

This is a repository copy of *Interventions for patients with prostate cancer on active surveillance: a narrative review.*

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/id/eprint/232864/

Version: Published Version

Article:

Gill, S., Chen, R., Lamb, B.W. orcid.org/0000-0003-2220-893X et al. (5 more authors) (2025) Interventions for patients with prostate cancer on active surveillance: a narrative review. BJU International. ISSN: 1464-4096

https://doi.org/10.1111/bju.70005

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Review

Interventions for patients with prostate cancer on active surveillance: a narrative review

Simran Gill¹, Runzhi Chen⁶, Benjamin W. Lamb^{1,3,4} (D), Caroline M. Moore^{4,5} (D), James W.F. Catto^{7,8} (D), Jack Cuzick², Peter D. Sasieni² and Prabhakar Rajan^{1,3,4} (D)

¹Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, ²Centre for Cancer Screening, Prevention, and Early Diagnosis, Wolfson Institute of Population Health, Queen Mary University of London, ³Department of Urology, Barts Health NHS Trust, ⁴Department of Urology, University College London Hospitals NHS Foundation Trust, ⁵Division of Surgery and Interventional Science, University College London, London, ⁶Department of Urology, Royal Surrey County Hospital NHS Foundation Trust, Guildford, ⁷Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, and ⁸Department of Urology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK

S.G. and R.C. contributed equally to this work.

Objective

To examine contemporary evidence supporting non-surgical interventions for patients with early prostate cancer (PCa) on active surveillance (AS).

Methods

A literature search was conducted using the databases PubMed, Medline, and Embase in January 2024 to identify relevant articles published from 2011 onwards. Randomised controlled trials (RCTs) and cohort studies reporting on interventions in patients with PCa on AS were included.

Results

Several studies have investigated a range of non-surgical interventions, from exercise and food supplements to androgen receptor pathway inhibitors (ARPIs). The largest RCTs of ARPIs have shown the greatest effect in delaying disease progression to aggressive PCa, however, concerns exist around toxicity, long-term oncological safety, and mortality benefit. Nutraceuticals, dietary modifications, and exercise appear to be well tolerated, but evidence of oncological benefit from large-scale RCTs is lacking. A major challenge is the lack of consensus on criteria for entry to and exit from AS as pre-biopsy magnetic resonance imaging reduces diagnosis of the lowest-risk disease. Molecular and imaging biomarkers may help refine baseline risk stratification and guide monitoring during surveillance.

Conclusion

Current evidence supporting interventions for patients on AS remains largely based on small prospective cohort studies or open-label phase II trials. There is growing interest in short-term ARPIs for patients at higher risk of disease progression, while nutraceuticals, diet and exercise may have a role for long-term use in lower-risk patients. Large, well-powered RCTs with long-term outcomes testing different interventions and incorporating molecular and imaging biomarkers are warranted.

Keywords

prostate cancer, active surveillance, hormonal therapy, dietary supplements, exercise

Introduction

Prostate cancer (PCa) is the most frequently diagnosed malignancy in men in the UK, accounting for 28% of all new male cancers (>55 000 cases/year), and the second leading cause of mortality [1]. The incidence is predicted to double over the next $\sim 10{-}15$ years, driven largely by an aging

population [2]. Approximately 40% of cases present with early, localised disease, which carries an excellent prognosis with either active treatment or monitoring [1,3,4]. Diagnosis typically follows a raised PSA level or an abnormal DRE, prompting multiparametric MRI (mpMRI) and biopsy.

Risk stratification of non-metastatic PCa [5,6] has traditionally been based on PSA levels, DRE findings, and biopsy-derived

Gleason score (GS) [7] (Table S1). Conventional risk stratification relies on disease burden estimates from a standard number of systematic biopsies taken at predetermined sites [8]. However, in MRI-targeted biopsies, lesion-focused sampling can lead to 'oversampling' [9], hence maximum cancer core length and highest GS from targeted cores may provide more accurate cancer burden estimates [9,10].

The UK National Institute for Health and Care Excellence (NICE) now recommends risk stratification into the five-tiered Cambridge Prognostic Groups (CPGs; Table S1) based on PCa-specific mortality [6,11]. The CPG system helps identify patients who are suitable for active surveillance (AS) to delay or avoid curative treatment-related side effects through active disease monitoring [12]. Since those within CPG2 and CPG1 have similar disease progression rates with conservative management [13], NICE equally recommends either AS, radical prostatectomy (RP), or radiotherapy (RT) for both groups.

The Prostate Testing for Cancer and Treatment (ProtecT) trial randomised patients with screen-detected PCa to active monitoring, RP or RT [4]. Active monitoring involved PSA testing every 3 months in Year 1, then every 6–12 months, with review if PSA rose by ≥50% [14] − a less intensive schedule than current protocols. After 15 years, mortality was similar across all arms, but metastases were more frequent with active monitoring (9.4% vs 4.7% [RP] and 5.0% [RT]) [4]. These findings suggest treatment may benefit some patients with PSA screen-detected PCa, although PSA and standard biopsy may not optimally identify those who would benefit.

In the 2024 UK National Prostate Cancer Audit, only 8% of men in England with localised low-risk PCa received radical treatment, although rates reached 29% in some centres [3]. A frequent reason for discontinuing AS without disease progression is patient or clinician anxiety about progression or PSA changes [15]. Discontinuation rates vary widely – from <1% at 6 years with an MRI-led approach and no protocol-based biopsy [16], to 25% in a centre performing repeat transperineal mapping biopsies [17].

There is growing interest in minimally toxic non-surgical strategies to delay or prevent disease progression in patients on AS. The intensity of an approach should align with progression risk – for example, dietary, lifestyle, and nutraceutical interventions may suit those at lowest risk, while higher-risk patients might consider pharmaceutical options. This review summarises the current evidence on non-surgical interventions for patients with localised PCa on AS and outlines priorities for future research.

Hormonal Therapies

Prostate tumourigenesis and disease progression are largely driven by androgens binding to the androgen receptor (AR)

[18]. Testosterone, the predominant male androgen, is synthesised by Leydig cells of the testis under the control of the hypothalamic-pituitary-gonadal axis and subsequently converted to dihydrotestosterone (DHT) by 5α-reductase types 1 and 2. 5α-reductase inhibitors (5ARIs; finasteride and dutasteride) are established treatments for BPH, reducing DHT production, prostate volume, and urinary symptoms associated with an enlarged prostate [19]. Notably, 5α-reductase type 1 expression is increased in localised PCa [20,21], highlighting its potential as a therapeutic target. Second-generation AR pathway inhibitors (ARPIs), including non-steroidal competitive antagonists such as enzalutamide, apalutamide and darolutamide, achieve more potent AR blockade than earlier agents (e.g., bicalutamide and flutamide) and have demonstrated survival benefits in metastatic disease [22,23]. Given the central role of AR signalling across the disease spectrum, pharmacological suppression of androgen biosynthesis and downstream AR activity has been explored as a strategy to delay progression in men on AS (Table 1).

