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ARTICLE INFO ABSTRACT

Editor: Y Lozano In this paper, we present a method to compute the minimal form factors (MFFs) of diagonal inte-
grable field theories perturbed by generalized TT perturbations. Building on existing results by
I ) the same authors, these MFFs are constructed in such a way as not to allow for any free parame-
ntegrable quantum field theory N i A ) o
Irrelevant perturbations ters, an issue that plagued previous solutions. The MFFs are derived from a generalization of the
Form factors standard integral representation which has been used for UV-complete theories since the birth of
the form factor bootstrap program. By UV-complete we mean theories whose short-distance/high-
energy limit is a local conformal field theory. Their asymptotics is characterized by exponential
decay at large rapidities. By computing higher particle form factors, we find that any natural
higher-particle solutions involve the cancellation of parts of the newly found MFF. We conclude
that the assumption that the form factor equations, particularly the kinematic residue equation,
remain unchanged in the presence of TT perturbations, is too strong. There is a trade-off between
having MFFs satisfying desirable analyticity and asymptotic properties and finding analytic solu-
tions to the form factor equations, which is likely solved by nontrivial changes to the form factor
equations, especially those where locality or semilocality of fields are essential assumptions.

Keywords:

1. Introduction

Deformations of 2D quantum field theory (QFT) via irrelevant operators of the TT family [1-4] have been extensively studied in
the literature. They are interesting because, on the one hand, they preserve integrability, should that be present in the original theory
and, on the other hand, the resulting, still integrable model, has new very interesting properties. For this reason, TT perturbations
and their generalisations have been intensely studied in 2D (integrable) quantum field theory [1,2,5-8], in the context of the ODE/IM
correspondence [9,10], via thermodynamic Bethe ansatz (TBA) [3,4,11-16], perturbed CFT [17-22,24,Guica], string theory [25-28],
holography [29-36], quantum gravity [37-42], out-of-equilibrium CFT [43-46], in long-range spin chains [47-50], and employing
the generalised hydrodynamics approach [51-53]. A generalisation of this family of deformations has also been proposed for quantum-
mechanical systems [54-56] and higher-dimensional field theories [57-59]. The effect of the perturbation has been interpreted in
multiple ways: as coupling the original QFT to two-dimensional topological gravity [37] or to random geometry [18] and as a
state-dependent change of coordinates [6].

Our own interest in this problem is motivated by integrable quantum field theory (IQFT) where many powerful techniques are at
our disposal [1,60,61]. In particular, it is well known that in IQFT T'T-like perturbations modify the exact two-body scattering matrix
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by a multiplicative (CDD) factor [62]. Throughout this paper, we will consider theories with a single particle spectrum. This means
that the scattering matrix and scattering phase carry no particle indices. What follows can be easily generalised to theories with a
richer spectrum. Then, the deformed S-matrix is

Sa(0) = (0)S(0) @

where a = (a,),cscy 1S @, possibly infinite, vector, S(9) is the two-particle scattering matrix for a theory with a single particle, and

@, (0) = exp [—i Y agm® sinh(sa)] . )
seS

Here m is a fundamental mass scale such that the combination a;m? is dimensionless. Hereafter, we will take m = 1 for simplicity. S
is a set of spin values, typically those of local conserved charges. Notice that S has to be a subset of the odd integers, otherwise the
CDD factor does not satisfy the crossing equation ®,(iz — 6) = ®,(6). Since ®,(#) is a CDD factor, the theory described by this new
S-matrix is still integrable and has the same particle spectrum as the original model. In [63] certain theories of free fields ¢(Q, x) on
noncommutative Minkowski spaces with different noncommutativity parameters Q were studied. These models were proven to satisfy
a weaker form of localization called wedge localization. Interestingly, these models can also be viewed as non-local (but wedge-local)
field theories on a flat Minkowski space with a non-trivial S-matrix given precisely by the s = 1 term in (2), i.e. the CDD factor coming
from a “pure” TT-deformation. The existence of non-trivial “local” observables and their characterization is one of the main open
questions in the study of these models.

In our papers [64-66] we tackled the problem of computing matrix elements of “local” operators via the form factor bootstrap
program, the natural next step in the study of an IQFT once the .S-matrix is known. Our study led to closed formulae for the form
factors of a large class of fields and theories while also leaving several open questions. One of the most perplexing issues that we
encountered is that the solutions of the form factor equations depend on a large number of free parameters (in [64-66] we called those
B;) and that there are no obvious physical requirements that allow us to fix these unambiguously. Another issue is that the factorized
solutions that we found contain square roots, hence a degree of non-analyticity which stands at odds with the usual assumptions of
the form factor program. Understanding the limit of validity of the standard techniques employed in the context of IQFT and their
possible extension to these models is therefore one of the main objectives and challenges of our work.

To recap, let

FO, ....0,) := (0100)]0;. ... 0,0) = (OIOOI Z'@)). ... Z'(©,)]0) . 3)

be the n-particle form factor of an operator © between the ground state |0) and a multiparticle in-state, consisting of n particles
of the same species and distinct rapidities 6, ... 6,. The particle creation and annihilation operators, Z7(§) and Z(6), satisfy the
Zamolodchikov-Faddeev algebra [67,68]

Z0)Z(0,) = SO, —6,)Z(6,)Z(6,) ,
ZO)Z'(6,) = SO, —0)Z7(0)Z(9)) + 58, — 0,) , ()]

which generalizes to interacting theories the usual exchange relations of creation/annihilation operators in free models. As before,
S(0) is the two-body scattering matrix of a local IQFT. If the field is spinless the form factor depends only on rapidity differences.
One of the more successful methods for computing these objects consists of solving a system of consistency equations [69-72] based
on some natural physical assumptions such as unitarity, crossing symmetry, and the locality property of the field © being considered.
These are:

o the braiding property
FO©y,....00., 041, ....0,) = SO, — 0, )FO (0, ... .0,,1.0;,....0,) . (5)

that descend directly from the exchange property of the Zamolodchikov-Faddeev algebra;
o the monodromy property

FO(0, +2xi,0, ...,6,) = y°F°,, ....0,.0)) 6)
o the kinematical residue equation
n
m}(é —OF°,(0+ir.0.0,.....0,) = i<1 ad | RC —0j)>Ff(el, 0. 7
j=1

The factor of local commutativity y© first appeared in [73] and encodes the (semi-)locality property of the fields. It is defined through
the equal-time exchange relation of the operator ()(x) and the field ¢(y) associated with the particle creation operators Z(6). That is

p@Oy) =r°0px) for x'>y' and x°=)°, (8)

where formally

P(x) ~ / d9[Z©)e P> + ZT(0)e™P¥] . 9
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As an example, for the order/disorder operators in the Ising field theory, o and u, we have y//¥ = +1. However, y can be a more
general phase as it happens, for instance, in the Federbush model [74-77]. One can also have exchange relations more complicated
than (8), where fields do not simply pick up a phase but become different fields, such as what happens with the branch point twist
field in [78]. A direct consequence is that Egs. (6) and (7) cannot be satisfied if this factor is not included. In other words, the locality
properties of the observables enter explicitly into the form factor equations and their understanding is pivotal for the computation of
closed exact expressions for n-particle form factors. If no bound states are present, (5)—(7) are the only equations involved, and the
solution procedure can be summarized in two steps: first one determines the simplest non-trivial form factor, the two-particle one;
subsequently, the higher particle form factors are obtained by solving the recursive Eq. (7).
In the case of a deformed model with .S-matrix (1), a two-particle form factor should satisfy

FP(0;a) = Su(O)FY (—6; a) = FP (2ni — 6;ax) . (10)

Typically there is at least one other requirement, which specifies the residue of the form factor at the kinematic pole 6 = iz. However,
if we limit our attention to solutions without poles, then we need to consider only the two Eq. (10). Entire solutions to these equations
are known as minimal form factors (MFFs) and in the deformed theory we will denote these as F,;,(; a). The same equations with
S, (0) replaced by S(0) are satisfied by the MFF of the undeformed theory, which we will denote as F,,;,(0):

Frin(0) = S(0)Fpin(—0) = Fppi i — 6) . (11)
This means that the MFFs F,; (0; @) and F,;,(9) are proportional to each other through a function D, (0) which satisfies
Fpin(0:@) = Dg(0)Fpin(0) = Dy(0) = ©y(0)Dy(—0) = D, (2mi — 6) . 12)

Note that each of the first equalities in (10)-(12) define a Riemann-Hilbert problem for the corresponding functions, with S, (6), S(6)
and @, (0) playing the role of “jump functions” [79]. This can be used to explicitly write the solution as an integral representation
involving the logarithm of the jump function. In fact, given the .S-matrix of a massive, UV complete IQFT, it was shown in [70] that
the MFF is uniquely fixed by the combined requirements of analyticity in the physical strip Im(0) € [0, x] and (at most) exponential
growth for # large. The integral representation assumes a particularly simple form in terms of the Fourier transform of the .S-matrix
phase:

i5(0) 1= log S(0) = / 41 oty sinh 22 (13)
0o 1t i
then
o [T g Hin=0)
p(0) :=log F;,(6) —/0 o sin 5 a4

As we shall see below, the challenge for TT-perturbed theories lies precisely on finding convergent representations of this type.
For theories perturbed by TT and its generalizations, it was found that the function D, (6), has the factorised structure [64,66]

D, (0) := a(0)Cy(0) , (15)
with
0—ir s . . n
0a(0) = exp [ = ; agm? smh(se)] . Cp0) i=exp Léﬁ B,m* cosh(nﬂ)] . (16)

Here the parameters «, in (16) are those defining the CDD factor ®,(0) (2), while the parameters g, are, a priori, free and independent
of the scattering phase. The existence of this very large freedom in the choice of the MFF is an ambiguity that was already highlighted
in the original works [64-66] where — arbitrarily and for simplicity — it was chosen to set g, = 0 for all »n. In a subsequent paper [80]
involving two of the present authors, the significance of the parameters g, was clarified. There, well-known integrable models such
as the sinh-Gordon theory were interpreted as irrelevant perturbations of the Ising field theory involving an infinite set of fine-tuned?
couplings a,. Then, their MFF obtained from (13) and (14) can be rewritten in the form (15) where the “free” parameters f, are now
fixed in terms of the a;. It was then revealed that the role of the function C4(6) is to quell the unphysical asymptotic properties of the
function ¢, (0), producing a well-defined MFF that satisfies all physical requirements imposed by the UV-completeness of the theory.
In the present context, UV-completeness means that the theory has a well-defined UV limit, described by a local CFT. A picture of
IQFT as a massive, relevant perturbation of a CFT was famously put forward in [81].

