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A B S T R A C T

Reliable modelling of plastic deformation during thermomechanical processing requires robust constitutive
models incorporating material and process parameters. This study employs the hyperbolic sine model to predict
the strain response of 708M40 steel at elevated temperatures and strain rates. A novel calibration approach
comprising three stress–strain datasets derives optimal model parameters that account for uncertainties arising
from microstructural heterogeneity. Key parameters, including the activation energy (𝑄), the strain rate
sensitivity (𝑛), the pre-exponential factor (𝐴), and the scaling parameter (𝛼), are determined to minimise
prediction errors. These parameters are calibrated respectively to 350352 J/mol, 5.9, 1.2 ⋅ 1014 s−1 and
0.0075 MPa−1 to predict peak stress based on the average of three model parameter sets. The confidence
in stress predictions increases with temperature and is influenced by a strain rate at high temperatures. This
calibrated constitutive model is employed within hammer forging simulations to model previously published
experimental studies performed at 1030 ◦C and 1300 ◦C under unlubricated conditions. The numerical
analysis showed accurate height predictions for blow efficiencies of 50 % and 40 % at 1030 ◦C and 1300
◦C, respectively. Then, the evaluated uncertainties in flow stress were incorporated into hammer forging
simulations to study their effect on post-forging predictions. At 40 % efficiency, the model predicts the
final height with corresponding uncertainties of 10.62 ± 1.46 mm and 7.76 ± 1.54 mm, while the experimental
observations are 9.5 ± 0.2 mm and 7.6 ± 1 mm at 1030 ◦C and 1300 ◦C respectively. Further validation against
experimental results confirmed that the predicted cross-sectional deformation flow lines closely matched those
within the workpiece. A multifactorial experiment with 3600 simulations was performed to study the effect of
uncertainties in thermomechanical responses and process conditions on post-forging geometry. This numerical
experiment suggest that increased temperature and blow efficiency result in extensive deformation and greater
die-metal contact, making further deformation more challenging and reducing the influence of initial flow stress
uncertainties. This detailed understanding of the intertwined effect of material and process parameters on the
response of steels aims to support the development of efficient computer-aided manufacturing.

1. Introduction

Constitutive models play a significant role in simulating metal form-
ing operations. These models establish the connection between stress
and strain, serving as a fundamental basis for predicting behaviour
of metals during shaping processes. However, development of such
models poses a challenge due to the heterogeneous nature of materi-
als, influenced by factors such as process conditions and deformation
history [1–3]. In addition, metallic alloys often display non-linear
and time-dependent responses, rendering it difficult to incorporate
all aspects of material behaviour within a single model. In order to
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address these, it is essential to evaluate uncertainties, enabling a more

comprehensive and realistic representation of the inherent variability

and complexities in material responses. Such evaluation results in more

reliable and consistent outputs in forming processes.

The material of interest is 708M40, a low-alloy steel [4], which

can possess a combination of phases based on the processing history

such as ferrite and pearlite [5,6], ferrite and martensite [1], ferrite

and bainite [7], and a combination of ferrite, martensite and retained

austenite [2]. These microstructures lead to mechanical properties
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Table 1
Chemical composition of BS970:708M40 steel grade and its analogues.

Country Grade C (%) Si (%) Mn (%) P (%) S (%) Cr (%) Mo (%)

UK 708M40 0.36–0.44 0.10–0.40 0.70–1.00 ≤0.035 ≤0.04 0.9–1.2 0.15–0.25
USA 4140 0.38–0.43 0.15–0.35 0.75–1.00 ≤0.035 ≤0.04 0.8–1.1 0.15–0.25
EU 42CrMo4

(1.7225)
0.38–0.45 ≤0.40 0.60–0.90 ≤0.035 ≤0.035 0.9–1.2 0.15–0.30

Japan SCM440 0.38–0.43 0.15–0.35 0.60–0.85 ≤0.03 ≤0.03 0.9–1.2 0.15–0.30

that render the alloy well-suited for applications where resistance to
wear and abrasion is essential, providing durability and extending
the lifespan of the material [8–10]. The properties are attributed to
molybdenum additions providing uniform hardness and high strength,
while chromium contributes to the steel’s ability to form hard and
wear-resistant surfaces [2,11]. Common applications are drive shafts,
bolts, gears as well as surface and sub-surface components in oil and
gas industries. Since 708M40 is used across diverse sectors, there are
various international material equivalents, each designated differently
based on the classification system used by individual countries. Equiv-
alent analogues include AISI 4140 [12], 1.7225/42CrMo4 [13] and JIS
SCM440 [14] steel grades. The comparison in chemical composition
between stated steel grades can be seen in Table 1.

Due to the extensive use of 708M40, numerous studies have focused
on creating constitutive models that explain the variation of flow
stress in response to deformation conditions. Among notable and es-
tablished constitutive models are the Zerilli–Armstrong [15], Johnson–
Cook [16], Hensel–Spittel model [17], and hyperbolic sine model com-
bined with the Arrhenius equation [18,19]. One notable study among
many is the work by Lin et al. [19]. The authors conducted hot
compression tests on 42CrMo steel, deriving a constitutive model where
the flow stress is as a hyperbolic function of the Zener–Hollomon
parameter. Kim et al. [18] modified the Voce’s constitutive relations
to improve the accuracy of predicting the flow stress behaviour of
AISI 4140. The Hensel–Spittel model was used to simulate 42CrMo4
by Venet et al. [20]. This model combines multiple deformation mech-
anisms into a single equation and can be reduced by setting certain
parameters to zero. Venet et al. identified the parameters resulting
in a better prediction accuracy for 42CrMo4 compared to those from
a standard material database. Although these studies derived optimal
model parameters to predict the mechanical behaviour of 708M40,
there has been limited focus on assessing the uncertainty in model
parameters. This uncertainty arises from experimental measurements
and variations in processing history and microstructure, which in turn
affect the thermomechanical behaviour of materials.

High-temperature uniaxial responses of metals are typically used
to calibrate the constitutive models. These tests are often conducted
to a maximum strain rate of 10–50 s−1 [18–20]. This range covers
strain rates observed in mechanical, screw, and hydraulic press oper-
ations [21]. However, deformation rates can be even higher in some
manufacturing processes, reaching up to 100 s−1, which is typical for
high-energy rate (drop/hammer) forging processes [21]. This implies
that it is not only necessary to calibrate the models against uniaxial
high strain rate responses but also to validate them further against
high-energy rate manufacturing data to obtain reliable plastic flow of
metals. To the authors’ knowledge, there are only a handful of studies
aiming at the calibration of constitutive models at such elevated strain
rates. Among these studies are the works by Zhu et al. [22] and Song
and Sanborn [23], where the modified Zerilli–Armstrong and Johnson–
Cook constitutive models respectively were deployed to account for
thermal softening due to adiabatic temperature rise. While these studies
provide great insights and well-calibrated models to understand the
plastic flow at high strain rates, their validation for a high-energy rate
forging process remains elusive. The current study attempts to close
this gap by calibrating and employing the constitutive model to predict
material flow during hammer forging.