5α-Reductase Inhibitors

In the Reduction by Dutasteride of Clinical Progression Events in Expectant Management (REDEEM) trial, 302 patients with low-risk PCa (low-volume GS 5-6) on AS were randomised to receive dutasteride or placebo to investigate the safety and efficacy of dutasteride on disease progression, defined as pathological or therapeutic progression (at least one of the following: >4 cores involved; >50% of any one core involved; or a GS >4) or therapeutic progression (RP, RT or hormonal therapy) [24]. At 3-year follow-up, patients treated with dutasteride had a significant risk reduction of disease progression compared to placebo-treated men (38% vs 48% of men with disease progression respectively; hazard ratio [HR] 0.68, 95% CI 0.43–0.89; P = 0.009) [24]. No patient developed metastatic disease during follow-up, although the authors acknowledged that larger trials of longer duration are required.

The rate of disease progression in the REDEEM trial was higher than rates seen in similar surveillance studies [25,26], which the authors attributed to potential methodological differences in patient criteria or biopsy sampling due to shrinkage of prostate tissue secondary to dutasteride and improved detection of higher-grade cancer in a smaller prostate [24]. There were similar overall rates of adverse events in the two groups; in particular, 21.7% of dutasteride patients compared to 14.2% of placebo patients experienced adverse events related to sexual function (impotence, decreased libido, ejaculation disorders) [24].

In a similar study, the MRI in Primary Prostate Cancer after Exposure to Dutasteride (MAPPED) trial, 42 men with lowand intermediate-risk PCa were randomised to receive dutasteride or placebo for 6 months to evaluate the effect of dutasteride on MRI-estimated tumour volume [27]. A significant reduction in lesion volume from baseline was observed in the dutasteride group compared to the placebo group after 6 months (36% reduction vs 12% increase; P < 0.0001) [27]. Notably, histological upgrading to Gleason >4 + 3 on exit biopsy was reported in only 20% (3/15) of patients on dutasteride compared to 46% (6/13) on placebo [27]. The rates of upgrading were high in both the dutasteride and placebo groups due to untargeted biopsies at baseline. There was a deterioration in sexual function measured by the International Index of Erectile Function (IIEF-15) in 25% of men on dutasteride compared to 16% of men on placebo, but no change in drop-out rate.

The open-label Finasteride Evaluation in Surveillance for Prostate Cancer (FINESSE) study is currently recruiting

patients to a prospective randomised controlled trial (RCT) of AS alone vs AS with 2 years of finasteride (5 mg once a day), with a planned follow-up period of 4 years [28]. The surveillance protocol includes PSA testing, mpMRI, and biopsy as per standard practice, and will also assess tolerability and quality-of-life measures. The primary endpoint is adherence to AS (surveillance could cease due to treatment by RP, RT or palliation for metastatic PCa).

In summary, 5ARIs show promise for AS patients, although evidence is limited by the absence of large, adequately powered trials. Initial concerns from chemoprevention studies about increased high-grade tumours [29] have been attributed to improved biopsy detection in prostates reduced in size by treatment, with similar rates of high-grade tumours at RP in both arms [30]. Although 5ARIs are not licensed for PCa risk reduction, they are widely prescribed

Table 1 Summary of interventional clinical trials which investigated hormonal agents as interventions in men with low- or intermediate-risk prostate cancer on active surveillance.

Authors/year	Study design	Number of patients	Population	Intervention	Primary endpoint	Follow-up period	Conclusions
Fleshner et al. [24] 2012	Prospective randomised double-blind placebo-controlled trial (REDEEM)	302	T1c-T2a PSA ≤11 ng/mL GS ≤6 Diagnostic biopsy where <4 of 10 positive cores and <50% of any one core positive or saturation biopsy where 2-3 of 20 positive cores and <50% of any one core positive cores and <50% of any one core positive	Once-daily dutasteride 0.5 mg for 3 years	Time to disease progression; either pathological (GS ≥4, four or more cores involved, ≥50% core involvement) or therapeutic progression	3 years	Dutasteride: 38% Placebo: 48% HR 0.62 (95% CI 0.43-0.89), P = 0.009
Moore et al. [27] 2017	Prospective randomised double-blind placebo-controlled trial (MAPPED)	42	 GS <7 (3 + 4) PSA <15 ng/mL >0.2 mL lesion on T2-weighted mpMRI Confirmed PCa on biopsy 	Once-daily dutasteride 0.5 mg for 6 months	Percent reduction in PCa lesion volume	6 months	Dutasteride: 36% average reduction Placebo: 12% average increase Difference in percent reduction 48% (95% CI 27.4 –68.3), P < 0.0001
Shore et al. [32] Prospective randomised open-label trial (ENACT)	randomised open-label trial	227 Low risk (n = 121) Intermediate risk (n = 106)	Defined per National Comprehensive Cancer Network guidelines Low-risk PCa: • T1c_T2a, N0, M0 • PSA <10 ng/mL • GS <6 • ECOG PS <2 Intermediate-risk PCa: • T2b_T2c, N0, M0	160 mg enzalutamide monotherapy for 1 year	Time to disease progression; either pathological (>1 increase in Gleason pattern or >15% increase in positive cores) or therapeutic progression (secondary treatment)	Up to 2 years	Enzalutamide 46% risk reduction in disease progression compared to AS alone HR 0.54 (95% CI 0.33-0.89, P = 0.02)
			 PSA <20 ng/mL GS <7 (3 + 4 only) ECOG PS <2 				

Table 1 (continued)

Authors/year	Study design	Number of patients	Population	Intervention	Primary endpoint	Follow-up period	Conclusions
Barrett et al. [34] 2022	Prospective open-label single-arm phase II feasibility trial (TAPS01)	9	CPG1-2 classification (low or favourable intermediate risk)	Once-daily apalutamide 240 mg for 90 days	TV, GV, TV/GV ratio measured by mpMRI at Day 90 and at 6- and 18-month follow-up	90 days Further follow-up at 6 months and 18 months	Day 90 median percentage reduction (all statistically significant, P < 0.0001): TV -54.2% (range -74.1% to -13.8%) GV -38.2% (range -51.8% to -23.5%) TV/GV -27.2% (range -61.5% to -7.5%) 6 months: TV -31.9%, P = 0.0007 GV returned to baseline TV/GV -28.7%, P = 0.0009 18 months: Sustained both TV and TV/GV reduction (-18% and -23.8% respectively, P = 0.01)
Schweizer et al. [33] 2023	Prospective open-label single-arm phase II clinical trial	22 GG 1 (n = 15) GG 2 (n = 7)	Very low risk PCa: 1 T1c PSA <0.15 ng/mL GS 6 <2 core biopsies with <50% cancer of biopsy core or unilateral disease with any % involvement Low-risk PCa: 1 CT2a PSA <15 ng/mL GS 6 Low- to intermediate-risk PCa: T1c PSA <15 ng/mL GS 3 + 4 present in <50% of one core GS 6 across all other cores	Once-daily apalutamide 240 mg for 90 days	Percentage of patients with a negative repeat biopsy at the end of study (Day 90)	90 days	59% of patients had residual cancer on post-treatment biopsy Median time to first positive biopsy was 364 days (95% Cl 91 –742 days)

