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R E S E A R C H A R T I C L E

A Biomarker-Based Classification of Corticobasal Syndrome

Carla Palleis, MD,1,2,3† Alexander Maximilian Bernhardt, MD,1,3†* Endy Weidinger, MD,1,3

Urban M. Fietzek, MD,1,3,4 Alexander Jäck, MD,1,3 Sabrina Katzdobler, MD,1,3 Johannes Gnörich, MD,5

Theresa Bauer,5 Nicolai Franzmeier, MD, PhD,2,6,7 Robert Perneczky, MD,2,3,8,9,10

German Imaging Initiative for Tauopathies (GII4T), Matthias Brendel, MD, PhD,2,3,5† Johannes Levin, MD,1,2,3† and

Günter U. Höglinger, MD1,2,3†

ABSTRACT: Background: Corticobasal syndrome

(CBS) is a clinically defined syndrome with progressive

movement and cortical dysfunction, caused by various

underlying pathologies, most commonly tau-predominant

pathologies such as progressive supranuclear palsy and cor-

ticobasal degeneration, or Alzheimer’s disease (AD). Lewy-

type α-synucleinopathies (LTS), TDP-43 proteinopathies, and

mixed pathologies may also underlie CBS. The clinical

impact of these pathologies remains poorly understood.

Objectives: To subclassify CBS patients in vivo using bio-

markers for amyloid-β (Aβ), Tau, and α-synuclein (αSyn),

and assess the clinical relevance of this stratification.

Methods: We conducted a prospective cohort study of

50 CBS patients at LMU University Hospital Munich. Bio-

marker analysis included cerebrospinal fluid (CSF) Aβ42

and Aβ42/40, [18F]flutemetamol Aβ-PET, [18F]PI-2620

tau-PET, and αSyn seed amplification assays in CSF.

CSF neurofilament light chain (NfL) served as a marker of

neurodegeneration. Patients were stratified into six

groups based on biomarker positivity.

Results: Tau positivity was found in 90% of CBS cases,

Aβ in 28%, and αSyn in 24%. Stratification identified:

52% consistent with tau-predominant pathology, 18%

with AD, 10% with AD+LTS, 10% with tau-predominant

+LTS, 4% with isolated LTS, and 6% unclassified. αSyn

positivity was more frequent in AD-CBS (36%) than in

tau-predominant-CBS (16%). Aβ-positive cases showed

greater cognitive impairment; Tau positivity correlated

with worse motor symptoms; αSyn-positive patients had

milder motor symptoms, slower progression, and lower

NfL levels.

Conclusions: CBS is molecularly heterogeneous.

Biomarker-based classification may enhance diagnostic

precision and support personalized therapeutic strategies.

© 2025 The Author(s). Movement Disorders published by

Wiley Periodicals LLC on behalf of International Parkinson

and Movement Disorder Society.

Key Words: proteinopathies; α-synuclein seed amplifi-

cation assay; tau-PET; β-amyloid

Corticobasal syndrome (CBS) is a clinically defined
condition characterized by progressive cortical and
basal ganglia dysfunction, manifesting as cognitive
and motor impairments.1-3 While CBS presents as a
clinically defined syndrome, it can result from diverse

neuropathologies.4-6 Most commonly, CBS is linked to
tau-predominant pathologies, often involving 4-repeat
tau (4RT) such as progressive supranuclear palsy (PSP)
and corticobasal degeneration (CBD) (�50%), followed
by Alzheimer’s disease (AD) with β-amyloid (Aβ)
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pathology and 3-repeat/4-repeat (3R/4R) tau pathology
(�25–40%). Less frequently, Lewy-type α-synucleinopathy
(LTS), TDP-43 proteinopathies, or mixed pathologies con-
tribute (�12–30%).4,6,7 CBD refers to a distinct histopath-
ological entity and should not be equated with CBS.
The clinical relevance of underlying pathologies in

CBS remains poorly understood due to its rarity and
reliance on retrospective autopsy series. As disease-
modifying treatments emerge,3,8 molecular stratification
during life is critical to enable personalized, pathology-
specific therapies and prospective biomarker-based
studies are urgently needed. Other neurodegenerative
diseases have adopted biological definitions. In AD,
the ATN classification system9 and its expansion
(ATNIVS)10 incorporate biomarkers for Aβ, tau, neu-
rodegeneration, inflammation, vascular disease, and
α-synuclein. Parkinson’s disease frameworks such as
SynNeurGe11 and NSD-ISS12 also include α-synuclein,
neurodegeneration, and genetics. In these frameworks,
cerebrospinal fluid (CSF) α-synuclein seed amplification
assays (SAA) are increasingly central. In CBS, molecular
stratification is now feasible using biomarkers: Aβ
pathology can be detected via CSF Aβ42/40 or
amyloid-PET9,10; tau pathology by [18F]PI-2620
PET13-20; and LTS by CSF αSyn SAA.21-24

Here, we report the first prospective biomarker-based
subclassification of CBS. We assessed the prevalence
and co-occurrence of Aβ, tau, and α-synuclein patholo-
gies, and examined their associations with clinical
severity and progression. Hypothesis-driven analyses
were restricted to five prespecified outcomes (PSP rating
scale {PSPRS], Montreal Cognitive Assessment
[MoCA], Dementia Apraxia Test [DATE], CSF neu-
rofilament light chain [NfL], CSF Aβ42/40), while all
other evaluations were considered exploratory.