The outlined constitutive models can be used in conjunction with
the finite element method (FEM) based process modelling to improve

the predictability of metal shaping processes by explicitly accounting
for the uncertainties in material and process parameters. Formerly,
Steden and Trimm [24] studied the sensitivity of Johnson–Cook model
parameters in cutting simulations. They used a full factorial test design
to conduct and analyse cutting simulations, focusing on the sensitivity
of the material and process parameters. Other studies have focused
solely on studying the influence of finite element model parameters
(e.g. heat transfer coefficient, friction) on simulation outputs. Snape
et al. [25] investigated the impact of these parameters in simulations
of open-die forging. Their findings revealed that the heat transfer
coefficient has a minimal influence on the upsetting forging process.
The authors highlighted the crucial role of friction factor, particularly
in governing maximum generalised strain due to its impact on shear
within the workpiece. Thus, it is evident that the integration of FEM
based process modelling tools with well calibrated constitutive models,
which account for uncertainties in material and process parameters, are
necessary to understand the flow of metals during manufacturing.

This work employs a hyperbolic sine model and introduces a new
perspective to calibration of the constitutive model. Unlike previous
studies that primarily focused on obtaining one set of model param-
eters, this research focuses on the use of multiple sources of published
stress–strain datasets to obtain the range of responses for 708M40 at
varying process conditions. That is, this study not only aims to account
for the heterogeneity in the macroscopic responses of steels, which
result from variations in local microstructures, but also from variations
in test conditions. In addition, the effect of uncertainties in constitutive
model parameters on the predicted response of metals is explored in
great detail. To the authors’ knowledge, such a detailed investigation
of uncertainties is lacking in the current literature. Further, these un-
certainties are propagated within a commercial finite element package
DEFORM to understand their influence on the flow of metal during
hammer forging (high strain-rate process).

The paper is structured as follows: Section 2 overviews Hill et al.’s
hammer forging experiments [26,27], which is the basis for this work.
Section 3 details the simulation setup, constitutive model, and calibra-
tion. Section 4.1 presents calibrated model parameters, their impact
on flow stress predictions, and the role of uncertainties. Section 4.2
discusses the optimal blow efficiency selection, leading to validation
of the model against experimental observations. Section 4.3 further
analyses the influence of uncertainty on predictions under various
process conditions. Section 5 provides a summary of the findings.

2. Hammer forging and microstructure characterisation

As this work builds upon hammer forging experiments conducted
by Hill et al. [26,27], a brief account of the process parameters and
characterisation of the microstructures before and after deformation are
detailed in this section.

2.1. Hammer forging process

Hill et al. [26,27] conducted hammer forging on 24 ring speci-
mens, using eight different process conditions. These process conditions
include two soaking temperatures (1030 ◦C and 1300 ◦C) and four
different lubricant variations — unlubricated (U), synthetic water-
based lubricant (S), graphite water-based lubricant (G) and graphite–
molybdenum disulphide grease (GM). The specimens were extracted
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Fig. 1. (a) The layouts showing stages in hammer forging process; (b) Top view of the sample distribution. The samples are hammer forged after induction heating at 1030 ◦C
and 1300 ◦C followed air cooling. The distribution of deformed samples show variations in the deformed geometry, which could be caused by heterogeneity in materials and/or
the process parameters. U — unlubricated condition. 1 and 2 refer to 1030 ◦C and 1300 ◦C respectively.

from a drawn 708M40 round bar in the hardened and tempered ‘‘T’’
condition, with a hardness range of 248–302 HB. Prior to forging, all
cylindrical billets were machined to have an outer diameter of 65 mm,
a wall thickness of 16.25 mm and a height of 20 mm.

The schematic representation of the hammer forging process is
shown in Fig. 1(a). The billets were heated using the induction method,
applying 350 kJ of energy for 6.5 s to heat samples to 1030 ◦C, and
413 kJ for 7.5 s to reach 1300 ◦C. While Hill et al. [26,27] examined
lubricated and unlubricated conditions, the current research focuses
only on the unlubricated condition for simplicity. In addition, the lower
flat die was maintained at temperature above 100 ◦C. Further, the
blow energy of the hammer falling under gravitational acceleration
was determined to be 21.5 kJ. The process parameters include constant
blow energy, fixed initial billet temperature, transfer time from heater
to die, dwell time (pre-forging), die temperatures, billet-die friction,
convective heat transfer coefficient, and blow efficiency (𝜂). The blow
efficiency is the fraction of total input energy that is available for plastic
deformation of the material. It is shown in several studies the blow
efficiency ranges between 0.3 and 0.6 for ‘‘hard’’ blows, which finish
with a flash after each blow [28–30]. The geometry of the samples after
forging at 1030 ◦C and 1300 ◦C in unlubricated condition are shown in
Fig. 1(b). While U indicates the unlubricated condition, 1 and 2 indicate
the temperatures 1030 ◦C and 1300 ◦C respectively. The figure shows
the considerable variation in the geometry of the deformed samples.
For instance, observe the variation in the inner diameters of the samples
after hammer forging. This could be caused by the variation in material
properties, hammer forging process parameters, or the combination of
the two, which is the primary focus of the current article.

2.2. Microstructural characterisation

Since the mechanical properties of materials reflect the behaviour
of their inherent microstructures, undeformed and forged samples were
characterised to understand how the microstructure evolves during
hammer forging. The samples for microstructural observation were
extracted according to the schematic shown in Fig. 2. Standard met-
allographic procedures were employed to prepare sample surfaces for
observation under microscopes. Sample surfaces were etched using 2%
Nital solution to observe under scattered electron (SE) mode in FEI
Magellan HR FEG-SEM operating at 5 kV. Unetched surfaces were used
for performing electron backscattered diffraction (EBSD) using Tescan
Mira LC FEG SEM equipped with an Oxford systems EBSD symmetry
detector operating at 20 kV and 27 nA. Fe-BCC phase was indexed using
AZtecCrystal Version 4.3 software, where the step size was maintained
between 0.1 to 0.3 μm. The MTEX toolbox was used to analyse the
resulting inverse pole figure (IPF) maps. The as-received material was
also observed under the optical microscope to study the microstruc-
ture in undeformed condition, which was found to be completely

Fig. 2. Schematic representation of undeformed and forged 708M40 specimen indi-
cating the surface used for microstructural measurements using electron back-scattered
diffraction and scanning electron microscopy.

martensitic in nature, as shown in Fig. 3(a). The undeformed state
was also subjected to SEM-EDX mapping, to obtain information about
the elemental distribution, which revealed the preferential segregation
of Cr and Mn (although mild) throughout the material, as shown in
Fig. 3(b), (c) and (d). It can be observed in Fig. 3(b), the vertical bands
appearing dark in contrast (as pointed in the figure) are the regions of
preferential enrichment by Cr and Mn (Fig. 3(c and d)). However, the
segregation of Cr and Mn did not produce any change in the type of
phases present in the undeformed material.

