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ABSTRACT

International Journal of Pharmaceutics 681 (2025) 125625

We present a shared industry-academic perspective on the principles and opportunities for Quality by Digital Design (QbDD) as a framework to accelerate medicines
development and enable regulatory innovation for new medicines approvals. This approach exploits emerging capabilities in industrial digital technologies to
achieve robust control strategies assuring product quality and patient safety whilst reducing development time/costs, improving research and development effi-
ciency, embedding sustainability into new products and processes, and promoting supply chain resilience. Key QbDD drivers include the opportunity for new sci-
entific understanding and advanced simulation and model-driven, automated experimental approaches. QbDD accelerates the identification and exploration of more
robust design spaces. Opportunities to optimise multiple objectives emerge in route selection, manufacturability and sustainability whilst assuring product quality.
Challenges to QbDD adoption include siloed data and information sources across development stages, gaps in predictive capabilities, and the current extensive
reliance on empirical knowledge and judgement. These challenges can be addressed via QbDD workflows; model-driven experimental design to collect and structure
findable, accessible, interoperable and reusable (FAIR) data; and chemistry, manufacturing and control ontologies for shareable and reusable knowledge. Addi-
tionally, improved product, process, and performance predictive tools must be developed and exploited to provide a holistic end-to-end development approach.

1. Introduction
1.1. Background

Pharmaceutical development encompasses all the steps required to
transform an active pharmaceutical ingredient (API) into a safe, effec-
tive medicine capable of being manufactured robustly and repeatably to
the required quality for clinical and commercial scales. With the accel-
erating pace of drug discovery (Conroy, 2023), it is vital that product
and process development keeps pace if we are to translate the advances
in medical sciences to patient benefit as quickly, affordably and sus-
tainably as possible. However, medicines manufacturing remains a long,
complex and resource-intensive process (Schlander et al., 2021).
Furthermore, approximately 90 % of clinical drug development pro-
grammes may be unsuccessful due to a combination of poor clinical
efficacy, issues with toxicity, weak drug-like properties, insufficient
commercial requirements and/or strategic planning (Dowden and
Munro, 2019; Harrison, 2016; Sun et al., 2022). As such, there is an
urgent need to reduce material wastage, energy, manpower and time
during chemistry, manufacturing and control (CMC) development. It is
necessary to find ways to develop new products more efficiently and
robustly by exploiting the advances being made in materials, analytical,
pharmaceutical and process science and engineering. In conjunction
with this, it is vital to exploit advances in data science and digital
technologies. Due to the range of terms presented herein, a glossary of
terms is provided in Section 4. With new innovative digital approaches,
it is possible to build on the well-established principles of Quality by
Design (QbD) (Juran, 1992; International Council for Harmonisation.,
2008).

1.2. Quality by design

QbD is a concept introduced by Joseph M. Juran, a pioneer in quality
management, who asserted that quality should be integrated into the
product’s design, as most quality issues stem from the initial design
phase (Juran, 1992). QbD (International Council for Harmonisation.,
2008) was originally proposed for use in pharmaceutical manufacturing
by the U.S. Food and Drug Administration (FDA) in 2002 (Caphart et al.,
2006; Department of Health and Human Services U.S. Food and Drug
Administration, 2007), and was formally endorsed in 2009
(International Council for Harmonisation, 2009). QbD principles have
been increasingly adopted in the pharmaceutical industry to embed
quality in drug design with rigorous, science-driven approaches, and an
understanding of material and processing factors and associated risks
that may impact on product performance and patient safety (Azad et al.,
2021; Barshikar, 2019; Davis and Schlindwein, 2018; Yu et al., 2014). It
is vital to define the extent of variability in input materials that can be
accommodated without impacting quality. Once the critical quality at-
tributes (CQAs), critical material attributes (CMAs) and critical process
parameters (CPPs) are identified and their interdependencies are char-
acterised through targeted investigations, effective control strategies to

manage potential risks of deviations can be developed.

QbD has five central components that have been described exten-
sively in the literature and regulatory guidance and/or case studies (Yu
et al., 2014). These can be summarised as:

1. A quality target product profile (QTPP) to pinpoint appropriate CQAs

2. Product design and understanding by performing a risk assessment to
link CQAs to clinical safety and efficacy

3. Process design and understanding by defining CPPs, including a
robust knowledge of scale-up and the impact of variations in CPPs
and CMAs on CQAs

4. Development of a control strategy derived from the product and
process understanding that ensures safety and efficacy (Lakerveld
et al., 2015)

5. Process qualification to demonstrate that the controls are effective
and to ensure continued improvement over time as new knowledge
becomes available (Barshikar, 2019; Davis and Schlindwein, 2018)

The FDA and the International Council for Harmonisation (ICH) have
published detailed guidelines on the implementation and regulatory
aspects of QbD (Table 1) to help drive adoption and promote common
practices for regulatory acceptability across the sector (Cook et al.,
2014).

1.3. Digital transformation of pharmaceutical development for CMC

With advancing capabilities in industrial digital technologies
including Industry 4.0 (Arden et al., 2021; Azizi et al., 2023; Popov
et al., 2022), Industry 5.0 and the underpinning engineering and phys-
ical sciences, it is increasingly possible to develop digital design methods
that enable a systems-level approach to CMC development (European
Commission and Directorate-General for Research and Innovation,
2022). Whilst gaps in current modelling and predictive capability
remain (Hausberg et al., 2019; Kitsios and Kamariotou, 2021; Litster and
Bogle, 2019), ongoing research and progress in data science and
computational capabilities are addressing these issues. The potential
benefits from the digital transformation of CMC include accelerated
development for sustainable products and processes, risk reduction via
accurate predictive computational mapping of design spaces, cost
reduction via leveraging predictive tools to reduce experimental work,
efficient scale-up, digital technology transfer, and cost-effective opera-
tions and patient benefit (Conroy, 2023).

Digital transformation is vital to realise the ambitions and benefits of
Industry 5.0 (Akundi et al., 2022; European Commission, 2021a, Euro-
pean Commission, 2021b, 2020; Ghobakhloo et al., 2023; Jafari et al.,
2022; Maddikunta et al., 2022; Nahavandi, 2019; Rane, 2023; Valette
etal., 2023; Xu et al., 2021). Industry 5.0 aims to exploit the plethora of
industrial digital technologies and predictive tools such as computa-
tional and data infrastructure, digital twins (mechanistic, data driven
artificial intelligence (AI)/ machine learning (ML), and hybrid models),
findable, accessible, interoperable and reusable (FAIR) data principles,
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semantic tools, collaborative robotics, the internet of things (IoT), and
immersive environments (augmented and virtual realities) (Hole et al.,
2021). The goal is to ensure manufacturing is sustainable, resilient and
human-centric, placing people at the heart of manufacturing with
technology augmenting human creativity to create social benefit
(Akundi et al., 2022). Additional drivers for innovation include the need
for enhanced supply chain discernability for more robust decision
making, cost-reduction, and improved efficiency via data collection and
analysis across the value chain (Bermingham, 2023). Digital trans-
formation is also being acknowledged and adopted by regulatory bodies
(see ESI1) and is increasingly accepted as vital for firms to maintain their
place within a competitive and dynamic global market. Furthermore,
industrial digital technologies have growing potential to impact the way
pharmaceutical companies design, develop and manufacture drugs
(Destro and Barolo, 2022; Romanach et al., 2023; Urwin et al., 2023).

To achieve this Industry 5.0 vision, there must be a defined roadmap
driven by business value, a robust technology literate workforce, and
scalable, distributable technologies with secure, FAIR data systems
(Wilkinson et al., 2016). Through improved exploitation of data to
inform decisions, there is potential to realise environmental benefits
through leveraging existing data and reducing the reliance on resource-
intensive experimental efforts (Hughes et al., 2023; Wise et al., 2019).To
support the rollout and adoption of digital technologies, actions have
been proposed to assist organisations in their digital transformation
(Golub et al., 2023; Hauck, 2024; Whatfix, 2024):

1. Standardise and automate data collection, data control, data
ownership, access management and development priorities using
collaborative systems, skills and techniques, enabling better error
detection and improved processes.

2. Industrialise application of AI and ML through development and
adoption of standards to increase reliability of development, rollout
and monitoring (Medicines & Healthcare products Regulatory
Agency, 2024; Medicines & Healthcare products Regulatory Agency,
2023; Medicines & Healthcare products Regulatory Agency and
Brunel University, 2022; U.S. Department of Health and Human
Services et al., 2016; U.S. Department of Health and Human Services,

Table 1
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Food & Drug Administration et al., 2023; U.S. Food & Drug
Administration, Health Canada, Medicines & Healthcare products
Regulatory Agency, 2024; U.S. Food & Drug Administration et al.,
2021).

3. Recruit, develop and maintain a ‘tech-savvy’ workforce capable of
driving innovation through knowledge of digital technologies.

4. Upskill existing employees to the required level of technical expertise
and provide continued development. Personalise digitalisation to
address business and employee requirements.

5. Enhance digital technologies based on employee and client feedback.

6. Encourage collaboration across the sector with industry, academia
and regulators working to develop standards for suitability, inter-
pretability and credibility of Al and other digital technologies.

7. Establish a digital lifecycle approach by defining targets, identifying
launch strategies for the global market and creating robust supply
chains (GlaxoSmithKline plc., 2022; Golub et al., 2023; Hauck, 2024;
Whatfix, 2024).