Methods

Participants and Clinical Assessments

All study-related procedures were approved by the
Ludwig-Maximilians-Universität (LMU) Munich ethics
committee (ethics applications: 23-0602, 17-569, and
19-022) and the German radiation protection authori-
ties (BfS application: Z5-22464/2017-047-K-G). All
patients provided written informed consent for
all study-related procedures including clinical assess-
ment, lumbar puncture, and positron emission tomog-
raphy (PET) imaging in accordance with the
Declaration of Helsinki and its amendments.
Patients were recruited and prospectively phenotyped

at the Department of Neurology at LMU Hospital
Munich between February 2018 and March 2024.
They were diagnosed by movement disorders specialists
as CBS phenotype as defined by the International
Parkinson and Movement Disorder Society (MDS)

criteria (suggestive of or possible PSP-CBS phenotype)1

and the Armstrong criteria (possible or probable CBD-
CBS).2 Other predominant PSP or CBD phenotypes
were not included in this study. Clinical assessments
included the PSPRS25 for characteristic features of
4R-tauopathies, the MoCA scale26 for cognitive impair-
ments, and the DATE27 for buccofacial and limb
apraxia. Disease duration was defined as time between
symptom onset and study visit. Details of the study
cohort, assessment of NfL, and genetic testing are pro-
vided in the Supplementary Materials.

Biomarker Assessments

Aβ Status

Aβ positivity was determined by an Aβ42/40
ratio < 5.5% in CSF28 and/or [18F]flutemetamol-PET
visual read, blinded to clinical information, was per-
formed as described previously.29,30 The amyloid status
of each patient was hence either defined as being posi-
tive (Aβ+) or negative (Aβ�). In three patients, Aβ42/40
ratio was <5.5%, but [18F]flutemetamol-PET remained
negative. These three patients were still classified as
Aβ+ due to abnormal Core 1 biomarker for AD
criteria,10 suggesting “CSF-first” versus “PET-first” Aβ
abnormality.31,32 All patients with positive [18F]
flutemetamol-PET had an abnormal Aβ42/40 ratio.

Tau Status

[18F]PI-2620 tau-PET procedures were performed as
described previously.13,14 Briefly, patients were scanned
at the Department of Nuclear Medicine, LMU Hospital
Munich, using a Biograph 64 PET/CT scanner or
a harmonized Biograph mCT (Siemens, Erlangen,
Germany). Dynamic [18F]PI-2620-PET (average dose:
188 � 15 MBq) with emission recording obtained
0–60 min after injection. Static frames of the late phase
(20–40 min) were reconstructed for assessing Tau bind-
ing.33 A dichotomous visual read of prescaled maps of
the cortex, basal ganglia, midbrain, and dentate nuclei
(ie, standardized uptake value ratio images; range
1.0–2.0; inferior cerebellar reference region) was per-
formed by expert readers blinded to clinical and bio-
marker information.13,14,17 The Tau status of each
patient was either defined as being positive (Tau+) or
negative (Tau�).

αSyn Status

Lewy-fold-specific CSF αSyn SAA was performed as
described previously.24 A patient sample was classified
as positive if at least two of four replicates showed a
positive signal. Samples with no signal were defined as
negative. Samples with one positive out of four repli-
cates were considered inconclusive and repeated once.
If the result remained one of four, the sample was
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declared inconclusive. For all patients, two samples
were tested blinded to clinical information. In our
cohort, no samples remained inconclusive and were
either defined as positive (αSyn+) or negative (αSyn�).

Classification by Disease Entities Based on

Biomarker-Profiles

Profiling for the Aβ, Tau, and αSyn biomarkers
resulted in six groups of biomarker-defined disease sta-
tuses, which were classified by their presumed underly-
ing neurobiologically defined disease entity as follows
(see Fig. 1, Table 1):

• Aβ�, Tau�, and αSyn� profile: unclassified CBS;
• Aβ+, Tau+, and αSyn� profile: AD;
• Aβ�, Tau+, and αSyn� profile: tau-predominant,

reflecting that [18F]PI-2620 uptake is most consistent
with 4R tauopathy but does not allow definitive
distinction from mixed 3R/4R tau;

• Aβ�, Tau�, and αSyn+ profile: Lewy-type
synucleinopathy (LTS);

• Aβ+, Tau+, and αSyn+ profile: co-occurrence of AD
and LTS;

• Aβ�, Tau+, and αSyn+ profile: co-occurrence of tau-
predominant and LTS.

Statistical Analysis

Statistical analyses were performed in R34 version
4.1.1 and Python35 version 3.9.18. Alpha thresholds
were set to 0.05 for statistical significance testing. Sex

ratios were compared by chi-square tests. All continu-
ous variables were tested for normality using the
Shapiro–Wilk test (all P > 0.05) before application of
two-sided Student’s t-tests. To adjust for potential con-
founding factors, clinical and CSF parameters were
then subject to logistic regression models corrected for
age, sex, and disease duration to assess the effect of
dichotomous biomarker statuses (Aβ, Tau, and αSyn).
The hypothesis-driven tests were restricted to five
prespecified outcomes (CSF NfL, CSF Aβ42/40, PSPRS,
MoCA, DATE); no formal multiplicity correction was
applied. Exploratory analyses such as PSPRS subscores
are displayed graphically without statistical inference.
Next, the six observed disease statuses were subject to
ANCOVAs with Tukey’s post-hoc test corrected for
age, sex, and disease duration. Error bars indicate the
standard deviation (SD). In a linear mixed-effects model
(lmer package), the interaction effect of each baseline
biomarker (ie, Tau, Aβ, and αSyn) with time on PSPRS
was modeled to test whether the biomarkers would pre-
dict on the clinical trajectories in a subset of patients
with clinical follow-up visits. The model was controlled
for age, sex, disease duration, number of follow-up
visits per subject, and random slope and intercept.