in men with larger prostates and urinary tract symptoms without the need to exclude PCa before initiation. In men on 5ARIs undergoing AS, PSA levels should be doubled to estimate the true PSA, and PSA kinetics (including doubling time) should be closely monitored, as rises or rapid doubling may indicate progression. Evidence from

chemoprevention studies indicates that men with larger prostates experience a marked reduction in PCa incidence, particularly low-grade tumours, while those with LUTS benefit from improved urinary flow and symptom control [31]. These findings suggest 5ARIs merit further study in these AS subgroups.

Table 1 (continued)

Authors/year	Study design	Number of patients	Population	Intervention	Primary endpoint	Follow-up period	Conclusions
Cumberbatch et al. [28] Ongoing Expected 2027	Prospective open-label randomised controlled phase III trial (FINESSE)	Ongoing (estimated 550)	Histopathological diagnosis of low- or intermediate-risk adenocarcinoma Gleason GG ≤2 Radiological stage ≤12c cN0 cM0 as defined by bpMRI/mpMRI imaging PSA ≤20 ng/mL PSA density ≤0.2 ng/mL Biopsy criteria: Maximum cancer	Once-daily finasteride 5 mg for 2 years	Adherence to AS at 2 and 5 years after diagnosis, defined as absence of change in treatment to radical therapy or treatment of advanced disease	4 years	Trial ongoing
Gnanapragasam et al. [35] Ongoing Expected 2031	Prospective randomised controlled phase III trial (TAPS02)	Ongoing (estimated 402)	core length is ≤10 mm • ≤3 cores involved with cancer CPG2 CPG1 with PSA high density >0.15 and: • Likert or PI-RADS 4/5 lesion of ≥10 mm size • ≥50% biopsy core involvement	Once-daily apalutamide 240 mg for either 3 or 6 months	Reduction in MRI- defined tumour volume at 12 months Disease progression ≥GG 3 or T3 stage and composite score of ≥CPG3 disease at 3 years	12 months after end of treatment Further follow-up at 3 years	Trial ongoing
			(number of positive cores/all cores taken) with target biopsies counted as one if Likert or PI-RADS 3 lesion				

AS, active surveillance; bpMRI, biparametric MRI; CPG, Cambridge Prognostic Group classification; ECOG PS, Eastern Cooperative Oncology Group performance status; GG, Grade Group; GS, Gleason score; GV, gland volume; HR, hazard ratio; mpMRI, multiparametric MRI; PCa, prostate cancer; PI-RADS, Prostate Imaging-Reporting and Data System; TV, tumour volume; TV/GV, tumour volume/gland volume ratio.

Androgen Receptor Pathway Inhibitors

The ENACT trial evaluated the efficacy and safety of enzalutamide in men on AS by randomising 227 patients to either AS plus enzalutamide monotherapy or standard AS with up to 2 years of follow-up [32]. Patients were histologically proven to have low- or intermediate-risk localised PCa and stratified by cancer risk (low vs intermediate) and biopsy type (mpMRI-targeted or nonmpMRI-targeted) [32]. There was a significant 9.1% absolute risk reduction in disease progression, defined either pathologically (increase in Gleason pattern or higher proportion of cancer-positive cores) or therapeutically (radical treatment), in the enzalutamide group compared to standalone AS (HR 0.54, 95% CI 0.33–0.89; P = 0.02) [32]. Similarly, time to PSA progression (defined as the duration between initial PSA testing and a secondary rise in serum PSA levels of 25% or more of the baseline or nadir, or an absolute increase of ≥ 2 ng/mL) was significantly delayed by 6 months with enzalutamide treatment compared to AS

(HR 0.71, 95% CI 0.53–0.97; P = 0.03) but this effect was not observed at 2 years [32]. Some doubt the clinical relevance of these definitions of PSA progression, when it is expected that the PSA will rise in line with prostate growth during AS.

Two phase II clinical trials have reported on tumour response of apalutamide in men on AS measured by either negative biopsy [33] or mpMRI parameters [34]. Schweizer et al. [33] conducted an open-label, single-arm prospective cohort study in 22 patients with very-low- to favourable intermediate-risk PCa (as per the National Comprehensive Cancer Network criteria) who received 90 days of apalutamide, with the primary endpoint of negative prostate biopsy immediately following treatment. Based on a per-protocol analysis, 59% of patients demonstrated negative residual cancer on biopsy (n = 22 analysed; HR 0.59, 95% CI 0.36-0.79; <math>P < 0.001)[33]. Barrett et al. [34] also conducted a phase II clinical trial of nine men on AS with CPG1 and CPG2 disease treated with apalutamide for 90 days, and assessed tumour response using mpMRI after 90 days of treatment. In this study, there

was significant median percentage reduction in both gland volume (38.2%) and tumour volume (54.2%) at 90 days (P < 0.0001). Moreover, the effect on tumour volume was maintained in tumour volume at 6 and 18 months despite gland volume returning to baseline at 6 months. The conclusions drawn from the results of both studies are limited by the small sample sizes.

The multicentre Therapeutics in Active Prostate cancer Surveillance 2 (TAPS02) RCT is currently recruiting patients to investigate the effect of short-term apalutamide vs placebo in men at high risk of disease progression on AS [35]. A primary endpoint of the first phase is to observe a 20%–50% reduction in mpMRI-defined tumour volume at 12 months following intervention in either of the apalutamide arms, with the most effective dosage taken forward to phase 2 [35]. The primary endpoint for phase 2 is progression to CPG3 disease, with other endpoints including trial acceptability, patient-reported outcomes, and quality-of-life metrics [35].

A major opposition to ARPI use is unwarranted side effects in AS patients who are otherwise unaffected by their disease. In the ENACT trial, 55.4%, 36.6% and 30.4% of enzalutamide-treated patients reported fatigue, gynaecomastia and nipple pain, respectively, compared to 3.5%, 1.8% and 0% of patients on AS alone [32]. Erectile dysfunction and decreased libido were also more common (17.9% and 8.0% with ARPI vs 1.8% and 0.9%, respectively). Sexual and physical function declined during treatment but recovered within 24 months of cessation [32].