The main result of this paper is a step by step procedure that allows us to fix the parameters g, for TT-deformed IQFTs in a
physically and mathematically justified manner. We propose a generalisation of the integral representation that gives closed solutions
for IQFTs with arbitrary S-matrices of the form (1) and (2), which reduces to the representation found in [80] when the sets of
couplings «, is infinite and fine-tuned to yield a UV-complete theory. The parameters g, are fixed by analyticity and asymptotic
requirements, but also, crucially, by the requirement that the resulting MFF is a smooth function of the perturbation parameters «,.
For any set of parameters a we find that the function D, (0) is given by

s—1
Dy® = Dylim) [] |-2 TSmO X S (215inh 2 )_“’Sh o
Ry 2

) 17)

2 By fine-tuning here we mean that the resulting .S-matrix determines a UV-complete IQFT.

3
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where ¢, is the constant (68). This formula can be easily generalised to other interesting cases, such as the branch point twist fields
(see (B.8) in Appendix B) and to the boundary case recently discussed in [82], where the deformation of the one-particle form factor
is given by 1/D,(26). Note that in (17) and hereafter, we set the mass scale to m = 1 to lighten the formulas.

This paper is organised as follows: in Section 2 we give a heuristic derivation of our result, showing how generalised pairs
5(0) — p(0) can be constructed without relying on the existence of a Fourier transform g(¢). In Section 3 we present an alternative
but equivalent derivation of the same result, starting from the standard contour-integral representation of the MFF proposed in the
foundational paper [70] by Karowski and Weisz. In Section 4 we discuss some properties of the correlation functions that might be
obtained building on this new minimal form factor. We conclude in Section 5. In Appendix A we discuss the construction of higher
particle form factors starting from a factorised ansatz. In Appendix B we generalise our construction of the MFF to branch point twist
fields.

2. A heuristic derivation: MFFs and their Fourier transforms

In this section, we are going to produce a generalization of the integral representation of MFFs, capable of accounting for the
presence of exponential CDD factors in the S-matrix. In fact, the representation (14) relies on the possibility of expressing the
scattering phase in integral form (13). This is not possible if the theory we are considering is a TT-deformed IQFT, whose S-matrix
is of the form (1) with (2). Our goal is then to knead (13) and (14) into a new, more general form. Note that the manipulations we
will be performing here are formal and that we will be quite cavalier about convergence issues. As such, the content of this section
is to be taken as a heuristic derivation of our main results.

2.1. Integral representation of the phase shifts

Let us consider an interacting factorized scattering theory with diagonal S-matrix,
NOETT A2 (18)
The quantity 5(9) is the phase shift and is normalized so that
6(0)=0. (19)

Consequently, the remaining constant ¢ encodes the value of the S-matrix at zero rapidity difference S(0) = €. For ¢ = +1 we have
the usual bosonic/fermionic statistics. However, more general theories exist, such as the Federbush model [74,75] where S(0) is a
generic phase (in this example, there are also two particle types). If our factorized scattering theory is a UV complete IQFT, then
the phase shift can be Fourier transformed as in (13). The converse is however not true. A good counterexample is the “bosonic”
sinh-Gordon model studied in [83] whose S-matrix has a well defined Fourier transform despite the theory lacking UV completion.
More general cases have been discussed in [12]. The meaning of this statement is made clearer below.

2.2. Asymptotic behavior of the S-matrix and temperedness

We now discuss in more detail the conditions for existence of the Fourier transform of the phase shift, that is the notion of
tempered distribution [84,85]. We show that the possibility of defining the phase shift as a Fourier transform is related to its nice
decaying properties at large rapidities and that TT-perturbed S-matrices are precisely of the type where this condition is violated.

Let f be a function on R and consider D(R), the class of test functions on R and D’(R), the class of distributions on R, i.e. the set
of linear functionals on D(R). Explicitly, given f : R — R and ¢ € D(R) it is possible to define a distribution®

(fr0)= /w f@ex)dx € D'(R). (20)
—
Suppose that §(6) is a smooth function satisfying the asymptotic condition
|glliinoo 6(0) = 0. (21)
This means that this function and all its derivatives decay faster than any inverse polynomial, i.e.,
vnen. s |0¥6@)] < 00 forall k e N, (22)

Therefore 5(6) belongs to the Schwartz class S(R). This implies that its Fourier transform

g = / ge”"aw) (23)

—oo

3 Note that this symbols D and D’ have nothing to do with the function D, (0) defined earlier (15). Similarly, the symbols S and S’ around Eq. (23),
are distinct from the set of spins S in (2).
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exists as an ordinary Lebesgue integral and defines a function g(r) € S'(R) C D'(R), the dual to the Schwartz class, i.e. the class of
tempered distributions. In particular, we also have the inversion formula

(8]
8(0) = / die™"g (), (24)
—00

with absolute convergence of the integral due to rapid decay of g(z). In summary, if §(§) € L'(R), meaning that its absolute value
is Lebesgue-integrable, we can define its Fourier transform, which will also have nice decaying properties by construction. This is
what happens for standard phase shifts. Now, consider a phase shift coming from a TT-deformation: 5(f) ~ sinh(s6). It still defines a
distribution in the sense of D’'(R) (class of distributions in R), i.e., for instance, it acts continuously on test functions with compact
support:

@0 ECPR) = (sinh,g)= / sinh(s0) (0) d6 is finite. (25)

0

However if we consider the real line, sinh(s) grows exponentially as |0| — oo:
| sinh(s)| ~ %eslgl, (26)

and therefore it does not satisfy any polynomial bound of the form (22) which is a necessary condition for tempered distributions.
Consequently, §(0) in this case is a distribution, but it is not tempered; thus, its Fourier transform is not well defined within the
classical theory of tempered distributions. Indeed, the subclass of test functions £(R) C D(R) necessary to make an integral like (25)
convergent, can only be of two kinds: the class of test functions with compact support £(R) = C°(R) as written above or a subclass
with a quicker exponential decay than exp s|6|:

E(R) := {(p € C®R) | 35 > 0 such that sup ‘(p(G)eslel’ < oo} c D). 27)

0eR

2.3. The scattering phase and its Fourier transform

Let us now apply these ideas to the integral representation of a generic S-matrix. Consider then the scattering phase 6(6) and
suppose it can be written in terms of its Fourier transform as

swr:QKZ%%ux%. (28)

Since the phase shifts are taken to be real functions of the rapidity difference, the function g() must be even: g(—¢) = g(r). We can
then rewrite the Fourier transform in the form (13)

5(0)=— /°° ﬂg(t) sin 10 s (29)
0o t z

which is the representation given earlier (13). In order for this Fourier transform to be a proper function - rather than a distribution
- we must demand that g(r) approaches constant values at the integral bounds

m=w+w%|gwmww<w (30)

Note that we assumed g(f) to be Taylor expandable around ¢ = 0 and to possess only isolated singularities. The constants g and g(*
may vanish. We can think of g(¢) as a function on the Riemann sphere C U {0} which means that it must be either a constant or a
meromorphic function. In both cases, we can use a Mittag-Leffler expansion [86] to write
(o]

2 g
HOEFEEDY

n=1

g™ = +27i Res [g(], ey

=ip(n)

p(n) 2 + p(n)?

for some set of poles {+ip(n) |n=1,...,00}. We can use the physical properties of the phase shifts to specify the positions of these
poles. In particular, we want 5(9) to be 2zi-periodic. We see that (31) and the residue theorem — which we can use since the integrand
of (28) decays as t~! as |t| = oo — imply

[

(n) p(n)o
5(6) = const. + Y, 2—e¢~
n=1

ez , VO>0. (32)
2p(n)

If we want this expression to be 2ri-periodic, then we need to fix
p(n) = nrx. (33)
In conclusion, the function g(r) must take the following form
o0
2 g
OETSED)

5 (34
‘ nx? 12+ n’x?

n=
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2.4. The logarithm of the MFF and its Fourier transform

Given the integral representation (29), we introduce the new function

1 [®dtglt)— g(O) in—0) g(O) —l+4e¢ e

0)=—- —_—— ir 4 —— (_ 1’1—). 35

o 4/00 ¢t sinhr © 2 og | —ismhz (35)
Note that the Fourier integral converges as long as 0 < Im 6 < 2. We immediately verify the identities*

pliz —0) = p(ir +6) , (37a)

p(0) — p(=0) =i6(0) + # sign(6) . (37b)

Consequently, we can take this function to be the logarithm of the MFF

F_ . (0)=F., 2ri—0),
log Fyyn(0) = ) = { in0) = Lin (21~ 0) (38)
Fmin(e) S(Q) mm( 0) .
With some manipulations® we can rewrite p(6) as follows
- 2 ( 1iz—6)
© gt S‘“( 2z ) 1-c 0
0) = p(i — gty —M8 ™~ — ! —"h—), 39
p(0) p(tir)+/0 ; g prmr 3 Og( i sinh 3 (39)
where p(ir) is a constant that can be absorbed into the normalisation of the MFF.
2.5. From integral to series representations
Using the Mittag-Leffler expansion (34) in the integral representation (28), we can write
®dt 16 . (10 g™ 1 [ geitn
50 “”/ a1 (—)+ 2 a e
© = 0o t =w 7 ; nm 2z J_o 12 +nin?
0) L () (40)
ng 1 8" ol o
= - =Y 0).
[ 3 + o ; . e sign(0)
Similarly, putting together the integral representation (35) and the expansion (34), we get
o H(in—0)/x O _ 1+ 0
g t e 8 € ..
0 d _ 1 (— h -). 41
p0) = z n Zm o 124 n2z?2 sinht + 2 og{~ism 2 (41)

The integral can be computed by residue theorem, with contributions from a double pole at t = izn and simple poles at ¢ = izm with
m # n. This gives®

1 ) J t et(i;r—&)//r 0>0 i R t et(iﬂ—é’)/n
— f——— ——— = Sy | ——— ———
27i J_oo 12+ n2x2 sinht “~ =M 2 4 p272  sinht

= g (2n( 55 ) =)o 1 zz‘z,ﬁ_mz “2)

For generic 6 the formula above generalised in a simple way, which can be captured by introducing the sign(f) function in the
appropriate place, giving the final result:

| 2nz mgn(é')(e in ) - [ —m|6]
(9)=_ng oy Y B
P ) & o 4n ~ n2 — m2 43)
m#n
g -1+

2 log (—i sinh g)
Let us compute the difference p(6) — p(—0) and check that (37b) is satisfied. Thanks to the relation (36) we have that the last term in

(43) produces the first term in (40). Furthermore, the sum over m in (43) is symmetric under # — —0, so it does not contribute and,
finally, the remaining term in (43) yields the sum over » in (40):

2mrs1gn(6)(‘9 '”) -1 o 2nz sign(— 6)( —_ ’”) -1
e

ym n "0 = iz sign(@)e "% (44)
4 For Eq. (37b), we can use the known integral f°° 4 5in @ = 7 sign(6) and
log(—i sinh 2) — log(i sinh 2) =—ir sign(G) (36)

0 dr sin (rx) 1 ] h
© 7 amr = 3 logcos (7x).