The deformed materials were first studied under SEM, in order to in-
vestigate the microstructure after forging. Fig. 4 shows the micrographs
of the sample forged at 1030 ◦C. The microstructure show narrow
bands of martensite (region 2), as shown in Fig. 4, whereas the rest
of the material consist of a mixture of microstructures consistent with
upper and lower bainite (region 1). This heterogeneity appears to be
due to the aforementioned chemical banding, which already existed
in the undeformed material, creating difference in the transformation
kinetics upon heat treatment. The chemical banding due to segregation
of Mn, Si and Cr aided the banded regions to transform into martensite
despite slow cooling, whereas the rest of the area transformed into
bainite. These bands that were vertical, straight and parallel to the
forging direction before deformation (Fig. 3(b), (c) and (d)) may show
distinct distribution after forging driven mainly by local heterogeneous
deformation, which is investigated later in detail.

Fig. 5(a) shows the EBSD IPF-Z maps of the undeformed sample,
which only consists of martensite. The prior austenite grain size (PAGB)
of the undeformed condition was calculated using the parent grain
reconstruction method using OI AZtecCrystal software (version 3.1), as
mentioned in [31]. The average PAGB size was calculated to be of ≈30
μm, from the parent grain reconstruction process. The microstructures
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Fig. 3. Detailed microstructural analyses of undeformed material showing (a) Optical image of undeformed 4140 steel depicting a complete martensitic structure and (b), (c) and
(d) SEM-EDX maps indicating segregation of Cr and Mn. The segregation patterns show vertical bands in the undeformed material.

Fig. 4. The secondary electron image of the sample deformed at 1030 ◦C showing
the region of interest (a) and its constituents (b and c). The microstructure consists of
narrow bands similar to those seen in Fig. 3. These are regions of martensite while the
rest of the material consists of bainite.

of samples hammer forged at 1030 ◦C and 1300 ◦C are shown in
Fig. 5(b) and Fig. 5(c) respectively. The average grain size (of the
marteniste and bainite packets) of the former is ≈10 μm, the latter
possess a larger average grain size of ≈40 μm. The smaller grain size in
Fig. 5(b) is caused by slower grain growth at lower forging temperature
(1030 ◦C) and the presence of narrow bands comprising ≈12% area
fraction within the microstructure. However, for samples forged at
1300 ◦C, faster grain growth at higher processing temperature and the
presence of the narrow bands at lower area fraction (≈6%) resulted in
relatively higher average grain size within the microstructure.

In summary, the resultant microstructure after hammer forging
appears to be a mixture of martensite and bainite with the strong
dependence on temperature. The forging temperature influences the
grain size of the prior austenite leading to difference in the bainite
packet size of the final microstructure after cooling. The observed
variation in the microstructure after forging at various temperatures are
expected to affect the mechanical properties, thereby influencing the
performance of the steel. Such heterogeneities in the high-temperature
microstructure during forging could be one of the main factors that
manifested as variations in deformed shapes in Fig. 1(b). In order to

understand the effect of material and process parameters on the flow of
metals (i.e. deformed shapes) during hammer forging, a detailed finite
element analysis is employed in the next section.

3. Numerical framework

This section first describes the simulation setup used in the current
study. Next, it outlines the constitutive model used to predict the ther-
momechanical response. Finally, a detailed overview of the calibration
process, used to obtain optimal parameters, is presented.

3.1. Finite element analysis of hammer forging

Hammer forging simulations were conducted using DEFORM®, a
commercial finite element analysis software designed for metal forming
operations [32]. The workpiece geometry was defined as a cylinder
(outer radius — 32.5 mm, wall thickness — 16.25 mm, height —
20 mm), following the experimental setup (Fig. 6(a)). This workpiece
was used across four stages to replicate experiments of Hill et al.:

1. Heating up stage
2. Transfer from a furnace onto a die (Fig. 6(a))
3. Dwell on a die (Fig. 6(b))
4. Hammer forging (Fig. 6(c))

Upper and lower dies were introduced depending on the stage. In
the first stage, nodes were assigned the initial temperature, assum-
ing a homogeneous temperature distribution. Then, the heat transfer
between air and metal was modelled in the second stage. The third
stage introduced the bottom die for simulating heat conduction during
the dwell, and in the final stage, movement of the top die simulated
hammer forging.

Accurate mesh size is crucial for capturing local field fluctuations. In
order to obtain the optimum mesh size, a mesh refinement study was
performed to analyse strain distribution after forging with a varying
number elements. Fig. 7 shows strain distributions for 500, 1000, 1500,
and 2000 elements. Minimal changes in strain distribution beyond 1500
elements indicate that this is the optimal element count.

Boundary conditions included friction between the workpiece and
dies, and heat transfer between the workpiece and its surroundings. Dry
friction at elevated temperatures was modelled using the constant shear
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Fig. 5. IPF-Z maps showing indexed-BCC crystal structure from microstructures of (a) undeformed, (b) Hammer forged at 1030 ◦C and (c) Hammer forged at 1300 ◦C of 4140
steel. FD refers to the forging direction, while TD the transverse direction. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.).

Fig. 6. Hammer forging stages modelled in the finite element analysis software. Figures (a), (b) and (c) show predicted temperature variations in the component at different
process stages. Undeformed geometry is displayed on figures (a) and (b).
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Fig. 7. The change in a distribution of effective strain within a component after forging depending on a number of elements. The strain distribution stabilises in models with
more than 1500 elements.

friction law, with a friction factor of 0.7 for forging [32,33]. The heat
transfer coefficient between the workpiece and environment was set to
25 𝑊

𝑚2
⋅𝐾

, while the heat transfer coefficient between the workpiece and

both dies was set 500 𝑊

𝑚2
⋅𝐾

during the dwell stage, increasing to 5 ⋅ 103

𝑊

𝑚2
⋅𝐾

during hammer forging [32].
Movement controls were applied to both dies: the upper die repli-

cated hammer movement, while the lower die remained stationary.
Deformation continued until the hammer’s kinetic energy was dissi-
pated by plastic and elastic deformation. The hammer’s blow energy
was 21.5 ⋅ 106 𝑁 ⋅𝑚, and its mass was 1334 𝑘𝑔. Blow efficiency (𝜂) was
calibrated against experimental observations.

Each operation required the configuration of simulation controls.
The transfer and dwell stages were duration-controlled, wherein 3
s was considered for transfer and 1 s for dwell before forging. An
adaptive time step (0.001 to 5 s) was used to improve simulation
efficiency, requiring the maximum of 3000 steps for the transfer stage
and 1000 steps for the dwell stage. Further, a stroke per step equal to
0.05 mm/step was used for hammer forging simulations.