Digital tools are becoming increasingly sophisticated, user-friendly,
and more accessible to researchers, manufacturers and decision-
makers. This is exemplified by the recent surge in the use of genera-
tive pre-trained transformer (GPT) large language models, which have
been transformative in providing non-experts with the benefits of Al
tools (Eloundou et al., 2023; Mollick, 2022; Open Al, 2023). To navigate
data integrity and security challenges presented by open access GPTs,
pharmaceutical companies have started to implement internal solutions
to incorporate Al trained on corporate and sector-specific data and
improve their ways of working (Beckmann, 2023; Candelon et al.,
2023). Other examples of digital tool implementation include the
growing use of automation in synthetic organic chemistry, which has
rapidly increased the rate of candidate throughput in discovery phases
(Wang et al., 2020). In addition, computer-aided drug discovery has
been used for decades to virtually screen libraries of known compounds
against newly identified biological receptors to identify new possible
therapeutics (Gasteiger, 2020; Medina-Franco, 2021). The addition of
modern Al tools recently demonstrated efficient automated recipe
planning and experimental preparation of 15 drug or drug-like

Examples of FDA and ICH initiatives to demonstrate QbD and promote adoption and harmonisation.

Source Initiative Purpose

Reference(s)

U.S. Food & Drug Pharmaceutical Current Good

e First mention of QbD
o Promotes early adoption of technological innovation and
quality systems approaches throughout pharmaceutical

Companies invited to demonstrate QbD use in the context
of CMC with a view to establishing a comprehensive
quality overview of drug development and use of ICH Q8,

Improvement of the CGMP process and quality review and

Development and Manufacture of Drug Substances

(Department of Health and Human Services U.S
Food and Drug Administration, 2004)

(Bala et al., 2014; Department of Health and
Human Services U.S. Food and Drug
Administration, 2007)

(Department of Health and Human Services U.S.
Food and Drug Administration, 2007)

(International Council for Harmonisation, 2009)
(International Council for Harmonisation, 2005)
(International Council for Harmonisation., 2008)
(International Council for Harmonisation, 2012)

(Chemical Entities and Biotechnological/Biological

Administration Manufacturing Practices (CGMPs) for
the 21st Century, 2002 (final report
2004) manufacturing.
e Promotes risk-based approaches
Pilot program on QbD in relation to
CMC, 2005
Q9 and Q10.
Pharmaceutical Quality for the 21st
Century A Risk-Based Approach regulation
Progress Report
International ICH Q8(R2) Pharmaceutical Development
Conference of ICH Q9 (R1) Quality Risk Management
Harmonisation ICH Q10 Pharmaceutical Quality
ICH Q11
Entities)
ICH Q12 Technical and Regulatory Considerations for

(International Council for Harmonisation, 2019)

Pharmaceutical Product Lifecycle Management

ICH 2020 Annual Report revision of
M4Q(R1)

ICH Q13
Products
ICH Q14

The Common Technical Document for the Registration of
Pharmaceuticals for Human Use

Continuous Manufacturing of Drug Substances and Drug

Analytical Procedure Development

(ICH Secretariat with the ICH Management
Committee and MedDRA Management
Committee, 2021; International Council for
Harmonisation, 2020)

(U.S. Department of Health and Human Services
et al., 2023)

(International Council for Harmonisation of
Technical Requirements for Pharmaceuticals for
Human Use, 2023)
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substances (Coley et al., 2019; Liu et al., 2023). From an economic
perspective, the use of Al tools has an estimated expected value of
$15-28 billion (USD) per annum in R&D (Candelon et al., 2023). This
estimation is due to an expectation that the use of Al tools will increase
productivity by speeding up the process of NCE target identification,
accelerating screening, and optimising formulation and product devel-
opment (Adabala Viswa et al., 2024).

For CMC, ML tools also have the potential to streamline process and
product development and increase overall development speed (Conroy,
2023; Nagaprasad et al., 2021). For example, to rationalise experimental
solvent screening, which is expensive and time-consuming, it is only
necessary to evaluate the handful of promising candidates identified by
ML (Brown et al., 2018; Urwin et al., 2023). Digital-first approaches can
also enable the identification of potential risks early in the development
process to enable more efficient experimentation and reduce experi-
mental load. Several studies have demonstrated the ability of
digital-first approaches to support decision making, e.g., selection of
manufacturing route, optimal process conditions and additional exper-
imental conditions (Abasi et al., 2021; Agrawal et al., 2023; Bhalode
et al., 2022; Boobier et al., 2020; Carou-Senra et al., 2023; Chen, 2024;
Li et al., 2023; Maclean et al., 2024; Mati¢ et al., 2023; Moreno-Benito
et al., 2022; Mswahili et al., 2021; Nielsen et al., 2020; Ong et al.,
2022; Pereira Diaz et al., 2023; Sansare et al., 2021; Singh, 2024;
Szilagyi et al.,, 2022; Urwin et al., 2023; Zaborenko et al., 2019)
(Table 2).

Despite the advantages provided by physics-based mechanistic
models, digital twins (DTs), statistical modelling, ML, and hybrid
mechanistic-data driven approaches, the integration of these tools
within pharmaceutical manufacturing remains bespoke. Isolated digital
tools are usually only implemented on a single manufacturing step or a
number of steps rather than the whole end-to-end (E2E) process from
drug substance (DS) manufacturing to drug product (DP) manufacturing
(Destro et al., 2021; Moreno-Benito et al., 2022; Ottoboni et al., 2022;

International Journal of Pharmaceutics 681 (2025) 125625

Szilagyi et al., 2022), or for post-development optimisation (Icten et al.,
2020; Liu and Benyahia, 2021) (Table 2). Developing a cohesive strategy
for the digitalisation of pharmaceutical control strategies carries po-
tential risks and requires significant investment of time and resources
and working to improve regulatory certainty in the use of new methods
(Ahluwalia et al., 2022). Digitalisation challenges also include risks such
as cybersecurity and software issues, misinterpretation of data, and lack
of training for implementation (Alguliyev et al., 2018; Axelrod, 2013;
Bolbot et al., 2019; Humayed et al., 2017; Tyagi and Sreenath, 2021;
Yaacoub et al., 2020).

1.4. Scope

Here, we propose a Quality by Digital Design (QbDD) framework as a
holistic patient-centric approach for the integration of digital tools and
data across process and product development and the manufacturing
and packaging of pharmaceuticals. QbDD involves the application of
extensive modelling, data driven decision support tools and generative
Al-powered agents (Boiko et al., 2023; Bran et al., 2024; Chen et al.,
2023a; Chen et al., 2023b; Dong et al., 2024; Mahjour et al., 2023;
Ramos et al., 2024; Ruan et al., 2024; Zhou et al., 2024), to quickly,
robustly and sustainably drive an efficient development procedure. This
approach commences with predetermined objectives and focuses on
process and product understanding and control with a strong basis in
rigorous science and quality risk management (International Council for
Harmonisation, 2009; Yu et al., 2014). QbDD also enables easy multi-
objective optimisation by including unconventional product develop-
ment objectives, for example carbon footprint or manufacturing cost
reduction. Existing quality management systems in CMC include quality
by testing (QbT), quality by control (QbC) and QbD. The proposed QbDD
principles do not replace QbC and QbD but rather build upon their
established approaches and technologies to deliver a systems-level dig-
ital transformation to CMC regulatory processes for medicines

Table 2

Examples of digital-first approaches relevant to CMC development processes.
Study Type Technique used Issue Outcome and Benefits Reference
Crystallisation ML Particle size quality Effective wet milling process development, (Urwin et al.,

requirement

Hot melt extrusion QbD and DT

Particle processes

Hybrid ML/first principles

Nanomedicine
solubility

AI/ML Hybrid (Support Vector Regression
(SVR), Multilayer Perceptron (MLP), and
Least Absolute Shrinkage and Selection COo2
Operator (LASSO))

Dissolution testing First principles/empirical approaches

Dissolution
performance of
direct compressed
tablets

Compartmental disintegration and
dissolution model (population balance
principles)

Continuous direct
compression

First principles models, discrete elemental
methods, flow sheet modelling, DT

Conveying, pressure build-up,
and power consumption

Particle phenomena kinetics

Relationship between pressure,
temperature and supercritical

Dissolution optimisation

Dissolution optimisation

Lengthy development times,
material/ energy wastage,
early project de-risking,
improved quality

reducing material wastage and experimental load, 2023)
demonstrated use by Agrawal et al. (Agrawal et al.,

2023)

Improved product quality so thus less wastage; (Matic¢ et al.,
highlights the need for accurate DTs and in silico 2023)

process development

Successful prediction and hybrid model (Nielsen et al.,
comparable to non-hybrid modelling in terms of 2020)
accuracy, live training of the model also possible
MLP successfully predicted supercritical CO2
density, but SVR was more effective in predicting
mole fraction

(Chen, 2024)

(Zaborenko
et al., 2019)

First principles effectively provide guidance for
formulation and process development, and then, in
combination with data-informed empirical models,
can predict the effect of material attributes (MAs)
and process parameters (PPs) on dissolution for
batch or real-time release

Successfully predicted the effects of manufacturing ~ (Maclean
conditions on disintegration. Utilised raw material et al., 2024)
properties as MAs and thus did not require large

datasets. Suited to both DP development and live

testing control strategies

Mapping the steady state operation in the design (Moreno-
spaces for feeding, mixing and compression. Benito et al.,

Determination of the impact of operating 2022)
conditions, material and process parameters, and

the dynamic response to disturbances. In turn this

was used to de-risk and optimise drug product and

process development while reducing the number of
experiments
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development (Fig. 1). In parallel, the need for physical experimentation
will decrease as digital transformation progresses towards the integra-
tion of cyber-physical systems (CPSs), with modelling and experiments
(Fig. 2). In addition, physical experimentation will be directed towards
supporting robust outputs of the digital twin modelling. Establishing this
systems-level, holistic approach will allow more efficient and effective
process and product design and development to deliver the required
product performance whilst also delivering improved sustainability and
resilience in medicines manufacturing.

This paper is written from the perspective of small molecule, oral
solid dosage form CMC process development, but the intent, approach
and benefits are applicable across the full scope of medicines
development.