6 Note that this integral needs regularization: we suppose that 0 has a vanishingly small imaginary part.

5 We use another known integral: [

6
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2.6. Recovering a T'T-like representation

So far, the contents of this section provide a rederivation of known results. We now come to the new conceptual step which will
allow us to use these results to construct a pair §(§) — p(9) which corresponds to IQFTs perturbed by TT. The key observation is that,
for the purpose of the above identities, the only property that matters is the parity of the functions e~"l?! and sign()9e~"1%, that is,
that the former is even under # — —6, while the latter is odd. This means that we could replace these functions with others having
the same parity properties and the MFF Eq. (37) would still hold. We will now exploit this property by investigating what the most
general choices for these functions can be. We perform the substitutions

e sign(@) — £,0), e "1osign(0) — g,0), e — h(0). (45)
in the series expansions (40) and (43). For simplicity, we will also take g = 0 and e = 1 so that the term log(—i sinh g) in (43) drops
out and we have an S-matrix which is a “pure” TT deformation. We then have

o0
1 g(")
6(0) = — =—f,(0),
0=~ ; — 1,0

(46)
1w g®? mi 1 1 o m
p0)=-— ; =TSO + 58,60 = - hy(0) + Z O |

m#n

We want these two quantities to be, respectively, a phase shift and the logarithm of the corresponding MFF. Clearly, only some
functions f,(0), g,(0) and h, () will work. We must have

5(0)+6(—0) =0, unitarity of the S-matrix
5(0) —6(ir —0) =0, crossing symmetry of the .S-matrix,

p(0) — p(—0) = i6(0), Watson’s equation, (47)

plin +0) — p(xi —0) =0, crossing symmetry of the form factor.
We then see immediately that the functions f, () have to satisfy the conditions

(O +im) = f,(=0) = = f,(0) = = f,(6 — im). (48)
Watson’s equation tells us that g,(6) and 4, (6) have to be even

8,(=0) =g,(0) , h,(=6) = h,(6), (49)
and, finally, the crossing symmetry of the form factor yields the following identities’

8,0+ in)—g,0—in)=2zxif,(0+ir), h,(0+ir)=h,(0—ir). (50)

If we require that { ,(0)},c7+, {£,(0)},e7z+ and {h,(0)} <7+ each constitute an infinite, countable set of independent, smooth functions
that satisfy the above requirements, then we can almost uniquely fix the solution to be

Fon_1(0) = —sinh(@n — 1)), gy, () = —Osinh((2n — 1)8) ,  h,(6) = cosh(nd), (51)
and
foan@) =0, g,>0)=0. (52)

With “almost uniquely” we mean to say that — since the Eqgs. (48)-(50) are homogeneous — we still have the freedom to rescale
each of the functions f,,_,(9), g,,_;(6) and h,(9) by an arbitrary constant (in 6) factor. For f,,_;(0) and g,,_;(0) this factor has to
be the same, due to the first equation in (49), and it can be reabsorbed into the coefficients g™. However for the functions £, (6),
it is indeed an arbitrary choice. We can even choose it to vanish for any n. This fact is not surprising: it is the usual indeterminacy
of the cosh terms that was already remarked in previous works [64,66,80]. Here, the choice we make (51), (52) is guided by the
requirement that the functions (46) agree, for large |0|, with (40), (43) when stripped of their diverging behavior. So, for example,
we ask f,_;(0) P sign(f)e~?"=DI%l 4 “diverging terms” and we see that f,,_;(0) = —sinh((2n — 1)0) fits the bill. Notice that this also

means that

£ = 0. (53)

7 Here we are assuming that each term in the series — also in the double series — appearing in the Eq. (47) has to vanish independently.

7
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Thus, we have found that the following functions (we now add an index a to include the parameter dependence)

8(0) = = ) ay,_; sinh((2n — 1)0),

n=1

in—0 < cosh(Cn— 1)) 1 <a  mcosh(mb)
pa(0) = b 5(0) + ,,Zl -1 4z2n— 1) - ; ; Q2n—12-m? ’ 4
m#2n—1
| g@nD
Y1 = -1
constitute a valid 5(8) — p(#) pair. Notice that the form of the phase shift is exactly that of the TT deformation (2). However, the
MEFF is different from that found in [64,66], in the sense that the coefficients of the cosh(nf) terms are not arbitrary, but related to
the same «, appearing in 6(6). This form complies instead with the expression for the sinh-Gordon MFF derived in [80]. In fact, (51)
is not the only possible set of smooth functions we could choose. Setting 5,(6) = 0 for all indices n € Z is also an alternative choice
that satisfies all the conditions. This choice reproduces the results of [64,66], when all free parameters are set to zero. We argue that
the MFF in (54) is a more natural choice, for at least two reasons. First of all, by construction, it reproduces the MFFs obtained from
the integral representation for UV complete IQFTs. Secondly, as a function of = 9’%, the logarithm of the MFF in (54) has more
desirable asymptotic properties than most of the possible solutions found in [64,66]. Let us look at a simple case to illustrate this fact.

2.7. The TT-deformed ising field theory

Let us take the simplest possible factorized scattering theory, a massive free fermion, with S-matrix S(0) = —1. Let us perform a
basic TT deformation of this theory. Then the scattering phase becomes
55M2(9) = —asinh 0, e=S(0)=-1. (55)
From the general formula (54), we find the logarithm of the MFF to be

0
Isi .0 ir—60 . a a m cosh(m8)
0o 8(0) = log (—1 sinh 5) iy asinh § + i cosh @ — g mgz T
=log (—i sinh Q) -Z= Ha sinhg - L - & cosh 6 log(—4 sinh? Q) (56)
2 b2 2r 2m 2

=log (cosh %'I) - 21 [1 + zn sinh(zn) — cosh(zn) log (4 cosh? %’1 )] s
b4

O—in
s
nicely for |#] — oo in the whole strip 0 < Im# < 2z, for both « positive and negative, as can be seen in Fig. 1. Figs. 2 and 3 show a
comparison of the MFF obtained from (56) with that derived in [64,66], for, respectively, Imf = iz and Imf = 0. We notice how the
MFF we obtained here preserves the large-rapidity behavior of the unperturbed (a = 0) theory, while the one obtained in [64,66]
agrees with the a = 0 situation only in the vicinity of § = 0. This difference in the behaviour of the deformation of the MFF is more
profound than appears at a cursory glance. The expression found in [64,66] cannot be considered a small deformation of the massive
free fermion MFF! This was already remarked in [64,66], where it was observed how the deformation leads to a radical difference
in the correlation functions compared to the undeformed theory. In contrast, the expression (56), can be rightfully considered a

where we now reinstated the “Ising term”® log (—i sinh g), since € = —1. We introduced the variable 5 = This function decays

e
well-behaved 1-parameter («) deformation of the massive free fermion MFF. This is immediately clear from the plot of erd 2O jp
Fig. 2. From the plot in Fig. 3, we see that something peculiar happens for « > 0: the minimal form factor seems to change its 6 ~ 0
behaviour when « crosses the value a, = 7. In fact, a more careful analysis confirms this observation. Let us consider the behaviour

o Isin;
of the MFF Frﬁ‘:g(e; @) :=efa “® in the vicinity of 7 = 0 and 6 = 0.

[Sing . _a(1-2log2) 5
Fanl@:0) ~ ¢ 400,

(57)

1 _a

Ising , . 1 2\5 - -t a 2 1 2
Fynt0:a) ~ 5(=6%)2 3¢ [1 +5(=6%2 + 00 )].

We immediately see that the behaviour at  — 0 is qualitatively the same for any value of a: the MFF is a finite, a-dependent constant.
On the other hand, we see that at 6 = 0, the behaviour of the MFF radically depends on the value of a: if « < =, it vanishes (as happens
for the undeformed case), while for a > # it diverges (reaching a constant in the limit case « = a, = #). The situation is portrayed in
Fig. 4. Further discussion of this behaviour in the context of correlation functions is given in Section 4.

Notice that the critical value a, = 7 is theory-dependent. In this case, it results from the fact that the MFF of the Ising field theory
is —i sinh g, as we see for instance in Eq. (56). The general statement is that if the leading asymptotic behaviour of the MFF of the
unperturbed theory is:

Ising

8 Notice that, thanks to this term, the minimal form factor Fr]nsii:g(ag a)=expp, - diverges as Ref — +oo. This is a characteristic behaviour of the
massive free fermion. In non-free theories, this diverging behaviour will be tempered by the presence of interactions.

8
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oa=2r
i — Im(n) =0 — Im(n) = -3/4"
— Im(n) = —1/4 — Im(n) = -1
300 ]
— Im(p) =-1/2
25}
@
FZ 20f
=i
15 )
10+
05t
J10 05 00 05 10
Re(n)

(a) MFF for TT-perturbed massive free fermion with the inclusion of the cosh
terms, with a = 27.

a= -2

2510 — Im(n) =0 — Im(n) = -3/4
— Im(n) =—1/4 — Im(n) =-1

200 N\ — Im(n) =-1/2

ost i
00 [ -
- l‘.O vd.S O‘O [)‘.5 l‘.()
Re(n)
(b) MFF for TT-perturbed massive free fermion with the inclusion of the cosh
terms, with a = —27.
Fig. 1. Comparison of MFFs with the inclusion of cosh terms, for « positive and negative, on different lines Imzn = 0, —i, —%, —%, -1.
Fin(0) 1~ 0%, (58)
for some constant k¥ € R, then, the MFF of the TT-perturbed theory will have the leading asymptotics
Fin(0;0) o 0=, (59)

so that there is a critical value a, = k7 above which the MFF develops a pole of order % —k at = 0. In the Ising field theory we

simply have x = 1.
2.8. The TT,,_,-deformed ising field theory

Let us now consider a generalisation of the computation in the previous subsection, to the case when the perturbation is a single
spin-2n — 1 irrelevant perturbation. That is:

50" (0) = —ay,_; sinh((2n — 1)0) , €= S(0) = —1. ©0

op—1
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25+

Ising
min

F,

L L
-10 -05 0.0 05 1.0

Re()

(a) MFF for TT-perturbed massive free fermion with the inclusion of the cosh
terms, as a function of n e R

Im(n) =0

Ising
min

F,

)

L . L L L L

-1.0 -0.5 0.0 0.5 1.0

Re(n)

(b) MFF for TT-perturbed massive free fermion without the inclusion of the cosh
terms (see [64,66]), as a function of n € R

Fig. 2. Comparison of MFFs with and without the inclusion of cosh terms on the line n € R (i.e. Imé = ix).

