. h ttps://doi.org/10.1016/j.virol.2006.04.001
- Cangioli L, Vaccaro F, Fini M, Mengoni A, and Camilla Fagorzi (2022) Scent of a symbiont: the personalized genetic relationships of Rhizobium—Plant interaction. Int J Mol Sci 23(6). https://doi.org/10.3390/ijms23063358
- Cebolla A, Palomares AJ (1994) Genetic regulation of nitrogen fixation in rhizobium meliloti. Microbiología (Madrid Spain) 10(4):371–384
- Chen Y, McCarthy D, Baldoni P, Ritchie M, Robinson M, Eliza Hall (2008) Gordon Smyth, and. 'EdgeR: Differential Analysis of Sequence Read Count Data User's Guide'. (September 2008):1–138
- Coleman D, Knights J, Russell R, Shanley D, Birkbeck TH, Dougan G, Charles I (1991) Insertional inactivation of the Staphylococcus Aureusβ-toxin by bacteriophage Φ13 occurs by Site-and Orientation-specific integration of the φ 13 genome. Mol Microbiol 5(4):933–939. https://doi.org/10.1111/j.1365-2958.1991.tb00768
- Cytryn EJ, Jitacksorn S, Giraud E, Sadowsky MJ (2008) Insights learned from PBTAi1, a 229-Kb accessory plasmid from Bradyrhizobium sp. Strain BTAi1 and prevalence of accessory plasmids in other Bradyrhizobium sp. Strains. ISME J 2(2):158–170. https://doi.org/10.1038/ismej.2007.105
- DeAngelis CM, Nag D, Withey JH, Matson JS (2019) 'Characterization of the vibrio cholerae phage shock protein response'. J Bacteriol 201(14)
- Demtröder L, Narberhaus F, Masepohl B (2019) Coordinated regulation of nitrogen fixation and molybdate transport by molybdenum. Mol Microbiol 111(1):17–30. https://doi.org/10.1111/mmi.14152
- Dhar B, Jaiswal SK, Kumar B, Vaishampayan A (2013) Characteristics and host range nodulation of a lysogenic Bradyrhizobium strain of Pigeonpea (Cajanus Cajan L.) isolated from an Indian soil. Biol Fertil Soils 49(3):343–349. https://doi.org/10.1007/s00374-012-0728-8
- Dillies M, Agnès A, Rau J, Aubert C, Hennequet-Antier M, Jean-mougin N, Servant NS, Marot D, Castel J, Estelle G, Guernec

- Bernd Jagla, Luc Jouneau, Denis Laloë, Caroline Le Gall, Brigitte Schaëffer, Stéphane Le Crom, Mickaël Guedj, and Florence Jaffrézic. 2013. 'A Comprehensive Evaluation of Normalization Methods for Illumina High-Throughput RNA Sequencing Data Analysis'. *Briefings in Bioinformatics* 14(6):671–83. https://doi.org/10.1093/bib/bbs046
- Engelhardt T, Sahlberg M, Cypionka H, Engelen B (2013) Biogeography of rhizobium radiobacter and distribution of associated temperate phages in deep subseafloor sediments. ISME J 7(1):199–208. https://doi.org/10.1038/ismej.2012.92
- Ewels P, Magnusson Måns, Lundin S, Max, Käller (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32(19):3047–3048. https://doi.org/ 10.1093/bioinformatics/btw354
- Ferguson S, Major AS, Sullivan JT, Bourke SD, Kelly SJ, Perry BJ and Clive W. Ronson. 2020. 'Rhizobium leguminosarum bv. Trifolii NodD2 enhances competitive nodule colonization in the Clover-Rhizobium symbiosis'. Appl Environ Microbiol 86(18):1–16
- Ford S, Moeskjær S, Young P, Santamaría RI, Harrison E, Jens Andre H (2021) Introducing a novel, broad host range temperate phage family infecting rhizobium leguminosarum and beyond. 12(November):1–13. https://doi.org/10.3389/fmicb.2021.765271
- Frost LS, Leplae R, Summers AO, and Ariane Toussaint (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3(9):722–732. https://doi.org/10.1038/nrmicro1235