2. Quality by digital design roadmap
2.1. Towards QbDD

QbDD is enabled by the integration of digital technologies (including
Al ML and DTs) to collect and curate data, to train and apply predictive
models, to enable reverse engineering and to use extended ontologies to
manage and provide insights from data more effectively. These com-
ponents are unified by a holistic workflow that structures development
activities. QbDD uses the collated data to inform early qualitative and
quantitative decisions on process selection, process design, risk assess-
ment and control strategies. By focusing on high quality data collection,
structure and connectivity as well as model development, training and
validation, QbDD facilitates the identification and exploration of more
robust multi-dimensional design spaces by incorporating quality, man-
ufacturability and sustainability criteria in early-stage decision-making.
Patient-centric requirements (i.e., dose, route of administration and
dosing frequency) dictate the objective criteria, and the design space is
minimised early in development using predictive models (Fig. 2).

The exploration of a digitally augmented knowledge space in QbDD
as opposed to the more sparse experimental design space in classical
QbD (Fig. 2) has inherent advantages in terms of efficiency. Limited
exploration of the knowledge space in traditional QbD may restrict
further development. For example, in product lifecycle management,
adding another presentation, such as a modified release tablet to com-
plement an immediate release tablet, is more challenging with the
reduced knowledge space of QbD. By contrast, in QbDD, the augmented
knowledge space could enable screening for multiple QTPPs (including
ones classically considered during product life cycle management). For

Hybrid Modelling
/Experiments

Experimental
Only

Resilience/Sustainability/Speed

QbT

CPS/Modelling
/Experiments
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example, it would be possible to screen within the same development
cycle for a product presentation for acute and chronic treatment rather
than considering the second treatment later in another development
cycle. QbDD in general, and the exploration of the augmented knowl-
edge space in particular, could also accelerate submission of the regu-
latory dossier by demonstrating to health authorities the full scope
design space assessed while digital technologies populate sections of the
dossier upfront.

2.2. QbDD Framework: An integrated predictive Toolbox

QDbDD relies on establishing a holistic, systems-level framework to
incorporate requirements across DS and DP development in a manner
that informs agile, objective and explicit decision-making (Fig. 3). This
framework enables systems-level modelling and optimisation to be
applied across process design, process parameter selection, molecular
systems, material attributes, bulk material properties, formulated
product structure—function-process interactions, stability and biophar-
maceutical performance in relevant patient sub-populations (Riaz
Ahmed et al., 2022). For example, predictive models can be used to
design a particle formation process (i.e., crystallisation, spherical
agglomeration or combined crystallisation/milling) to deliver the
desired particle attributes. This targeted approach may save time and
resources when compared with the traditional approach of making
different samples with a range of properties and testing each to see
which ones are best. Thus, models could enable efficient delivery of the
desired material attributes (e.g., flowability) and assign appropriate
excipients to enable effective continuous direct compression. In this
way, the QbDD strategy minimises the risks and resource requirements
associated with downstream processes enlarging the design space
(Butters et al., 2006). Thus, the systems-level integration of QbDD al-
lows for earlier, whole design-space refinement in place of ‘one process
at a time’ development.

While QbDD will rely on the development of new digital tools, it will
also utilise and build upon existing models and approaches. Examples of
existing tools include, the manufacturing classification system (MCS)
(Leane et al., 2015), the biopharmaceutical classification system (BCS),
the developability classification system (DCS) (Amidon et al., 1995;
Butler and Dressman, 2010), and process systems engineering absorp-
tion, distribution, metabolism and excretion (ADME) and pharmacoki-
netics/dynamics (PKPD) frameworks, e.g., gPROMS
FormulatedProducts (Siemens, 2025a, 2025b), GastroPlus® (Parrott
and Lavé, 2002) and SimcypTM (Certara, 2023; Jamei et al., 2009;

Digital
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/
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v

Product & Process Knowledge

Fig. 1. Illustration of QbDD scope adapted from (Su et al., 2019) showing the relationship between manufacturing technology development and strategies to define

and control quality.
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Fig. 3. A high level QbDD workflow is shown indicating the key stages where predictive tools will be required. For simplicity, this workflow does not show the
feedback loops inherent in process development, but examples of feedback loops are discussed in this section.

SimulationsPlus, 2023). Additional existing models include reaction
kinetics modelling (Grom et al., 2016; Wang et al., 2020), population
balance models for crystallisation (Aamir, 2010; Ma and Roberts, 2019),
filtration models (Ottoboni et al., 2022), wet granulation models
(AlAlaween et al., 2016; Bellinghausen, 2020; Ismail et al., 2019; Jang
etal., 2020) and direct compression modelling (Bekaert et al., 2022; Dai
et al., 2019; Martin et al., 2021). The use of these predictive models to
inform experimentation is inherently iterative. Model input and model
parameters are refined, and physical experimentation feeds back into
these digital tools. This partnership between digital and physical is an
inherent part of the QbDD strategy and will be explored in the following
sections.

Informed by industry and academia, an expanded set of tools is
proposed to enable QbDD and the digital transformation of CMC with a
view to reducing material and energy wastage and increasing overall

sustainability across process and product development (CMAC, 2021).
Specifically, three predictive modelling toolboxes are proposed covering
all stages of product and process development: a biorelevant perfor-
mance classification system (BPCS), an advanced manufacturing clas-
sification system (MCS + ) that builds advanced simulation capability
into the existing MCS, and a crystallisation classification system (CCS).

The BPCS is being developed to build on the existing BCS and DCS by
connecting these classification systems to physiological- and population-
based pharmacokinetics models (Amidon et al., 1995; Butler and
Dressman, 2010). The BPCS will categorise APIs and formulations based
on the effective range of API release achievable within a given popula-
tion (Abuhassan et al., 2024, 2022a, 2022b; Prasad et al., 2022; Silva
et al., 2023). In the longer term, this classification system should also
aim to cover the development of dosage forms using models that self-
learn from clinical outcomes and/or endpoints.
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The MCS categorises drug products based on processing route and is
governed by properties of the API and the needs of the formulation
(Leane et al., 2024, 2018, 2015). The MCS + is being developed to build
upon the MCS by using particle and bulk property assessment to first
predict outcomes for critical DP unit operations (e.g., blending, granu-
lation and compression) which in turn enables early decision-making for
DS process development (with respect to targets such as particle size and
morphology) (Azad et al., 2021). Digital tools that are applicable to
MCS + relate particle properties to manufacturability targets, such as
flowability, compressibility or stability, in order to guide decisions in
product and process development. Predictive tools relating to excipient
choice and DS interaction with excipients are also of interest for the
MCS+, particularly for understanding the edges of the design space
when defining an operating window that does not compromise disso-
lution and bioavailability.

The CCS is being developed as a predictive system of models span-
ning molecular properties, crystallisation thermodynamics, solvent in-
teractions and kinetics through to particle version and form selection
and physical and bulk properties. As these properties impact manufac-
turability and choice of formulation process, being able to predict them
computationally is particularly advantageous. Thus, the CCS targets
prediction of manufacturability, stability and performance parameters.
Example digital tools include: estimating flow function coefficients from
predicted particle size distribution (Pereira Diaz et al., 2023), optimal
solvent selection to achieve desirable particle attributes (Nakapraves
et al., 2022), cocrystal prediction (Devogelaer et al., 2020; Grols and
Castro-Dominguez, 2021; Loschen and Klamt, 2015), avoidance of un-
desirable solvate formation (Bhardwaj et al., 2015) and minimising
environmental impact from solvent selection (Henderson et al., 2011).
These and other models in the CCS will benefit from improvements in
fundamental mechanistic understanding (Warzecha et al., 2020) as well
as from access to comprehensive data sets collated from data-rich ex-
periments exploring the response of molecules under different process
conditions. To make the CCS a reality, an improved understanding of the
complex interaction between solvents and process conditions and the
degree to which molecular properties can inform predictions is also
needed. Indeed, analysis of crystallisation kinetics through absolute rate
theory signposts how molecular properties of solvents and solutes can in
the future be integrated into predictive process models (Schroeder,
2024). A fully developed CCS will enable in silico process and particle
design by guiding solvent selection, estimating kinetics and predicting
physical form, particle attributes and impurity rejection as a function of
molecular properties and process conditions.

2.3. QbDD Framework: Building a digital workflow

The proposed QbDD digital-first approach for a given API (Fig. 3) sets
the overall product development objectives by identifying QTPP re-
quirements such as dosage form, dosage, dosing frequency, delivery
mechanism and pharmacokinetic parameters that ensure product safety
and efficacy. Following this, prior knowledge of the API target is
collated, and in-silico predictions are carried out to produce an initial
data package of predicted and measured physical properties that may
include aqueous solubility, permeability, pKa, chemical stability,
anticipated impurities and target impurity profiles (Stage 1 in Fig. 3).
This information is then input to the BPCS, MCS + and CCS to explore
likely outcomes from different processing routes and conditions and to
target subsequent modelling and experimental efforts.

The BPCS is used to predict the target solid form, dosage, API particle
attributes and formulation characteristics required to achieve safe and
effective release within the target population. Coupled with information
on particle and bulk properties, BPCS outputs are then fed into the MCS
+ to inform both the manufacturability requirements of the system and
the formulation route selection/suitability. The CCS then guides process
and particle design via process, solvent and process parameter selection.
Thus, QbDD essentially enables an in silico reverse engineering approach
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that first identifies targets and then determines suitable biorelevant
performance, manufacturability and finally API crystallisation objec-
tives. The resulting output from the three classification systems will be
recommendations for product composition and process conditions to
achieve the necessary API attributes (CCS output), drug product per-
formance and stability (MCS + output), and performance in the target
patient population (BPCS output). Process economics, manufacturability
and sustainability targets are then determined as well as known con-
straints (Stage 2 in Fig. 3). Process options and models relevant to these
targets are also identified (Stages 3 and 4).