Results

Study Cohort

Fifty-eight CBS patients met the inclusion criteria1,2 and
provided written informed consent. Two patients tested
positive for rare pathogenic variants in the LRRK2 and

FIGURE 1. A biomarker-based classification of corticobasal syndromes (CBS). Aβ+, amyloid-β-positive; Aβ�, amyloid-β-negative; αSyn+, α-synuclein-

positive; αSyn�, α-synuclein-negative; Tau+, tau-positive; Tau�, tau-negative; Tau-pred, tau-predominant pathology; AD, Alzheimer’s disease; LTS,

Lewy-type synucleinopathy. Patients were screened for Aβ by amyloid-PET (positron emission tomography) or cerebrospinal fluid (CSF) and denoted

as Aβ� in light yellow or Aβ+ in dark yellow if one of these measurements showed pathological results. Tau-PET was employed to stratify patients into

Tau� in light blue and Tau+ in dark blue. αSyn seed amplification assay from CSF was employed to categorize patients into αSyn� and αSyn+ dis-

played in light red and dark red, respectively. The screening of Aβ, Tau, and αSyn in our 50 CBS patients led to six groups with different presumed

underlying pathologies, depending on the observed combination of Aβ, Tau, and αSyn, respectively. The group sizes in the Sankey chart are based on

their percentage within the distribution.
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TABLE 1 Group demographics at baseline

50 CBS split into:

Single protein biomarker status

50 CBS split into: 50 CBS split into: 50 CBS split into:

All Aβ+ Aβ� Tau+ Tau� αSyn+ αSyn�

Stratification by Positive 18F-flutemetamol

β-amyloid-PET (N = 8/

11) and/or CSF

β-amyloid ratio 42/

40 < 5.5% (N = 14/14)

Negative 18F-flutemetamol

β-amyloid-PET

(N = 29/29) and/or CSF

β-amyloid ratio 42/

40 ≥ 5.5% (N = 31/31)

Positive 18F-PI-2620

tau-PET

Negative 18F-PI-

2620 tau-PET

Positive SAA

aggregation curves

Negative SAA

aggregation

curves

Diagnostic certainty of

clinical CBS phenotype

(MDS-PSP criteria)

s.o. PSP-CBS

n = 14; possible

PSP-CBS n = 36

s.o. PSP-CBS n = 7;

possible PSP-CBS n = 7

s.o. PSP-CBS n = 7;

possible PSP-CBS

n = 29

s.o. PSP-CBS

n = 10; possible

PSP-CBS n = 35

s.o. PSP-CBS n = 4;

possible PSP-CBS

n = 1

s.o. PSP-CBS n = 6;

possible PSP-CBS

n = 6

s.o. PSP-CBS

n = 8; possible

PSP-CBS

n = 30

Diagnostic certainty of

clinical CBS phenotype

(Armstrong CBD-

criteria)

Possible CBD-CBS

n = 21; probable

CBD-CBS

n = 29

Possible CBD-CBS n = 7;

probable CBD-CBS

n = 6

Possible CBD-CBS n = 14;

probable CBD-CBS

n = 23

Possible CBD-CBS

n = 17; probable

CBD-CBS

n = 28

Possible CBD-CBS

n = 4; probable

CBD-CBS n = 1

Possible CBD-CBS

n = 7; probable

CBD-CBS n = 5

Possible CBD-CBS

n = 14;

probable CBD-

CBS n = 24

NBaseline 50 14 (28%) 36 (72%) 45 (90%) 5 (10%) 12 (24%) 38 (76%)

NLongitudinal 24 6 (25%) 18 (75%) 21 (87.5%) 3 (12.5%) 8 (33%) 16 (67%)

Sex (M/F) 24/26 8/6 16/20 23/22 1/4 7/5 17/21

Age (years) 71.3 � 5.9 74.0 � 5.7 * 70.0 � 5.9 * 71.4 � 5.8 69.1 � 8.7 75.0 � 6.5 * 69.9 � 5.4 *

Disease duration (months) 37.6 � 22.0 33.1 � 27.3 39.0 � 21.7 37.8 � 23.5 33.4 � 23.5 33.3 � 20.2 38.6 � 24.3

PSPRS 26.8 � 13.7 25.9 � 10.7 28.1 � 14.7 29.1 � 13.6 15.4 � 7.6 19.4 � 10.7* 29.9 � 13.7*

MoCA 20.1 � 6.3 15.9 � 6.4** 23.0 � 4.7** 20.9 � 6.1 24.5 � 3.3 21.1 � 7.0 21.3 � 5.7

DATE 33.4 � 13.3 29.5 � 13.2* 39.5 � 11.6* 36.5 � 12.8 41.5 � 11.4 42.3 � 8.2 35.6 � 13.3

NfL (pg/ml) 2510.9 � 1995.2 1958.1 � 728.0 3354.0 � 2370.2 2860.5 � 2101.4 3410.0 � 2036.5 1696.3 � 803.9* 3299.9 � 2226.2*

Aβ42/40 ratio (%) 6.7 � 2.8 4.2 � 0.8*** 8.7 � 3.5*** 7.2 � 3.8 7.7 � 1.1 6.3 � 1.7 7.6 � 4.0

Biomarker-defined disease status

50 CBS split into:

Un-classified AD Tau-pred LTS AD+LTS Tau-pred+LTS

Stratification by Aβ�

Tau�

Syn�

Aβ+

Tau+

Syn�

Aβ�

Tau+

Syn�

Aβ�

Tau�

Syn+

Aβ+

Tau+

Syn+

Aβ�

Tau+

Syn+

(Continues)
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TABLE 1 Continued