In the apalutamide studies, both fatigue and breast pain or gynaecomastia were the main side effects. Schweizer et al. [33] reported grade 1 fatigue and gynaecomastia in 70% of patients, while Barrett et al. [34] observed that all 11 patients reported at least one adverse event, with the most common events reported as fatigue (55.5%), rash (44.4%), and breast pain (44.4%). Barrett et al. [34] observed a reduction in global health status, physical, role and social functioning (assessed by European Organisation for Research and Treatment of Cancer [EORTC] QLQ-C30) between baseline and Day 90, which began to recover 6 weeks post-treatment. Emotional and cognitive functioning, and global health (assessed by the EuroQol Visual Analogue Scale [EQ-VAS]) remained stable. No patients discontinued treatment and all side effects had resolved or were resolving at 6 weeks [34]. Gravis et al. [36] conducted a phase II trial to assess the safety and quality-of-life impact of 1 year of apalutamide treatment compared to standalone AS in patients with lowor intermediate-risk PCa. Quality-of-life scores (measured by the 12-item Short-Form Health Survey [SF-12]) were comparable between the two groups at 6 and 12 months, indicating no significant negative impact on quality of life during or after treatment [36].

In summary, ARPIs show potential for AS patients. However, the publication of ENACT sparked controversy for several reasons, including a criticism that treatment of AS patients with ARPIs is active treatment (not AS), a lack of evidence for pathological progression being a valid surrogate endpoint, and high toxicity rates [37]. In all ARPI trials [32–36], side effects are observed, however, they appear to be short-lived and associated with rapid recovery to normal function once treatment has stopped. As such, there is currently insufficient evidence to recommend ARPIs for AS patients.

Non-Hormonal Interventions

Alongside hormonal strategies, a range of non-hormonal interventions has been investigated – repurposed metabolic and anti-inflammatory agents, nutraceuticals, dietary and lifestyle modification – to minimise treatment toxicity while potentially modulating tumour biology or host factors (Table 2). Nutraceuticals – food-derived compounds with purported medical or pharmaceutical benefits – have been of longstanding interest in PCa research [38]. For example, pomegranate extracts, rich in polyphenols, have been shown to inhibit AR expression and androgen signalling in PCa cells [39], while the antiproliferative effects of vitamin D and omega-3 have been demonstrated in PCa murine models [40,41].

Metformin

Based on chemopreventative and mortality risk reduction epidemiological data in cancers including PCa [42], metformin has been prospectively trialled as a chemoprotective agent in PCa [43]. The Metformin Active Surveillance Trial (MAST) was a phase III randomised double-blind placebo-controlled trial, which investigated the role of metformin in delaying time to disease progression over a 3-year follow-up period in 407 men with low-risk PCa (Table S1) on AS [44]. Disease progression was defined as earliest occurrence of primary therapy (RP, RT, or hormonal therapy) or pathological progression (>1/3 of total cores involved, at least 50% of any one core involved, or Gleason pattern 4 or higher). There was no statistically significant difference in progression-free survival between the two arms (P = 0.63) [44].

Vitamin D and Aspirin

There have been two recent clinical trials exploring vitamin D supplementation in PCa patients on AS [45,46]. A prospective open-label cohort study in 44 patients with low-risk PCa, who received daily supplementation with 4000 IU of vitamin D, reported at 1 year of follow-up that 55% of men showed a decrease in the number of positive cores or a decreased GS,

Table 2 Summary of interventional clinical trials which investigated non-hormonal agents as interventions in men with low- or intermediate-risk prostate cancer on active surveillance.

Author/ year	Study design	Number of patients	Population	Intervention	Primary endpoint	Follow-up period	Conclusions
Marshall et al. [45] 2012	Prospective open-label cohort study	44	Low-risk PCa GS <6 PSA <10 ng/mL Clinical stage T1c or T2a	4000 IU vitamin D daily for 1 year	Biopsy after 1 year of treatment	12 months	improvement, defined as decrease in positive cores and no increase in GS at repeat biopsy
Thomas et al. [47] 2014	Prospective double-blind placebo-controlled randomised trial	AS (n = 121) WW following previous interventions (n = 78)	Histologically confirmed PCa AS or WW managed	Oral capsule TDS: Broccoli power 100 mg Turmeric powder 100 mg Pomegranate whole fruit power 100 mg Green tea 5:1 extract 100 mg equivalent	PSA level	6 months	Difference in median PSA rise between supplement group and placebo group 63.8% (P = 0.0008)
Bourke et al. [54] 2018	Prospective multi-site phase II randomised controlled trial (PANTERA)	50	Low- or intermediate-risk PCa on AS GS ≤3 + 4 Clinical stage ≤12b Pre-treatment PSA ≤20 ng/mL Life expectancy ≥10 years	Intervention (n = 25): aerobic exercise training (supervised and independent sessions) – 150 min exercise/week Control (n = 25): usual care with advice (Macmillan 'Move More' exercise education pack)	Trial acceptance rate (feasibility study) Progression to invasive treatment	12 months	Progression to invasive treatment over the 12-month follow-up period was equivocal (1 in intervention and 2 in control arm)
Kellogg Parsons et al. [52] 2020	Prospective randomised controlled trial (MEAL)	478	Age 50-80 years Biopsy-proven PCa ISUP GG1 if <70 years old and GG2 if ≥70 years old Clinical stage ≤cT2a PSA <10 ng/mL	Intervention: Telephone counselling promoting consumption of seven or more daily vegetable servings (n = 237) Control group: written information about diet and PCa (n = 241)	Time to progression, defined as PSA level of 10 ng/mL or greater, PSA doubling time of < 3 years, or upgrading (defined as increase in tumour volume or grade) on follow-up prostate biopsy	24 months	No significant differences in time to progression (adjusted HR 0.97, 95% CI 0.76–1.25)
Jarrard et al. [39] 2020	Prospective placebo-controlled randomised trial	30	Organ-confined, favourable-risk PCa on AS	Pomegranate fruit extract 1000 mg once daily for 12 months	Serum and prostate tissue biomarkers such as PSA and IGF-1 levels	12 months	No differences in IGF-1 levels, PSA doubling time, or biopsy kinetics Reduced 8-OHdG levels in prostate tissue
Dinneen et al. [46] 2022	Prospective double-blind placebo-controlled 3 × 2 factorial randomised trial (PROVENT)	94	Newly diagnosed low-/favourable intermediate-risk PCa: PSA <15 ng/mL ISUP GG <2 Biopsy core <10 mm maximum length Clinical stage <72c	placebo low-dose (100 mg) aspirin standard-dose (300 mg) aspirin Patients randomised again to receive placebo or 4000 IU vitamin D (combination therapy)	Trial acceptance rate (feasibility study) Disease progression, defined as 50% increase in baseline PSA, new lesions on mpMRI, >33% volume increase in lesion size, histological upgrade, or 50% increase in maximum cancer core length	12 months	Disease progression 43.3% overall in the study population (specific treatment arms not reported)
Fleshner et al. [44] 2024	Prospective randomised double-blind placebo-controlled trial (MAST)	407	Biopsy-proven low-risk localised PCa on AS for < 1 year GS <6 Serum PSA <10 ng/mL prior to biopsy	Metformin 850 mg twice daily for 36 months	Time to progression, defined by time to primary therapy or pathological progression (>1/3 cores involved, >50% core involvement, Gleason pattern 4 or higher)	36 months	No difference in progression-free survival observed between the two groups (P = 0.63)