Following the first four in silico stages in the workflow, the first
experimental call outs occur in Step 5 to enable model calibration and
refinement. During development, predictive tools may require some
level of experimental input and can be trained and calibrated with
model-driven callouts for automated, data-rich, small-scale (<2 g or <
10 mL), materials-sparing experiments. Model-driven experimental
platforms (Christensen et al., 2021; Rogers et al., 2020), identify oper-
ational constraints and allow faster option assessment, process verifi-
cation, process validation and data feedback to inform the overall
model. Some phenomena are currently not well covered by predictive
simulation tools, e.g., fouling, nucleation or mechanical properties of
bulk materials, and will require further investigation and model
development.

After model calibration and refinement, conceptual process and
product options are investigated via model driven development (Stage
6). Process model validation in this stage may require physical experi-
mentation to assess discrepancies such as those caused by non-modelled
phenomena. Stage 6 determines which process options will be taken
forwards, and this is followed by an initial quality risk assessment using
process models coupled with practical constraints (Stage 7). When
combined with sensitivity analysis and holistic design space process
optimisation against the process objectives whilst ensuring quality, the
risk assessment allows for the initial definition of a control strategy
(Stages 8 and 9). The application of stages 1-9 (Fig. 3) ensures that the
QTPP is met and delivers the required product performance in a science-
led, digital-tools-enhanced, materials-sparing and efficient manner. In
Stage 10, the process is operated to produce material. The material and
associated process analytical technology (PAT) data are analysed, and
results used to determine if the QTPP is met and the model is credible.
Product performance can then be assessed, relevant data is used for
further model improvement, and the product lifecycle is managed with
ongoing improvements facilitated by the digitally augmented knowl-
edge space (Stage 11 and 12).

Subsequent iterations of the MCS + and CCS and potentially BPCS
may occur in both early and late-stage process development as further
data become available. Examples of this are: (a) should API particles not
be conducive to direct compression and instead result in poor blend
dispersion, poor drug loading or lack of tablet uniformity, alternative
routes such as roller compaction, wet granulation or solid dispersion
methods must be considered; (b) should issues with end-product prop-
erties be identified during product analysis, this information is fed back
to the classification systems to alter the formulation; (c) should a
formulation fail to release the API in the expected manner, the excipient
choice, formulation process parameters, formulation processing route or
even the DS particle production route may be reconsidered. As new and
improved models become available, an increasing reliance and trust in
digital design methodologies should continually reduce the reliance on
experimental data (as indicated by the decrease in physical and increase
in virtual experiments in Fig. 2), and in turn reduce any need to revisit
the classification systems in subsequent stages of development.

Other feedback loops may occur throughout the QbDD workflows.
For example, if a suitable operating space (i.e., one that assures quality,
manufacturability and sustainability objectives within the process and
operating constraints) cannot be found following model validation, it
may be necessary to return to Stage 2 to assess if any objectives can be
relaxed before proceeding with Stage 8. Likewise, if scale up verification
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and validation experiments do not meet predicted outcomes e.g., due to
non-modelled phenomena, it may be necessary to revisit the models, the
model parameters (Stages 4 and 5) or redesign the experimental set up
(Step 6) before proceeding.

Making decisions on a quantitative basis early in development using
this approach can have significant benefits for the cost, time and ulti-
mate sustainability of medicines development. To truly realise fully
predictive capabilities for early decision-making, further development
and validation of predictive tools and multi-scale, multi-physics model
frameworks is required (Fig. 3) (Liu et al., 2021; Niederer et al., 2021;
Onaji et al., 2022). However, ongoing development of increasingly
capable mechanistic (Chaudhury et al., 2014; Ottoboni et al., 2022), Al
(Chakravarty et al., 2021; Coley et al., 2019; Madarasz et al., 2023) and
hybrid models (Abouzied et al., 2023; Bhalode et al., 2022; Chen, 2024;
Gaddem et al., 2024; Nielsen et al., 2020; Tsopanoglou and Jiménez del
Val, 2021), across different scientific endeavours highlights both the
accelerating progress and the huge potential achievable.

2.4. QbDD elements

2.4.1. Cyber-Physical systems

QbDD will benefit from the growing capabilities of cyber-physical
systems (CPSs) that interlink computational technologies with phys-
ical processes, as part of cyber-physical research infrastructures (CPRIs),
to analyse, monitor and control their functionality in a consistent,
robust, safe, efficient and concurrent manner (Alguliyev et al., 2018;
Baheti and Gill, 2011; Lee, 2006; Marwedel, 2021; Robotics Growth
Partnership, 2022; Sanislav and Miclea, 2012). CPSs, as a concept, are
now considered vital in terms of innovation across Europe and the
United States (Alguliyev et al., 2018; Robotics Growth Partnership,
2022), as reflected in the drive towards Industry 4.0. With the Industry
5.0 focus on placing humans at the heart of manufacturing, to be
effective in realising the envisioned transformation, CPSs should func-
tion as a collaborative synergistic human-machine interface providing
well-trained, technology-savvy workers with ready access to data and
models across DS and DP activities (European Commission, 2021b, Eu-
ropean Commission, 2021a, 2020; Jafari et al., 2022; Nahavandi, 2019).

QbDD could also benefit significantly from the accelerating appli-
cation of self-driving laboratories (SDLs) utilising CPSs driven by data,
models, optimisation approaches and Al. SDLs have demonstrated
increased data acquisition (e.g., an increase of sample throughput of
50-100 times compared to human testing alone) (Berkeley Lab, 2024;
Biron, 2023), novel material discovery (Burger et al., 2020; Yang and
Tomoshige, 2024), real-time monitoring and analysis (Harmon, 2023),
and even multicontinental DT and CPS co-ordination (Bai et al., 2024).
Furthermore, multiple SDLs have demonstrated real-time recording,
storage and interaction with data whilst also using human input and
literature data (Acceleration Consortium and University of Toronto,
2024; Aspuru-Guzik Group, 2024; Bai et al., 2024; Harmon, 2023;
Intrepid, 2024). QbDD has not yet been implemented in existing phar-
maceutical SDLs in a full E2E capacity (Acceleration Consortium and
University of Toronto, 2024; Berkeley Lab, 2024; Intrepid, 2024). To this
end, CMAC is actively developing QbDD-enabling SDLs or Data-
Factories™. These DataFactories include SDLs capable of collecting
targeted experimental data for APIs, excipients, and products under a
wide range of conditions. They do so by exploiting automated dosing or
sample handling, mobile robotics, small-scale experiments with inte-
grated sensing/analytics/imaging for information extraction and global
optimisation approaches for self-learning experimental planning to meet
the process objectives. These SDLs focus on model-driven data genera-
tion via repeatable experimentation with data structured in FAIR for-
mats (discussed further in Section 2.4.3) and currently target
crystallisation screening and scale-up (Pickles et al., 2024; Pickles et al.,
2022a; Pickles et al., 2022b), amorphous materials, direct compression
(Abbas et al., 2025), stability and dissolution testing (CMAC, 2021).
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2.4.2. Data systems and architectures

The data sources and requirements across a QbDD framework are
numerous (e.g., Fig. 4), and an underlying data structure is necessary to
facilitate the integration, collation, management and application of data
between and across these platforms. Data systems and architectures
provide a standardised structure for data collection, processing, orga-
nisation, security and storage (University of York, 2024). Several local
and enterprise-level data frameworks have been developed including
highly ordered data warehouses and more unstructured data lakes and,
more recently, data meshes and data fabrics (IBM, 2024) (please see
Section 4 for full definitions). Due to issues such as lack of flexibility and
lack of quality (IBM, 2024), data fabrics and data meshes may be utilised
in preference to data warehouses and data lakes (Dibley, 2022; Garani
et al., 2019; Garcia et al., 2008; Hlupic et al., 2022; IBM, 2024; Nambiar
& Mundra, 2022; Thantilage et al., 2023). Data fabrics and data meshes
enable data to be efficiently managed and made accessible to a range of
human users, applications and other systems further down the supply
chain, either in a decentralised (mesh) or centralised (fabric) form
(Blohm et al., 2024; Hechler et al., 2023). For the implementation of
QbDD, the centralised management and accessibility of a data fabric
makes it the preferred data architecture for a holistic, human-centric
QbDD framework. Data fabrics enable full integration of different data
sources and pipelines across different locations, allowing the collation
and curation of all data and metadata to streamline access and drive
modelling approaches (IBM, 2024). Important elements for a FAIR
QbDD data fabric include; attributable, legible, contemporaneous,
original accurate, complete, consistent, enduring and available (ALCOA
+ principles) data; cybersecurity; ontologies; extract-transform-load
(ETL) or extract-load-transform (ELT) tools to ensure all data can be
correctly tagged, aggregated and served up to queries or data-driven
services including dashboards; and AI/ML (Bartley, 2024; Dura et al.,
2022; Kavasidis et al., 2023; Samson, 2021; Seenivasan Mphasis and
Seenivasan, 2023; Sembiring and Novagusda, 2024; Singhal and
Aggarwal, 2022).