Biomarker-defined disease status

50 CBS split into:

Diagnostic certainty of clinical

CBS phenotype (MDS-PSP

criteria)

s.o. PSP-CBS n = 2;

possible PSP-CBS

n = 1

s.o. PSP-CBS n = 5;

possible PSP-CBS

n = 4

s.o. PSP-CBS n = 1;

possible PSP-CBS

n = 25

s.o. PSP-CBS

n = 2

s.o. PSP-CBS n = 2;

possible PSP-CBS

n = 3

s.o. PSP-CBS n = 2;

possible PSP-CBS

n = 3

Diagnostic certainty of clinical

CBS phenotype (Armstrong

CBD-criteria)

Possible CBD-CBS

n = 2; probable

CBD-CBS n = 1

Possible CBD-CBS

n = 6; probable

CBD-CBS n = 3

Possible CBD-CBS

n = 6; probable

CBD-CBS n = 20

Possible CBD-

CBS n = 2

Possible CBD-CBS

n = 2; probable

CBD-CBS n = 3

Possible CBD-CBS

n = 3; probable

CBD-CBS n = 2

NBaseline 3 (6%) 9 (18%) 26 (52%) 2 (4%) 5 (10%) 5 (10%)

NLongitudinal 2 (8%) 3 (12.5%) 11 (46%) 1 (4%) 3 (12.5%) 4 (17%)

Sex (M/F) 1/2 5/4 11/15 0/2 3/2 4/1

Age (years) 67.3 � 7.0 73.2 � 4.9 69.1 � 5.1 71.5 � 13.4 75.4 � 7.4 76.0 � 2.9

Disease duration (months) 34.0 � 33.0 31.8 � 30.9 41.5 � 21.3 32.5 � 4.9 35.4 � 22.6 31.6 � 24.3

PSPRS 18.7 � 7.4 27.6 � 9.0 32.0 � 15.1 10.5 � 6.4 21.3 � 15.5 21.8 � 8.9

MoCA 23.0 � 1.7 15.9 � 6.6* 22.5 � 5.0 * 29.0 � 0.0 16.0 � 6.8 24.6 � 3.6

DATE 36.0 � 3.6 26.1 � 14.1 41.6 � 7.3 58.0 � 0.0

(n = 1)

38.3 � 4.0 41.6 � 7.3

NfL (pg/ml) 3410.0 � 2036.5 2290.0 � 738.8 3713.5 � 2575.1 NA 1427.0 � 248.6 1965.6 � 1100.4

Aβ42/40 ratio (%) 8.1 � 1.1 4.0 � 0.8* 9.2 � 4.2* 7.0 � 0.8 4.5 � 0.7 7.8 � 0.9

Note: All results are displayed as mean (standard deviation) unless stated otherwise. Significance levels are derived from two-sided Student‘s t-tests for age and disease duration, significance levels for sex are derived from chi-square tests

(*P < 0.05, **P < 0.01, ***P < 0.001). For clinical and CSF parameters, significance levels of the logistic regression corrected for age, sex, and disease duration are shown in Table S1. Due to the relatively small group sizes, ANCOVA

models for biomarker-defined disease status groups corrected for age, sex, and disease duration yielded mostly insignificant P-values, except for a significantly lower amyloid-β42/40 ratio and MoCA in AD compared with the tau-

predominant group (P = 0.01 and P = 0.035, respectively, Tukey‘s post-hoc test).

Abbrevations: CBS, corticobasal syndrome; Aβ+, amyloid-β-positive; Aβ�, amyloid-β-negative; Tau+, tau-positive; Tau�, tau-negative; tau-pred, tau-predominant pathology; αSyn+, α-synuclein-positive; αSyn�, α-synuclein-negative;

AD, Alzheimer’s disease; LTS, Lewy-type synucleinopathy; PET, positron emission tomography; CSF, cerebrospinal fluid; SAA, seed amplification assay; s.o., suggestive of; PSP, progressive supranuclear palsy; CBD, corticobasal degener-

ation; MDS, International Parkinson and Movement Disorder Society; M, male; F, female; PSPRS, Progressive Supranuclear Palsy Rating Scale (higher scores indicate more severe impairment); MoCA, Montreal Cognitive Assessment

(higher scores indicate better cognitive performance); DATE, Dementia Apraxia Test (higher scores indicate better performance); NfL, neurofilament light chain; NA, not assessed.
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GBA1 genes, respectively, and were excluded from analy-
sis. Six further patients were excluded from analysis due
to incomplete assessment of all three biomarker categories
(Aβ, Tau, and αSyn). In total, 50 CBS patients with com-
plete biomarker status were included into the analysis.

Frequency of Aβ, Tau, and αSyn Biomarkers

in CBS

Among the 50 CBS patients, 14 (28%) were Aβ+,
45 (90%) were Tau+, and 12 (24%) were αSyn+

(Fig. 1). Of note, numerous patients were positive for
more than one biomarker (eg, all Aβ+ CBS patients
were also Tau+). Detailed demographic and clinical
data of these subgroups are presented in Table 1. To
study the effect of each individual biomarker status
on the manifestation of CBS, we first split the cohort
dichotomously by positivity or negativity for single
biomarkers, regardless of the other biomarkers.
Aβ+ and Aβ� CBS patients had no significant dif-

ferences in sex distribution or disease duration, but
Aβ+ CBS patients were significantly older at the time
of examination than Aβ� patients (74.0 � 5.7
vs. 70.0 � 5.9 years; P < 0.05).
Tau+ and Tau� CBS patients had no significant differ-

ences regarding sex distribution, disease duration, and
age at examination, although these analyses were limited
by the small numbers (N = 5) of Tau� patients.
αSyn+ and αSyn� CBS patients had no significant differ-

ences regarding disease duration or sex distribution, but
αSyn+ patients were significantly older at examination than
αSyn� patients (75.0 � 6.5 vs. 69.9 � 5.4 years; P < 0.05).