3.2. Constitutive equation for modelling flow stress

To accurately model hammer forging, it is essential to implement
a model that includes strain rates beyond the standard experimen-
tal range. In the current study, this is achieved by using the hyper-
bolic sine relationship between stress and strain rate [19], which is
widely adopted in industry for simulating steel deformation at elevated
temperatures. The equation is

𝜀̇ = 𝐴[sinh(𝛼 𝜎)]𝑛 exp(−𝑄∕(𝑅𝑇 )), (1)

where 𝑄, 𝑛, 𝐴, 𝛼 are optimised parameters. 𝑄 — the activation energy
(J/mol), which defines material’s softening with increasing tempera-
ture. 𝐴 is the parameter that linearly scales the overall magnitude of the
strain rate 𝜀̇, while 𝛼 stretches or condenses the stress 𝜎 in the argument
of the hyperbolic sine function. 𝛼 directly influences how sensitive the
material’s strain rate is to stress. A higher 𝛼 leads to more pronounced
sensitivity to stress changes, while a lower 𝛼 leads to more gradual
changes in the strain rate with stress. 𝑛 characterises the hardening
rate with an increasing strain rate. The physical significance of these
parameters is investigated only in a handful of studies [34,35]. While
it is reported that the parameters 𝑛 and 𝛼 are constants independent
of temperature, composition and microstructure of the material, the
activation energy is shown to be a function of alloying elements of
steels. In particular, it is demonstrated that 𝑄 decreases with the carbon
content, while it increases with the other alloying elements. It is also
suggested that 𝐴 varies with the activation energy and plays a sig-
nificant role in determining the peak stress during thermomechanical
processing [34,35]. This implies that the parameters 𝐴 and 𝑄 can be

employed to reflect variations in the composition, and therefore the
microstructure, of steels, which may have resulted in the differences in
deformed geometries in Fig. 1(b)

An alternative form of Eq. (1) exists, where the stress is predicted
as the function of 𝜀̇ and 𝑇 , given as

𝜎 = (1∕𝛼) sinh−1[(𝑍∕𝐴)(1∕𝑛)], (2)

where 𝑍 is a Zener–Hollomon parameter, which can be calculated by
𝑍 = 𝜀̇𝑒𝑄∕(𝑅𝑇 ). It is evident from Eq. (2) that the stress (𝜎) is constant,
if the relationship between 𝑍 and 𝐴 maintains. Hence, if the model
parameters 𝑛 and 𝛼, as well as the process state variables 𝑇 , 𝜎, and 𝜀̇,
are constant, both Eqs. (1) and (2) will yield the same outputs as long
as 𝑒𝑄∕𝐴 remains constant.

Due to its simplicity, the stated Eq. (1) cannot fully represent
material behaviour. Instead, it operates based on the assumption that
flow stress remains constant regardless of strain. The model ability can
be expanded to account for strain hardening as well as softening due to
recrystallisation. However, the latter is excluded in the current study as
the specimen undergoes high deformation rates during hammer forging
allowing a limited scope for the recrystallisation process during defor-
mation. Therefore, the reduction in the strain hardening rate (𝜕 𝜎∕𝜕 𝜀)
would only result from dynamic recovery of dislocations. As the strain
increases, the stress 𝜎 approaches 𝜎∗, where there is an equilibrium
between dislocation generation and recovery. The flow stress can be
modelled as follows [36]:

𝜎 = [𝜎∗2 + (𝜎2
0
− 𝜎∗

2
)𝑒−𝛽 𝜀]0.5, (3)

where 𝜎0 is the yield, 𝜎∗ — the steady-state stress due to dynamic
recovery and 𝛽 is the coefficient of dynamic recovery. When the plastic
𝜀 equal to 0, Eq. (3) results in the flow stress equal to the yield stress
(𝜎 = 𝜎0). As 𝜀 increases, the term 𝑒−𝛽 𝜀 diminishes to 0, resulting in
𝜎 = 𝜎∗. Both 𝜎∗ and 𝜎0 are predicted by the hyperbolic sine model
(Eq. (2)). Therefore, two sets of parameters are derived and used, which
are 𝛼∗, 𝑄∗, 𝑛∗, 𝐴∗ and 𝛼0, 𝑄0, 𝑛0, 𝐴0.

3.3. Derivation of model parameters

For the convenience of parameter calibration, the natural logarithm
of Eq. (1) is applied to obtain the linear equation:

ln(sinh(𝛼 𝜎)) = ln 𝜀̇∕𝑛 +𝑄∕(𝑛𝑅𝑇 ) − ln𝐴∕𝑛 (4)

This equation defines the linear relationship between modified process
state variables ln(𝜀̇), ln(sinh(𝛼 𝜎)) and 𝑇 −1. The first parameter to obtain
is 𝑛. It is derived by differentiation of ln(sinh(𝛼 𝜎)) over ln 𝜀̇, which gives:

𝑛 =
[ 𝜕 ln(sinh(𝛼 𝜎))

𝜕 ln 𝜀̇

]−1
(5)
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Fig. 8. The change of modelling output while varying 𝛼∗: (a) Standard deviation of 𝑛∗; (b) Standard deviation of 𝑄∗; (c) Root mean squared error of predictions. The model
performs optimally at 𝛼∗ within the range of 0.005 to 0.01.

Then, 𝑄 is obtained from the derivative of ln(sinh(𝛼 𝜎)) over 𝑇 −1 result-
ing in

𝑄 =
[ 𝜕ln(sinh(𝛼 𝜎))

𝜕(1∕𝑇 )

]

𝑛𝑅, (6)

where 𝑛 is the mean of the whole dataset. 𝐴 is calculated by determin-
ing the value of ln(sinh(𝛼 𝜎)) at ln 𝜀̇ = 0 through a regression analysis.
The parameter is calculated as follows:

𝐴 = (sinh[𝛼 𝜎(𝜀̇ = 1)])𝑛 ⋅ 𝑒−
𝑄

𝑅𝑇 (7)

This way 𝐴 is determined for each temperature condition. The param-
eter 𝛼 significantly impacts 𝑛, 𝑄, and 𝐴. Determining 𝛼 involves testing
various 𝛼 values while fitting the other parameters. For each 𝛼, the
model’s performance is assessed by predicting stress (𝜎) using Eq. (2)
and the fitted parameters. The optimal 𝛼 is then chosen as the one that
minimises the error between predicted and experimental stress values.

The dynamic recovery coefficient is obtained by applying the natu-
ral logarithm to Eq. (3), resulting in the transformed equation:

ln(𝜎∗
2
− 𝜎) = ln(𝜎∗2 − 𝜎2

0
) − 𝛽 𝜀 (8)

This equation is then fitted to experimental data to determine 𝛽 under
various deformation conditions.

In order to calibrate the constitutive model, the experimental ther-
momechanical responses recorded by Lin et al. [19], Kim et al. [18]
and Venet et al. [20] under varying elevated temperatures and strain
rates are considered. These studies collectively offer a comprehensive
independent dataset essential for reliable model calibration.

4. Results and discussion

This section first describes the calibration results of the constitutive
model and discusses the effect of uncertainties within these parameters
on hammer forging. Then, the role of hammer forging parameters in
the post-forging geometry predictions is discussed in detail.