Investment in establishing standardised data architectures (Veeva
Systems Inc., 2025; Walsche, 2021) and systems will be valuable in
developing and deploying modelling and data-driven approaches.
Effective mechanistic digital twins and ML-based or hybrid predictive
models with known uncertainties are facilitated by structured training
data in which metadata describing those data are adequately captured.
For example, a powder flow prediction model trained on data collected
on one type of instrument with one methodology has a lower accuracy
when predicting the outcomes for the same physical property measured
using another instrument that uses a different measurement methodol-
ogy (Pereira Diaz et al., 2023). Capturing the metadata, such as differ-
ences in methodology (e.g., equipment scales and conditions) (Wang
et al., 2021), is therefore essential to improve predictive model perfor-
mance and ensure interoperability and repeatability. As recently
demonstrated for high shear wet granulation (Wang et al., 2021), ma-
terial data fusion and multivariate modelling can also speed up process
development by connecting several different data sets and reducing the
volume of experimentation required. FAIR data collected from multiple
sources, enriched with metadata and in machine-ready format is then
appropriate for advanced analytics, i.e., ML and Al

Recently, there have been initiatives to embrace FAIR data principles
and replacing traditional data tables in databases with detailed knowl-
edge graphs (Stromert et al., 2022; Voigt and Kalidindi, 2021; Wulf
et al., 2021). A knowledge graph, consisting of an ontology and appro-
priate data, can be used to capture and represent knowledge and re-
lationships between data entities in the domain, enabling semantic tool
development to improve data access and usability. In general, ontologies
describe classes of objects, entities or concepts and the relationships
between them (Lomax, 2022). An ontology forms a machine-readable
knowledge model that supports FAIR data generation through con-
necting data and meta data intuitively and aids the discovery of de-
viations, thereby decreasing errors and enabling quantification of
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Fig. 4. A high-level diagram of elements interconnected and enabling the QbDD workflow.

uncertainty and confidence in data (Francisco and Remolona, 2018;
Lomax, 2022; Stromert et al., 2022; Venkatasubramanian et al., 2006;
Viswanath et al., 2022). Developing a complete QbDD ontology for CMC
in pharmaceutical manufacturing will require significant time, resources
and maintenance. To alleviate these challenges, existing ontologies must
be leveraged, such as those developed for pharmaceutical engineering
(covering material properties, molecular structure, experiments, re-
actions, phases and operations (Hailemariam and Venkatasubramanian,
2010), secondary process training (Chalortham et al., 2013; Oyebola
and Opeoluwa, 2015) and the Chemical Entities of Biological Interest’s
(ChEBI) ontology of molecular entities developed by European Bioin-
formatics Institute (EBI) (Chemical Entities of Biological Interest
(ChEBI), 2024). This endeavour will also benefit from groups and or-
ganisations working together to form the basis of a standard knowledge
model for the domain, driving adoption of the resulting ontology and
maintaining it to ensure longer-term impact.

2.4.3. QbDD Framework: The underlying data fabric

Establishing a CMC data fabric can facilitate the integration and
transfer of data between the predictive models, digital twins, Data-
Factories (Pickles et al., 2024) and other targeted experimental data
sources used to identify material attributes, process parameters and
associated quality attributes. Critically, an underlying data fabric will
also rely on the accessibility of data generated by multiple analytical
instruments. Instrument compatibility with standardised communica-
tion protocols, such as Standardisation in Laboratory Automation (SiLA)
(SiLA, 2018), and Robotic Operating Systems (ROS) (Open Source Ro-
botics Foundation, 2024), will be more and more integral to realising
this potential. Developing CMC ontologies and connected knowledge
graphs to enable FAIR data will also address the industry-wide chal-
lenges of connecting data silos and data interoperability. This connec-
tivity will benefit complex data sets spanning all stages of development
for whole-process design and optimisation, sustainability metrics and

intellectual property management. Data in QbDD should not be isolated
by a geographical research site or operational team; instead, it must be
transparent to all institution members and, potentially, regulators
through federated systems (Ahluwalia et al., 2022).

The data fabric will also connect predictive models with the self-
driving DataFactories required to generate data to train, calibrate and
evaluate model predictions. Model-driven automated experimental
frameworks investigate gaps in existing knowledge using AI and model-
driven decision-making (Gregoire et al., 2023) and can develop suites of
data that provide value to future campaigns and contribute to the
development of improved material and process understanding
(Abouzied et al., 2023; Boobier et al., 2020; Carou-Senra et al., 2023;
Chen, 2024; Mswahili et al., 2021; Nielsen et al., 2020; Ottoboni et al.,
2021; Patel and Shah, 2022; Pereira Diaz et al., 2023; Vassileiou et al.,
2023). The ambition of such digital design efforts are that reliable,
credible predictive models generated by the data fabric support the
development of process-mirroring digital twins that can dynamically
replicate processes and allow for analysis, control and optimisation of
critical attributes in real time.

2.4.4. Interconnectivity of QbDD elements

Fig. 5 demonstrates a potentially fully integrated QbDD platform in
which four CPRI platforms are brought together by the QbDD data
fabric:

e The Skills platform of CPRI comprises multi-skilled Industry 5.0-
ready researchers working in a diverse and inclusive interdisci-
plinary laboratory environment for innovation of medicines
manufacturing.

e The Measure platform consists of multiple types of CPSs (A,B, and C
in Fig. 5). This platform is a human-centric integrated CPRI that
builds on individual CPS for individual unit operations (A in Fig. 5)
to integrate experiments across multiple process Stages (B in Fig. 5)
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Fig. 5. A QbDD data fabric structures data and data handovers between the four CPRI platforms in this diagram. Labels Skills, Measure, Model and Make, and letters

(A)-(L) are described in Section 2.4.4.

and ultimately E2E use (C in Fig. 5) with data and metadata feeding

into the research data fabric (D in Fig. 5).
e The Model platform of the CPRI is a systems-level manufacturing
knowledge model for CMC where predictive models of single rate
processes (E in Fig. 5) and drug substance/drug product models (F in
Fig. 5) can be integrated into an E2E model framework (G in Fig. 5)
as a system-level digital twin and utilised to inform knowledge
management (H in Fig. 5).
The CPRI Make platform is an integrated, scaled-down, material-
sparing E2E customisable manufacturing research test bed to vali-
date the quality, sustainability and resilience of adaptive processes
and control strategies. In this platform, initial processes (I in Fig. 5)
are developed to create integrated small scale, flexible, modular
continuous processing platforms (J in Fig. 5), which in turn can be
combined to generate E2E integrated flexible, modular continuous
processing platforms (K in Fig. 5) and multi-route E2E integrated
flexible, modular continuous processing platforms (L in Fig. 5).

2.5. Digital-first workflows

The integration of the Measure, Model and Make framework (Fig. 5)
requires guided decision-making and handovers through digital work-
flows. Workflows provide a structured approach to process and product
development, and the transparency provided in key decision-making
reduces process risk and uncertainty (Agrawal et al., 2023). Reasoning
and support for each decision are clear and accessible to different dis-
ciplines, geographies and phases of the development process, which will
only benefit regulatory processes. Benefits have been reported in the
development and application of workflow methodologies to improve the
development of different stages of pharmaceutical development (Brown
et al., 2018; Hatcher et al., 2020; Ottoboni et al., 2021; Pickles et al.,
2024; Urwin et al., 2020). Additionally, in other groups (Agrawal et al.,
2023; Hu et al., 2024; Lorenz et al., 2021; Sperry et al., 2021), with
typical advantages being reduced development time and resource

10

requirements.

The overarching QbDD workflow (Fig. 3) drives the digital-first
strategy, with an ultimate goal to exploit predictive models to rapidly
identify the optimum materials, equipment and process conditions
under which QTPPs can be achieved. This workflow with associated sub-
workflows connect key decision points for each selected process stage
with predictive models and data derived from model-driven experi-
mental design to interrogate reaction mechanisms, parameterise
models, quantify uncertainty and optimise design solutions. The QbDD
data fabric ensures workflows can callout to required data across
development process operations. Via DataFactories, workflows can also
trigger the generation of targeted, reproducible data to drive models
applied at key development stages (Pickles et al., 2024; Pickles et al.,
2022b). Workflows also integrate the Skills platform (Fig. 5) into the
QbDD framework up/reskilling users through guided decision-making
and accessibility and interpretability of the data and associated
models. For example, dashboards can summarise experimental progress,
data trends, model performance and other useful metrics for each QbDD
stage. Templates must be also integrated to facilitate FAIR data capture
for sample data, operation-specific data and metadata.

2.6. Validation and maturity of models and digital technologies

Many digital platforms may follow the same basic installation,
operation and performance qualifications (IQ, OQ and PQ) that standard
equipment follows. Overall IQ, OQ and PQ can ensure any models or
other digital technologies, including automation, robotics and control
systems, fit the design specifications. Additionally, these models and
digital technologies may require monitoring and controlling using
appropriate calibration and validation to achieve reliable and robust
system performance (Creaner and Fitzgerald, 2024). Similarly, the
cyberphysical infrastructure underpinning QbDD may require the use of
verification, validation and uncertainty quantification (VVUQ) pro-
cesses vital to the model life cycle. Computer Systems Validation (CSV)
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ensures models function as intended, consistently and accurately (The
FDA Group, 2023). Model verification establishes if the model fits its
mathematical description (The American Society of Mechanical Engi-
neers, 2024). Model verification should occur throughout the product
life cycle as defined by the FDA in their Appendix to Q8, Q9 and Q10,
ensuring the model fulfils its acceptance criteria (U.S. Department of
Health and Human Services, Food and Drug Administration, Center for
Drug Evaluation and Research (CDER), Center for Biologics Evaluation
and Research (CBER), 2012). Scientific model validation establishes
model accuracy relative to experimental set up (Ahmed et al., 2012; The
American Society of Mechanical Engineers, 2024), as demonstrated by a
number of studies (Barrasso et al., 2015; Chen et al., 2023; Kodam et al.,
2012; Moreno-Benito et al., 2022; Ranjan Yadav et al., 2022; Sadeghi
et al., 2022; Unnikrishnan et al., 2021). Uncertainty quantification
captures the effect of variations in modelled and experimental process
parameters on the output and key performance indicators (The Amer-
ican Society of Mechanical Engineers, 2024). Workflows and data flows
can similarly be validated by assessing if workflow output matches a
defined, measurable objective in a transparent, repeatable way. Work-
flow and data flow validation is ongoing with every iteration of the
workflow and with ongoing assessment of data provenance and repre-
sentation, for instance. For QbDD methods and approaches, credibility
aims can be identified as part of the risk assessments. Then, a suitable
verification and validation strategy can be designed and implemented to
establish the overall credibility of the model, and experimental data then
can be used to inform and alter the model as required (Ahmed et al.,
2012; The American Society of Mechanical Engineers, 2024).

