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A B S T R A C T

The phase-field method has been used widely in the analysis of fracture due to its easy description of cracks,
which obviates the introduction of geometric discontinuities in the domain. The discrete crack is regularised
as a smeared surface, defined by a phase-field variable, and there is no need to explicitly define a crack path.
Due to the smeared nature of the phase-field method, the crack opening and crack sliding do not directly result
from a phase-field computation, but need to be computed a posteriori. Herein, we provide a complete overview
of methods to compute the crack opening and crack sliding, resulting from the phase-field computation,
namely the auxiliary field method, the integration method and the Taylor expansion method. The advantages
and disadvantages of the methods are demonstrated by numerical examples, for crack opening/sliding. The
auxiliary field and integration methods provide stable and relatively accurate results, but the Taylor expansion
method is the faster approach to compute the crack opening/sliding, with a guaranteed accuracy.

1. Introduction

Phase-field modelling of cracks has gained popularity in the analysis
of material failures over the past two decades, e.g., [1]. Developed
initially for the analysis of brittle fracture, the method has now also
been extended to cohesive fracture, e.g., [2]. In the phase-field method
the discrete crack is regularised and represented as a smeared surface
by a scalar variable (phase field). Due to the regularisation the intricate
task of tracking a discrete crack surface, especially in 3D simulations,
is avoided. Thus, the phase-field method allows to elegantly simulate
complicated fracturing phenomena, including initiation, propagation,
coalescence and branching.

The vast majority of phase-field analyses have been applied to
brittle fracture, i.e. without surface tractions on the crack, e.g., [1,3,4].
Nevertheless, in many natural and human-induced fractures there are
tractions on the crack surface, for instance in hydraulic fracturing and
cohesive fracture. To include these tractions, one needs to know the
crack opening, and in case of the mixed-mode fracturing, the crack
sliding in order to compute the tractions applied on the crack surface.

For brittle fracture Chukwudozie et al. [5] proposed an integral
approach to compute the crack opening in the normal direction, which
they applied to the analysis of hydraulic fracture. The normal vector is
defined by the phase-field gradient. Later, Lee et al. [6] and Yoshioka

∗ Corresponding author.
E-mail address: r.deborst@sheffield.ac.uk (R. de Borst).

et al. [7] used a level-set approach to obtain the crack normal vector,
and this is applied in the integral of normal crack opening computation.
The accuracy of this approach depends on the level set function.
Recently, Chen et al. [8] extended this approach to include the shear
direction for the brittle and cohesive fracture. Another approach to
compute the crack opening in the normal direction is the integration of
the functional of the degradation function and the homogeneous energy
function [9–14]. Later, Feng et al. [15,16] extended this concept for
the computation of crack sliding in the shear direction. They computed
the cohesive strain in the regularised crack area, used as the integrand
in the line integral. Fei et al. [17] employed the strain in the phase
field regularised area to compute the crack opening in the normal
direction. The force balance relation is considered in their analysis. The
Dirac-delta function approximation from Chen et al. [18] is used in
their formulation. Yin et al. [19] employed the representative crack
element (RCE) concept to analyse the cohesive fracture problem. In
their analysis the crack opening/sliding is obtained from the strain of
the RCE element.

For cohesive fracture Verhoosel and de Borst [2] treated the co-
hesive interface in a smeared sense by the phase-field regularisation
technique, and introduced an auxiliary field to model the crack open-
ing/sliding, see also [20,21]. The auxiliary field is considered as an
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Fig. 1. Representation of a crack surface: (a) discrete form 𝛤𝑐 ; 𝛤 +
𝑐

and 𝛤 −
𝑐

are crack boundaries with positive and negative sides, respectively; (b) smeared form 𝛤𝜉 (blue area).
Boundary 𝛤𝑢 is prescribed with a displacement 𝐮̄; 𝛤𝑡 with a prescribed traction 𝐭̂.

independent variable in the simulation, similar to the displacement
field. In their works, the exponential form of the phase field model (also
known as AT2 model) has been considered. The support of the expo-
nential function is spread over the entire domain. Recently, Chen and
de Borst [22] introduced the sinusoidal form of the phase field model
(known as PCM model) to regularised the crack surface, confining the
smeared crack to a localised area. However, the auxiliary field approach
requires the prescription of the auxiliary field (crack opening/sliding)
degrees of freedom in the entire domain, similar to the displacement
degrees of freedom.

Nguyen et al. [23] proposed a discrete-crack like approach to com-
pute the crack opening/sliding. They applied the first order Taylor
expansion to approximate the displacement and then computed the
mixed-mode crack opening/sliding at two closed points along the crack.
This is a direct approach, comparing to the integral approach and
auxiliary approach. Obviously the solution of the crack opening/sliding
relies on the choice of these points, and later an analytical expression
was derived to compute the optimal location of these points [24].
Kumar et al. [25] and Paggi et al. [26] also suggested a direct concept
to compute the crack opening/sliding. They employed the phase-field
as the interpolation variable for the crack opening/sliding.

In this contribution, we will consider the integral approach of Chuk-
wudozie et al. [5], further extended by Chen et al. [8], the auxiliary
field approach and the Taylor expansion approach for the computation
of the crack opening/sliding from the result of a phase-field analysis.
The three approaches are concisely derived and discussed, and then
compared in this contribution, including pros and cons. The study aims
to provide a comprehensive illustration of the computation of the crack
opening and crack sliding in the framework of phase-field modelling.
The derivation of the formulations will be given.

We will start this contribution with a concise description of phase-
field modelling. Subsequently, the ways to compute crack opening
and crack sliding will be derived for the different approaches. An
assessment is given in Section 4, where two examples are considered
with complex crack patterns.