Table 2 (continued)

Author/ year	Study design	Number of patients	Population	Intervention	Primary endpoint	Follow-up period	Conclusions
Aronson et al. [51] 2025	Prospective randomised placebo-controlled trial (CAPFISH-3)	100	 GS 3 + 4 or less Clinical stage ≤12c PSA 25 ng/mL ISUP GG1 or GG2 	Omega-3 fatty acids (docosahexaenoic acid [DHA] and eicosapentaenoic acid [EPA]) 2.2 g once daily Dietary reduction <30% omega-6 fatty acids (aming for omega-6 to omega-3 ratio <4:1)	Change in Ki-67 index from baseline to 1 year from same-site biopsies compared between the groups	12 months	Significant difference in the change of Ki-67 index between the groups (95% CI 2–52%, P = 0.043)

AS, active surveillance; GS, Gleason score; HR, hazard ratio; IGF-1, insulin-like growth factor-1; ISUP GG, International Society of Urological Pathology Grade Group; mpMRI, multiparametric magnetic resonance imaging; PCa, prostate cancer; TDS, three times a day; WW, watchful waiting.

and 11% showed no changes at 1 year of follow-up on repeat prostate biopsy [45]. The PROVENT feasibility RCT investigated aspirin with or without vitamin D in patients with low- or intermediate-risk PCa on AS [46]. Of 94 assessable patients, 43.3% of patients had disease progression across treatment arms, but the authors did not compare progression rates between treatments as the primary outcome was trial recruitment. All single agents and combination regimens were well tolerated, with only two reported adverse events related to aspirin. Overall, there remains a paucity of evidence for vitamin D in men on AS and further large-scale RCTs are required.

Polyphenols

In a prospective cohort study of 30 men with localised PCa on AS, pomegranate fruit extract supplements reduced levels of 8-OHdG (a marker of oxidative stress and DNA damage) in prostate tissue after 12 months of treatment [39]. The oral pomegranate extract-containing capsule was well tolerated, with high compliance rates [39]. Various combinations of dietary supplements have also been trialled. The UK Pomi-T study (Prostate Cancer and Polyphenols: Pomegranate, Green Tea, Broccoli and Turmeric Trial) examined the effect of a compound food supplement on PSA levels in 199 men with localised PCa [47]. A supplement containing 100 mg broccoli powder, 100 mg turmeric powder, 100 mg pomegranate powder, and 100 mg green tea extract was compared to a placebo. After 6 months, the median PSA rise was significantly lower in the Pomi-T group than in the placebo group (14.7% vs 78.5%, respectively; P = 0.0008) [45]. However, PSA assessment has its shortfalls, and the primary endpoint did not incorporate other formal indicators of disease progression such as mpMRI or prostate biopsy. No difference between the groups in adverse events was reported [47]. Although not statistically significant, there was a trend suggesting improved urinary flow, prostatic symptoms, and bowel function in the supplement group [47].

Folic Acid

Some controversy exists over the effect of folic acid in PCa, specifically the hypothesis that higher blood folate levels may be associated with an increased risk of PCa based on case—control studies [48]. A nested case—control study of 6000 men, matched on age of patient at time of serum sampling and date of serum sample taken, reported a weak positive association between serum folate concentration and PCa risk (highest vs lowest quintile odds ratio 1.15, 95% CI 1.07–1.84; P = 0.04) [49]. These results should be interpreted with caution, however, given that the variation in folate levels among different populations and countries did not reflect local PCa incidence and may be attributable to other observed differences and confounding factors [49].

Diet and Omega-3 Supplementation

In a cross-sectional study of 157 men (nested within a phase II trial) with low-risk PCa on AS, higher long-chain omega-3 eicosapentaenoic acid (LCω3-EPA) levels in prostate tissue were associated with significantly lower odds of high-grade disease at repeat biopsy (odds ratio 0.25, 95% CI 0.08-0.79; P = 0.03) [50]. In a phase II RCT of 100 men with localised PCa on AS, a high omega-3, low omega-6 diet with fish oil supplementation for 1 year significantly reduced tumour proliferation in same-site prostate biopsies, measured by the Ki-67 proliferative index, compared with a control diet [51]. Ki-67 decreased by ~15% in the diet and fish oil group and increased by \sim 24% in controls (P = 0.043), while no significant differences were observed for Gleason Grade Group, tumour length, Decipher score, or PSA. Four participants in the diet and fish oil group withdrew due to fish oil-related gastro-intestinal adverse events.

The Men's Eating and Living (MEAL) RCT enrolled 478 men with CPG1 PCa on AS to assess whether a telephone-based counselling programme promoting high vegetable intake

reduced PCa progression compared with written dietary information [52]. Over 24 months, 245 progression events occurred, with no significant difference in time to progression between the intervention and control groups (adjusted HR 0.97, 95% CI 0.76–1.25; P = 0.76). In the Canary Prostate Active Surveillance Study (Canary PASS) of 564 men with localised PCa on AS, questionnaire-based assessment of healthy diet adherence was performed at enrolment and disease reclassification was assessed over a median 7.8-year follow-up [53]. Among 237 men who experienced upgrading, higher adherence to dietary patterns was not associated with reduced progression risk [53]. Taken together, these findings do not support increased vegetable consumption or healthy diet adherence as an effective strategy to slow PCa progression. Nonetheless, given the benefits for prevention of other chronic diseases, these diets are a prudent choice for men on AS.

Exercise

The Prostate Cancer Novel Therapy (PANTERA) trial explored exercise training with behavioural support for patients with low- and intermediate-risk PCa managed by AS [54]. This feasibility study randomised 50 men: 25 to exercise training and 25 to usual care. At 12 months, patients randomised to exercise training had reduced body mass (mean reduction 2.0 kg, 95% CI 1.1-2.9), reduced systolic (mean pressure 13 mmHg, 95% CI 7-19) and diastolic blood pressure (mean pressure 8 mmHg, 95% CI 5-12), and improved quality of life as assessed by EuroQol 5 Dimensions (EQ-5D; mean score = 13, 95% CI 7-18). Three patients progressed to radical treatment (one on exercise training and two on usual care).