From the general formula (54), we find the logarithm of the MFF to be

Isi ... 0 0—irn . Ay
e (0) = log (—1 sinh 5) 5 ey sinh(2n = 10) + 2L cosh((2n — 10)
(o]
Ay, q m cosh(m8)
- , 61
b ; @2n—=1)2 —m2 1)
m#2n—1
The sum above can be computed as follows:
co s—1 )
m cosh(m@) m cosh(m0) m cosh(m0)
mz:: 2 —m2 _mzl 2 —m2 +m_2m 2—m (62)
m#s - B
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min
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08 -

0.6 -

04 -

02+

00 -

0.0

Re(0)

L
-05

(a) MFF for TT-perturbed massive free fermion with the inclusion of the cosh

‘ Flsiug,l
min

terms, as a function of § € R

Im(n) =0

Re(0)

(b) MFF for TT-perturbed massive free fermion without the inclusion of the cosh

terms (see [64,66]), as a function of € R

Fig. 3. Comparison of MFFs with and without the inclusion of cosh terms on the line 6 € R.

where the infinite sum is given by

(8]
Z M = L + — cosh(s&) + Z M = cosh(s&) log( —4sinh? Q), (63)
52 —m? 2s - m? 2
m=s+1 m=1
so that
st cosh(mG) 0
Z — cosh(nd) = 1 cosh(s0) + Z +5 L cosh(s) log ( —4sinh? 5). (64)
Putting everythlng together we have that the logarithm of the minimal form factor is
Ising .. [4 0—irn . ®Xp—1
p”2n (0) 10g (—l sinh 5) + 70{2n_1 smh((2n - 1)9) - m
a 2 cosh(mf) « 0
2n—1 2n—1 s k2
- - h(2n — 1)0) 1 (-4 h-).
. mz=:1 T 1—m o cosh((2n — 1)0) log sin 3 (65)

11
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Im(#) =0

= a=0 =i

08
— a=7j2 — a=57/4

— =32

0.6 -

‘ Flaiug I
min

04+

00 -

L
-1.0 -05 0.0 05 1.0

Re(6)

Fig. 4. Plots of the MFF obtained from (56) as a function of 6 € R for various values of a > 0.

For the purpose of studying the asymptotic properties of the minimal form factor, it is useful to rewrite the function above in terms
of the variable #, as in the previous subsection

Ising _ N Xp—1 1 .
Py, (6) = log (cosh 7) - [_Zn — + o sinh((2n - 1)7”7)]

+ 2271 cosh(@2n — Dan) log (4 cosh? % ) (66)

% 2"2‘2 (=D coshman) | @,
T = n-1-m 2z

We then find that

Ising _ o1 (I-@n-1020g 24y, 1)) 2
F (@500, ) o e 22001 +0(),
2l - (67)
Ising 1— %2n=1 _ e (1420n-Dé, ) iy, 10 )
3 ~ - 22Q2n—1) _ —
Fain 0:0201) = 077 e - ! > +0@))|.
where
2n—2 -2
1= CO™ o ey = y 1 )
-1 = e m-1= =,
m=1 " m=1 m

which are very similar behaviours as found for the n = 1 case in (59). In particular, we find again that there is a stark change in
the # — 0 asymptotics depending on whether a,,_, is greater or smaller than z. It is also easy to see that in the presence of several
perturbations the critical value will correspond to solutions to zx — ) s a; = 0 where « is the value in (59).

3. Alternative construction from the Karowski-Weiss approach
3.1. The original work

Let us go back to our original Eq. (11). We consider once more the problem of finding general solutions with desirable asymptotic
properties to these equations for TT-perturbed theories. An alternative way to approach this problem is suggested by the original
construction of Karowski and Weisz which leads also to an integral representation of the MFFs, albeit written in a slightly different
way. In this subsection we summarise their original work. We start by writing

1/ log Fin(2) dz

a
- log Fin(0) = — | —=— 69)
C sinh 5(2—6)

a6 m 8mi
Here C is a contour enclosing the strip 0 < Im(6) < 2z as shown in Fig. 5.

The denominator sinh? %(z — 0) has double poles at z = 6 + 2zin (n € N). For 6 > 0 only the pole at z = 6 falls within the contour.
Then, by Cauchy’s residue theorem, we obtain the derivative on the l.h.s. Let us examine this construction better. Because of the
Eq. (11), we have certain asymptotic properties the form factor must satisfy. If the S-matrix tends to a constant in the high energy
limit # — oo, as is expected in UV-complete theories, then we must have F,;,(6) = O(expexp |6|) for Re(f) — oo. This is very important
when computing the integral along the contour above. We can divide the contour C in in four pieces: C = C; + C, + C;3 + C4. Given
z = x + iy we have:

12
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Im(0)
—R+2in 2z‘71 R+2in
e v s e g e i [
physical
stri
0 2
L4
-R R Re(6)
Fig. 5. The contour C in (69).
e two horizontal segments: C; = {x : —-R<x < R} and C3 = {x +2izr : —-R<x < R};
¢ two vertical segments: C, = {R+iy : 0<y<2zx}and C, = {-R+iy: 0<y<2x};
with C oriented counterclockwise. So, our integral can be written also as
R -R 2 0
/dzw(z)=/ dxw(x)+/ dxw(x+2ﬂi)+i/ dyw(R+iy)+i/ dyw(—R +iy), (70)
c -R R 0 2

with
log Frin(2)

8xi sinh E(Z —-0)

(71)

The idea is that, if w(z) decays fast enough for large R, we can discard the vertical contributions. That is by the estimation lemma
we can write

/ dzw(z)
G

and similarly for the integral along C,. For our function w(z) we have that

2r
S/ dy|lw(R+iy)] —» 0 (72)
0 R—o0

log Fin(R +iy)
sinh? %(R —0+iy)

O(elRly
e|R| R

(73)

because the MFF has the asymptotic behaviour described above. Therefore, the integral is given by the sum of the horizontal contri-
butions. These contributions are related to each other by the form factor Eq. (11) giving

L 10g Fmin(z) dz = L @ dx Io Fmin(x)
87i Jc ginh? %(z -0) 87i J_o sinh? %(x —-0) Fin(x + 27i)
*  log S
=L / g5 74)
87i J_o sinh? E(x —-0)

which therefore provides a representation of the derivative of the MFF in terms of the scattering matrix. If the S-matrix admits a
Fourier series such as (13), then a representation of the type (14) follows immediately.

3.2. Challenges posed by TT-deformations

Consider now an S-matrix of the type (1) with a CDD factor of the TT type as in (2). Let D,(0) be the deformation of the
corresponding MFF?, as defined by the Eq. (12) whose general solution we wrote in (15). The main property of the CDD factor @, ()
is that, at large rapidities it does not tend to a constant. Therefore in general we have D () ~ exp (exp s*|6]|) for Re(f) — o and s* the
largest spin in the sum (2). This means that if we follow again the Karowski-Weisz construction we find the following asymptotics of
w(R +iy)

log D, (R +iy)
sinh? %(R —0+iy)

"
es |R|

- (*=DIR]
AR Rowo © : 75

So we can no longer argue that the vertical contributions to the integral are vanishing. We can think of two ways, possibly related
to each other, of solving this problem: the first consists in finding an appropriate choice of contour such that the exponential growth

9 In (15) and (16) we wrote the most general solution to these equations, namely D, (6) = @a(0)Cs(0).
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of the function on the real axis can be mitigated. The second comes from the freedom given by the equations in (10) regarding the
choice of the MFF. As noticed in the introduction, we can always multiply a given solution by some function C4(6) given by (16). Let
us call this modified solution D,(6). An appropriate choice of this function, which means a choice of the parameters g, will ensure
that

log Dy (R + iy)
sinh? —(R 6+iy)

O(e'R‘)

e|R| R-> (76)

The additional parameters g, if chosen wisely, can enforce the double-exponential asymptotics of the MFF [80]. The idea is
therefore to regularise the usual integral representation by imposing this asymptotics.
log S(z)
sinh? 1 (z-6)
analytic everywhere inside and on the contour and z,, is a pole of the denominator, we have that the residue at the pole is given by

We end this section with an observation. In general, given an integrand 1(z,6) = over a contour such that log(S(z)) is

Res(I(z.0),z,) = 40, [log S(2)] _, - 77)

As observed previously, the poles are exactly at z,, =  + 2xin, forn = 0, 1,2, .... If we consider again the contour C above, including
the pole at z, = 0 we get

}z{ dz1(z.0) = 40,[log S(z)] . (78)
C

Instead of deforming the contour we will see in the next section that imposing the asymptotics above is sufficient to find a closed
solution that fixes the MFF completely. Not coincidentally the term that regularises the integral representation is proportional to
contributions of the form (78).