- Fry J, Wood M, Poole PS (2001) Investigation of Myo-Inositol catabolism in rhizobium leguminosarum bv. Viciae and its effect on nodulation competitiveness. Mol Plant Microbe Interact 14(8):1016–1025. https://doi.org/10.1094/MPMI.2001.14.8.1016
- Gama João, Alves AM, Reis I, Domingues H, Mendes-Soares AM, Matos, Francisco Dionisio (2013) Temperate bacterial viruses as Double-Edged swords in bacterial warfare. PLoS ONE 8(3). https://doi.org/10.1371/journal.pone.0059043
- Gazitúa M, Consuelo DR, Vik S, Roux AC, Gregory B, Bolduc B, Widner MR, Mulholland SJ, Hallam O, Ulloa MB, Sullivan (2021) and Matthew B. Sullivan. 'Potential Virus-Mediated Nitrogen Cycling in Oxygen-Depleted Oceanic Waters'. The ISME Journal 5(7):981–98. https://doi.org/10.1038/s41396-020-00825-6
- George MLC, Robert FM (1991) Autoregulatory response of phaseolus vulgaris L. to symbiotic mutants of rhizobium leguminosarum Bv. Phaseoli' Appl Environ Microbiol 57(9):2687–2692
- Halmillawewa AP, Restrepo-Córdoba M, Perry BJ, Yost CK, Hynes MF (2016) Characterization of the temperate phage VB_RleM_PPF1 and its site-specific integration into the rhizobium leguminosarum F1 genome. Mol Genet Genomics 291(1):349–362. https://doi.org/10.1007/s00438-015-1113-8.
- Harrison E, Brockhurst MA (2017) Ecological and evolutionary benefits of temperate phage: what does or doesn't kill you makes you stronger. BioEssays 39(12). https://doi.org/10.1002/bies.201700112
- Hatem EAM, M. Sabha El -Sabbagh, and Gamal El -Didamony 2017.
 'Efficiency of nitrogen fixation by lysogenic and Non -Lysogenic isolates of rhizobium nodulated sesbania aegyptica'. Egypt Soc Experimental Biology 13(2):299–308. https://doi.org/10.5455/egyjebb.20170721075048
- He X, Xu M, Guo Yu Qiu, and, Jianbin, Zhou (2009) Use of 15 N stable isotope to quantify nitrogen transfer between mycorrhizal plants. J Plant Ecol 2(3):107–118. https://doi.org/10.1093/jpe/rt p015
- Heath KD, Rebecca T, Batstone, Mario Cerón Romero, and, McMullen JG (2022) 'MGEs as the MVPs of Partner Quality Variation in Legume-Rhizobium Symbiosis'. MBio 13(4). https://doi.org/10.1128/mbio.00888-22
- Honma MA, Asomaning M, Ausubel FM (1990) Rhizobium meliloti NodD genes mediate Host-Specific activation of NodABC. J

- Bacteriol 172(2):901–911. https://doi.org/10.1128/jb.172.2.901-911.1990
- Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB (2017) Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J 11(7):1511–1520. https://doi.org/10.1038/ismej.2017.16
- Howieson JG, Dilworth MJ (2016) Working with Rhizobia. edited by J. G. Howieson and M. J. Dilworth. Australian Centre for International Agricultural Research Canberra
- Joglekar P, Ferrell BD, Jarvis T, Haramoto K, Place N, Dums JT, Shawn W, Polson K Eric wommack, and Jeffry J. Fuhrmann. 2023. 'Spontaneously produced lysogenic phages are an important component of the soybean Bradyrhizobium mobilome'. MBio 14(2). https://doi.org/10.1128/mbio.00295-23
- Kim D, Langmead B, Salzberg SL (2015) HISAT: A fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360. htt ps://doi.org/10.1038/nmeth.3317
- Kumar N, Lad G, Giuntini E, Kaye ME, Udomwong P, Jannah Shamsani N, Peter J, Young W, Xavier Bailly (2015) Bacterial genospecies that are not ecologically coherent: population genomics of rhizobium leguminosarum 140133. Open Biology 5(1). https://doi.org/10.1098/rsob.140133
- Love MI, Huber W, and Simon Anders (2014) Moderated Estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol 15(12):1–21. https://doi.org/10.1186/s13059-014-0550-8