Frequency of Biomarker-Defined Disease

Statuses in CBS

Next, we classified the patients into six groups of
biomarker-defined disease status, based on their pre-
sumed underlying neurobiologically defined disease
entity (Fig. 1). The order of classification (ie, starting
either by Aβ, Tau, or αSyn) naturally did not affect the
allocation of the individual patients into their final dis-
ease status group (Fig. S1).
While only 3 (6%) remained unclassified (Aβ�, Tau�,

αSyn�), 9 (18%) were classified as having AD (Aβ+,
Tau+, and αSyn�), 26 (52%) as tau-predominant (Aβ�,
Tau+, αSyn�), 2 (4%) as LTS (Aβ�, Tau�, αSyn+),
5 (10%) as AD+LTS (Aβ+, Tau+, αSyn+), and 5 (10%)
as tau-predominant+LTS (Aβ�, Tau+, αSyn+) (Table 1,
Fig. 1). Detailed demographic and clinical data did not
differ between these subgroups (Table 1). The tau-PET
visual read showed 100% concordance with a typical
3R/4R tauopathy binding pattern in Aβ+/Tau+ patients,
whereas Aβ�/Tau+ individuals consistently lacked such
a pattern (Fig. S2).

Effect of the Aβ, Tau, and αSyn Biomarker

Status on NfL and Aβ Levels

We then investigated the association of the Aβ, Tau,
and αSyn biomarker status with the CSF biomarkers
NfL and Aβ42/40. Figure 2 displays boxplots of NfL
levels (A) and Aβ42/40 ratios (B) in subgroups stratified
by their Aβ, Tau, and αSyn status. We first performed
single-variable analyses (Student’s t-tests) to explore
unadjusted relationships between biomarker status and
NfL levels and Aβ42/40 ratios. Next, we applied logis-
tic regression models to account for potential con-
founding factors, including age, disease duration, and
sex (Table S1).
NfL levels (Fig. 2A) were lower in the Aβ+ versus the

Aβ� group by single-variable analysis (P < 0.05), but
the difference was no longer significant after adjusting
for confounding factors by logistic regression. No sig-
nificant differences in the NfL concentrations were
observed between Tau+ versus Tau� groups. αSyn+

patients had lower NfL levels compared with αSyn�

patients (both single-variable- and regression-derived
P < 0.05). The significantly older age of αSyn+ CBS
patients underscores the significance of this finding,
because NfL levels are generally expected to increase
with age.36

The Aβ42/40 ratio (Fig. 2B) perfectly separated Aβ+

from Aβ� patients, as expected. No significant differ-
ences in the Aβ42/40 ratio were found for the Tau+ ver-
sus Tau� or the αSyn+ versus αSyn� groups.

Effect of the Biomarker-Defined Disease Status

on NfL and Aβ Levels

We then investigated the association of the
biomarker-defined disease status with the CSF bio-
markers NfL and Aβ42/40. Figure S3 displays boxplots
of NfL levels (A) and Aβ42/40 ratios (B) in subgroups
stratified by their disease status. NfL levels (Fig. S3A)
were highest in the unclassified and in the tau-
predominant group, but not significantly different in
the ANCOVA model. The Aβ42/40 ratio (Fig. S3B)
expectedly was significantly lower in AD compared
with tau-predominant (P < 0.05, ANCOVA with
Tukey’s post-hoc test).

Effect of the Aβ, Tau, and αSyn Biomarker

Status on Clinical Features

We investigated the association of the Aβ, Tau, and
αSyn biomarker status with clinical measures of disease
severity. Figure 3 displays boxplots of PSPRS (A),
MoCA (B), and DATE (C) scores in subgroups strati-
fied by their Aβ, Tau, and αSyn status. We first per-
formed single-variable analyses to explore unadjusted
relationships, followed by logistic regression models
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accounting for potential confounding factors (age, dis-
ease duration, and sex).
PSPRS scores (Fig. 3A) were not significantly different

between the Aβ+ and Aβ� groups.
Aβ+ CBS patients exhibited significantly lower

MoCA scores (Fig. 3B; Table S1; single-variable-
derived: P < 0.05, regression-derived: P < 0.01) and
DATE scores (Fig. 3C; Table S1; both single-variable-
and regression-derived: P < 0.05) compared with Aβ�

patients. These findings indicate greater cognitive
impairment in Aβ+ cases.
The Tau status had no significant associations with

PSPRS, MoCA, or DATE scores (Fig. 3A–C, Table S1),
although PSPRS scores trended higher in Tau+ patients
(single-variable-derived: P < 0.01, regression-derived:
P = 0.061), suggesting a potential influence on motor
severity that warrants further study.
Interestingly, the αSyn+ status was associated with

lower PSPRS scores (Fig. 3A, Table S1; both single-
variable- and regression-derived: P < 0.05). These

observations suggest an association between αSyn-
positivity and relatively milder motor symptoms.
MoCA and DATE scores (Fig. 3B,C) did not differ sig-
nificantly between the αSyn+ and αSyn� groups.
Figure S4 provides descriptive boxplots of the individ-
ual PSPRS subscores.