4.1. Constitutive model

4.1.1. Model parameters to predict 𝜎∗
The initial model parameters are derived to first predict the peak

stress (𝜎∗). The standard deviation in 𝑛∗ and 𝑄∗, and the error in stress
predictions are shown in Fig. 8(a), (b) and (c) respectively. The model
demonstrates the optimal performance when 𝛼∗ falls within the range
of 0.005 to 0.01 MPa−1, as illustrated in Fig. 8. In this range, the fitted
constitutive model minimises the root mean squared error between
predicted and measured 𝜎∗, with the calibrated model showing an error
less than 7 MPa (Fig. 8(c)). Furthermore, the standard deviation of
both parameters 𝑄∗ and 𝑛∗ reaches minimum within the same range
of 𝛼∗ (Figs. 8(a) and 8(b)), indicating reduced dependency on process
inputs. Therefore, the model would be robust and reliable, independent
of variations in the input data. The central value within the observed
optimal range for 𝛼∗, which is 0.0075 MPa−1, is selected for subsequent
calibrations. It is worth noting that the obtained range (0.005 to 0.01
MPa−1) and the average values of 𝛼∗ are in line with other numerical
studies (e.g. [37]).

Based on three datasets containing flow stress data and the optimal
value of 𝛼∗, three separate sets of model parameters are derived as
shown in Table 2. These parameters represent the mean values of the
corresponding distributions of parameters obtained after calibration.
Figs. 9(a) and 9(b) show the relationship between the optimised pa-
rameters of the constitutive model, which are used to predict the peak
stress, 𝜎∗. Generally, 𝑄∗ and 𝐴∗ can be considered in combination as
there is a strong correlation between these parameters, as illustrated
in Fig. 9(a). By using the average value of 5.89 for 𝑛∗ from all three
datasets, the following relationship between 𝑄∗ and ln(𝐴∗) can be
derived:

𝑄∗ = −58490 + 12628 ⋅ ln(𝐴∗) (9)

with a standard deviation of error equal to 8769 J/mol.
The relationship between 𝑄∗ against 𝑛∗, shown in Fig. 9(b), reveals

no strong correlation. 𝑄∗ ranges from 307 kJ/mol and 415 kJ/mol,
while 𝑛∗ is between 5.2 and 6.4 (Fig. 9(b)). The scatter plot indicates
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Table 2
Three sets of constitutive model parameters obtained from the flow stress data provided by the specified authors.

𝛼∗ (MPa−1) 𝑄∗ (J/mol) 𝑛∗ 𝐴∗ (s−1) 𝛼0 (MPa−1) 𝑄0 (J/mol) 𝑛0 𝐴0 (s−1)

Model 1 (Lin et al.) 0.0075 329 075 6.06 2 ⋅ 1013 0.0075 240 489 7.03 1.25 ⋅ 1011

Model 2 (Kim et al.) 0.0075 340 808 5.97 4.5 ⋅ 1013 0.0075 273 783 7.95 6.3 ⋅ 1013

Model 3 (Venet et al.) 0.0075 381 174 5.68 1.9 ⋅ 1015 0.0075 604 778 10.30 4.2 ⋅ 1026

Fig. 9. Relationship between derived model parameters: (a) Linear relationship between 𝑄∗/(𝑛∗𝑅) and ln(𝐴∗); (b) The scatter plot of 𝑄∗ against 𝑛∗ with corresponding bounding
boxes covering each dataset used for calibration.

that the alloy in Lin et al. and Kim et al. [18,19] showed approximately
close response to a change in deformation rates and temperatures. This
is evident from bounding boxes of these two generated sets of model
parameters overlapping each other (Fig. 9(b)). On the other hand, the
set of parameters, generated based on the dataset of Venet et al. [20], is
on the other spectrum. The material displayed higher activation energy
— 𝑄∗, but lower 𝑛∗. A higher 𝑄∗ indicates that the material in the
work of Venet et al. is more sensitive to temperature changes according
to Eq. (6). Averaging constitutive model parameters, used to predict
maximum stress, gives values of 𝑄∗, 𝑛∗, and 𝐴∗ as 350352 J/mol, 5.9,
and 1.2 ⋅ 1014 s−1, respectively. Note that the arithmetic mean was used
for 𝑄∗ and 𝑛∗, while the average for 𝐴∗ was calculated logarithmically,
given Eq. (4).

4.1.2. Model parameters to predict 𝜎0
The published flow stress data also provided yield stress values

(𝜎0) at different temperatures (𝑇 ) and strain rates (𝜀̇), which are used
to obtain 𝑄0, 𝑛0 and 𝐴0. In order to ensure comparability between
two sets of model parameters for predicting both 𝜎0 and 𝜎∗, 𝛼0 is set
equal to 𝛼∗ as 𝛼 significantly influences the other model parameters.
Table 2 outlines the derived parameters to predict 𝜎0. In two sets of
parameters (Model 1 and 2), the activation energy 𝑄0 is significantly
less than 𝑄∗, indicating that the yield stress is relatively less dependent
on temperature changes in comparison to peak stress (𝜎∗). On the
contrary, Model 3 predicts the material yield stress to be more sensitive
to temperature variations, characterised by significant 𝑄0, which is
bigger than corresponding 𝑄∗. Given the set of calibrated 𝑄0 and ln(𝐴0),
the relationship between both parameters was derived:

𝑄0 = −28300 + 10263 ⋅ ln(𝐴0) (10)

4.1.3. Dynamic recovery coefficient
The calibration results of the dynamic recovery coefficient, 𝛽, for

different process conditions are presented in Fig. 10. 𝛽 is observed to be
higher at lower strain rates, specifically those below 1 s−1. The effect of

Fig. 10. The dependency of the dynamic recovery coefficient (𝛽) on process conditions.
𝛽 shows greater sensitivity to temperature at lower strain rates, and increases as
temperature rises.

temperature on 𝛽 is only evident at these lower strain rates, indicating
that 𝛽 increases as temperature rises. In contrast, 𝛽 at higher strain
rates remains minimal, regardless of temperature. These observations
indicate that the dynamic recovery coefficient is a function of a strain
rate and temperature as noted in other studies (e.g. [38]). Further,
the trends in 𝛽 reported in the current study are comparable with
other numerical and experimental observations (e.g. [39,40]), which
demonstrated that dynamic recovery is highest at higher temperatures
and lower strain rates. In addition, from Fig. 10, for the strain rates
of 10 and 50 s−1, the average 𝛽 coefficient is 9.5 with the standard
deviation of 1.61. Due to the lack of compression stress–strain data at
strain rates above 50 s−1, a 𝛽 value of 9.5 is used to predict the flow
stress at higher strain rates.
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Fig. 11. Boxplots illustrating the distributions of constitutive model parameters obtained from each dataset: (a) The distribution of 𝑛∗ and 𝑛0; (b) The distribution of 𝑄∗ and 𝑄0.
Constitutive model parameters used to predict the yield stress (𝑛0 and 𝑄0) exhibit a greater variation.