3.3. A solution

The main problem in defining a complete MFF for a generalized TT-deformation comes from the distinct properties of the CDD-
factors. We cannot expand them in terms of a Fourier series, therefore we need to start from an integral representation of the type
(74). In practice, it is more convenient to start from an equivalent representation which involves log S(z) explicitly. This kind of
representation appears in [87]:

0 20 [ TS0 e <2 79)
— f— < <2xm.
r(0) = COS 2/0 cosht — cosh @ or m(d) < 2=

The integrand reproduces exactly the same pole structure of (69) but it can also be shown to be equivalent to (14) once we invert
the Fourier transform. Let us consider ®,(6) as defined in (2). We have

t
0 ™ tanhzlntl)a(t) 1 0 / a tanh sinh st
log D, (0) = — cosh? = dt— = —— h? 2 80
02 Da(0) = COS 2/0 cosh? — cosh 6 o8 ;g cosht—coshé‘ (80)

This integral is not convergent because of the asymptotics of the sinh(s) function, however it can be easily regularised by replacing
sinh(sr) by —e™*'. This amounts to the regularisation prescription

0 [ anh § .
log D, (0 —h2 dt—l<1> 3, Ind, (1), 81
08 D) = 7 cos 2/0 cosht — cosh0(n 2(0) = 0;In g (1)) (81)
where

@) =—i Y Zsinh(s0). (82)
s€27+ -1 S

Let us see explicitly how this prescription leads to the same formulae found in the previous section. For |Re(#)| < Re(?) the integrand
can be expanded as a long-wave expansion in 6 [87,88] giving

cosh? g tanh 5 &
=) [cosh(m®) + (=)™ ]e™". (83)

cosht — cosh @
m=1
Consider next the case of a single perturbation of spin s. We get then

o [so]
logD, () = I Z [coshk + (—l)’"“] / dte™™ sinh st. 84)
: z m=1 0

We are left with the computation of a simple integral

[s+]
dte™™ sinh st = ——— (85)
o m2 — s2

14
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which is only well defined away from the simple pole at m > s. This means that we need to regularise the infinite sum in & of (83) by
subtracting the pole. We can do this by modifying (85) to

s m 1
- S 86
m2—s2 m?-s? m+s (86)
which is equivalent to the prescription (81) for each term in the sum in s. The regularised version reads
o]
a, cosh(m@) + (—1)™+1
logD, (0) = = _— 87
02Dy, (0) b Z m+s (87)

m=1

Let us consider carefully the various contributions to this sum, taking care to compare them to the result of Section 2.8. First, we
have the constant

o o © s
(_1)m+l B (_1)m+l B (_1)m+l (_1)m+l _ 1

R i

m=1 m=s+1 k=1 m=1

where ¢, is the constant we defined earlier (68) and s is odd.
Then we have the sum involving cosh(m#). It is useful to consider the two terms in (86) separately and exclude the problematic
value m = s. We compute

) s—1 0
s cosh(m0) s cosh(m0) s cosh(m8)
= + —. (89)
r; m? — s mz=:1 m* — 52 mg—l m* — s
m#s

The infinite sum can be computed to

i scosh(mf) __ Z scosh(m@) + cosh(s0) _b-in

inh(s@ 90
m2 — 52 23 4s 2 sinh(s9), (90)

2 2
m=s+1 m S

so that

i scosh(mf) 1 + cosh(sd) 6 —i
2

T
pr e I sinh(s0) . 9n

m=1

m#s

The other sum in (86) was computed in (64). In addition, we have the m = s term coming from the cosh(m#) sum in (87) which is
simply — mh(“g) and cancels with contributions from the sums above. Putting everything together with s = 2n — 1 we get

logD,, (0) = ==—"a,,_;sinh((2n — 1)0) + === Do 2= (= log 2+ ¢3,) (92)

2

aZn 1 COSh(mg) a2n—1
Z 2n—1- 2r

cosh((2n — 1)8) log (—4 sinh? g) .

Compared to the solution (65) without the Ising term, we see that they are identical up to normalisation constants. These are not
important in applications, since the MFF is ultimately normalised by its value at ix. Generalising to any number of TT perturbations
and employing the standard normalisation we can write the general formula (17). If we compare this solution to the general formula
we wrote in [64,66], we have that the f-dependent part in (16) is now fully fixed to

s

s—1 T
cg— W —cosh (s0)

. 1 =N
O =Cyim [ [-5¢ = " (2isinn3) : 93)
se27+-1

and ¢, (0) is the same function as in (16). This construction can be easily extended to branch point twist fields, which satisfy
slightly different form factor equations [65,78]. We discuss this generalisation in Appendix B.

4. Correlation functions and their asymptotic properties

One of the main uses of the form factor program is for the computation of correlation functions of local fields in the ground

state. Such correlators can be expanded in terms of integrals of the absolute value squared of the form factors. In our papers [64,66]

we argued that the correlation functions resulting from a MFF where the function D (9) is chosen as D, (9) = eT‘”'“hg will contain

integrals whose integrand contains the absolute value of this function squared, that is, ei sinh® This function grows extremely rapidly

for |0| large and a > 0 and decays extremely rapidly if « < 0. Therefore, there are very different physical properties in these two
regimes, a feature that is (qualitatively) in line with what is expected from the TBA analysis [2].

Consider instead the new function (17). For simplicity, let us take s = 1 and «; = a so that we have a single TT perturbation and
a single perturbation parameter. The absolute value squared gives

DO = D, (i) leesmhg(Zsinhg)JmShB - (94)
@ LA 2 ’
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and for |#| large we have

. 1 8,0 0,077 X _a
IDLOF ~ [Da(imP [ 2 e 2| = [Dyim P45, (95)

which is a constant. This is a radically different asymptotics compared to what we described above. This means that the leading
asymptotics of the MFF is dictated by the asymptotics of the MFF of the unperturbed theory, and little can be said about the short-
distance scaling of correlators if we do not know the full two-particle form factor. However, from the asymptotics we no longer expect
to see a marked difference between the a positive and negative cases.

There is, however, an important difference in the behaviour of the minimal form factor depending on whether a > 7 or a < z. In
particular, if we consider a TT perturbation of the Ising field theory so that

min

[FS(0: )2 = |FS™ (i )|zsinh2Q 1 osinho T2eosho X
so)l* = |F . S(ima > 4e

2sinh —
sm2

2(1- % cosh 6)
g : 96)

2sinh =
2

2 Ginho
T

= | Fyin(im; @)|*4” = ¢

we see that for a < x the function has a zero at § = 0 while for « > z it has an (unphysical) pole at § = 0. We see these properties
numerically in Fig. 4. The presence of a zero at § = 0 is common with many other IQFTs such as the Ising and sinh-Gordon models.
However, the presence of a pole is unphysical and is an indication that the critical value a, = z represents a transition point between
two quite different theories. Interestingly, this kind of transition also occurs for UV-complete models and can be seen for instance
when comparing the MFF of the sinh-Gordon model [89] with the MFF of the Lee-Yang theory [90]. Indeed, the .S-matrices of these
two theories are very similar, yet the MFF of the Lee-Yang model with the standard construction would also have a zero at § = 0. A
resolution of this problem was put forward in [90] which consists of multiplying this “natural” MFF by a function that cancels the
pole, while still producing a MFF that is consistent with all axioms and asymptotic requirements. This example provides a pathway
for how to deal with the critical values found above. Further discussion will be presented elsewhere [91].

5. Conclusion and outlook

In this paper we revisited the problem of computing the two-particle minimal form factor of an integrable quantum field theory
perturbed by TT. Although the basic structure of this MFF has been identified in previous work [64-66,82] for various types of
fields and theories, uniqueness of the solution had not been established. The main result of the present work is to propose two
distinct procedures by which the MFF may be fixed unambiguously. We find that the MFF of an IQFT perturbed by TT can be
uniquely determined by requiring a convergent integral representation, which may be expressed as a regularized version of the usual
integral representation. The expression that emerges from this construction has a smooth behaviour in the limit when the perturbation
parameter(s) tend to zero and reproduces to the MFF of standard IQFTs (such as the sinh-Gordon model) when the number of irrelevant
perturbations is infinite and the couplings are suitably chosen (see Appendix A where the sinh-Gordon example is considered). The
formula is

Fmin(e; a) = Fmin(e)Da(g)s 97)

where F;, () is the MFF of the unperturbed theory and D, (0) is the function (17), which is generalised to (B.8) for branch point
twist fields [65,78,92] and to 1/D,(20) for the one-particle MFF of boundary IQFTs [82].

A special feature of our solution is that, in the simple case of a single perturbation, say by TT, there exists a critical value
a = a, above which the MFF develops a pole of order % — k at @ = 0, where « is a property of the unperturbed MFF. The existence of a
“transition” in the physical properties of the model seems reminiscent of what is observed in the thermodynamic Bethe ansatz analysis
(see e.g. [2,15]), in particular the emergence of a Hagedorn transition at finite temperature. However, there are notable differences
between the two situations and we think that they are not related. For one, the Hagedorn transition occurs for any negative value of
a (with our prescriptions), whereas for our MFF the “transition” happens at a specific, positive value of a. Secondly, it is well known
that the Hagedorn transition is particular to the pure TT perturbation and absent for higher spins (unless one modifies the driving
term of the TBA and considers specific generalized Gibbs ensembles, as discussed in [46]). In our case, however, the critical point is
present for any finite number of perturbations. Perhaps, the most interesting observation is that, as discussed at the end of Section 4
the presence of a pole at § = 0 is a phenomenon that also occurs for some UV-complete theories when their MFFs are constructed via
the standard integral representation discussed in this paper. The simplest example is provided by the Lee-Yang theory whose MFF
was constructed in [90]. In this case the naturally occurring singularity at § = 0 is cancelled out by simply modifying the MFF by
a multiplicative factor which has a zero at § = 0. We think therefore that it may still be possible to make sense of solutions with
a > a, by a similar modification of the MFF. How this factor should be chosen for IQFTs perturbed by a finite number of irrelevant
perturbations is however an issue that needs further discussion. A more detailed discussion can be found in our upcoming work [91].

Although our analysis provides a way to fix the MFF which is reminiscent of the traditional construction of Karowski-Weisz [70],
it does not make the construction of higher particle solutions any easier. In fact, the correct prescription for computing such solutions
is still not fully understood. Solving by plugging our new MFF into the standard ansatz for models with a single particle (like sinh-
Gordon [89]) and imposing factorization (as we previously did) leads to solutions which are not only plagued by square-root factors
(thus, points of nonanalyticity), similar to [64,66], but also lead to a partial cancellation of the MFF in the form factor ansatz (this
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is discussed in some detail in Appendix A). This second issue was not present in our earlier work because we had set the function
Cp(0) =1 in (15) and worked with the simplest possible form of the MFF.

This cancellation suggests that it may not be possible for the kinematic residue equation as it is, the standard form factor ansatz
with our complete MFF, and the assumption of factorization into a a-dependent and an undeformed part, to all hold simultaneously.
As we already discussed in the introduction, the locality properties of the observables are crucial, and specifically the kinematic
residue equation is underpinned by the notion of locality (or semi-locality). The work [93] sheds some light on the validity of the
standard form factor program. Using formal algebraic techniques, local observables for IQFTs are built by infinite expansions whose
coefficients are a sort of generalization of the usual form factors, coinciding with them for certain regions of the arguments. Local
observables are characterized by the analyticity properties of their expansion coefficients. These coefficients must satisfy a set of
axioms that correspond exactly to the usual form factor equations. Interestingly, in the conclusion of [93] it is pointed out how this
result could be “employed to prove non-existence of local observables in the sense of a no-go theorem” by showing that for some
S-matrices it is impossible to satisfy all the “axioms”.