Effect of the Biomarker-Defined Disease Status

on Clinical Features

We investigated the association of the biomarker-
defined disease status with these clinical measures of
disease severity (Fig. S5). The ANCOVA models dem-
onstrated significantly lower (ie, worse) MoCA scores
in the AD group compared with the tau-predominant
group (P < 0.05; Fig. S5B), as well as the following
non-significant trends:
The mean PSPRS scores (Fig. S5A) were highest (ie,

worst) in the tau-predominant group and lowest
(ie, best) in the LTS group. The mean MoCA scores

FIGURE. 2. Association between the biomarker status (Aβ, Tau, and αSyn) and other cerebrospinal fluid (CSF) biomarkers. Aβ+, amyloid-β-positive;

Aβ�, amyloid-β-negative; αSyn+, α-synuclein-positive; αSyn�, α-synuclein-negative; Tau+, tau-positive; Tau�, tau-negative. The boxplots visualize the

distribution of neurofilament light chain (NfL) values (A) and amyloid-β42/40 ratio values (B) across Aβ+ and Aβ�, or Tau+ and Tau�, or αSyn+ and αSyn�

groups. The P-values displayed are derived from the logistic regression model, which tests the association between amyloid-β42/40 ratio or NfL and Aβ,

Tau, or αSyn status while controlling for age, disease duration, and sex. P-values in brackets are derived from single-variate statistics employing two-

sided Student’s t-tests after checking for normality (Shapiro–Wilk test).
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(Fig. S5B) were lowest (ie, worst) in the AD and AD
+LTS groups and highest (ie, best) in the LTS group.
The DATE scores (Fig. S3C) were lowest (ie, worst) in
the AD group and highest (ie, best) in the LTS group.

Due to the relatively small group sizes, ANCOVA
models corrected for age, sex, and disease duration
yielded insignificant P-values for all other comparisons
of the biomarker-defined disease groups.

FIGURE. 3. Association between the biomarker status (Aβ, Tau, and αSyn) and clinical measures of disease severity. Aβ+, amyloid-β-positive; Aβ�, amyloid-

β-negative; αSyn+, α-synuclein-positive; αSyn�, α-synuclein-negative; Tau+, tau-positive; Tau�, tau-negative; PSPRS, Progressive Supranuclear Palsy Rating

Scale (higher scores indicate more severe impairment); MoCA, Montreal Cognitive Assessment (higher scores indicate better cognitive performance); DATE,

Dementia Apraxia Test (higher scores indicate better performance). The boxplots visualize the distribution of PSPRS (A), MoCA (B), and DATE (C) scores across

Aβ+ and Aβ�, or Tau+ and Tau�, or αSyn+ and αSyn� groups. The P-value displayed is derived from the logistic regression model, which tests the association

between PSPRS, MoCA, or DATE and Aβ, Tau, or αSyn status while controlling for age, disease duration, and sex. P-values in brackets are derived from

single-variate statistics employing two-sided Student’s t-tests after checking for normality (Shapiro–Wilk test).
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We next analyzed the presence of symptoms typically
associated with LTS, as observed in Parkinson’s disease
or dementia with Lewy bodies, including resting
tremor, restless legs syndrome (RLS), postural tremor,
orthostatic symptoms, visual hallucinations, and
hyposmia (Fig. S6). LTS-typical clinical features were
more prevalent in αSyn+ patients versus αSyn� patients;
however, in the Fisher exact test, no significant differ-
ences between the different biomarker and disease sta-
tuses were observed.

Effect of Biomarker and Disease Status on

Longitudinal Changes in PSPRS and NfL

Longitudinal data were available for 24 of the
50 CBS patients, some of which have been reported
previously.37 Their biomarker status is reported in
Table 1. The median clinical follow-up period was
1.9 years, ranging from 0.8 to 4.1 years. No changes in
the clinical diagnosis of CBS were observed at follow-
up visits. We observed a trend toward worse motor
status in subjects without follow-up visits compared
with those with follow-up (t-test: PSPRS = 31.7 �
13.6 vs. PSPRS = 23.9 � 13.1; P = 0.06), as well as
worse cognitive status (MoCA = 19.5 � 5.8 vs. MoCA =

22.9 � 5.7; P = 0.05). This suggests that patients with
more severe clinical status are less likely to attend follow-
up visits. Despite this potential selection bias, the follow-
up time had a significant effect on PSPRS scores with an
annualized increase of 7.0 � 0.9 points (P < 0.001) in the
linear mixed-effects model, confirming progressive clinical
deterioration in the longitudinal CBS cohort. The random
slope-intercept correlation of 0.41 suggests a moderate
association, indicating that patients with higher PSPRS
scores at baseline tend to experience a faster rate of
decline.
For 15 CBS patients, at least two NfL measurements

in CSF were available. Follow-up time had a significant
effect on NfL levels, with an annualized worsening of
665.5 � 245.4 (P < 0.05) in an adjusted model. Again,
a random slope-intercept correlation of 0.47 suggests
that patients with higher NfL levels at baseline tend to
show a more rapid increase in NfL levels over time.
We then examined whether the biomarker status

would predict the rate of disease progression, measured
by the clinical PSPRS scale or NfL levels, using linear
mixed-effects models adjusted for age, sex, disease
duration, numbers of follow-up visits per patient, and
random slope and intercept (Fig. 4). The Aβ status had
no significant interaction with time for PSPRS (Fig. 4A)
or NfL levels (Fig. 4B). The Tau status had no signifi-
cant effect on PSPRS progression (Fig. 4C) and could
not be analyzed for NfL due to limited longitudinal
data in Tau� CBS patients (Fig. 4D). The αSyn status
showed significant interaction with time for the out-
come variable PSPRS (P < 0.05; Fig. 4E), indicating that

αSyn� CBS patients in our cohort progressed faster
than αSyn+ patients. The estimated annualized increase
of the PSPRS for αSyn� CBS subjects was 8.5 � 1.8,
while it was 3.6 � 5.1 for αSyn+ CBS subjects. How-
ever, no significant effect was found for NfL (Fig. 4F).
In our cohort, CBS patients with presumed tau-

predominant pathology experienced faster increases in
(ie, worsening of) PSPRS score compared with tau-
predominant with LTS co-pathology (P < 0.05;
Fig. S7A,B), but not of NfL levels over time (Fig. S7C);
however, the small sample size of tau-predominant
+LTS (n = 4) should be considered when interpreting
these results.