2. Phase-field model for fracture

In this section we will summarise the phase-field method for mod-
elling fracture. Fig. 1 shows an open domain 𝛺 with an internal
discontinuity 𝛤𝑐 with a possible traction 𝒑 on this internal boundary.

2.1. Smeared crack representation

The key point of the phase-field method is the replacement of a dis-
continuity, denoted here as 𝛤𝑐 , by a smeared surface 𝛤𝜉 , as illustrated
in Fig. 1(b). The width of 𝛤𝜉 is governed by a regularisation parameter
𝓁. An evolving phase field 𝑑 (𝐱) is employed to describe 𝛤𝜉 . 𝑑 (𝐱) = 1

at the centre of 𝛤𝑐 , and is vanishing away from 𝛤𝑐 . The form of 𝑑 (𝐱) is
determined by a variational problem:

𝑑 (𝐱) = Arg

{
inf
𝑑∈𝑑 𝛤𝑑 (𝑑)

}
with 𝛤𝑑 (𝑑) = ∫𝛺 𝛾𝑑 (𝑑)d𝑉 (1)

where 𝑑 =
{
𝑑
||| 𝑑 (𝐱) = 1 ∀𝐱 ∈ 𝛤𝑐

}
. 𝛤𝑑 denotes the total crack length

per unit area. 𝛾𝑑 represents the crack density function per unit volume.
In this study the following phase field function is employed [13]:

𝑑
(
𝑥𝑛
)
=

⎧⎪⎨⎪⎩

1 − sin
(|𝑥𝑛|

𝓁

)
− 𝜋𝓁∕2 ≤ 𝑥𝑛 ≤ 𝜋𝓁∕2

0 otherwise
(2)

where 𝑥𝑛 =
(
𝐱 − 𝐱𝑐

)
⋅ 𝒏

(
𝐱𝑐

)
, point 𝐱𝑐 on the discontinuity 𝛤𝑐 and

𝒏
(
𝐱𝑐

)
the unit vector normal to 𝛤𝑐 . The corresponding Euler–Lagrange

equation of this solution is given in [18], while the crack density
function associated with Eq. (2) reads [13]:

𝛾𝑑 (𝑑) =
1

𝜋𝓁

(
2𝑑 (𝐱) − 𝑑 (𝐱)2

)
+

𝓁

𝜋
∇𝑑 (𝐱) ⋅ ∇𝑑 (𝐱) (3)

Chen et al. [22] have presented the profile of the phase field 𝑑
(
𝑥𝑛
)

and the crack density function 𝛾𝑑 (𝑑). From their analysis it appears
that the distribution of 𝑑

(
𝑥𝑛
)

and 𝛾𝑑 (𝑑) is localised around the dis-
continuity 𝛤𝑐 , thus confining the influence of the smeared form 𝛤𝜉 ,
which is different from the classical phase field model (AT2 model).
Moreover, the current phase field model guarantees the irreversibility
condition in softening laws which are frequently adopted for quasi-
brittle failure [13]. This is a superior aspect of the current phase field
model over the AT1 model.

2.2. Regularised fracture model

In this contribution we assume infinitesimal strains, linear elastic
material behaviour and the absence of body forces. For the cracked
body 𝛺 ⊆ 𝑛 in Fig. 1, the variation of the energy functional reads:

𝛿 (𝐮, 𝛤 ;𝒑) = ∫𝛺⧵𝛤

𝛿(𝐮) d𝛺 − ∫𝛤𝑡 𝛿𝐮 ⋅ 𝐭̂ d𝛤 − ∫𝛤𝑐 𝑡𝑛𝛿 [[𝐮 ⋅ 𝒏]] d𝛤

− ∫𝛤𝑐 𝑡𝑠𝛿 [[𝐮 ⋅ 𝒔]] d𝛤 (4)

with (𝐮) being the strain energy density function, (𝐮) = 𝜇 𝜀𝜀𝜀(𝐮) ⋅ 𝜀𝜀𝜀(𝐮)+
𝜆∕2tr(𝜀𝜀𝜀(𝐮))2. 𝜆 and 𝜇 are the Lamé constants. 𝜀𝜀𝜀(𝐮) = 1∕2

(
∇𝐮 + ∇𝐮T

)
is the strain tensor. 𝐭̂ is the prescribed traction on the boundary 𝛤𝑡;
𝒑 =

[
𝑡𝑛, 𝑡𝑠

]
is the prescribed traction on the discontinuity 𝛤𝑐 . 𝑡𝑛 is the

normal traction exerted on 𝛤𝑐 , while 𝑡𝑠 is the shear traction along 𝛤𝑐 .
[[𝐮 ⋅ 𝒏]] and [[𝐮 ⋅ 𝒔]] are the crack opening/sliding at the discontinuity 𝛤𝑐

in the normal and shear directions, respectively.
If the traction 𝒑 =

[
𝑡𝑛, 𝑡𝑠

]
in Eq. (4) does not depend on the

crack opening/sliding we can solve the problem in the framework of
the brittle fracture model [18]. Else, for instance when the normal
traction 𝑡𝑛 is a pressure 𝑝 exerted on a crack surface [5,7], or if the
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shear traction 𝑡𝑠 is a fluid shear stress [27], solving Eq. (4) becomes

a challenging task. Phase-field modelling introduces a variational free-

discontinuity formulation of brittle fracture, and considers the crack

geometry and the displacement field simultaneously [1]. A Griffith-

like energy functional is introduced to govern the crack initiation

and evolution. A regularisation technique is proposed to smear the

discontinuity [1]. In the regularised model, cracks are represented by

the scalar phase field, 𝑑 (𝐱). The form of 𝑑 (𝐱) is given in Eq. (2). Then,

the energy functional, Eq. (4), can be replaced by [1]:

 (𝐮, 𝛤 ;𝒑) =∫𝛺 𝑎(𝑑)(𝐮) d𝛺 − ∫𝛤𝑡 𝐮 ⋅ 𝐭̂d𝛤 − ∫𝛤𝑐 𝑡𝑛 [[𝐮 ⋅ 𝒏]] d𝛤

− ∫𝛤𝑐 𝑡𝑠 [[𝐮 ⋅ 𝒔]] d𝛤 + 𝑐 ∫𝛺 𝛾𝑑 (𝑑) d𝛺

(5)

where we do not provide the energy functional in the variational form

for brevity sake. 𝑎(𝑑) = (1 − 𝑑)2 is a degradation function. 𝛾𝑑 (𝑑) denotes

the crack density function per unit volume, defined in Eq. (3). 𝑐 rep-

resents a scaling factor, with the dimension of energy per unit surface.