4.1.4. Uncertainty in flow stress
The heterogeneity in material response can be effectively addressed

by using a range of model parameters within the hyperbolic sine model,
instead of relying only on mean values. This approach allows for
generation of a wider range of stress–strain (𝜎 - 𝜀) relationships, thus
accommodating the heterogeneity observed in materials. Achieving this
involves sampling parameters from their respective distributions and
integrating them into stress prediction. The distributions of parameters
is shown in Fig. 11. The figure shows considerable variations in 𝑛0
and 𝑄0 compared to that of 𝑛∗ and 𝑄∗. This resulted in the variation
of 𝜎∗ across the three models more closely aligned compared to that
of predicted 𝜎0. Due to the large span in 𝑄0 and 𝑛0, the associated
uncertainty was quantified by sampling parameters from three distinct
distributions separately. Then, the predictions of corresponding stress
values are made, followed by the combination of these predictions
through the calculation of average values.

Fig. 12(a) shows the measured uncertainties in prediction of the
peak stress (𝜎∗), obtained by sampling and propagating model parame-
ter values from their corresponding distributions. These uncertainties
represent the sigma confidence interval of predictions (an example
shown in Fig. 12(b)). From the figure, the model shows that confidence
in predictions increases as temperature rises. At lower temperatures,
the strain rate has a little effect on prediction confidence. However,
at higher temperatures, increased strain rates significantly reduce con-
fidence. This behaviour can be attributed to the Arrhenius equation
𝑒𝑥𝑝(𝑄∕(𝑅𝑇 )) in the constitutive model, whereby increasing temper-
ature mitigates the effect of the activation energy (𝑄). As a result,
there is a greater amplification effect of 𝜀̇ on stress variations in the
Zener–Hollomon parameter — 𝑍 = 𝜀̇𝑒𝑥𝑝(𝑄∕(𝑅𝑇 )).

4.2. Hammer forging modelling

As mentioned earlier, hammer forging parameters include initial
temperature of a billet, transfer time from an induction heater onto a
lower die, dwell time (the time before the onset of hammer forging),
temperatures of top and bottom dies, friction between a billet and
dies and the blow efficiency (𝜂). The calibration of model parameters
and the effect of uncertainties are discussed thus far. In the following
subsections, the calibrated model parameters are first used to obtain the
optimal blow efficiency. Then, model parameters and blow efficiency
are validated against experimental observations. Finally, the effect
of uncertainties in model parameters on the post-forging specimen
geometry is presented in detail.

4.2.1. Hammer blow efficiency
One of crucial process parameters is the blow efficiency. The model

parameters established in the previous section can be used to estimate
the hammer blow efficiency (𝜂). Fig. 13 shows the variation in pre-
dicted height after forging, using the three sets of model parameters
(Table 2), with respect to corresponding blow efficiencies. The grey
area in the figure indicates the variation in experimental measurements
reported in Hill et al. [26]. The figure shows negligible differences
in the predicted post-forging height for the three sets, as observed in
simulations at 1030 ◦C (Fig. 13(a)) and 1300 ◦C (Fig. 13(b)). This is due
to the negligible difference in the mean derived 𝑛 across the three sets of
model parameters, while ln(𝐴) scales linearly with the mean activation
energy 𝑄, and therefore compensates a corresponding change in 𝑄. The
efficiency of hammer forging at 1030 ◦C is predicted to be 50%. At this
level, the finite element analysis predicts the height of the deformed
specimen to be 9.61 mm, which is close to the measured height of
9.5 ± 0.2 mm [26]. Further, increasing temperature from 1030 ◦C to 1300
◦C in simulations results in lower efficiency estimates, where accurate
predictions of the post-forging height, compared to the experimental
results (7.6±1 mm [26]), are achieved at 𝜂 = 40%. These predicted
blow efficiencies are in good agreement with other studies [28,29].
In addition, the small difference between blow efficiency estimates at
1030 ◦C and 1300 ◦C indicates that the derived constitutive models
accurately predict the softening of material as temperature increases.

4.2.2. Validation of the numerical hammer forging analyses
The performance of the deformation predictions within the work-

piece after hammer forging is now validated against the experimental
observations. It is observed earlier in Section 2.2 that the samples be-
fore deformation are characterised by vertical and straight segregation
bands, which are parallel to the forging direction. These bands may
show distinct distributions after deformation, which are potentially
driven by local accumulation of strain within the deformed samples.
Therefore, these distributions in experimental observations are com-
pared with that of predicted effective strain to validate the constitutive
model and hammer forging simulations.

The predicted effective strain distributions and the segregation
bands observed in experiments within the workpiece forged at 1030
◦C are shown in Fig. 14. The prediction was made using 𝜎 - 𝜀 curves
generated by the constitutive model (Section 3.2) and the associated
parameters 𝑄∗ = 350352 J/mol, 𝑛∗ = 5.9, 𝐴∗ = 1.2 ⋅ 1014 s−1, 𝑄0 =

373016 J/mol, 𝑛0 = 8.4, 𝐴0 = 1.5 ⋅ 1017 s−1, which are averages across
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Fig. 12. Uncertainty in 𝜎∗ predictions: (a) The change in uncertainty with the temperature and strain rate. The constitutive model is more confident at elevated temperatures and
reduced strain rates. (b) Examples of confidence intervals at different temperatures, given a strain rate of 1 s−1.

Fig. 13. The influence of blow efficiency on the final component height after deformation in simulations using three calibrated constitutive models. Figures (a) and (b) shows the
optimal efficiency values at two testing temperatures, 1030 ◦C and 1300 ◦C respectively, at which the predicted height falls within the range of experimental measurements.

3 datasets presented in Table 2. The model was configured with blow
efficiency of 50%, while transfer and dwell time were set to 3 s and
1 s respectively. There is a close match between the predicted strain
patterns and observed segregation patterns (deformation flow lines).
The finite element model predicts the flow lines, slightly off-centre
to the left, which exhibit bending in both directions corresponding to
regions of high strain. Similar locations and flow patterns are observed
in the experimental workpiece after deformation, further confirming
the reliability of the model. In addition, this also confirms that the
segregation bands within materials can be employed as indicators
of strain distribution after deformation. Further, the friction at the
die-workpiece contact dictates the final shape of a component after
forging. The predicted cross-sectional shape shown in Fig. 14 matches
closely with the shape observed in the experiment, which validates the
boundary conditions applied in simulations. Here, the outer boundary
appears to possess less curvature as the outer region of the workpiece
experiences more sliding compared to that of the inner region.