Discussion

This study represents a first attempt to classify CBS
patients in a prospectively studied cohort based on bio-
marker profiles. Our study classified CBS patients based
on single protein biomarkers (Aβ, Tau, and αSyn) and
secondly the biomarker-defined disease status (AD, tau-
predominant, LTS, mixed pathologies, and unclassified
patients) on the cross-sectional and longitudinal clinical
manifestations of CBS. The distribution in our cohort
of presumed pathologies is similar to histopathological
distribution of CBS patients in autopsy-confirmed
cases.4,6,7 The single protein biomarkers Aβ, Tau, and
αSyn identified presumed underlying pathologies in
94% (47/50) of CBS patients. Some 6% of the CBS
cases (3/50) remained “unclassified” with negative Aβ,
Tau, and αSyn status, likely due to other neuropathol-
ogies, (eg, TDP-43 proteinopathy). αSyn-positivity in
isolation classifying as LTS (Aβ�, Tau�, αSyn+) was
quite rare (n = 2/50, 4%), but more common in combi-
nation with other pathologies, particularly in CBS cases
with presumed AD (AD+LTS; n = 5/14, 36%), com-
pared with tau-predominant pathology (tau-predomi-
nant+LTS; n = 5/31, 16%).
While FDG-PET is a valuable imaging biomarker for

assessing neuronal dysfunction and has demonstrated
utility in distinguishing CBS due to AD from CBS with-
out AD38, our study followed a conceptually different
approach by classifying CBS patients based on bio-
markers that more directly reflect the presumed histopa-
thology. Regarding the stratification of Tau+ and Tau�

using [18F]PI-2620 tau-PET as an imaging biomarker
for tau aggregation in vivo, multiple lines of evidence
from preclinical and clinical studies by independent
groups support the use of [18F]PI-2620 tau-PET for
detecting 4R tau pathology.13-15,18,20,39-41 This includes
consistent binding to 4R tau aggregates in vitro, trans-
lational correlation with in vivo PET signals in animal
models and human tissue, and validated discrimination
of 4R tauopathies from AD and healthy controls in
clinical imaging studies. In the current study, the tau-
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PET visual read showed 100% concordance with a typ-
ical 3R/4R tauopathy binding pattern in Aβ+/Tau+

patients, whereas Aβ�/Tau+ individuals consistently
lacked such a pattern. This absence of a 3R/4R binding
pattern, combined with predominant signal in the basal

ganglia,17 further supported their classification as tau-
predominant CBS. Nevertheless, as [18F]PI-2620 does
not conclusively differentiate between 4R tau and
mixed 3R/4R tau pathologies, we conservatively use the
term “tau-predominant” rather than “4R tauopathy.”

FIGURE. 4. Interaction of the biomarker status (Aβ, Tau, and αSyn) and disease progression. Aβ+, amyloid-β-positive; Aβ�, amyloid-β-negative; αSyn+,

α-synuclein-positive; αSyn�, α-synuclein-negative; Tau+, tau-positive; Tau�, tau-negative; PSPRS, Progressive Supranuclear Palsy Rating Scale (higher

scores indicate more severe impairment); NfL, neurofilament light chain. Line plots illustrating clinical trajectories on the PSPRS (A, C, E), and NfL (B, D,

F) in the subset of patients with longitudinal visits stratified by Aβ, Tau, and αSyn status. Linear model fits (ie, least squares line) are indicated together

with 95% confidence intervals. Statistics are based on linear mixed models controlling for age, sex, disease duration, numbers of follow-up visits per

patient, and random slope and intercept. For visualization, regression fits were split into dichotomous biomarker status to illustrated disease trajectories

relative to biomarker abnormality; however, interactions were computed using continuous measures.
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Aβ+ patients showed significantly greater cognitive
impairment, with lower MoCA scores and DATE scores,
compared with Aβ� patients, highlighting a more pro-
nounced cortical involvement in Aβ+ cases. While Tau+

CBS cases showed a trend toward higher PSPRS scores,
no significant differences in disease progression rates
were observed compared with Tau� patients, likely due
to small sample sizes. αSyn+ patients exhibited signifi-
cantly lower PSPRS scores and a slower clinical progres-
sion over time. NfL levels were significantly lower in
αSyn+ compared with αSyn� patients, confirmed by both
logistic regression and mixed-effects models, and consis-
tently observed in the tau-predominant+LTS and AD
+LTS subgroups. This suggests that αSyn positivity may
act as a modulating factor in CBS, associated with a
milder disease course and distinct symptom profile.
However, it is important to note that our longitudinal
analysis might underestimate disease progression in more
severely affected patients, as these individuals are less
likely to attend follow-up visits.
The distribution of presumed pathologies in our

cohort aligns closely with the histopathological distri-
bution observed in autopsy-confirmed CBS cases.4-6 In
4R tauopathies, there is limited evidence on the clinical
impact of mixed pathologies. In histopathologically
confirmed PSP, mixed pathologies are frequently
observed in over 80% of cases, with focal AD-related
pathology being the most common co-pathology.42 The
presence of co-pathologies did not significantly affect
clinical milestones like disease duration in this study,
but age of onset was younger in patients with
argyrophilic grains. Between 8% and 31.5%42-46 of
PSP cases exhibit both PSP and LTS. In pathologically
confirmed CBD cases, LTS has been found in approxi-
mately 10%47 to 14.3%48 of cases. In these CBD
cohorts, co-pathologies such as Aβ deposition, cerebral
amyloid angiopathy, and limbic-predominant or age-
related TDP-43 encephalopathy were also observed,
particularly in older patients. However, clinical correla-
tions specific to CBD with these co-pathologies remain
unreported. A case reported by Yamashita et al.49