The last term represents the fracture energy in the sense of Griffith’s

theory of brittle fracture [28]. Here, the terms, ∫
𝛤𝑐

𝑡𝑛 [[𝐮 ⋅ 𝒏]] d𝛤 and
∫
𝛤𝑐

𝑡𝑠 [[𝐮 ⋅ 𝒔]] d𝛤 are still provided in a discrete form, not regularised, due

to unknown locations of the crack opening/sliding [5]. The smeared

representations of ∫
𝛤𝑐

𝑡𝑛 [[𝐮 ⋅ 𝒏]] d𝛤 and ∫
𝛤𝑐

𝑡𝑠 [[𝐮 ⋅ 𝒔]] d𝛤 will be given in
Section 3.2.

If the traction 𝒑 =
[
𝑡𝑛, 𝑡𝑠

]
is a function of the crack opening/sliding

we must solve the problem employing the cohesive fracture model [29].

Introduced in [30], the cohesive zone model is now widely used to

model interface behaviour [29]. The essence of the model is a relation

between the traction and the crack opening/sliding:

𝒑 =
[
𝑡𝑛, 𝑡𝑠

]
= 𝐭𝑑 ([[𝐮 ⋅ 𝒏]] , [[𝐮 ⋅ 𝒔]] , 𝜅𝜅𝜅) (6)

with 𝜅𝜅𝜅 a history parameter, which obeys the Kuhn–Tucker conditions

to distinguish between loading and unloading. 𝐭𝑑 , [[𝐮 ⋅ 𝒏]] and [[𝐮 ⋅ 𝒔]]

are given in the local coordinate system (𝑠, 𝑛), see Fig. 1. Different

types of cohesive zone laws are available in the literature [31], such as

the Xu–Needleman law, the bilinear law, etc. We can straightforwardly

incorporate these cohesive zone laws.

Due to the dependence of the traction 𝒑 on the crack opening/sliding,

the energy functional, Eq. (4), in the cohesive zone model is re-

formulated as [29]:

 (𝐮, 𝛤 ;𝒑) = ∫𝛺 (𝐮) d𝛺−∫𝛤𝑡 𝐮 ⋅ 𝐭̂ d𝛤 +∫𝛤𝑐  ([[𝐮 ⋅ 𝒏]] , [[𝐮 ⋅ 𝒔]] , 𝜅𝜅𝜅)d𝐴 (7)

 ([[𝐮 ⋅ 𝒏]] , [[𝐮 ⋅ 𝒔]] , 𝜅𝜅𝜅) is the fracture energy function, representing the

energy dissipation upon the creation of a unit crack surface. It relies

on the crack opening/sliding and is released gradually, linking to the

traction 𝒑 by a differential form:

𝑡𝑛 =
𝜕 ([[𝐮 ⋅ 𝒏]] , [[𝐮 ⋅ 𝒔]] , 𝜅𝜅𝜅)

𝜕 [[𝐮 ⋅ 𝒏]]
𝑡𝑠 =

𝜕 ([[𝐮 ⋅ 𝒏]] , [[𝐮 ⋅ 𝒔]] , 𝜅𝜅𝜅)
𝜕 [[𝐮 ⋅ 𝒔]]

(8)

In the phase field framework the energy functional, Eq. (7), yields

a phase-field regularised energy function for cohesive fracture [18]

 (𝐮, 𝛤 ;𝒑) = ∫𝛺 (𝐮) d𝛺 − ∫𝛤𝑡 𝐮 ⋅ 𝐭̂ d𝛤

+ ∫𝛤  ([[𝐮 ⋅ 𝒏]] , [[𝐮 ⋅ 𝒔]] , 𝜅𝜅𝜅)∫
∞

𝑥𝑛=−∞

𝛿
(
𝑥𝑛
)

d𝑉

≈ ∫𝛺 (𝐮) d𝛺 − ∫𝛤𝑡 𝐮 ⋅ 𝐭̂ d𝛤

+ ∫𝛺  ([[𝐮 ⋅ 𝒏]] , [[𝐮 ⋅ 𝒔]] , 𝜅𝜅𝜅) 𝛿𝑐
(
𝑥𝑛
)

d𝑉

(9)

with 𝒙𝑐 being points on the fracture 𝛤𝑐 ; 𝑥𝑛 =
(
𝐱 − 𝐱𝑐

)
⋅𝒏

(
𝐱𝑐

)
and 𝒏

(
𝐱𝑐

)
the unit vector normal to the crack 𝛤𝑐 . 𝛿𝑐

(
𝑥𝑛
)

is an approximation

of the Dirac-delta function 𝛿
(
𝑥𝑛
)
, employed to express the infinitesi-

mal area d𝐴 in an infinitesimal volume format d𝑉 , which takes the

form [18]:

𝛿𝑐
(
𝑥𝑛
)
=

1

2

|||||
d𝑑

(
𝑥𝑛
)

d𝑥𝑛

|||||
=

1

2

⎧⎪⎪⎨⎪⎪⎩

−
d𝑑

(
𝑥𝑛
)

d𝑥𝑛
0 < 𝑥𝑛 ≤ 𝜋𝓁∕2

d𝑑
(
𝑥𝑛
)

d𝑥𝑛
− 𝜋𝓁∕2 ≤ 𝑥𝑛 ≤ 0

0 otherwise

=
1

2

⎧⎪⎨⎪⎩

1

𝓁
cos

(𝑥𝑛
𝓁

)
− 𝜋𝓁∕2 ≤ 𝑥𝑛 ≤ 𝜋𝓁∕2

0 otherwise

(10)

in which the fraction
1

2
stems from the constraint on the Dirac-delta

function, ∫ ∞

−∞
𝛿𝑐

(
𝑥𝑛
)

d𝑥𝑛 = 1. Obviously 𝛿𝑐
(
𝑥𝑛
)

is localised around the

crack 𝛤𝑐 .

3. Computing the crack opening and sliding within the phase field
method

The energy functional equations, (5) and (9), rely on the mixed-

mode crack opening/sliding, [[𝐮 ⋅ 𝒏]] and [[𝐮 ⋅ 𝒔]]. However, the crack

geometry 𝛤𝑐 cannot be tracked explicitly in the phase-field model, and

we cannot directly compute the mixed-mode crack opening/sliding in
Eqs. (5) and (9). To compute [[𝐮 ⋅ 𝒏]] and [[𝐮 ⋅ 𝒔]]. Verhoosel and de

Borst [2] employed the phase-field regularisation to smear out the dis-

crete cohesive fracture and simultaneously introduced an auxiliary field

to model the mixed-mode crack opening/sliding. Nguyen et al. [23]

adopted a similar regularisation strategy to represent the cohesive

interface. However, to avoid the auxiliary field, they used a first-order

Taylor expansion to compute the mixed-mode crack opening/sliding.

Chen et al. [8] proposed an integral form to compute the mixed-mode

crack opening/sliding in the framework of brittle and cohesive fracture.

Until now, there is no comprehensive assessment of the various ways

to compute the opening and sliding under mixed-mode conditions. In
this section, we will summarise the various ways to compute the crack

opening and crack sliding in a phase-field context.

The essence of the phase field model is to regularise the crack 𝛤𝑐

by a smeared form 𝛤𝜉 , as presented in Fig. 2(a). In the regularised

framework, the normal vector 𝒏 can be approximated as [5]:

𝒏 ≈ −∇𝑑
(
𝑥+𝑛

)
𝐈

/ ||||∇𝑑
(
𝑥+𝑛

) |||| = − 1
||||∇𝑑

(
𝑥+𝑛

) ||||

[
𝜕 𝑑

(
𝑥+𝑛

)
𝜕 𝑥1

𝜕 𝑑
(
𝑥+𝑛

)
𝜕 𝑥2

]

≈ ∇𝑑
(
𝑥−𝑛

)
𝐈

/ ||||∇𝑑
(
𝑥−𝑛

) ||||

(11)

with
||||∇𝑑

(
𝑥+𝑛

) |||| =

√(
𝜕 𝑑(𝑥+𝑛 )
𝜕 𝑥1

)2

+
(
𝜕 𝑑(𝑥+𝑛 )
𝜕 𝑥2

)2

, and 𝐈 a 2 × 2 identity

matrix. The unit (shear) vector 𝒔 along the crack 𝛤𝑐 , see Fig. 1(a), can

be obtained from the vector product of the normal vector 𝒏 and the

out-of-plane vector 𝒛 = [0 0 1]:

𝒔 ≈
1

||||∇𝑑
(
𝑥+𝑛

) ||||

[
−
𝜕 𝑑

(
𝑥+𝑛

)
𝜕 𝑥2

𝜕 𝑑
(
𝑥+𝑛

)
𝜕 𝑥1

]
=

−∇𝑑
(
𝑥+𝑛

)
𝐈𝑎

||||∇𝑑
(
𝑥+𝑛

) ||||
≈

1
||||∇𝑑

(
𝑥−𝑛

) ||||

[
𝜕 𝑑

(
𝑥−𝑛

)
𝜕 𝑥2

−
𝜕 𝑑

(
𝑥−𝑛

)
𝜕 𝑥1

]
=

∇𝑑
(
𝑥−𝑛

)
𝐈𝑎

||||∇𝑑
(
𝑥−𝑛

) ||||

(12)

with 𝐈𝑎 =

[
1 0

0 −1

]
.
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Fig. 2. (a) smeared representation, 𝛤𝜉 , of a crack surface 𝛤𝑐 ; (b) approximation of the crack opening/sliding across 𝛤𝑐 . The crack surface 𝛤𝑐 is introduced as the red line.

3.1. Auxiliary field based crack opening/sliding computation

In the cohesive-zone model, the crack opening/sliding is an es-
sential input in the energy functional, see Eq. (9). In the phase-field
modelling of cohesive fracture, Verhoosel and de Borst employed an
auxiliary field, as an independent variable, to model the crack open-
ing/sliding [2]. The model is a combination of discrete and smeared
approaches. To describe the cohesive fracture behaviour, the cohesive-
zone law from the discrete model is directly used. The phase-field
regularisation is used to transfer the discrete interface into a smeared
interface. Correspondingly, the crack opening/sliding [[𝐮]] is regularised
as:

[[𝐮]]
(
𝒙𝑐

)
= ∫

∞

𝑥𝑛=−∞

𝛿
(
𝑥𝑛
)

d𝑥𝑛

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=1

[[𝐮]] = ∫
∞

𝑥𝑛=−∞

𝜐𝜐𝜐 (𝒙) 𝛿
(
𝑥𝑛
)

d𝑥𝑛

≈ ∫
∞

𝑥𝑛=−∞

𝜐𝜐𝜐 (𝒙) 𝛿𝑐
(
𝑥𝑛
)

d𝑥𝑛

(13)

with 𝜐𝜐𝜐 (𝒙) being an auxiliary field employed to approximate the crack
opening/sliding in a smeared sense [22]; 𝛿𝑐