In summary, non-hormonal interventions for men on AS have shown signals of benefit in small studies, such as improvements in biomarkers, PSA kinetics, and quality-of-life measures. However, the evidence base is constrained by small sample sizes, heterogeneous study designs, and a lack of adequately powered, large-scale RCTs with clinically meaningful endpoints. While these approaches are generally well tolerated, the current data are insufficient to support their routine use in clinical practice.

Imaging and Molecular Biomarkers

Baseline mpMRI has prognostic value for patients on AS and is increasingly used for disease monitoring [55], although the optimal follow-up schedule remains debated [56,57]. The Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) criteria, developed by international consensus, standardise reporting of MRI changes during AS [6], and were recently updated to distinguish stable findings in visible vs non-visible disease, given the higher progression risk to Gleason 4 + 3, and to

treatment in MRI-visible cancers [14]. Despite this, a systematic review of 375 AS protocols found mpMRI was rarely incorporated: only 9.1% used it for monitoring, while 72% mandated repeat surveillance biopsies, and 87% used histological upgrading for reclassification [58]. Most studies of hormonal therapy for AS also used biopsy-based histological upgrading as the sole progression endpoint. An expert consensus, however, now recommends omitting routine biopsies in patients with stable mpMRI and using combined mpMRI and PSA monitoring to determine further biopsy or change in management [57]. Further standardisation of the progression criteria for AS incorporating mpMRI is needed before these approaches can be fully adopted in practice.

Tissue-based molecular assays may complement PSA, histology, and mpMRI in AS risk stratification and monitoring. Decipher (Veracyte), Oncotype Dx (Exact Sciences), and Prolaris CCP (Myriad Genetics) are mRNAbased gene expression classifiers, while ProMark is proteinbased. Of these, only Prolaris has been validated for risk stratification and treatment decision-making in both UK and US populations [59,60]. In a cohort of 19 215 men, the combination of Prolaris with clinical data to generate a prognostic score increased AS eligibility from 42.6% (based on clinicopathological features alone) to 68.8% [60], and in a cohort of 103 cases, it reduced treatment change from interventional to non-interventional by 37.2% [59]. Decipher scores performed on prostate biopsies of the ENACT trial cohort at trial screening, and at 1 and 2 years were positively associated with pathological or therapeutic progression in the AS arm (HR 1.17, 95% CI 1.01–1.35; P = 0.04) and showed a nonsignificant trend in the enzalutamide arm (HR 1.50, 95% CI 0.91–2.48; P = 0.11) [61]. Molecular biomarkers may help to refine patients' eligibility for AS, particularly for CPG2 disease or those with indeterminate mpMRI findings.

Discussion

Reducing disease progression risk for PCa patients on AS remains an important unmet clinical need. A major challenge is the lack of strong consensus among international guidelines on AS management, including eligibility, monitoring protocols (including mpMRI), and definitions of progression. Repeat sampling could result in histological disease upgrading in up to 35% of cases [56]. Several ongoing trials should provide some clarity on the role of mpMRI as a biomarker in AS monitoring [28,35,55]. The recent international consensus recommends that a rising PSA level should prompt an MRI rather than a biopsy or discussion of treatment, reserving biopsy discussion for MRI changes or increased PSA density [57].

Studies investigating hormonal and non-hormonal interventions have included patients with a range of baseline profiles, and different criteria used to define that risk. Whilst all agree that the presence of Gleason pattern 4 confers higher progression risk, MRI visibility is emerging as an additional biomarker for disease progression. The role of PSA density (at baseline, and during surveillance), and size of tumour - whether defined by maximum cancer core length or MRI lesion size - are also being explored for their association with disease progression.

The heterogeneity of study design and clinical management in AS trials limits direct comparisons among strategies. Pharmacological therapies may offer the greatest short-term benefit in patients with higher progression risk, whereas nutraceuticals, diet and exercise may have longer-term benefits in lower-risk disease. Whilst 5ARIs and ARPIs remain controversial due to concerns around toxicity and oncological safety, as well as proven mortality benefit, studies have not reported high rates of attrition secondary to adverse events. It is also imperative to minimise toxicity and maintain quality of life in AS patients who are otherwise asymptomatic from their disease. Therefore, well-powered ongoing trials are timely and are warranted, especially as more patients – particularly those with intermediate-risk features – are choosing AS. Future research should integrate biomarker profiling with standard AS protocols, coupled with long-term outcomes data, to refine patient selection and surveillance strategies.

Acknowledgements

The authors would like to thank Professor Vincent Gnanapragasam, University of Cambridge, UK, for a critical review of an earlier version of this manuscript.

Disclosure of Interests

S.G. is a fully paid employee of Johnson and Johnson Ltd. B.L. receives honoraria for public speaking from Parsek UK Ltd, consultancy fees from Digital Surgery Ltd, MDOutlook, and honoraria from AstraZeneca PLC and Astellas Pharma Europe Ltd. C.M.M. receives research funding from SpectraCure, has received speaker fees from Bayer, Ipsen and Janssen and conference support and fees for proctoring international surgeons in high-intensity focused ultrasonography (HIFU) from SonaCare. J.W.F.C. has received reimbursement for consultancy from AstraZeneca, Ferring, Roche and Janssen, speaker fees from Bristol Myers Squibb, Merck Sharp & Dohme, Janssen, Astellas, Pfizer and Roche, honoraria for membership in advisory boards from Ferring, Roche, Bristol Myers Squibb and Janssen, and research funding from Roche. He is the Chief Investigator of the FINESSE trial [29] and an unpaid trustee Weston Park Cancer Charity. These organisations did not have any role in the writing of this manuscript. P.D.S. receives honoraria for membership of GRAIL's scientific advisory board and funding for the FINESSE trial [29] and for a clinical trials unit

specialising in cancer prevention. The other authors declare no conflicts of interest.

Funding

B.W.L. is funded by the North East London and East of England Cancer Alliances and NHS England. C.M.M. is funded by an National Institute for Health and Care Research (NIHR) Research Professorship, the Medical Research Council, Cancer Research UK, Prostate Cancer UK, Movember and the Bob Willis Fund. J.W.F.C. is funded by an NIHR Research Professorship. P.R. is funded by Barts Charity (MGU0596, G-002724), Prostate Cancer UK (RIA22-ST2-001), and the North East London Cancer Alliance.