The CDD-factor (2) is proposed as an example of such an S-matrix. Indeed the non-existence of local observables in these theories
was widely conjectured [3,63], based mainly on the failure of known algebraic and form factor methods, but this has never been
rigorously established. It would be interesting to understand if our constructive approach can be used to prove this statement more
rigorously.

As shown in Appendix A a factorised ansatz, where the form factor is a product of the unperturbed solution times a function
of the perturbation parameter, seems extremely natural for TT-perturbed theories but is easily shown not to produce the correct
solutions when considering more standard IQFTs, that is, when considering the case of infinitely many irrelevant perturbations. We
have checked this explicitly for the sinh-Gordon model, where a factorized ansatz gives solutions that are distinct from those known
in the literature [89,94,95] and contain square roots, as already discussed (see Appendix A).

Regarding future work, there are at least two avenues opened to us: it may be that there are non-factorized solutions that we
have just not been able to construct by the usual methods, would probably be highly non-trivial, and are still to be found, or, the
standard form factor program and in particular the kinematic residue equation, is not valid in its usual form for TT-perturbed theories.
The latter is a very plausible suggestion since giving up the notion of UV completion and locality does away with two of the basic
underlying principles of the form factor program as originally formulated. Our current work, as well as [64,66], provides a very
strong indication that the standard FF program may not admit analytic solutions for theories perturbed by T'T. Even if this is the case,
it would be interesting to understand how the breakdown of the program takes place (by using perturbative methods, for instance).
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Appendix A. Revisiting the sinh-Gordon model
A.1. Factorizing the kinematical pole

The sinh-Gordon model is the simplest IQFT which is also interacting, hence has a non-trivial scattering matrix [96-98]. The
two-body scattering matrix takes the simple form
tanh 1 (6 — ﬂ)

2 2

S,(0) = (A1)

1 izB\’
tanh 5 (6 + T)
where B is a coupling constant that takes values between 0 and 2. The value B = 1 is known as the self-dual point. Following the
notation in our introduction we have called this S-matrix .S, (0). The reason for this is that there is an alternative way of thinking

about this function, namely as an S-matrix of the type (1) where .5(0) = —1, corresponding to the Ising field theory (Majorana fermion)
and

1 inB .
tanhi(e— %) smh0—icosb7”

CDShG(B) — —
tanh5(0+%) sinh @ + i cos >
cos 3Zb
=exp[—4i Y 2 sinh(s0) |, (A.2)
se27+-1 S

where b := B — 1. This means in particular that
4(-1)" 2n— )zb
Uy = Z(n _)1 cos( ) ) s (A.3)

and plugging these values into (17) provides yet another way to represent the MFF of the sinh-Gordon theory:

4(=1)" cos 7(2”}1)”b
) M2 Q1)
FG(6; ) e 1 G sinh@n-10)- ¥ LMDy eip . g-cosh(@i-10)
e =i sinh — H ——e m=1 [21 sinh —] (A.4)
Fr:in (im; @) 2 nez+* 2 2

Employing this representation of the sinh-Gordon scattering matrix, it is possible to show that its MFF [80] admits a representation
of the type (15) where all values of a« and g are fixed by the requirements of analyticity and asymptotics. The exact formula for
the function C%"C(9) was obtained in [80]. The explicit form of this function is not needed for our current purposes. An important
property of the MFF of sinh-Gordon is that
. sinh 0
FS(0; ) F1S(6 + im; @) = —————— . (A.5)

sinh @ + i cos ”Tb

Our aim is to find higher-particle form factors of the sinh-Gordon model by employing a factorised ansatz. We will start by separating
the Ising, & and f(«) parts, using F;fil:g(e) = —isinh g and!©
ShG (g shG g o i 2 2
CyOOICyOO +im) = =- , (A.6)
\/sinh2 0 + cos? %b V/WhG (9)shG (- )

b

sinh @ — i cos 5
P00 + im) = 1/ OPG(O) = | -——2, (A7)
inh 6 + i cos =
sin 5
where
whG(g) = sinh § + i cos %b, (A.8)
with
\yshG(e)q)fth(g) — yhG(_g). (A.9)

It is well known that the formula (A.5) plays a critical role in determining the higher-particle form factors. Writing it in the factorised
form above allows us to separate the contributions related to the a parameters, f = f(a) parameters and the unperturbed theory,
parameters which are inherited from the representation (16). We will now “track” these separate contributions into the structure of
higher-particle form factors and investigate what they reveal about the form factors of TT-perturbed theories.

10 From [80] it is interesting to note that only the terms involving f, with s even contribute to obtaining the property (A.5). This excludes all terms
involving dilogarithm functions. Note also that compared to [80] we included an extra multiplicative factor \/E into the definition of CZ“G(G).
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A.2. TT-like solution of the sinh-Gordon model

Typically, the form factors of a field O, defined in (3) have the structure

; ,a)
FOO,,....0,a) = H (@0 ®,,....0,; 0 [ | ‘“;“ Y (A.10)
i<j e’ +e
where
0% ,(0+ir,0,0,,....0,;0) = G,(0,0,,....0,:, )00, ....0,: ). (A.11)

In the sinh-Gordon case we have the structure (normalisation constants can be absorved into the equation for the constants Hf(a))

n n
G600, ... 0,:a) = "V T e <H \/‘PS“G(() —0,)¥h5(9; — 0)>
j=1 j=1

x[Hcp;“G(a—ej)‘i —y@(—1)”Hq>jG(0—9,)i] : (A12)
j=I1 Jj=1
Employing the property (A.9) and the fact that ®,(6) = (®,(-6))"' (by unitarity) we can rewrite
G, (0.0;,....0,; 0, B) = "™V T % [H P60 - 0)) - yo(-1" [ ¥, - 0)] ) (A.13)
Jj=1 Jj=1 J=1

These equations are equivalent to those presented in [89] and [94]. Proceeding in this way allows us also to see how the square
roots present in the form (A.12) are absent when combining the « and g factors together in the sinh-Gordon model case. If we stick
with the representation (A.12) though we have a neat separation into three different contributions: the factor e+)? H % is the
contribution from the Ising field theory, the next factor incorporates the f dependence and the factor in the second line 1nc0rporates
the a dependence and, as expected, is of exactly the type found for generalised T'T-perturbed theories [64,65]. Mixing the & and g
factors together with the Ising factors gives the standard solutions for the sinh-Gordon operator content. We will see in the following
that instead, imposing factorization we end up with different solutions even though the S-matrix is still the sinh-Gordon one.

A.3. A factorized solution

Therefore, it is natural to try to find solutions to these equations using the same methodology as in [64,65]. We make a solution
ansatz stating that the sinh-Gordon form factors of some “local” field factorize as the form factors of an Ising field theory times a
a-dependent part. Furthermore, contrary to our treatment in [64,65] where we considered the case with all ; = 0, in the sinh-Gordon
model we have parameters §; entering the MFF, so we need a more general ansatz. Again, we assume further factorisation into an
a-dependent and B-dependent part. We write

Q9(0;,...,0,:0) = Q0 ...,0,)05 (0, ... ,0,; ET (B, ..., 0,; p(@)), (A14)
Where

n
09,0 +ir,0.0,,....0,) = "+’ [H e”f] 0,6, ....6,), (A.15)
j=1
which (up to normalisation) is the equation for the Ising form factors of the order field y (for n even) and for the disorder field o (for
n odd) [73]. The solution to this equation, or rather, the full form factors are very simple and proportional to he product [], ; tanh %
which automatically incorporates the denominator e? + ¢’ in (A.10). The next equation of interest is

0°%,(0+ir,0.0,,....0,;a [ch 0-0,)" LI 1)"H<1> - e)z 0%@,,....0,; ), (A.16)
J Jj=1

which satisfies the generalised TT form factor equation discussed and solved in [64,65]. The general solution reads

n l-[ls (011)1/2_701-[1*9 (011) 172
= J=

0%@,,....0,: 0 =[] . (A.17)
= HS(H )1/2—y<"H5(9 e

j=1

as shown in [66]. The B-dependent recursive equation instead reads

82,0 +im,0,0,,....0,; p(@) = i" [H \/\yshG(a —0)¥hG(9, — 0)[E2(0,.....0,: B(a)). (A.18)
j=1

Like in the Ising model and in its deformed version, we expect to have different sectors dictated by the Z, symmetry: either “even”
fields such as the order field u and the energy field ¢ and “odd” fields, such as 6. Their counterparts in the sinh-Gordon model, which

19



F. Sailis, O.A. Castro-Alvaredo and S. Negro Nuclear Physics, Section B 1019 (2025) 117131

also possesses this symmetry, should at least be in the same symmetry sector, with the fundamental sinh-Gordon field ¢ in the “odd”
sector and the trace of the stress-energy tensor in the “even” sector. Anyway, we notice that the factor of local commutativity do not
enters Eq. (A.18). A solution to this equation is relatively easy to find, namely

290, ....0,: B(@) = v, HH\/\I‘\hG(HU) (A.19)

i=l j=

where v,, is a normalisation constant which satisfies

Uypn = COS %b Uy (A.20)
which, depending on whether » is even or odd gives solutions
k k-1
Uy = (cos %b) vy and vy, = <cos %b) v - (A.21)

In addition to this, if we specialise to n = 2k + 1 odd and y, = 1, we get for the a-dependent part

1 2k+1 2k+1 2k+1
0% (O, ... Oy i) = IT A TT @@ 2 + [T @kco,-72, (A.22)
2"\/5 i=1 j=1 j=1

and similarly for n even and yy = —1. This expression is rather complicated and there is no immediately obvious way to simplify it. In
our example, we have in addition that <I>f1hG(9)<I>fth(—9) = 1 so we can rewrite the formula in several equivalent ways. For example,

n n n n n
[TAlTT@dc@pn 2+ [T edcw0> = T 4|1+ [T @0cw@;n. (A.23)
=1\ j=1 j=1 i=1 j=1
It seems therefore that it is possible to consistently solve the form factor equations by assuming factorisation, but the resulting
solutions are distinct from those previously found and contain square roots.