- de Melo AG, Morency C, and Sylvain Moineau (2024) Virulence-Associated factors as targets for phage infection. Curr Opin Microbiol 79:102471. https://doi.org/10.1016/j.mib.2024.102471
- Mendoza-Suárez MA, Barney A, Geddes C, Sánchez-Cañizares, Ricardo H, Ramírez-González C, Kirchhelle B, Jorrin, Poole PS (2020) Optimizing Rhizobium-Legume symbioses by simultaneous measurement of rhizobial competitiveness and N2 fixation in nodules. Proc Natl Acad Sci USA 117(18):9822–9831. https://do i.org/10.1073/pnas.1921225117
- Mendoza-Suárez M, Andersen SU, Poole PS, Carmen Sánchez-Cañizares (2021) Competition, nodule occupancy, and persistence of inoculant strains: key factors in the Rhizobium-Legume symbioses. Front Plant Sci 12. https://doi.org/10.3389/fpls.2021 .690567
- Mercado-Blanco Jesús, Nicolás T (1996) Plasmids in rhizobia: the role of nonsymbiotic plasmids. Mol Plant Microbe Interact 9(7):535-545
- O'Connell M, Noel TC, Yeung EC, Hynes M, Hynes MF (1998) Decreased symbiotic effectiveness of rhizobium leguminosarum strains carrying plasmid RP4. FEMS Microbiol Lett 161(2):275– 283. https://doi.org/10.1016/S0378-1097(98)00078-0
- Owen SiânV, Canals Rocío, Wenner N, Hammarlöf DL, Kröger C, Hinton JCD (2020) A window into lysogeny: revealing temperate phage biology with transcriptomics. Microb Genomics 6(2). https://doi.org/10.1099/mgen.0.000330
- Pankhurst CE, Macdonald PE, Reeves JM (1986) Enhanced nitrogen fixation and competitiveness for nodulation of Lotus pedunculatus by a Plasmid-Cured derivative of rhizobium Loti. Microbiology 132(8):2321–2328. https://doi.org/10.1099/00221287-132-8-2321
- Paul JH (2008) Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J 2(6):579–589. https://doi.org/10.1038/ismej.2008.35
- Pericone CD, Park S, Imlay JA, Weiser JN (2003) Factors contributing to hydrogen peroxide resistance in Streptococcus pneumoniae include pyruvate oxidase (SpxB) and avoidance of the toxic effects of the Fenton reaction. J Bacteriol 185(23):6815–6825. ht tps://doi.org/10.1128/JB.185.23.6815-6825.2003
- Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL (2016) Transcript-Level expression analysis of RNA-Seq experiments with HISAT,

stringtie and ballgown. Nat Protoc 11(9):1650–1667. https://doi.org/10.1038/nprot.2016.095

- Pfeifer E, Sousa JM, Touchon M, Eduardo PCR (2022) When bacteria are phage playgrounds: interactions between viruses, cells, and mobile genetic elements. Curr Opin Microbiol 70(102230). https://doi.org/10.1016/j.mib.2022.102230
- Putri GH, Anders S, Pyl PT, Pimanda JE, and Fabio Zanini (2022) Analysing High-Throughput sequencing data in python with HTSeq 2.0. Bioinformatics 38(10):2943–2945. https://doi.org/1 0.1093/bioinformatics/btac166
- Quinones M, Kimsey HH, Waldor MK (2005) LexA cleavage is required for CTX prophage induction. Mol Cell 17(2):291–300. h ttps://doi.org/10.1016/j.molcel.2004.11.046
- R Core Team (2021) 'R: A Language and Environment for Statistical Computing'
- Ritchie ME, Phipson B, Wu D, Charity YH, Law W, Shi W, Smyth GK (2015) Limma powers differential expression analyses for RNA-Sequencing and microarray studies. Nucleic Acids Res 43(7):e47. https://doi.org/10.1093/nar/gkv007
- Robinson MD, Davis J, McCarthy, Smyth GK (2009) EdgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinf 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616.