4.2.3. Propagation of uncertainty in stress predictions to post-forging geom-
etry

The stress response of a material reflects its local microstructure
and boundary conditions. The variations in this response, due to in-
herent heterogeneity, can be captured by introducing uncertainties in
constitutive model parameters, resulting in a distribution of stress–
strain outcomes. One approach is to randomly sample parameters (𝑄∗,

𝑄0, 𝑛∗, and 𝑛0) from distributions (Fig. 11) and use them to gener-
ate stress–strain relationships for finite element simulations, which is
computationally expensive. Alternatively, parameters can be sampled
and applied in the hyperbolic sine model to predict stress distributions
across temperature and strain rates. The confidence intervals (±𝜎𝑠𝑡𝑑 ,
±2𝜎𝑠𝑡𝑑) from these distributions provide bounds for predicted stress.
Applying these bounds in finite element models captures the range of
material flow responses.

The distributions of predicted post-forging heights for the selected
confidence interval (±2𝜎𝑠𝑡𝑑) at different temperatures and blow effi-
ciency of 40% are shown in Fig. 15, along with the measured post-
forging heights at 1030 ◦C and 1300 ◦C. The model showed the
greater variation in predicted geometry compared to the observed
measurements at both temperatures, due to the chosen confidence
intervals. Notably, uncertainties in height predictions to some extent
overlap with the observed variations in geometry at both temperature
conditions. The hammer forging model predicts the component height
with corresponding uncertainties of 10.62 ± 1.46 mm and 7.76 ± 1.54 mm,
while the experimental observations are 9.5 ± 0.2 mm and 7.6 ± 1 mm at
1030 ◦C and 1300 ◦C, respectively.

4.3. Parametric studies

A multifactorial design of experiments (DoE), summarised in
Table 3, with 3,600 simulations, investigates how process parameters
affect post-forging geometry and examines how initial uncertainties
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Fig. 14. The comparison between the predicted material flow lines (effective strain distributions) and the segregation bands observed in the cross-section of a sample hammer
forged at 1030 ◦C. Both the predicted lines and observed bands show a close match. Note that the experimental bands are vertical in nature before deformation as shown in Fig. 3.

Fig. 15. Predicted uncertainty in post-forging height at a blow efficiency of 40%,
varying with temperature, compared to observed variability in component height from
forging experiments.

Table 3
List of parameters in the parametric studies.

List of parameters Values

Initial temperature (T) 895 ◦C, 1030 ◦C, 1165 ◦C, 1300 ◦C

Blow efficiency (𝜂) 20%, 40%, 60%, 80%, 100%
Friction coefficient (𝑚) 0.3, 0.6, 0.7, 0.8
Transfer time (𝑡1) 1 s, 3 s, 9 s
Dwell time (𝑡2) 1 s, 3 s, 9 s
Flow stress −2𝜎𝑠𝑡𝑑 , −𝜎𝑠𝑡𝑑 , Mean, +𝜎𝑠𝑡𝑑 , +2𝜎𝑠𝑡𝑑

in flow stress predictions impact geometry prediction uncertainties
under varying process conditions. The DoE included ±𝜎𝑠𝑡𝑑 and ±2𝜎𝑠𝑡𝑑
confidence intervals derived from the corresponding distributions of
stress predictions. −2𝜎𝑠𝑡𝑑 in Table 3 represents the application of the
softest alloy in the finite element analysis, while the confidence limit
at +2𝜎𝑠𝑡𝑑 corresponds to the hardest alloy within the predicted range of
alloy responses. That is, this accounts for potential variations in chem-
ical compositions and starting microstructures (driven by processing
history) of the material.

4.3.1. Correlation between process parameters and modelling outputs
The relationship between modelling inputs and outputs was exam-

ined using Spearman rank correlation analysis, as shown in Fig. 16. In
the correlation matrix, coefficients closer to −1 or 1 indicate stronger
relationships. The analysis identified blow efficiency as the most dom-
inant factor, impacting all deformation-related outputs such as mean

strain, strain rate, maximum outer radius, and post-deformation height.
The initial temperature was the second most significant factor. Flow
stress variations also influenced deformation but they were less impact-
ful than other parameters. In addition, transfer and dwell times had
limited effects, with dwell time influencing lower die temperature but
not significantly affecting friction at the die-component interface and fi-
nal geometry. The changes in friction coefficient showed no correlation
with outputs. The observed weak correlation between the stated process
parameters (transfer time, dwell time and friction coefficient) and
modelling predictions is likely due to a variability introduced by other
inputs, which can be verified by performing controlled experiments.

4.3.2. Effect of time intervals
Steel manufacturing frequently faces disruptions that affect mate-

rial properties and final shapes of components. The delays between
stages, such as transfer and dwell times before forging, are important
factors for engineers to evaluate. Figs. 17(a) and 17(b) display the
effect of these process parameters on the specimen’s final height at
different temperatures. The figures show that the dwell time has more
pronounced effect on the final shape compared to that of the transfer
time. Here, higher dwell times required a larger increase in the initial
temperature in order to maintain consistent geometry.

4.3.3. Effect of friction
Friction is known to significantly influence the final shape and

properties of a forged component. In this study, a friction coefficient
of 0.7 is used to represent dry hot forging conditions (see Section 3.1).
In addition, in order to study the effect of friction further, an addi-
tional friction coefficient of 0.3 is also considered [32], representing
a lubricated hot forging condition. Blow efficiencies of 20%, 60% and
100% are also considered to study their influence in conjunction with
friction. Fig. 18 shows the variation in post-forging height for two
friction and three blow efficiencies. The figure shows that the role of
friction in hammer forging becomes more pronounced with a greater
energy input (higher blow efficiency), where a substantial reduction in
the height is observed after forging. At higher energy levels, increased
friction generates opposing forces that limit component deformation.
Frictional impact is more pronounced at higher blow efficiencies due
to the larger contact area between the dies and the component, which
further amplifies opposing forces, especially with a higher friction
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Fig. 16. Spearman Rank Correlation Analysis: This figure shows the relationships between process parameters and modelling outputs. Blow efficiency and initial temperature are
the most influential parameters affecting deformation outputs. Flow stress variations impact final geometry, but transfer and dwell time have minimal effects.

Fig. 17. Correlation between process times and the height after forging at 40% efficiency. The data indicates that dwell time has a more significant impact on height. To maintain
consistent geometry, an increase in dwell time should be balanced by a larger increase in the initial temperature.

coefficient. Thus, in addition to reinforcing the need to quantify the

blow efficiency of a machine, this analysis also suggests that the friction

coefficient should be chosen carefully while simulating hammer forging

of components forged using machines with higher blow efficiencies.

4.3.4. Uncertainty quantification
As noted earlier, the use of upper and lower confidence limits of

the flow stress prediction enables propagation of corresponding uncer-

tainties to the geometry predictions post hammer forging. Fig. 19(a)

presents the calculated uncertainties in height and outer radius, pre-

dicted at various temperatures and blow efficiencies. These uncertain-

ties are measured by the length of the confidence interval around

predictions. The finite element model exhibited decreased confidence in
predicting the final height of the component at lower efficiency inputs

and elevated temperature. This finding contrasts with the observed

uncertainty in flow stress predictions, where the hyperbolic sine model

displayed more confidence as temperature increased (Fig. 12(a)). The

reason for this difference is that a component is constrained by two
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Fig. 18. The effect of friction on the component’s height after deformation at low/high temperature, considering the blow efficiency. Friction becomes more significant at higher
efficiency.