A.4. Another solution

We could instead assume factorisation but separate only the Ising part from the rest. That is, instead of (A.14) we now have
0%0,,....0,,0)=0%,,....0,)T%,,....0,; ), (A.24)

If we specialise to the sector y, = —1 and with a sum over even particle numbers, we get

T} O+in.60.0)....0,: ) =

2n 2n
[1¥"%0-0)+]] ¥, - 9)] ] 6,.....00 ). (A.25)

j=1 Jj=1

To solve this equation, we just need the property ¥"C (0;; + im) = ¥*h9(8;,) and we find the solution

2:1 \/Hfll PshG(g,) + Hfil PshG(g,)

1] (0).....00:0)=C,,
[lic; /TC@P;)

(A.26)

with C,, a constant. Once more the solution involves roots which do not cancel out and therefore it is distinct from the usual solutions
for the sinh-Gordon model. In addition, the factor in the denominator can be shown to cancel part of the contribution coming from
the product of MFFs. It seems clear that the Ising part of the MFF and the rest must be considered together in order to solve the
kinematic residue equation.

Appendix B. Generalisation to branch point twist fields

In this Appendix we present a generalisation of the results of Section 3.3 to the case of branch point twist fields [65,78]. For our
purposes, the starting point is the integral representation

tanh — ln S(t)
log Fy,(0;n) = — cosh2 / ——————, for0<Im(6) <2zn (B.1)
cosh - - cosh =

which reduces to (79) for n = 1. Again, we can obtain this representation by inverting the Fourier transform of the S-matrix, that is,
by expressing the kernel g(7) in terms of the Fourier transform of In .S(¢) in the usual representation (see [78]). As we did earlier, let
us consider the deformation of the MFF resulting from a generalised TT perturbation in its regularised form

tanh >~
log Dy (65 n) = —cosh2 / d— 7 (1n<1> ) -0, Ind,(9)), (B.2)

cosh - —cosh

20



F. Sailis, O.A. Castro-Alvaredo and S. Negro Nuclear Physics, Section B 1019 (2025) 117131

where Cﬁa(ﬁ) is the function defined in (82). Expanding for small || we can write

cosh? £ tanh !

Z [cosh 22 -1yt e (B.3)

cosh — cosh 9

which when substituting in (B.2) gives the simple integral
[o9] m 1
/ dreGr -1 (B.4)
0 n +s
The resulting contribution for a given spin s is

® cosh %0 + (=1m+l

a
logD, (@;n) = = _— B.5
08 Dq, (0:1) Fig m2=1 m+sn (B:5)

The sum can be performed as before and it gives a solution, with the structure found in [65,92], namely

S Cosh s g gy 1 0 S mo
Z P ————— sinh(s0) — 3 log ( —45sinh® = o )cosh(s@) mz_‘:) P cosh P (B.6)
and the constant is
[se] [s+]
= (-s)"log2 + i - (=Dcy,. (B.7)

where ¢, is the constant defined in (68). In summary, normalising D, (0; n) by its value at § = izn we can write

a5
ns—1 mo z

, 0
D.(0:n 0oImn Gnh(s6)— 3, o (~1)ey, —cosh ()
—"_( ) = I I ——1 — e > m=1 (2isinh —9 )

D, (izn;n) 2(=1 2n

(B.8)
se2z+-1

Setting n = 1 we recover the solution (17). The formulae above can be easily generalized to real n (as opposed to » integer) by
introducing integer part symbols in some of the summation limits.

References

[1] F.A. Smirnov, A.B. Zamolodchikov, On space of integrable quantum field theories, Nucl. Phys. B 915 (2017) 363-383.
[2] A. Cavaglia, S. Negro, I.M. Szécsényi, R. Tateo, TT-deformed 2D quantum field theories 10 (2016) 112.
[3] S. Dubovsky, R. Flauger, V. Gorbenko, Solving the simplest theory of quantum gravity, 1205.6805, 2012, p. 133.
[4] M. Caselle, D. Fioravanti, F. Gliozzi, R. Tateo, Quantisation of the effective string with TBA, JHEP 07 (2013) 71.
[5] R. Conti, L. Iannella, S. Negro, R. Tateo, Generalised born-infeld models, Lax operators and the TT perturbation, JHEP 11 (2018) 7.
[6] R. Conti, S. Negro, R. Tateo, The TT perturbation and its geometric interpretation, 1809.09593, 2019, p. 85.
[71 R. Conti, S. Negro, R. Tateo, in: Conserved currents and TT_s irrelevant deformations of 2D integrable field theories, 1904.09141, 2019, p. 120.
[8] S. Dubovsky, S. Negro, M. Porrati, Topological gauging and double current deformations, 2302.01654, 2023, p. 240.
[9] F. Aramini, N. Brizio, S. Negro, R. Tateo, Deforming the ODE/IM correspondence with TT, 2212.13957, 2023, p. 84.
[10] P. Dorey, C. Dunning, S. Negro, R. Tateo, Geometric aspects of the ODE/IM correspondence, J. Phys. A 53 (22) (1911).
[11] G. Hernandez-Chifflet, S. Negro, A. Sfondrini, Flow equations for generalized TT deformations, Phys. Rev. Lett. 124 (20) (1911).
[12] G. Camilo, T. Fleury, M. Lencsés, S. Negro, A. Zamolodchikov, On factorizable S-matrices, generalized TTbar, and the Hagedorn transition, JHEP 10 (2021) 62.
[13] L. Cérdova, S. Negro, F.I.S. Massolo, Thermodynamic Bethe Ansatz past turning points: the (elliptic) sinh-Gordon model, 2110.14666, 2022, p. 35.
[14] A. Leclair, Thermodynamics of perturbations of some single particle field theories, J. Phys. A 55 (2105.08184) (2022).
[15] A. Leclair, TT-deformation of the Ising model and its ultraviolet completion, 2021, p. 113104.
[16] C. Ahn, A. Leclair, On the classification of UV completions of integrable 7T deformations of CFT, JHEP 08 (2022) 179.
[17] M. Guica, An integrable Lorentz-breaking deformation of two-dimensional CFTs, SciPost Phys. 5 048 (2018).
[18] J. Cardy, The TT deformation of quantum field theory as random geometry 10 (2018) 186.
[19] J. Cardy, TT deformation of correlation functions, JHEP 12 (1907) 160.
[20] O. Aharony, T. Vaknin, The TT* deformation at large central charge, 1803.00100, 2018, p. 166.
[21] O. Aharony, S. Datta, A. Giveon, Y. Jiang, D. Kutasov, Modular invariance and uniqueness of TT deformed CFT, JHEP 01 (2019) 86.
[22] M. Guica, R. Monten, Infinite pseudo-conformal symmetries of classical 7T, JT and JT _a - deformed CFTs, SciPost Phys 11 (2011) 78.
[Guica] M. Guica, JT-Deformed CFTs as Non-Local CFTs, 2110.07614
[24] M. Guica, R. Monten, 1. Tsiares, Classical and Quantum Symmetries of TT-Deformed CFTs, (2212.14014) (2022)
[25] M. Baggio, A. Sfondrini, Strings on NS-NS backgrounds as integrable deformations, Phys. Rev. D 98 (2018) 21902.
[26] A. Dei, A. Sfondrini, Integrable S matrix, mirror TBA and spectrum for the stringy Ad.S_3 x S* x S3 x §' WZW model, 1812.08195, 2019, p. 72.
[27] S. Chakraborty, A. Giveon, D. Kutasov, TT, JT, TJ and String Theory, J. Phys. A 52 (1905.00051) (2019).
[28] N. Callebaut, J. Kruthoff, H. Verlinde, TT deformed CFT as a non-critical string, 04, 1910, p. 84.
[29] L. Mcgough, M. Mezei, H. Verlinde, Moving the CFT into the bulk with TT, 1611.03470, 2018, p. 10.
[30] A. Giveon, N. Itzhaki, D. Kutasov, TT and LST, JHEP 07 (2017) 122.
[31] V. Gorbenko, E. Silverstein, G. Torroba, in: dS/dS and TT, 1811.07965, 2019, p. 85.
[32] P. Kraus, J. Liu, D. Marolf, Cutoff AdS_3 versus the TT deformation, JHEP 07 (2018) 27.
[33] T. Hartman, J. Kruthoff, E. Shaghoulian, A. Tajdini, Holography at finite cutoff with a 7 deformation, 1807.11401, 2019, p. 4.
[34] M. Guica, R. Monten, TT and the mirage of a bulk cutoff, SciPost Phys. 10 (2 024) (1906).
[35] Y. Jiang, Expectation value of TT operator in curved spacetimes, 1903.07561, 2020, p. 94.
[36] G. Jafari, A. Naseh, H. Zolfi, Path integral optimization for 7T deformation, Phys. Rev. D 101 (2) (1909) 26007.

21


http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0001
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0002
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0003
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0004
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0005
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0006
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0007
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0008
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0009
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0010
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0011
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0012
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0013
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0014
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0015
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0016
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0017
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0018
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0019
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0020
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0021
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0022
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0023
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0024
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0025
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0026
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0027
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0028
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0029
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0030
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0031
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0032
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0033
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0034
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0035

F. Sailis, O.A. Castro-Alvaredo and S. Negro Nuclear Physics, Section B 1019 (2025) 117131

[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]

[46]
[47]
[48]
[49]
[50]
[51]
[52]
[53]
[54]
[55]

[56]
[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]
[66]

[67]

[68]
[69]
[70]
[71]
[72]
[73]
[74]
[75]
[76]
[771
[78]

[79]
[80]

[81]
[82]
[83]
[84]
[85]
[86]
[87]
[88]
[89]
[90]
[91]
[92]
[93]
[94]
[95]
[96]
[97]
[98]

S. Dubovsky, V. Gorbenko, M. Mirbabayi, Asymptotic fragility, near AdS_2 holography and TT, 1706.06604, 2017, p. 136.

S. Dubovsky, V. Gorbenko, G. Hernandez-Chifflet, TT partition function from topological gravity, 1805.07386, 2018, p. 158.

A.J. Tolley, TT deformations, massive gravity and non-critical strings, 1911.06142, 2020, p. 50.

L.V. Iliesiu, J. Kruthoff, G.J. Turiaci, H. Verlinde, JT Gravity at Finite Cutoff, SciPost Phys, 9, 2004. arXiv:2004.07242.

S. Okumura, K. Yoshida, TT-deformation and Liouville gravity, Nucl. Phys. B 957 (2003) 115083.

S. Ebert, C. Ferko, H.Y. Sun, Z. Sun, 77T in JT gravity and BF gauge theory, SciPost Phys. 13 (4) (2022) 96. arXiv:2205.07817.