3. Outlook and recommendations
3.1. Outlook

QbDD facilitates the digital transformation of CMC processes for
medicines product and process design and manufacturing by establish-
ing a holistic cyber-physical framework. This framework can be realised
using inclusive, digitally-encoded CMC workflows that guide all devel-
opment stages and objectives. The implementation of systematic work-
flows has been shown to improve the overall efficacy of automation and
predictive models (Coley et al., 2019; I¢ten et al., 2020; Ottoboni et al.,
2022). Furthermore, automated workflows have the potential to over-
come complexity barriers, and rapidly equip experimentally trained
scientists with access to digital tools for efficient process development
(Golub et al., 2023; Hauck, 2024; U.S. Food & Drug Administration,
2021; Whatfix, 2024). Development of these workflows will require
collaborative efforts between academia, industrial partners and regu-
latory stakeholders to drive standardisation, acceptance and adoption
across the range of materials, processes and unit operations relevant to
all dosage form development.

Further investment in the development of data infrastructure is
required to drive the digital transformation of CMC. This development
will enable the ability to acquire, curate, store and analyse data and/or
metadata generated on-demand from SDLs, simulations and other
experimental sources. In turn, this develops process understanding and
our ability to train and develop models that evaluate design space,
manufacturability and sustainability. SDLs and DataFactories are
already being developed by a range of initiatives for pharma and non-
pharma applications (Acceleration Consortium and University of Tor-
onto, 2024; Berkeley Lab, 2024; Biron, 2023; Intrepid, 2024; Pickles
et al., 2024; Pickles et al., 2022b; Pickles et al., 2022a; University of
Liverpool, 2024), demonstrating the ability to enhance efficiency of
R&D. A CMC ontology and associated knowledge graph can both ensure
data collected is FAIR, maximising opportunities to extract knowledge
and value and will facilitate model development and process scale-up.
Standardisation of data collection, data structuring and experimenta-
tion via SDLs may also provide significant benefits through regulatory
process innovation, for example simplifying assessment and review of
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data associated with a new product (Berkeley Lab, 2024; Biron, 2023).

Although this perspective paper focuses on the potential for QbDD
across CMC product and process design, the principles can be readily
extended to drug discovery, synthesis, scale-up, manufacture and life
cycle management. Drug discovery and synthesis prediction, Al, digital
twins, CPSs and ML can inform the CCS, MCS + and BPCS (An and
Cockrell, 2022; Blanco-Gonzalez et al., 2023; Bordukova et al., 2024;
Coley et al., 2019, 2018; Cumming et al., 2013; Dara et al., 2022; David
et al., 2020; Elbadawi et al., 2021; Gregoire et al., 2023; Grom et al.,
2016; Jayatunga et al., 2022; Jiménez-Luna et al., 2021; Jing et al.,
2018; Lavecchia, 2015; Lo et al., 2018; Medina-Franco, 2021; Patel
et al., 2020; Patel and Shah, 2022; Subramanian, 2020; Vamathevan
et al., 2019; Wu et al., 2023; Yang et al., 2019; Zhang et al., 2017). For
example, the resultant isolated compound and its associated impurities
can inform crystallisation requirements, processability and overall
product quality (An and Cockrell, 2022; Blanco-Gonzalez et al., 2023;
Bordukova et al., 2024; Coley et al., 2019, 2018; Cumming et al., 2013;
Dara et al., 2022; David et al., 2020; Elbadawi et al., 2021; Gregoire
et al., 2023; Grom et al., 2016; Jayatunga et al., 2022; Jiménez-Luna
et al., 2021; Jing et al., 2018; Lavecchia, 2015; Lo et al., 2018; Medina-
Franco, 2021; Patel et al., 2020; Patel and Shah, 2022; Subramanian,
2020; Vamathevan et al., 2019; Wu et al., 2023; Yang et al., 2019; Zhang
et al., 2017). Additionally, QbDD has potential in the packaging space.
In line with MCS+, CCS and BPCS, challenges such as moisture ab-
sorption, hydrolysis, material interactions, friability, light sensitivity,
counterfeit products and poor patient compliance inform packaging
selection (Allain et al., 2016; Bahaghighat et al., 2019; Chen and Li,
2003; Cramer, 1998; Feenstra et al., 2014; Naversnik and Bohanec,
2008; Remmelgas, 2017; Waterman and MacDonald, 2010; Zhao et al.,
2022). Thus, predictive models (Crews et al., 2018; Feenstra et al., 2012;
Naversnik and Bohanec, 2008; Remmelgas, 2017), real-time modelling
(Vijayakumar et al., 2024), digital twins (Schrimpf, 2022), ML
(Deshpande, 2023; Jones, 2024), and Al (Brownett-Gale, 2024; Tubet-
tificio Perfektup, 2023), have been implemented previously. Further-
more, a similar digital-first approach has been previously suggested in
RNA vaccine research, albeit not in an end-to-end capacity, demon-
strating QbDD’s applicability to non-solid dosage forms (Nair et al.,
2024). In the broader supply chain context, digital twin supply chains
(DTSCs) are also emerging (Srai et al., 2024, Srai et al., 2020, Srai et al.,
2019). DTSCs have been explored in relation to synchronisation of
pharmaceutical production and logistics operations (Guo et al., 2024),
simulation-based capacity planning (Santos et al., 2020), inventory
optimisation (Marmolejo-Saucedo, 2020), and data standardisation and
integration along the value chain (Werner et al., 2021). As seen in these
extensive examples, QbDD’s workflow-guided integration of digital
tools has potential impact beyond the scope of this publication and with
continuing improvements in predictive tool availability will gain
increasing momentum in the coming years.

QbDD will require ongoing investment of time and resources to
develop and integrate the advanced manufacturing and digital tech-
nologies to establish mature cyber-physical infrastructure for modern
CMC development. Whilst digital technologies such as Al are having
impact in drug discovery (Adabala Viswa et al., 2024; Chakravarty et al.,
2021), organisations also require a clear business case showing the ex-
pected return on investment and improved outcomes in CMC develop-
ment and manufacturing processes. By reducing materials, instrument
time, staff time and potential exposure to more potent materials, the use
of AI, ML-driven, physical and hybrid predictive models and DTs could
improve overall efficiency, safety and sustainability of CMC develop-
ment efforts. There is also a need to build trust and confidence in models
and digital technologies and ensure data integrity and the cybersecurity
of data transfer and data systems. QbDD also increases the number of
product and process prototypes investigated (mostly in the virtual
space), which, in turn, increases the likelihood of identifying and
developing products that maximise patient benefits. International reg-
ulators including the Medicines & Healthcare Products Regulatory
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Agency, the European Medicines Authority and the U.S. Food and Drug
Administration are adopting and encouraging digital transformation in
pharmaceutical manufacturing (European Medical Agency, 2020; Eu-
ropean Medicines Agency, 2024; European Medicines Agency, 2017;
European Medicines Agency, 2016; European Medicines Agency and
Heads of Medicines Agencies, 2020; Pauli and Williams, 2018; Riaz
Ahmed et al., 2022; U.S. Food & Drug Administration, 2021, 2019; Yu
et al,, 2019) (see ESI 1 for further details). This guidance provides
increasing momentum behind the adoption of novel, digital technolo-
gies, infrastructure and innovative ways of deploying them.

In conclusion, QbDD facilitates the efficient and robust development
of processes that deliver drug products which meet quality, manufac-
turability, process sustainability, regulatory and business targets with
enhanced understanding of these processes. The enabling technologies
for QbDD are cost-effective, available and proven and combine FAIR
data principles, a QbDD data fabric, predictive models and material-
sparing, highly automated experimentation. Through these, QbDD
provides the science-driven rationale, data transparency and trace-
ability, more robust design space, real-time process improvements and a
formalised decision process to enable organisations to enhance R&D
productivity and provide regulatory confidence and assurance. Ulti-
mately, this allows for the realisation of Industry 5.0 principles in
pharmaceutical process and product development that can help to sus-
tainably translate new medical science into new medicines to improve
the lives of patients.

3.2. Recommendations for realising QbDD
Table 3.
4. Glossary

In this section, we provide a list of definitions and abbreviations to
remove ambiguity for the terms used throughout this paper.

Active pharmaceutical ingredient (API). Any component that
provides pharmacological activity or other direct effect in the diagnosis,
cure, mitigation, treatment, or prevention of disease, or to affect the
structure or any function of the body of man or animals.

Artificial intelligence (AI). A system which carries out computer
and machine-driven problem solving, in a way that mimics human in-
telligence. The FDA defines Al as a machine-based system capable of
providing predictions, suggestions or decisions impacting actual or
simulated environments and uses information from human and machine
sources to analyse these environments to generate appropriate models to
exert an appropriate response (U.S. Food & Drugs Administration,
2024).

Attributable, legible, contemporaneous, original accurate,
complete, consistent, enduring and available (ALCOA + ) data.
Defined by the FDA as the guiding principles for data integrity as laid out
under CGMP, where all data must be traceable, decipherable and
gathered and recorded within the appropriate time scale (concurrently if
possible). Additionally, the first version must be kept, and all data must
be correct, recorded in its entirety, and collected and recorded in the
same manner throughout. Data must also be held in a manner that is
lasting and accessible (Samson, 2021; U.S. Department of Health and
Human Services et al., 2016).

Biopharmaceutical classification system (BCS). A system classi-
fying a drug substance based on its minimum aqueous solubility in the
pH range of 1-7.5, dose, and human fraction absorbed or intestinal
membrane permeability. This system categorises drugs into four classes
according to their permeability and solubility (Amidon et al., 1995). It
has been suggested that the regulatory criterion for a highly soluble
drug, whose highest dose (approved) strength is soluble in 250 mL
aqueous media over the pH range of 1.0-6.8, is conservative for BCS
Class I drugs and that further biowaivers for acidic drugs, BCS Class Ila,
should be considered (Amidon et al., 1995).
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Biorelevant performance classification system (BPCS). A system
developed to (i) identify effective range of release achievable in popu-
lation subsets and (ii) develop new release systems using models that
self-learn from clinical outcomes and/or endpoints.