Fig. 19. The effect of blow efficiency and temperature on the uncertainty of predicted component geometry after deformation. Uncertainty in height predictions rises at lower
efficiencies and higher temperatures, while uncertainty in outer radius predictions positively correlates with both temperature and blow efficiency.

dies during hammer forging. When blow efficiency is low, the speci-
men undergoes minimal deformation, causing little change to its top
and bottom contact surfaces from their undeformed state. This means
that any variations in flow stress will significantly affect the height
differences after forging as there are fewer opposing forces exerted
by the contact surfaces. In contrast, higher blow efficiency results
in greater deformation of the component, leading to larger contact
surfaces. Consequently, more hammer force is required during forging
to continue the deformation process. Due to the increased hammer
force, the height differences after forging become less sensitive to
variations in flow stress. This is because the larger contact surfaces
create stronger opposing forces that counteract the impact of flow stress
variations. This behaviour is also evident when examining Figs. 13a and
13b, which display the greatest reduction of a height at lower efficiency
values or energy input, while at higher efficiency there is less reduction
in a post-forging height.

5. Conclusions

The study optimised the constitutive model based on the hyperbolic
sine equation (consisting of 𝛼, 𝑄, 𝑛, and 𝐴 as key parameters) to
predict the deformation behaviour of 708M40 steel at elevated temper-
atures. This optimisation, using published datasets from compression

tests, allowed accurate predictions of steel deformation under specific
processing conditions, with corresponding confidence intervals. These
predictions were further integrated into finite element analysis of ham-
mer forging, enabling the propagation of uncertainty in flow stress
predictions to assess its impact on post-forging geometry.

The key conclusions are as follows:

1. The constitutive model was calibrated to 0.0075 MPa−1 by vary-
ing 𝛼 to maximise the accuracy of peak stress predictions. In
order to achieve consistent model performance, strong correla-
tions between 𝑄∗ and 𝐴∗ must be maintained for peak stress
predictions, and between 𝑄0 and 𝐴0 for yield stress predictions.
For predicting maximum stress, the parameters 𝑄∗, 𝑛∗, and 𝐴∗

were optimised to be 350352 J/mol, 5.9, and 1.2 ⋅ 1014 s−1,
respectively, based on the average of three model parameter sets.

2. Confidence in flow stress predictions increases as temperature
rises. However, it decreases at higher strain rates, especially
at elevated temperatures. This indicates that the constitutive
model becomes less reliable at lower temperatures. The trend is
attributed to the exponential term in the hyperbolic sine equa-
tion, where higher temperatures reduce the impact of activation
energy variability on stress predictions.

3. Blow efficiency, calibrated to 50% at 1030 ◦C and 40% at
1300 ◦C, enabled accurate height predictions. At 40% efficiency,
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the model predicted final heights of 10.62 ± 1.46 mm and 7.76 ±
1.54 mm, compared to experimental values of 9.5 ± 0.2 mm

and 7.6 ± 1 mm at 1030 ◦C and 1300 ◦C, respectively. Large

uncertainties in height predictions result from the chosen confi-

dence interval (±2𝜎𝑠𝑡𝑑). Predicted flow lines matched experimen-

tal observations, confirming the model’s accuracy in simulating

deformation.

4. In contrast to the uncertainty trends in flow stress predic-

tions, simulations of hammer forging at higher temperatures

showed lower confidence in height predictions, particularly at

low blow efficiencies. However, increasing efficiency improves

confidence. Higher blow efficiency causes greater workpiece

reduction and greater die-metal contact, enhancing resistance to
deformation and minimising the effect of flow stress uncertainty.
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Appendix. Constitutive model parameters

1. The parameters in Constitutive Model 1 are presented in Tables A.1

and A.2 and calibrated based on experimental data in the

research article by Lin et al. [19], taking into account that

𝛼 = 0.0075 MPa−1.

2. The parameters in Constitutive Model 2 are presented in Tables A.3

and A.4 and calibrated based on experimental data in the

research article by Kim et al. [18], taking into account that

𝛼 = 0.0075 MPa−1.

3. The parameters in Constitutive Model 3 are presented in Tables A.5

and A.6 and calibrated based on experimental data in the

research article by Venet et al. [20], taking into account that

𝛼 = 0.0075 MPa−1.

Table A.1
Calibrated parameters 𝑄∗, 𝐴∗, 𝑄0 and 𝐴0 in Model 1 at varying strain rates.

Strain rate (s−1) 𝑄∗ (J/mol) 𝐴∗ (s−1) 𝑄0 (J/mol) 𝐴0 (s−1)

0.01 308 115 1.84E+12 237 822 3.91E+10
0.1 324 230 1.23E+13 237 348 1.90E+11
1 323 022 9.78E+12 185 010 2.21E+09
10 329 619 1.61E+13 252 033 1.70E+11
50 360 390 2.98E+14 290 232 1.15E+13

Table A.2
Calibrated parameters 𝑛∗ and 𝑛0 in Model 1 at varying temperature.

Temperature (◦C) 𝑛∗ 𝑛0

850 5.73 6.47
950 5.88 7.08
1050 6.24 7.34
1150 6.38 7.22

Table A.3
Calibrated parameters 𝑄∗, 𝐴∗, 𝑄0 and 𝐴0 in Model 2 at varying strain rates.

Strain rate (s−1) 𝑄∗ (J/mol) 𝐴∗ (s−1) 𝑄0 (J/mol) 𝐴0 (s−1)

0.05 319 349 5.55E+12 258 699 1.98E+13
0.5 395 588 9.21E+15 288 867 1.99E+14
5 307 486 1.84E+12 273 783 6.28E+13

Table A.4
Calibrated parameters 𝑛∗ and 𝑛0 in Model 2 at varying temperature.

Temperature (◦C) 𝑛∗ 𝑛0

900 6.03 9.92
1000 5.91 5.98

Table A.5
Calibrated parameters 𝑄∗, 𝐴∗, 𝑄0 and 𝐴0 in Model 3 at varying strain rates.

Strain rate (s−1) 𝑄∗ (J/mol) 𝐴∗ (s−1) 𝑄0 (J/mol) 𝐴0 (s−1)

0.01 415 148 4.21E+16 650 964 1.10E+30
0.1 354 398 1.60E+14 493 179 3.97E+22
1 396 361 7.99E+15 684 871 5.52E+29
10 358 788 2.48E+14 590 096 1.29E+24

Table A.6
Calibrated parameters 𝑛∗ and 𝑛0 in Model 3 at varying temperature.

Temperature (◦C) 𝑛∗ 𝑛0

950 5.94 11.12
1000 5.61 8.46
1100 5.96 11.86
1250 5.2 9.77
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