- Robinson MD, Alicia Oshlack (2010) A scaling normalization method for differential expression analysis of RNA-Seq data. Genome Biol 11(3):1-9
- Schultze M, Kondorosi A (1998) 'Regulation of symbiotic root nodule development'. Annu Rev Genet (32):33–57
- Sedgwick SG, Geoffrey T, Yarranton, and Roy W. Heath (1981) Lysogenic induction of lambdoid phages in LexA mutants of Escherichia coli. MGG Mol Gen Genet 184(3):457–459. https://doi.org/10.1007/BF00352522
- Selva L, Viana D, Regev-Yochay G, Trzcinski K, Corpa JM, Íñigo, Lasa RP, Novick (2009) and José R. Penadés. 'Killing Niche Competitors by Remote-Control Bacteriophage Induction'. Proceedings of the National Academy of Sciences of the United States of America 106(4):1234–38. https://doi.org/10.1073/pnas 0809600106
- Sharma R, Shyam S, Nayak S, Malhotra S, Karmakar M, Sharma S, Raiping, Vandana Mishra (2019) Rhizosphere provides a new paradigm on the prevalence of lysogeny in the environment. Soil Tillage Res 195(104368). https://doi.org/10.1016/j.still.2019.104
- Takahashi I, Quadling C (1961) Lysogeny in rhizobium trifolii. Can J Microbiol 7:455–465. https://doi.org/10.1139/m61-055
- Tan D, Zhang Y, Qin J, Le S, Gu J, Chen LK, Guo X, Zhu T (2020) A frameshift mutation in WcaJ associated with phage resistance in Klebsiella pneumoniae. Microorganisms 8(3). https://doi.org/10. 3390/microorganisms8030378

- Uchiumi T, Ono Y, Abe M, Higashi S (1989) Phage induction of lysogenic rhizobium leguminosarum biovar trifolii in both the Free-Living and the symbiotic form. J Gen Microbiol 135(11):3133–3141. https://doi.org/10.1099/00221287-135-11-3
- Waldor MK, Friedman DI (2005) Phage regulatory circuits and virulence gene expression. Curr Opin Microbiol 8(4):459–465. https://doi.org/10.1016/j.mib.2005.06.001
- Wang E, Tao CF, Tian WF, Chen J, Peter W (2019) Young, and Wen Xin Chen. Ecology and Evolution of Rhizobia
- Wang W, Tang K, Wang P, Zeng Z, Xu T, Zhan W, Liu T, Wang Y, Wang X (2022) The coral pathogen vibrio coralliilyticus kills non-pathogenic holobiont competitors by triggering prophage induction. Nat Ecol Evol 6(8):1132–1144. https://doi.org/10.1038/s41559-022-01795-y.
- Wardell GE, Hynes MF, Peter J, Young EH, Harrison E (2021) Why are rhizobial symbiosis genes mobile? Philosophical Trans Royal Soc B 377(20200471). https://doi.org/10.1098/rstb.2020.0471
- Westhoek A, Field E, Rehling F, Mulley G, Webb I, Poole PS, Turnbull LA (2017) Policing the Legume-Rhizobium symbiosis: A critical test of partner choice. Sci Rep 7(1):1–10. https://doi.org/10.1038/s41598-017-01634-2
- Wickham H (2016) Ggplot2: elegant graphics for data analysis. Springer-, New York
- Wickham H, François R, Henry L, Kirill, Müller (2021) A grammar of data manipulation [R package Dplyr version 1.0.7]. Media
- Wickham H, Hester J, Bryan J (2024) 'Readr: Read Rectangular Text Data'
- Young J, Peter W, Moeskjær S, Afonin A, Rahi P, Maluk M, James EK, Maria Izabel A, Cavassim M (2021) Harun-or Rashid, Aregu Amsalu Aserse, Benjamin J. Perry, En Tao Wang, Encarna Vel, and Evgeny E. Andronov. 'Defining the Rhizobium Leguminosarum Species Complex’
- Zahran HH (1999) Rhizobium -Legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. 63(4):968–989
- Zahran HH (2017) Plasmids impact on Rhizobia-Legumes symbiosis in diverse environments. Symbiosis 73(2):75–91. https://doi.org/10.1007/s13199-017-0476-5
- Zhao X, Shen M, Jiang X, Shen W, Zhong Q, Yang Y, Tan Y, Agnello M, He X, Fuquan Hu, and Shuai Le (2017) Transcriptomic and metabolomics profiling of phage-Host interactions between phage PaP1 and Pseudomonas aeruginosa. Front Microbiol 8(MAR):1–10. https://doi.org/10.3389/fmicb.2017.00548

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