Chemistry, manufacture and control (CMC). Crucial activities
when developing new pharmaceutical products. CMC involves defining
manufacturing practices and product specifications that must be fol-
lowed and met to ensure product safety and consistency between
batches. CMC begins after a lead compound is identified through drug
discovery and continues through all remaining stages of the drug
development life cycle. In addition to the pharmaceutical product, CMC
also applies to the facility where manufacturing occurs.

Critical material attribute a.k.a. critical quality attributes of
materials (CMA). A measurable material property whose variability has
an impact on a critical quality attribute and therefore it should be
monitored and controlled to ensure desired drug product quality.

Critical process parameter (CPP). A term used in pharmaceutical
production for process variables which have an impact on a critical
quality attribute (CQA) and, therefore, should be controlled to ensure
the drug product obtains the desired quality (International Council for
Harmonisation, 2009).

Critical quality attribute (CQA). A measurable physical, chemical,
biological, or microbiological property or characteristic that should be
within an appropriate limit, range, or distribution to ensure the desired
product quality. It is primarily based upon the severity of harm and does
not change as a result of risk management (International Council for
Harmonisation, 2009).

Crystallisation classification system (CCS). A predictive classifi-
cation system spanning the production of primary particles to formu-
lated product and addressing manufacturability, stability, and
performance parameters, which is being used to develop integrated
platforms to support efficient and science-driven development from
molecule to particle.

Cyber-physical research infrastructure (CPRI). UK Research and
Innovation (UKRI) defines this as “the integration of digital and physical
systems to create new capabilities and opportunities for research and
innovation” (Simon Hart, 2023).

Cyber-physical system (CPS). The interlink of computational
technologies with physical processes to analyse, monitor and/or control
their functionality in a consistent, robust, safe, efficient and concurrent
manner (Alguliyev et al., 2018; Baheti and Gill, 2011; Lee, 2006; Mar-
wedel, 2021; Sanislav and Miclea, 2012).

Data fabric. A management system that enables full integration of a
number of different data sources, pipelines and storage (IBM, 2024).
This allows active metadata to be generated and enables collection of
FAIR data. Data fabrics enable these data to also be accessible to
humans, applications and other systems further down the supply chain
(Blohm et al., 2024; Hechler et al., 2023).

Data lakes (DLs). Larger, less organised archives than data ware-
houses, which do not have a fixed structure (Dibley, 2022; Hlupic et al.,
2022) and are used for storage and governance of a large range of data
including structured and unstructured data (Hlupic et al., 2022; Nam-
biar and Mundra, 2022b). DLs are designed for decision-making and
analysis, as they enable storage and processing in near real-time (Hlupic¢
et al., 2022).

Data mesh (DM). A management system where data is collected by
domain owners who generate data products. Multiple systems can then
be combined and utilised by a range of users as required in a “shopping
for data” and “self-service” manner, making reusable data more acces-
sible (Blohm et al., 2024; Hechler et al., 2023).

Data warehouse (DW). A highly ordered archive that houses, or-
ganises and structures historical data. It enables data from a range of
sources and geographical locations to be easily accessed either on pre-
mises or as a Cloud-based platform (Garani et al., 2019; Garcia et al.,
2008; Nambiar and Mundra, 2022; Thantilage et al., 2023).

DataFactories. An autonomous experimental platform capable of
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Table 3

Recommendations for Realising QbDD. The example timeline assumes ongoing application of QbD within an organisation and will differ from one organisation to another.

Recommendation Example Timeline for Related Activities
Near term

(1-2 years)

Medium term
(3-5 years)

Long term
(5 + years)

Associated Benefits

Introduction of advanced computational
resources

o Identify and develop relevant ML, mechanistic
and hybrid models
o Verify and validate models

Introduction of new data technologies
including:

e Map data interdependencies and meta-data
o Identify data integration approach (internal
e ontologies development vs. external software solutions)

e FAIR data approaches

Develop and use holistic, consistent and
standardised digital workflows to guide
QbDD

e Develop sub workflows for the high-level
workflow presented in this work with
institution-specific pathways

o Assess model credibility and regulatory
readiness level (guidelines to be
determined through regulatory
engagement, see near-term goals)
Continue model development and
validation

Implementation of models according to
credibility assessment and technology
readiness level

e Implement and test ontology solutions
o Test and measure data FAIRness

o Revise workflows to integrate new,
credible digital tools with the goal of
continued reduction of physical
experimentation

e Continue model development, validation
and assessment

Continue model implementation
according to credibility and lifecycle
requirements

e Expand ontology as needed
e Continue to periodically test data
FAIRness

e Continue workflow revision to minimise
physical experimentation by further
incorporation of new or better digital tools

Promotes and enables digital first
approaches such as workflow guided DTs,
ML, predictive models and hybrid
approaches

Enhances efficiency and sustainability of
CMC by early design space refinement via
virtual assessment delivering approved
medicines to patients faster

Reduces risk of unforeseen late-stage
design space re-assessment and expansion
Reduced material wastage, energy and
workforce time

Mitigates environmental impact
(promoting sustainability) and reduces
risk for researchers with virtual
assessment of less-desirable operating
conditions

Standardised approaches to evaluate
model suitability and credibility for
different contexts of use.

Provides additional transparency, data
integrity and traceability in process and
product development

Facilitates seamless data connectivity
Provide standardised framework to assess
FAIR data approaches and benefits
Enables regulators to more easily assess
the validity of the processes and products
developed

Establishes a comprehensive platform for
QbDD.

Combines a patient-focused QTPP with
route selection, modelled CPPs, minimal
small-scale experimentation and rapid
digitally enabled technology transfer and
scale-up.

Drives and integrates digital and
experimental activities.

Captures all key CMC objectives,
constraints, decision points and data
requirements to drive and coordinate
digital and experimental activities
Rapidly equips experimentally trained
scientists with digital tools for efficient
process development

.

(continued on next page)
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Table 3 (continued)

Recommendation

Example Timeline for Related Activities
Near term
(1-2 years)

Medium term
(3-5 years)

Long term
(5 + years)

Associated Benefits

Introduction of new technologies such as
self-driving labs (SDLs) or DataFactories
(DFs) and integrate these platforms using
workflows

Engage regulatory stakeholders (e.g. the
UK-based digital CMC Centre of
Excellence in Regulatory Science
(CERSD)

Training and upskilling existing and future
workforce (this work lies within the
remit of current Centres for Doctoral
Training (CDTs) amongst other training
programs)

Assure all areas of development, from
digital twins and predictive models to
CPS

Identify areas where SDLs and DFs are needed
(i.e. areas of interest for ML or hybrid model
development)

Identify, procure and integrate instruments
and software for FAIR data generation
Develop plan for data integration into wider
ontology

Develop national and international guidelines
to assess model credibility and regulatory
readiness level

Provide regulatory-relevant training for stake-
holders in model credibility and regulatory
readiness level assessment

Identify, apply for and support opportunities
for multi-disciplinary training with QbDD
focus for current and future workforce (e.g.
CDTs and training development programs and
platforms).

Develop QbDD-relevant trainings such as:
integration and use of FAIR data and data
structures; model and SDL development and/or
implementation; model credibility and regula-
tory readiness

Ensure all models and platforms:

e Have associated risk assessments with
verification and validation control strategies

Integrate data collection with wider
ontology

Continue instrument integration and
platform development

Collect data and ensure continued data
FAIRness

Establish and agree upon international
guidelines with multiple international
regulatory bodies

Provide training for model developers
and industry researchers on testing,
implementation and integration of
digital tools in industry according to
agreed guidelines

Implement, facilitate, and encourage
QbDD-relevant trainings/training pro-
grams for current and future workforce
Develop training for new technologies as
required

Continue to assure all areas of QbDD
development with actions listed under
near-term goals

Assess new available technologies for
incorporation into existing DFs/SDLs or
development of new DFs/SNLs

Assess continued viability of existing DFs/
SNLs — if they have they achieved their
data collection goals, can they be
repurposed or can individual components
be repurposed

Publish harmonised international
guidelines

Periodically assess guidelines with the
development of new and existing
technologies

Continue to provide relevant trainings

Continue QbDD-relevant training for cur-
rent and future workforce

e Continue to develop training for new

technologies as required

Continue to assure all areas of QbDD
development with actions listed under
near-term goals

Accelerates the adoption of QbDD
principles across pharmaceutical
development and manufacturing
organisations

Increases the R&D productivity and
efficiency in terms of both cost and
sustainability

Standardises interfaces between
workflows, data, predictive data,
predictive models and simulations
Delivers a more robust design space with
known uncertainties and sensitivities that
can be used to evaluate risks and define
the control strategy

Enables implementation of digital-first
approaches

Standardises approaches to FAIR data
generation and reporting.