References

- 1 Cancer Research UK. Cancer incidence statistics. Available at: https:// www.cancerresearchuk.org/health-professional/cancer-statistics/incidence. Accessed March 2025
- 2 National Prostate Cancer Audit. NPCA State of the Nation Report 2025.
- 3 James ND, Tannock I, N'Dow J et al. The lancet commission on prostate cancer: planning for the surge in cases. Lancet 2024; 403: 1683-722
- 4 Gleason DF, Mellinger GT. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J Urol 1974; 111: 58-64
- 5 D'Amico AV, Whittington R, Malkowicz SB et al. Pretreatment nomogram for prostate-specific antigen recurrence after radical prostatectomy or external-beam radiation therapy for clinically localized prostate cancer. J Clin Oncol 1999; 17: 168-72
- 6 National Institute for Health and Care Excellence. Prostate cancer: diagnosis and management. 2019
- 7 Matsukawa A, Yanagisawa T, Bekku K et al. Comparing the performance of digital rectal examination and prostate-specific antigen as a screening test for prostate cancer: a systematic review and meta-analysis. Eur Urol Oncol 2024; 7: 697-704
- 8 Thomson A, Li M, Grummet J, Sengupta S. Transperineal prostate biopsy: a review of technique. Transl Androl Urol 2020; 9: 3009-17
- 9 Yu A, Yamany T, Mojtahed A et al. Combination MRI-targeted and systematic prostate biopsy may overestimate Gleason grade on final surgical pathology and impact risk stratification. Urol Oncol 2022; 40: 59
- 10 Eastham JA, Auffenberg GB, Barocas DA et al. Clinically localized prostate cancer: AUA/ASTRO guideline, part II: principles of active surveillance, principles of surgery, and follow-up. J Urol 2022; 208: 19-25
- 11 Hamdy FC, Donovan JL, Lane JA et al. Fifteen-year outcomes after monitoring, surgery, or radiotherapy for prostate cancer. NEJM 2023; 388:
- 12 Gnanapragasam VJ, Bratt O, Muir K et al. The Cambridge prognostic groups for improved prediction of disease mortality at diagnosis in primary non-metastatic prostate cancer: a validation study. BMC Med 2018; 16: 31
- 13 Parry MG, Cowling TE, Sujenthiran A et al. Risk stratification for prostate cancer management: value of the Cambridge prognostic group classification for assessing treatment allocation. BMC Med 2020; 18: 114
- 14 Gnanapragasam VJ, Barrett T, Thankapannair V et al. Using prognosis to guide inclusion criteria, define standardised endpoints and stratify follow-up in active surveillance for prostate cancer. BJU Int 2019; 124: 758-67
- 15 Hamdy FC, Donovan JL, Lane JA et al. 10-year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. NEJM 2016; 375: 1415-24

- 16 Dall'Era MA, Albertsen PC, Bangma C et al. Active surveillance for prostate cancer: a systematic review of the literature. Eur Urol 2012; 62: 976-83
- 17 Stavrinides V, Giganti F, Trock B et al. Five-year outcomes of magnetic resonance imaging-based active surveillance for prostate cancer: a large cohort study. Eur Urol 2020; 78: 443-51
- 18 Kinsella N, Helleman J, Bruinsma S et al. Active surveillance for prostate cancer: a systematic review of contemporary worldwide practices. Transl Androl Urol 2018; 7: 83-97
- 19 Eder IE, Culig Z, Putz T, Nessler-Menardi C, Bartsch G, Klocker H. Molecular biology of the androgen receptor: from molecular understanding to the clinic. Eur Urol 2001; 40: 241-51
- 20 Chislett B, Chen D, Perera ML, Chung E, Bolton D, Qu LG. 5-alpha reductase inhibitors use in prostatic disease and beyond. Transl Androl Urol 2023; 12: 487-96
- 21 Thomas LN, Douglas RC, Lazier CB et al. Levels of 5alpha-reductase type 1 and type 2 are increased in localized high grade compared to low grade prostate cancer. J Urol 2008; 179: 147-51
- 22 Thomas LN, Lazier CB, Gupta R et al. Differential alterations in 5alphareductase type 1 and type 2 levels during development and progression of prostate cancer. Prostate 2005; 63: 231-9
- 23 Scher HI, Fizazi K, Saad F et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. NEJM 2012; 367: 1187-97
- 24 Fleshner NE, Lucia MS, Egerdie B et al. Dutasteride in localised prostate cancer management: the REDEEM randomised, double-blind, placebocontrolled trial. Lancet 2012; 379: 1103-11
- 25 Klotz L, Zhang L, Lam A, Nam R, Mamedov A, Loblaw A. Clinical results of long-term follow-up of a large, active surveillance cohort with localized prostate cancer. J Clin Oncol 2010; 28: 126-31
- 26 Carlsson S, Benfante N, Alvim R et al. Long-term outcomes of active surveillance for prostate cancer: the memorial Sloan Kettering cancer center experience. J Urol 2020; 203: 1122-7
- 27 Moore CM, Robertson NL, Jichi F et al. The effect of dutasteride on magnetic resonance imaging defined prostate cancer: MAPPED-A randomized, placebo controlled, double-blind clinical trial. J Urol 2017; 197: 1006-13
- 28 Cumberbatch M, North B, Kealy R et al. Protocol for a randomised phase 3 trial evaluating the role of finasteride in active surveillance for men with low and intermediate-risk prostate cancer: the FINESSE study. BMJ Open 2025; 15: e096431
- 29 Thompson IM, Goodman PJ, Tangen CM et al. Long-term survival of participants in the prostate cancer prevention trial. N Engl J Med 2013;
- 30 Lucia MS, Epstein JI, Goodman PJ et al. Finasteride and high-grade prostate cancer in the prostate cancer prevention trial. JNCI 2007; 99: 1375-83
- 31 Andriole GL, Bostwick DG, Brawley OW et al. Effect of dutasteride on the risk of prostate cancer. N Engl J Med 2010; 362: 192-202
- 32 Shore ND, Renzulli J, Fleshner NE et al. Enzalutamide monotherapy vs active surveillance in patients with low-risk or intermediate-risk localized prostate cancer: the ENACT randomized clinical trial. JAMA Oncol 2022; 8: 1128-36
- 33 Schweizer MT, True L, Gulati R et al. Pathological effects of apalutamide in lower-risk prostate cancer: results from a phase II clinical trial. J Urol 2023; 209: 354-63
- 34 Barrett T, Pacey S, Leonard K, Wulff J, Funingana IG, Gnanapragasam V. A feasibility study of the therapeutic response and durability of Shortterm androgen-targeted therapy in early prostate cancer managed with surveillance: the Therapeutics in active prostate surveillance (TAPS01) study. Eur Urol Open Sci 2022; 38: 17-24
- 35 Gnanapragasam V. TherApeutics in Early ProState Cancer (TAPS02). 2023. Available at: https://clinicaltrials.gov/study/NCT05191680. Accessed May 2025.