(
𝑥𝑛
)

is the approximated
form of the Dirac-delta function 𝛿

(
𝑥𝑛
)
, i.e. Eq. (10). [[𝐮]] = 𝐮

+ − 𝐮
− =

𝐑
T
[
[[𝐮 ⋅ 𝒔]] [[𝐮 ⋅ 𝒏]]

]T
. 𝐮+ and 𝐮

− being the displacement on the positive

and negative sides, 𝛤+
𝑐 and 𝛤−

𝑐 in Fig. 1(a), respectively. 𝐑 denotes a
rotation matrix [29]. The divergence theorem is then applied to the
weak form, Eq. (9), to obtain the elastic strain 𝜀𝜀𝜀𝑒 [2]:

𝜀𝑒𝑖𝑗 = 𝑢(𝑖,𝑗) − sym
(
𝜐𝑖𝑛𝑗

)
𝛿𝑐 (14)

with 𝑢(𝑖,𝑗) =
1

2

(
𝜕 𝑢𝑖
𝜕 𝑥𝑗 +

𝜕 𝑢𝑗
𝜕 𝑥𝑖

)
and 𝑛𝑗 being the component of the unit

vector normal to the interface 𝛤𝑐 .
We next employ the variational principle for minimising  (𝐮, 𝛤 ;𝒑)

in Eq. (9) with respect to the displacement 𝐮 and the auxiliary field 𝜐𝜐𝜐,
which results in the weak form. Subsequently, we obtain the strong
form of the displacement field 𝐮 and the auxiliary field 𝜐𝜐𝜐 in the
framework of the phase-field method:

⎧⎪⎨⎪⎩

𝜕 𝜎𝑖𝑗
𝜕 𝑥𝑗

= 0 𝒙 ∈ 𝛺

𝜎𝑖𝑗𝑛𝑗 = 𝑡𝑖 𝒙 ∈ 𝛤𝑡

(15a)

⎧
⎪⎨⎪⎩

𝛿𝑐
(
𝑡𝑖 (𝜐𝜐𝜐, 𝜅𝜅𝜅) − 𝜎𝑖𝑗𝑛𝑗

)
= 𝛼

𝜕2𝜐𝑖

𝜕 𝑥2𝑛
𝒙 ∈ 𝛤𝜉

𝜕 𝜐𝑖
𝜕 𝑥𝑛

= 0 𝒙 ∈ 𝜕 𝛤𝜉

(15b)

with 𝛼 being the penalty parameter, enforcing the constant crack
opening/sliding condition in the crack normal direction 𝒏; 𝜎𝑖𝑗 being
the Cauchy stress and 𝑡𝑖 being cohesive traction, defined as

𝜎𝑖𝑗 =
𝜕
𝜕 𝜀𝑒

𝑖𝑗

𝑡𝑖 =
𝜕
𝜕 𝜐𝑖

(16)

Eq. (15a) is standard in the continuum mechanics, while Eq. (15b) is
an equilibrium equation over the smeared crack 𝛤𝜉 . When 𝓁 → 0, the
discrete cohesive traction is recovered from Eq. (15b): 𝑡𝑖 ([[𝐮]] , 𝜅𝜅𝜅) =

𝜎𝑖𝑗𝑛𝑗 . The boundary condition in Eq. (15b) requires constant crack

opening/sliding at the boundary of the smeared crack, 𝜕 𝛤𝜉 , necessi-

tating fully prescribed auxiliary field (crack opening/sliding) degrees

of freedom in the entire domain 𝛺 [22]. In the simulation the finite

element method can be used to solve Eq. (15) so as to obtain the

displacement field 𝐮 and the auxiliary field (crack opening/sliding)

𝜐𝜐𝜐 [22].

3.2. Integration based crack opening/sliding computation

Chukwudozie et al. [5] proposed an integral form to compute the

crack opening in the normal direction for the analysis of hydraulic frac-

turing in brittle porous media. Chen et al. [8] extended the integrating

approach to the computation of the crack sliding. We will now describe

the integral form of the mixed-mode crack opening/sliding for brittle

and cohesive fracture.

3.2.1. Mixed-mode crack opening/sliding for brittle fracture
For the brittle fracture model, the crack opening in the normal

direction can be expressed as:

[[𝐮 ⋅ 𝒏]] = 𝐮
(
𝑥+
𝑛

)
⋅ 𝒏 − 𝐮

(
𝑥−
𝑛

)
⋅ 𝒏

= 𝐮
(
𝑥+
𝑛

)
⋅ 𝒏∫

∞

0

||||∇𝑑
(
𝑥𝑛
) ||||d𝑥𝑛 − 𝐮

(
𝑥−
𝑛

)
⋅ 𝒏∫

0

−∞

||||∇𝑑
(
𝑥𝑛
) ||||d𝑥𝑛

≈ ∫
∞

0

𝐮
(
𝑥𝑛
)
⋅ 𝒏

||||∇𝑑
(
𝑥𝑛
) ||||d𝑥𝑛 − ∫

0

−∞

𝐮
(
𝑥𝑛
)
⋅ 𝒏

||||∇𝑑
(
𝑥𝑛
) ||||d𝑥𝑛

≈ −∫
∞

−∞

𝐮
(
𝑥𝑛
)
⋅
(
∇𝑑

(
𝑥𝑛
)
𝐈
)

d𝑥𝑛 = −∫
𝜋𝓁∕2

−𝜋𝓁∕2

𝐮
(
𝑥𝑛
)
⋅

(
∇𝑑

(
𝑥𝑛
)
𝐈

)
d𝑥𝑛

(17)

with the normal vector 𝒏 in Eq. (11) and the identity relation

∫ 0

−∞

||||∇𝑑
(
𝑥𝑛
) ||||d𝑥𝑛 = ∫ ∞

0

||||∇𝑑
(
𝑥𝑛
) ||||d𝑥𝑛 = 1 being used. Similarly, the

crack sliding in the shear direction can be obtained as:

[[𝐮 ⋅ 𝒔]] = 𝐮
(
𝑥+𝑛

)
⋅ 𝒔 − 𝐮

(
𝑥−𝑛

)
⋅ 𝒔

= 𝐮
(
𝑥+𝑛

)
⋅ 𝒔∫

∞

0

||||∇𝑑
(
𝑥𝑛
) ||||d𝑥𝑛 − 𝐮

(
𝑥−𝑛

)
⋅ 𝒔∫

0

−∞

||||∇𝑑
(
𝑥𝑛
) ||||d𝑥𝑛

≈ ∫
∞

0

𝐮
(
𝑥𝑛
)
⋅ 𝒔

||||∇𝑑
(
𝑥𝑛
) ||||d𝑥𝑛 − ∫

0

−∞

𝐮
(
𝑥𝑛
)
⋅ 𝒔

||||∇𝑑
(
𝑥𝑛
) ||||d𝑥𝑛

≈ −∫
∞

−∞

𝐮
(
𝑥𝑛
)
⋅

[
𝜕 𝑑

(
𝑥𝑛
)

𝜕 𝑥2
−

𝜕 𝑑
(
𝑥𝑛
)

𝜕 𝑥1

]
d𝑥𝑛

= −∫
𝜋𝓁∕2

−𝜋𝓁∕2

𝐮
(
𝑥𝑛
)
⋅

(
∇𝑑

(
𝑥𝑛
)
𝐈𝑎

)
d𝑥𝑛

(18)

3.2.2. Mixed-mode crack opening/sliding for cohesive fracture
For cohesive fracture, the extended finite element approach (XFEM)

can be used to derive the elastic strain Eq. (14), cf. [22] for details.
Then, the displacement function can be expressed as the same form as
in XFEM:
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𝐮 (𝐱) = 𝐰 (𝐱) +ℋ (𝐱)𝜐𝜐𝜐 (𝐱) (19)

with 𝐰 (𝐱) being a continuous displacement function, and ℋ being the
Heaviside function, defined as [18]

ℋ (𝒙) =
1

2

⎧⎪⎨⎪⎩

1 𝜋𝓁∕2 ≤ 𝑥𝑛

sin
(𝑥𝑛
𝓁

)
− 𝜋𝓁∕2 ≤ 𝑥𝑛 ≤ 𝜋𝓁∕2

−1 otherwise

(20)

For the cohesive fracture model the crack opening in the normal
direction is obtained by multiplying Eq. (19) with the normal vector 𝒏,
defined in Eq. (11), and integrating over the normal direction:

[[𝐮 ⋅ 𝒏]] = 𝜐𝜐𝜐 (𝒙) ⋅ 𝒏 ≈ −2∫
∞

−∞

𝐮
(
𝑥𝑛
)
⋅

(
∇𝑑

(
𝑥𝑛
)
𝐈

)
d𝑥𝑛 (21)

Similarly we obtain the crack sliding in the shear direction as:

[[𝐮 ⋅ 𝒔]] = 𝜐𝜐𝜐 (𝒙) ⋅ 𝒔 ≈ −2∫
∞

−∞

𝐮
(
𝑥𝑛
)
⋅

(
∇𝑑

(
𝑥𝑛
)
𝐈𝑎

)
d𝑥𝑛 (22)

Finally, the integral form of the mixed-mode crack opening/sliding
can be summarised as:
[
[[𝐮 ⋅ 𝒏]] [[𝐮 ⋅ 𝒔]]

]
≈ −1 ⋅ 𝑘 ⋅ ∫

∞

−∞

[
𝐮
(
𝑥𝑛
)
⋅

(
∇𝑑

(
𝑥𝑛
)
𝐈

)
𝐮
(
𝑥𝑛
)
⋅

(
∇𝑑

(
𝑥𝑛
)
𝐈𝑎

)]
d𝑥𝑛

(23)

with the coefficient 𝑘:

𝑘 =

{
1 brittle fracture

2 cohesive fracture
(24)

3.3. Taylor expansion based crack opening/sliding computation

For phase-field modelling of cohesive fracture, Nguyen et al. [23]
employed a first-order Taylor expansion to approximate the displace-
ment field. They evaluated the crack opening/sliding at two points near
the crack, similar to the discrete crack model [2]. However, the choice
of the location of these points suffers from a certain arbitrariness.

It is possible to derive the optimal location of these points [24].
In phase-field modelling, the displacement field 𝐮 is continuous in the
whole domain. We can therefore employ a first-order Taylor expansion
of 𝐮 to approximate the displacement field around the crack 𝛤𝑐 , see
Fig. 2(b):

𝐮
(
𝐱
+
𝑐

)
= 𝐮

(
𝐱𝑐 +

ℎ

2
𝒏

)
≈ 𝐮

(
𝐱𝑐

)
+

ℎ

2
∇𝐮𝒏

𝐮
(
𝐱
−
𝑐

)
= 𝐮

(
𝐱𝑐 −

ℎ

2
𝒏

)
≈ 𝐮

(
𝐱𝑐

)
−

ℎ

2
∇𝐮𝒏

(25)

with 𝐱𝑐 being a point on the crack 𝛤𝑐 , 𝒏 being the unit normal vector to
the crack 𝛤𝑐 , and ℎ being a distance parameter. Then, the mixed-mode
crack opening/sliding can be approximated as:

[[𝐮]]
(
𝐱𝑐

)
≈ 𝜐𝜐𝜐

(
𝐱𝑐

)
= 𝐮

(
𝐱𝑐 +

ℎ

2
𝒏

)
− 𝐮

(
𝐱𝑐 −

ℎ

2
𝒏

)
= ℎ∇𝐮𝒏 (26)

with 𝜐𝜐𝜐
(
𝐱𝑖

)
being the approximation of the crack opening/sliding. Sub-

sequently, optimal location of these points can be derived analytically:

ℎ =
2𝓁

1 + 2𝑘𝓁∕𝐸
(27)

with 𝑘 being the cohesive fracture stiffness [24]; 𝐸 being the Young’s
modulus. It normally holds that 𝑘𝓁 ≪ 𝐸 [32]. Furthermore, to properly
represent the fracture behaviour, the regularisation length 𝓁 should
be small [2,22,23], which results in an approximated optimal distance
parameter:

ℎ = 2𝓁 (28)

leading to the approximated form of the mixed-mode crack open-
ing/sliding:

[[𝐮]]
(
𝐱𝑐

)
≈ 𝜐𝜐𝜐

(
𝐱𝑐

)
≈ 2𝓁∇𝐮𝒏 (29)

In general, these three crack opening/sliding computation
approaches require the regularisation of the crack surface. The line

integration (2D case) or surface integration (3D case) of the fracture
energy  is transferred into a volume integration. The mixed-mode
crack opening/sliding from the auxiliary field approach is obtained
from the solution of the governing Eq. (15). It is obtained directly
from the finite element solution of the weak form Eq. (9), similar to
the computation of the phase-field variable in the brittle phase-field
method [1]. The integration approach and Taylor expansion approach
employ the solution of the displacement 𝐮 to compute the mixed-mode
crack opening/sliding, i.e., a post-processing approach.

The Taylor expansion approach uses fewer degrees of freedom (𝐮
only) than the auxiliary field approach (both 𝐮 and 𝜐𝜐𝜐). The integration
approach utilises the same degrees of freedom as the Taylor expansion
approach. However, it requires more computational effort to obtain the
mixed-mode crack opening/sliding, due to the integration in Eq. (23).
The crack opening/sliding in the auxiliary approach directly results
from solving the governing equations, which is likely more accurate
and reliable than results from post-processing. The integration ap-
proach averages the displacement field in the crack normal direction,
avoiding numerically unstable displacement solutions. Thus, the crack
opening/sliding solution of the auxiliary approach and integration
approach should be more accurate than that of the Taylor expansion
approach. In general, the Taylor expansion approach is the simpler and
probably the faster approach to accurately obtain the crack opening and
sliding. However, it is likely less accurate compared to the auxiliary
and integration approaches. This will be validated by the numerical
examples in Section 4.

4. Numerical comparisons

Two examples are now presented to compare the proposed formu-
lations, analytically through an edge-cracked problem and numerically
through curved crack scenario. First, we will consider a square plate
(dimension 1 × 1) with an edge crack. In the analysis we consider Mode
II-loading. For the analytical solution of the crack opening/sliding we
refer to [33]. Next, an example is given of a curved, traction-free crack
under uniaxial tension in order to demonstrate the performance of the
methodology in a multi-dimensional setting. To well represent the crack
in a smeared sense, the regularisation length is always chosen as 𝑙 ≥ 4ℎ

(ℎ: element size around the crack) [28]. We employ the integration
approach of the brittle fracture model (Section 3.2.1), the auxiliary field
approach (Section 3.1) and Taylor expansion approach (Section 3.3).

For the comparisons we have chosen the cases of cracks with a
predefined path because of the availability of analytical solutions or
reference solutions from other numerical approaches. We consider not
only a linear crack, but also curved cracks. We have employed the phase
field to define the crack paths. In the computation there are thus no
geometric discontinuities.

4.1. Square plate under Mode II-loading

We consider en edge-cracked plate under Mode-II loading, shown
in Fig. 3(a). The length of the initial crack is 𝑎 = 0.5. Plane-stress
conditions are assumed. With a suitable re-scaling of the loading the
material properties can be chosen as: Young’s modulus 𝐸 = 1.0 and
Poisson’s ratio 𝜈 = 0.3. In Fig. 3(a), we consider the displacement on the
boundary corresponding to the singular stress field (parameterised by
the stress intensity factor KII) around the initial crack tip. The analytical
expressions for the displacement field are given as:

𝑢1 =
KII

2𝜇

√
𝑟

2𝜋
sin

𝜃

2

(
2 + 𝜅 + cos 𝜃

)

𝑢2 =
KII

2𝜇

√
𝑟

2𝜋
cos

𝜃

2

(
2 − 𝜅 − cos 𝜃

) (30)

with KII = 0.5 in the current study. 𝜇 = 𝐸∕2(1 + 𝜈), 𝜅 = 3 − 4𝜈 for
plane strain and 𝜅 = (3 − 𝜈)∕(1 + 𝜈) for plane stress, and (𝑟, 𝜃) are polar
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Fig. 3. (a) geometry of an edge-cracked square plate under Mode-II loading; (b) phase-field representation of the crack, the regularisation length is chosen as 𝓁 = 0.01. In (a), the
initial crack is introduced as the red line.

Fig. 4. Crack sliding in the shear direction [[𝐮 ⋅ 𝒔]] (left) and displacement 𝑢1
(
𝑥1 𝑥2

)
at 𝑥1 = −0.25 (right) for Mode-II loading.

coordinates with the origin positioned at the crack tip, Fig. 3(a). The
closed-form solution for the crack opening/sliding is given by:

[[𝐮]]
(
𝒙𝑐

)
=
{
[[𝐮 ⋅ 𝒏]] [[𝐮 ⋅ 𝒔]]

}
=

[
0

KII

𝜇

√
𝑟

2𝜋

(
𝜅 + 1

)]
(31)

as we only have the crack sliding in the shear direction for Mode-II
loading.