describes a patient with an 18-year disease duration
until death who exhibited a co-pathology of TDP-43,
αSyn, and CBD, suggesting that certain mixed patholo-
gies in CBS may be associated with prolonged survival.
A recent article investigated AD pathology in 35 cases
of clinically diagnosed CBS based on the AD Neuro-
pathological Change criteria.50 Postmortem AD pathol-
ogy was identified in 40% of CBS cases, with 23%
classified as the primary pathology – defined as the one
most closely linked to the clinical syndrome. The
remaining cases exhibited AD as a co-pathology to
4RT or rarely TDP-43 pathology. LTS pathology was
absent in their CBS cohort.
The presence of Aβ and αSyn co-pathologies raises

critical questions regarding disease mechanisms,

progression, and the temporal sequence of pathological
events. Neuropathological studies provide insights into
end-stage disease but lack the capacity to clarify the
sequential development of mixed pathologies. It
remains unclear which pathology initiates disease pro-
gression or how the presence of one pathology influ-
ences the manifestation and progression of the other: it
is unknown whether a hierarchical relationship exists,
such as AD with secondary αSyn co-pathology or, con-
versely, LTS with secondary AD features.
In first in vivo studies of AD populations, αSyn posi-

tivity has been linked to accelerated cognitive
decline,51,52 though its potential effects on motor symp-
toms in the context of AD remain unexplored. This
raises the question of whether the coexistence of αSyn
pathology exacerbates neurodegenerative processes
through a synergistic effect, specifically in cognitive
decline. Understanding the temporal order and possible
hierarchical interactions between AD and αSyn pathol-
ogies is essential to delineate distinct clinical entities.
Our data indicate that identifying these mixed patholo-
gies in CBS could carry significant implications for
prognosis and disease management, underscoring the
need for targeted therapeutic strategies that address
the specific pathologies involved.
Three studies have evaluated αSyn SAA in CBS, yield-

ing varying prevalence estimates. Anastassiadis et al.53

found a higher αSyn positivity rate in Aβ� CBS cases
using a different assay (35.9% of patients with Aβ�

CBS and 28.6% with PSP). NfL levels in the αSyn+ sub-
group were increased, in contrast to our findings. Sec-
ond, in a retrospective cohort of UK PSP and CBS cases
using the Amprion αSyn SAA,54 46% (6/13) cases of
AD-CBS and 19% (3/16) of a cohort consisting of non-
AD-CBS and CBS with unknown AD status were αSyn
positive, yielding again a higher prevalence of mixed
pathology than our cohort.54 In CBS, there was no clin-
ical difference between αSyn-positive and αSyn-negative
CBS. In PSP, exploratory analysis showed a trend
toward αSyn+ PSP participants being older, more
impaired in motor, cognitive, and functional scales.
Baiardi et al55 analyzed a cohort of 29 CBS cases, of
which 48% had a positive Aβ status in CSF, and only
one αSyn-positive case (3.4%) was reported, which is
fewer than expected from histopathological studies.55

Tau biomarker status was not assessed in these three
studies. Our study’s strength lies in the availability of
longitudinal data and comprehensive biomarker assess-
ment for all three biomarkers of Aβ, Tau, and αSyn, all-
owing for a more nuanced exploration of the
relationship between biomarker positivity and clinical
outcomes in CBS.
Our study has several limitations. First, our cohort

primarily reflects a Caucasian population, which may
limit the generalizability of our findings. Second,
although biomarkers provide valuable in vivo
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information, neuropathological confirmation remains
the gold standard for diagnosis. A continued clinical
follow-up, with postmortem analysis where possible,
will be essential to validate the sensitivity and specificity
of Aβ, αSyn, and Tau biomarkers in CBS. Additionally,
our study did not employ multiple testing corrections
due to the limited sample size. Subanalyses involving
the small Tau� (n = 5) and αSyn + (n = 12) groups are
underpowered; their nominal P-values are presented
without multiplicity correction and should be consid-
ered exploratory until confirmed in independent
cohorts. Although our cohort is too small for a formal
Tau � αSyn interaction test, recent in vivo evidence
from AD shows that α-synuclein co-pathology acceler-
ates amyloid-driven tau accumulation,56 underlining
the importance of addressing such interactions in CBS
once larger, quantitatively-imaged samples are avail-
able. Finally, αSyn SAA may also have limited sensitiv-
ity for early amygdala or olfactory bulb predominant
LTS21, highlighting the need for αSyn PET imaging in
the future that may also allow assessment of spatial dis-
tribution of αSyn. Future studies should aim to incorpo-
rate promising TDP-43 pathology biomarkers57 to
further classify unclassified CBS cases and assess other
relevant proteinopathies.
Our study supports the notion that CBS is a poly-

etiological condition requiring molecular-level subclassifi-
cation to facilitate the development of targeted therapies.
Previously, such subclassification was only achievable
postmortem, but with recent biomarker advancements, it
is now feasible in vivo. Biomarker-based analysis reveals
that Aβ+ CBS patients exhibit more cognitive symptoms,
while αSyn+ CBS cases, particularly those with Aβ� sta-
tus, follow a milder clinical trajectory. This molecular
stratification could inform personalized therapeutic strate-
gies and planning of clinical trials in CBS.
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