- 36 Gravis G, Sfumato P, Ploussard G et al. Safety and quality of life analyses of apalutamide plus active surveillance vs active surveillance alone for low, intermediate risk prostate cancer. J Clin Oncol 2023; 41 (6_suppl): 352
- Gómez Rivas J, Gandaglia G, Re MF et al. Active surveillance plus enzalutamide monotherapy vs active surveillance alone in patients with low-risk or intermediate-risk localized prostate cancer: the ENACT randomized clinical trial. JAMA Eur Urol Open Sci 2022; 46: 135-6
- Trottier G, Boström PJ, Lawrentschuk N, Fleshner NE. Nutraceuticals and prostate cancer prevention: a current review. Nat Rev Urol 2010; 7: 21 - 30
- 39 Jarrard D, Filon M, Huang W et al. A phase II randomized placebocontrolled trial of pomegranate fruit extract in men with localized prostate cancer undergoing active surveillance. Prostate 2021; 81: 41-9
- 40 Swami S, Krishnan AV, Feldman D, Vitamin D metabolism and action in the prostate: implications for health and disease. Mol Cell Endocrinol 2011; 347: 61-9
- 41 Liang P, Henning SM, Guan J et al. Role of host GPR120 in mediating dietary omega-3 fatty acid inhibition of prostate cancer. J Natl Cancer Inst 2019; 111: 52-9
- 42 Ahn HK, Lee YH, Koo KC. Current status and application of metformin for prostate cancer: a comprehensive review. Int J Mol Sci 2020; 21: 8540
- 43 Feng T, Sun X, Howard LE et al. Metformin use and risk of prostate cancer: results from the REDUCE study. Cancer Prev Res (Phila) 2015; 8: 1055-60
- 44 Fleshner NE, Bernardino RM, Lajkosz K et al. A randomized, doubleblind, placebo-controlled trial of metformin in reducing progression among men on expectant management for low-risk prostate cancer: the MAST (metformin active surveillance trial) study. J Clin Oncol 2024; 42 (17_suppl): LBA5002
- 45 Marshall DT, Savage SJ, Garrett-Mayer E et al. Vitamin D3 supplementation at 4000 international units per day for one year results in a decrease of positive cores at repeat biopsy in subjects with low-risk prostate cancer under active surveillance. J Clin Endocrinol Metab 2012; 97: 2315-24
- 46 Dinneen E, Shaw GL, Kealy R et al. Feasibility of aspirin and/or vitamin D3 for men with prostate cancer on active surveillance with Prolaris® testing. BJUI Compass 2022; 3: 458-65
- 47 Thomas R, Williams M, Sharma H, Chaudry A, Bellamy P. A doubleblind, placebo-controlled randomised trial evaluating the effect of a polyphenol-rich whole food supplement on PSA progression in men with prostate cancer - the U.K. NCRN Pomi-T study. Prostate Cancer Prostatic Dis 2014; 17: 180-6
- 48 Tio M, Andrici J, Cox MR, Eslick GD. Folate intake and the risk of prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis 2014; 17: 213-9
- 49 de Vogel S, Meyer K, Fredriksen Å et al. Serum folate and vitamin B12 concentrations in relation to prostate cancer risk - a Norwegian population-based nested case-control study of 3000 cases and 3000 controls within the JANUS cohort. Int J Epidemiol 2013; 42: 201-10
- 50 Moussa H, Nguile-Makao M, Robitaille K et al. Omega-3 fatty acids survey in men under active surveillance for prostate cancer: from intake to prostate tissue level. Nutrients 2019; 11: 1616
- 51 Aronson WJ, Grogan T, Liang P et al. High omega-3, low omega-6 diet with fish oil for men with prostate cancer on active surveillance: the CAPFISH-3 randomized clinical trial. J Clin Oncol 2025; 43: 800-9
- 52 Parsons JK, Zahrieh D, Mohler JL et al. Effect of a behavioral intervention to increase vegetable consumption on cancer progression among men with early-stage prostate cancer: the MEAL randomized clinical trial. JAMA 2020; 323: 140-8
- Schenk JM, Liu M, Neuhouser ML et al. Dietary patterns and risk of Gleason grade progression among men on active surveillance for prostate

- cancer: results from the canary prostate active surveillance study. Nutr Cancer 2023; 75: 618-26
- 54 Bourke LSR, Turner R, Hooper R et al. Exercise training as a novel primary treatment for localised prostate cancer: a multi-site randomised controlled phase II study. Sci Rep 2018; 8: 8374
- 55 Ahlberg MS, Adami HO, Beckmann K et al. PCASTt/SPCG-17-a randomised trial of active surveillance in prostate cancer: rationale and design. BMJ Open 2019; 9: e027860
- 56 Thurtle D, Barrett T, Thankappan-Nair V et al. Progression and treatment rates using an active surveillance protocol incorporating imageguided baseline biopsies and multiparametric magnetic resonance imaging monitoring for men with favourable-risk prostate cancer. BJU Int 2018; 122: 59-65
- 57 Moore CM, King LE, Withington J et al. Best current practice and research priorities in active surveillance for prostate cancer-a report of a Movember international consensus meeting. Eur Urol Oncol 2023; 6: 160-
- 58 Willemse PM, Davis NF, Grivas N et al. Systematic review of active surveillance for clinically localised prostate cancer to develop recommendations regarding inclusion of intermediate-risk disease, biopsy characteristics at inclusion and monitoring, and surveillance repeat biopsy strategy. Eur Urol 2022; 81: 337-46
- 59 Crawford ED, Scholz MC, Kar AJ et al. Cell cycle progression score and treatment decisions in prostate cancer: results from an ongoing registry. Curr Med Res Opin 2014; 30: 1025-31
- 60 Lin DW, Crawford ED, Keane T et al. Identification of men with lowrisk biopsy-confirmed prostate cancer as candidates for active surveillance. Urol Oncol 2018; 36: 310.e7-13
- 61 Ross AE, Iwata KK, Elsouda D et al. Transcriptome-based prognostic and predictive biomarker analysis of ENACT: a randomized controlled

trial of enzalutamide in men undergoing active surveillance. JCO Precis Oncol 2024; 8: e2300603

Correspondence: Prabhakar Rajan, Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BO, UK.

e-mail: p.rajan@qmul.ac.uk

Abbreviations: 5ARI, 5α-reductase inhibitor; AR, androgen receptor; ARPI, androgen receptor pathway inhibitor; AS, active surveillance; CPG, Cambridge Prognostic Group; DHT, dihydrotestosterone; GS, Gleason score; HR, hazard ratio; mpMRI, multiparametric; NICE, National Institute for Health and Care Excellence; PCa, prostate cancer; RCT, randomised controlled trial; RP, radical prostatectomy; RT, radiotherapy.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Table S1. Comparison of patient characteristics between the three-tiered NICE risk stratification model and Cambridge Prognostic Group model.