Fig. 3(b) shows the smeared crack, i.e. the coloured area, by the
phase-field regularisation technique in Section 2.1. Fig. 4 shows the
comparison between the numerical solutions and the analytical solu-
tions. The results of numerical solutions agree well with analytical
solutions, especially the displacement in Fig. 4(right). This validates
the proposed formulations of the crack opening/sliding. The solution
of Taylor expansion approach gives a slight difference in the plot of
the shear crack sliding, see Fig. 4(left). The Taylor expansion approach
relies on the choice of the distance parameter ℎ in Eq. (26). Even we
employ the optimal ℎ in Eq. (28) to compute the mixed-mode crack
opening/sliding, the formulation is still an approximation of the crack
opening/sliding due to the first-order Taylor expansion. The influence
of the higher-order term in the Taylor expansion is ignored, inducing
the approximation error in the shear crack sliding [[𝐮 ⋅ 𝒔]].

The contour plot of the displacement field is shown in Fig. 5. In
the figure, the displacement is discontinuous along the crack 𝛤𝑐 in the
integration approach, due to the brittle fracture model, while it is con-
tinuous in the auxiliary field approach and Taylor expansion approach,
due to the continuous Dirac-delta function definition in Eq. (10). This
can also be seen in Fig. 4.

4.2. Curved crack under uniaxial tension

We next consider a curved crack under uniaxial loadings. The
set-up of the problem is shown in Fig. 6(a). The curved crack is
prescribed in the left bottom of the plate, starting at (5, 0) and ending at
(5 cos 𝜃 , 5 sin 𝜃). The arc angle is set as 𝜃 = 45◦. Plane-stress conditions
are again adopted. With a suitable re-scaling, the material properties
can be chosen as: Young’s modulus 𝐸 = 1.0 and Poisson’s ratio 𝜈 = 0.3.
The curved crack is regularised as a smeared surface, presented in
Fig. 6(b). No analytical solutions are available for this problem, only
the discrete interface solution taken as the reference solution [29].

Fig. 7(a) presents the comparison of the mixed-mode crack open-
ing/sliding between the proposed approaches in Section 3 and the
discrete interface solution. Clearly, the results of the proposed ap-
proaches match well with those of the discrete interface model, again
validating the formulation of the mixed-mode crack opening/sliding
computation. The profile of the displacement 𝐮 is shown in Fig. 8.
The solutions of the proposed approaches agree well with each other.
We observe slight difference of the displacement 𝐮 along the crack
𝛤𝑐 . A continuous displacement field is obtained across 𝛤𝑐 for the
auxiliary field approach and the Taylor expansion approach, while it is
discontinuous for the integration approach due to the use of the brittle
fracture model, as also shown in Fig. 7(b).

5. Concluding remarks

Phase-field models employ regularisation to transform a discrete
crack into an equivalent smeared crack. For brittle fracture the crack
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Fig. 5. Contour plot of displacement 𝑢1 (upper row) and 𝑢2 (bottom row) for Mode-II loading.

Fig. 6. (a) setup of a curved crack problem, the initial crack 𝛤𝑐 is introduced as the red line; (b) smeared crack 𝛤𝜉 . The regularisation length is chosen as 𝓁 = 0.1. Figure (b)
shows the left bottom part of the plate.

Fig. 7. (a) crack opening in the normal direction [[𝐮 ⋅ 𝒏]] and in the shear direction [[𝐮 ⋅ 𝒔]]; (b) displacement 𝑢1
(
𝑥1 , 𝑥2

)
and 𝑢2

(
𝑥1 , 𝑥2

)
along the blue line OF in Fig. 6(a). Point

𝐹 is with the coordinate
(
𝑥1 , 𝑥2

)
= (15, 5).
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Fig. 8. Contour plot of displacement 𝑢1 (upper row) and 𝑢2 (bottom row) for the curved crack problem.

trajectory is obtained from the solution of the governing equation of
the phase-field variable. For cohesive fracture the phase-field variable
is used to regularise the crack opening/sliding dependent fracture
energy. In certain applications the crack opening/sliding is an essential
variable in the analysis, e.g., in hydraulic fracturing, or fibre-matrix
debonding. However, the computation of the crack opening/sliding is
not straightforward in a phase-field framework due to unknown crack
trajectories.

In the simulation we need to employ some special strategies to
approximate the crack opening/sliding. The crack opening/sliding can
be introduced as an independent variable (auxiliary field) and com-
puted by the solution of governing equations, already implemented
in the cohesive fracture model. Due to the phase-field regularisation
of the crack path the crack normal and shear vectors can then be
computed by the phase-field gradient. The crack opening/sliding can
also be obtained by the integration of the product of the displacement
and the phase-field gradient. And even if no geometric discontinuities
are introduced in the phase-field model, the crack opening/sliding
can also be computed from two neighbouring points along the crack
path (Taylor expansion form). The optimal distance is available for the
choice of these two points.

From the numerical analysis these three approaches of the crack
opening/sliding computation lead to similar results, validating the
approaches. Generally, the auxiliary field approach gives a stable and
accurate solution, but imposes a strong computation burden, due to
the introduction of additional crack opening/sliding variable (auxil-
iary field). The integration approach also yields a stable and accurate
solution, considering the averaging form of the integral. However,
carrying out the integration reduces the efficiency. The Taylor ex-
pansion approach is the fastest method to compute the mixed-mode
crack opening/sliding, only involving simple arithmetic calculations
along the crack. However it can be less accurate than the other two
approaches.
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