D.X. Horvath, Hydrodynamics of massless integrable RG flows and a non-equilibrium c-theorem, JHEP 10 (2019) 20.

M. Medenjak, G. Policastro, T. Yoshimura, TT-deformed conformal field theories out of equilibrium, Phys. Rev. Lett. 126 (no. 12 121601 [2011.05827) (2021).
M. Medenjak, G. Policastro, T. Yoshimura, Thermal transport in 7T-deformed conformal field theories: from integrability to holography, Phys. Rev. D 103 (6
066012) (2010).

R. Travaglino, M. Mazzoni, O.A. Castro-Alvaredo, Generalised hydrodynamics of TT-deformed integrable quantum field theories, 08, 2024, p. 90. 2405.06564.
T. Bargheer, N. Beisert, F. Loebbert, Boosting nearest-neighbour to long-range integrable spin chains, J. Stat. Mech. 0811 11001 (2008).

T. Bargheer, N. Beisert, F. Loebbert, Long-range deformations for integrable spin chains, J. Phys. A 42 (2009) 285205.

B. Pozsgay, Y. Jiang, G. Takacs, TT-deformation and long range spin chains, 03, 1911, p. 92.

E. Marchetto, A. Sfondrini, Z. Yang, TT deformations and integrable spin chains, Phys. Rev. Lett. 124 (10) (100601) (1911).

B. Doyon, J. Durnin, T. Yoshimura, The Space of Integrable Systems from Generalised 7T-Deformations, SciPost Phys. 13 072 (2022).

J. Cardy, B. Doyon, TT deformations and the width of fundamental particles, 04, 2010, p. 136.

B. Doyon, F. Hiibner, T. Yoshimura, Generalised TT-deformations of classical free particles, 2312.14855, (2023).

D.J. Gross, J. Kruthoff, A. Rolph, E. Shaghoulian, 7T in AdS_2 and quantum mechanics 101 (1907.04873) (2020).

D.J. Gross, J. Kruthoff, A. Rolph, E. Shaghoulian, Hamiltonian deformations in quantum mechanics, TT, and the SYK model, Phys. Rev. D 102 (4 046019)
(1912).

F. Giordano, S. Negro, R. Tateo, The generalized Born oscillator and the Berry-Keating Hamiltonian, JHEP 10 (2023) 99.

G. Bonelli, N. Doroud, M. Zhu, TT-deformations in closed form, 1804.10967, 2018, p. 149.

M. Taylor, TT deformations in general dimensions, arXiv:1805.10287, (2018).

R. Conti, J. Romano, R. Tateo, Metric approach to a TT-like deformation in arbitrary dimensions, 2206.03415, 2022, p. 85.

A.B. Zamolodchikov, Integrable field theory from conformal field theory, Adv. Stud. Pure Math. 19 (1989) 641-674.

S. Negro, Integrable structures in quantum field theory, J. Phys. A 49 (2016) 323006.

L. Castillejo, R.H. Dalitz, F.J. Dyson, Low’s scattering equation for the charged and neutral scalar theories, Phys. Rev. 101 (1956) 453-458.

H. Grosse, G. Lechner, Wedge-local quantum fields and noncommutative minkowski space, 11, 2007, p. 12. 0706.3992.

0.A. Castro-Alvaredo, S. Negro, F. Sailis, Form factors and correlation functions of TT-deformed integrable quantum field theories, 2306.01640, 2023, p. 48.
O.A. Castro-Alvaredo, S. Negro, F. Sailis, Entanglement entropy from form factors in TT-deformed integrable quantum field theories, JHEP 11 (2023) 129.
0.A. Castro-Alvaredo, S. Negro, F. Sailis, Completing the bootstrap program for TT-deformed massive integrable quantum field theories, J. Phys. A 57 (26)
(2024) 265401.

A.B. Zamolodchikov, A.B. Zamolodchikov, Factorized s matrices in two-dimensions as the exact solutions of certain relativistic quantum field models, Annals
Phys. 120 (1979) 253-291.

L.D. Faddeev, Quantum completely integral models of field theory, Sov. Sci. Rev. C 1 (1980) 107-155.

P. Weisz, Exact quantum sine-gordon soliton form factors, Phys. Lett. B 67 (2) (1977) 179-182.

M. Karowski, P. Weisz, Exact form-factors in (1 +1)-dimensional field theoretic models with soliton behavior, Nucl. Phys. B 139 (1978) 455-476.

M. Karowski, Exact S matrices and form-factors in (1 +1)-dimensional field theoretic models with soliton behaviour, Phys. Rep. 49 (1979) 229-237.

F. Smirnov, Form Factors in Completely Integrable Models of Quantum Field Theory, 14, World Scientific, Singapore, Singapore, 1992.

V.P. Yurov, A.B. Zamolodchikov, Correlation functions of integrable 2-D models of relativistic field theory. Ising model, Int. J. Mod. Phys. A 6 (1991) 3419-3440.
P. Federbush, A two-dimensional relativistic field theory, Phys. Rev. 121 (1961) 1247-1249.

P.G. Federbush, Operator equations in two field theory models, Prog. Theor. Phys. 26 (1961) 148-150.

O. Castro-Alvaredo, A. Fring, Mutually local fields from form factors, Int. J. Modern Phys. B 16 (2002) 1915-1924.

O. Castro-Alvaredo, A. Fring, Form factors from free fermionic fock fields, the federbush model, Nucl. Phys. B 618 (2001) 437-464.

J.L. Cardy, O.A. Castro-Alvaredo, B. Doyon, Form factors of branch-point twist fields in quantum integrable models and entanglement entropy, J. Stat. Phys.
130 (2008) 129-168.

F.D. Gakhov, Boundary Value Problems, Dover Publications Inc, New York, New York, 2014.

O.A. Castro-Alvaredo, S. Negro, .M. Szécsényi, On the representation of minimal form factors in integrable quantum field theory, Nucl. Phys. B 1000 (2024)
116459.

A.B. Zamolodchikov, Integrable field theory from conformal field theory, Adv. Stud. Pure Math. 19 (1989) 641-674.

0.A. Castro-Alvaredo, S. Negro, F. Sailis, Boundary quantum field theories perturbed by TT: towards a form factor program, Nucl. Phys. B 1017 (2025) 116924.
G. Mussardo, P. Simon, Bosonic type S matrix, vacuum instability and CDD ambiguities, Nucl. Phys. B 578 (hep-th/9903072) (2000) 527-551.

S.LM. G, Gel’fand, Generalized Functions, 1, Properties and Operations. AMS Chelsea Publishing, 2016.

J.I. Richards, H.K. Youn, Tempered Distributions, Cambridge University Press, 1990.

G. Mittag-Leffler, Sur la représentation analytique des fonctions monogénes uniformes: Dine variable indépendante, Acta Math. 4 (1884) 1-79.

M.R. Niedermaier, On the Free Field Realization of Form Factors, hep-th/9503139, (1995).

A. Zamolodchikov, From tricritical Ising to critical Ising by thermodynamic Bethe ansatz, Nucl.Phys. B 358 (1991) 524-546.

A. Fring, G. Mussardo, P. Simonetti, Form-factors for integrable Lagrangian field theories, the sinh-Gordon theory, Nucl. Phys. B 393 (1993) 413-441.

A.B. Zamolodchikov, Two point correlation function in scaling lee-yang model, Nucl. Phys. B 348 (1991) 619-641.

0.A. Castro-Alvaredo, S. Negro, F. Sailis, TT Deformations and Form Factor Program, 2025. To appear.

M. He, J. Hou, Y. Jiang, TT-deformed entanglement entropy for IQFT, 03, 2024, p. 56. 2306.07784.

H. Bostelmann, D. Cadamuro, Characterization of local observables in integrable quantum field theories, Commun. Math. Phys. 337 (2015) 1199-1240.

A. Koubek, G. Mussardo, On the operator content of the sinh-gordon model, Phys. Lett. B 311 (1993) 193-201.

S.L. Lukyanov, Free field representation for massive integrable models, Commun. Math. Phys. 167 (1995) 183-226.

B. Schroer, T. Truong, P. Weisz, Towards an explicit construction of the sine-gordon theory, Phys. Lett. B 63 (1976) 422-424.

1. Arafeva, V. Korepin, Scattering in two-dimensional model with lagrangian / = 1/y(1/2(0_uuu)* + m*(cosu — 1)), Pis'ma, Zh Eksp. Teor. Fiz. 20 (1974) 680.

S. Vergeles, V. Gryanik, Two-dimensional quantum field theories having exact solutions, Yad. Fiz. 23 (1976) 1324-1334.

22


http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0036
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0037
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0038
http://arxiv.org/abs/2004.07242
http://arxiv.org/abs/2205.07817
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0041
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0042
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0043
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0043
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0044
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0045
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0046
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0047
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0048
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0049
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0050
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0051
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0052
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0053
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0053
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0054
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0055
http://arxiv.org/abs/1805.10287
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0057
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0058
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0059
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0060
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0061
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0062
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0063
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0064
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0064
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0065
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0065
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0066
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0067
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0068
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0069
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0070
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0071
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0072
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0073
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0074
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0075
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0076
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0076
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0077
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0078
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0078
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0079
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0080
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0081
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0082
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0083
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0084
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0085
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0086
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0087
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0088
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0089
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0090
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0091
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0092
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0093
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0094
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0095
http://refhub.elsevier.com/S0550-3213(25)00340-2/sbref0096

	Complete minimal form factors for irrelevant deformations of integrable quantum field theory
	1 Introduction
	2 A heuristic derivation: MFFs and their Fourier transforms
	2.1 Integral representation of the phase shifts
	2.2 Asymptotic behavior of the S-matrix and temperedness
	2.3 The scattering phase and its Fourier transform
	2.4 The logarithm of the MFF and its Fourier transform
	2.5 From integral to series representations
	2.6 Recovering a T -like representation
	2.7 The T -deformed ising field theory
	2.8 The T 2n-1-deformed ising field theory

	3 Alternative construction from the Karowski-Weiss approach
	3.1 The original work
	3.2 Challenges posed by T -deformations
	3.3 A solution

	4 Correlation functions and their asymptotic properties
	5 Conclusion and outlook
	A Revisiting the sinh-Gordon model
	A.1 Factorizing the kinematical pole
	A.2 T -like solution of the sinh-Gordon model
	A.3 A factorized solution
	A.4 Another solution

	B Generalisation to branch point twist fields