Allows for efficient, repeatable, data-rich
and model-driven experimental data
generation

Allows for targeted generation of data to
train, parameterise and calibrate models
and validate predictions

Significantly accelerated experimentation
rate, lower amounts of material and
automation reduce exposure risk for staff
Encourages adoption across the sector
Provides a common language and format
for regulators, industry and academia
Drives standardisation

Builds on existing knowledge and enables
continued improvement of existing
processes

Provides additional tech-savvy workforce

Fulfils the requirements of VVUQ
Establishes the overall credibility of the
models, CPS and more generally of QbDD

(continued on next page)
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Table 3 (continued)

Associated Benefits

Example Timeline for Related Activities

Near term

Recommendation

Long term

Medium term
(3-5 years)

(5 + years)

(1-2 years)

o Enhances overall efficiency and

e Follow IQ, OQ and PQ guidelines

effectiveness of medicines manufacturing

whilst assuring product quality

e Are verified throughout the product life cycle

in accordance with the ICH requirements
o Are validated relative to the experimental set

up
e Are monitored for variations in modelled and

experimental outcomes
o Are fully integrated with processes and data

capture
e Collaboratively develop BPCS, CCS and MCS +

o Allows delivery of a more robust design

o Continue development of mechanistic, ML

o Continue and finalise development of

Combine a patient-focussed QTPP, route

space with known uncertainties and

sensitivities
o Allows effective evaluation of risks and

and hybrid models to inform classification

systems
o Continue to reduce physical

classification systems
e Continue development of mechanistic,

classification systems
e Integrate classification systems early in

selection, modelled CPPs, small-scale

experimentation and digitally enabled

technology transfer

ML and hybrid models to inform

classification systems
e Reduce physical experimentation as

workflows
e Use multi-objective optimisation for sustain-

establishes a robust control strategy
e Enables more sustainable and cheaper

experimentation as models informing

classification systems improve

ability and process needs whilst assuring

quality and safety
e Prioritise PAT first according to quality

medicines to get to the patient faster

e Maintains quality assurance

classification system maturity improves
o Continue to prioritise PAT first according

o Continue to prioritise PAT first according

Incorporate PAT where required to assure

e Continued supply of data to the QbDD

to quality assurance and secondly to
inform model development

to quality assurance and secondly to

inform model development
o Incorporate PAT data into QbDD

assurance and secondly to inform model

development
e Assess which PAT data can be used to inform

quality requirements and inform model

development

data fabric to inform models and improve

overall processes in real time

ontology and data structures

model development
e Develop strategy to incorporate PAT data into

QbDD ontology and data structures
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collecting targeted experimental data for APIs, excipients, and products
under a wide range of conditions exploiting automated dosing or sample
handling, mobile robotics, small-scale experiments with integrated
sensing/analytics/imaging for information extraction and global opti-
misation for self-learning experimental planning to meet objectives.

Design space. The combination of materials and process conditions
which provide assurance of quality for a pharmaceutical product. This
can be defined by determining the bounds of the critical process pa-
rameters and critical material attributes that guarantee the attainment
of the targeted critical quality attributes (International Council for
Harmonisation, 2009).

Developability classification system (DCS). A methodology of
categorising a drug substance, building on the BCS, to account for the
effects of an approximation of human fasted state intestinal solubility, a
given solubility limited absorbable dose and a given dissolution rate in
relation to particle size. This allows identification of development risks
and enables CQAs to be identified for APIs exhibiting dissolution rate
limited absorption (Butler and Dressman, 2010).

Digital-first. During development, in silico modelling is used to
inform and guide process design before any experimental work is un-
dertaken. The sole purpose of any initial experimental work is to achieve
model parameterisation.

Digital twin (DT). Integrated digital framework to collate, analyse,
visualise, and apply data, models, and knowledge of the rapid design,
control, operation, and testing of continuous and modular processes for
active pharmaceutical ingredient (API) crystallisation and drug product
(DP) production. The DT will combine the overarching digital definition
of the materials, products, equipment, and processes. The FDA defines
digital twins as a group of informational structures that simulate the
configuration, framework and performance of a physical instrument or
experiment and have a synergistic relationship with the physical twin by
utilising live data from the physical twin, whilst informing physical next
steps (U.S. Food & Drugs Administration, 2024).

Digital twin supply chain (DTSC). The above applied to the field of
supply chain to allow simulation of the broader context of pharmaceu-
tical processing.

Digitalisation. A process that can include both the increased use of
robotics, automated solutions, and computerisation, thereby allowing
reduced costs, improved efficiency and productivity, and increased
flexibility.

Drug product (DP). A finished dosage form, e.g., tablet, capsule, or
solution, which contains a drug substance, generally, but not neces-
sarily, in association with one or more other ingredients.

Drug product performance. In vivo may be defined as the release of
the drug substance from the drug product leading to bioavailability of
the drug substance. The assessment of drug product performance is
important since bioavailability is related both to the pharmacodynamic
response and to adverse events.

Drug substance (DS). An active ingredient that is intended to
furnish pharmacological activity or other direct effect in the diagnosis,
cure, mitigation, treatment, or prevention of disease or to affect the
structure or any function of the human body but does not include in-
termediates used in the synthesis of such ingredient.

Efficiency (of API production). Optimal operating parameters to
meet sustainability and volumetric throughput per unit time targets.

EPSRC Future Manufacturing Research Hub in Continuous
Manufacturing and Advanced Crystallisation (CMAC). A national
centre for medicines manufacturing research, skills, technology and
translation (CMAC, 2022).

Excipient. A constituent of a medicine other than the active sub-
stance, added in the formulation for a specific purpose (such as binding,
disintegration or lubrication). While most excipients are considered
inactive, some can have a known action or effect in certain circum-
stances, which may enhance or control API performance (Kar et al.,
2018; The International Pharmaceutical Excipients Council (IPEC
Federation), 2023).
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Extract-transform-load (ETL) or Extract-load-transform (ELT).
ETL is the processing of data on a distinct server before sending to a data
warehouse, whereas ELT involves processing of data within the data
warehouse and thus raw, unstructured data can be sent directly to a data
warehouse in this way, removing the need for a step-wise approach
(Bartley, 2024).

Findable, accessible, interoperable, reusable (FAIR). Principles
for good data practice, first established in 2016 (Wilkinson et al., 2016).

Generative pre-trained transformer (GPT) model. A large lan-
guage model trained on unlabelled text which generates original human-
like responses using an artificial neural network (Eloundou et al., 2023).

Installation qualification (IQ). In the context of QbDD, this can be
considered as documentation of the model having met the requirements
defined by the model designer for configuration and initial imple-
mentation, possibly defined by an installation checklist, system speci-
fications and/or datasheets (Egnyte, 2024; The FDA Group LLC, 2024).
This can include suitable use, associated software requirements, envi-
ronmental requirements, and calibration and verification requirements
(Precision Solutions Inc., 2024).

Machine learning (ML). Computer-based development of algo-
rithms for problem solving where the computer can learn and adapt
without human interaction that may be used to train Al (U.S. Food &
Drugs Administration, 2024).

Manufacturability (of drug product). The properties of a drug
substance to be manufactured by an intended route for a desired
formulation.

Manufacturing classification system (MCS). A means of catego-
rising drug products based on processing route. It summarises conclu-
sions from a dedicated Academy of Pharmaceutical Sciences (APS)
conference and subsequent discussion within APS focus groups and the
MCS working party (Leane et al., 2018, 2015). The MCS is intended as a
tool for pharmaceutical scientists to rank the feasibility of different
processing routes for the manufacture of oral solid dosage forms, based
on selected properties of the API and the needs of the formulation (Leane
et al., 2024).

Manufacturing classification system-+ (MCS +). A system devel-
oped by the International Society for Pharmaceutical Engineering (ISPE)
(Potter, 2022), that provides a framework for classifying manufacturing
processes based on their complexity and potential impact on product
quality. MCS + builds upon the original Manufacturing Classification
System (MCS) developed by ISPE, but includes additional factors such as
process variability, criticality of process steps, and complexity of
equipment and automation (Potter, 2022).

Model Validation. In modelling (and more specifically within this
publication), this is evaluation of the model outputs against an inde-
pendent data set that has known outputs and has not been used in the
training of the model.

Objective. A quantitative or qualitative value or goal for which the
achievement thereof defines the success of an optimisation, be the
optimisation machine learning or otherwise.

Operation qualification (OQ). In the context of QbDD, this consists
of establishing and assessing the various aspects of the model which may
affect the overall quality of the process controlled (The FDA Group LLC,
2024). It ensures reproducibility and reliability within appropriate
operating conditions and that strategies for maintenance, deviation
checks, performance checks and calibrations are put in place (Powder
Systems, 2024; Precision Solutions Inc., 2024).

Performance qualification (PQ). A verification step for equipment
or model use in which a qualification and verification group monitors,
checks and reports if the quality requirements are achieved, ensuring
reliability over time (Powder Powder Systems, 2024; The FDA Group
LLC, 2024). Methodologies and validations to this end could include the
following: data summaries, suitable calibrations and validations, vari-
ability limits and experimental verification strategies (Precision Solu-
tions Inc., 2024).

Process analytical technology (PAT). Mechanism to design,
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analyse, and control pharmaceutical manufacturing processes through
measurement of material and quality attributes (U.S. Department of
Health and Human Services et al., 2004).

Process Validation. The FDA defines this as “the collection and
evaluation of data which establishes scientific evidence that a process is
capable of consistently delivering quality product throughout the
product lifecycle” (Bizjak and U.S. Food & Drug Administration, 2020;
Tartal and U.S. Food & Drug Administration, 2015; U.S. Department of
Health and Human Services et al., 2011). It generally consist of 3 stages:

1. Initial R&D experimentation and risk assessment to give an indica-
tion of the nature of the manufacturing process, allowing develop-
ment of a control strategy.

2. 1Q, OQ and PQ to ascertain the suitability of the technology utilised
for its proposed purpose. Planning and carrying out of experimen-
tation to prove this.

3. Continued observation of the process and technology utilised to
allow optimisation based on data collected and human experience
(Bizjak and U.S. Food & Drug Administration, 2020; U.S. Department
of Health and Human Services et al., 2011).

Process Verification. The FDA defines this as “confirmation by
examination and provision of objective evidence that specified re-
quirements have been fulfilled” (Tartal and U.S. Food & Drug Admin-
istration, 2015). This is vital to ensure a controlled state is maintained
throughout a process (U.S. Department of Health and Human Services
et al., 2011).

Quality. The suitability of either a drug substance or a drug product
for its intended use. Includes attributes such as identity, strength, and
purity.

Quality by control (QbC). Also referred to as quality control (QC).
Control strategy where active process control ensures product quality.
This builds on QbT by implementation of PAT and seeks to rectify issues
with a lack of integration between unit operations. It can be considered
as the proposal and implementation of a manufacturing system using an
active process control system developed in agreement with process
automation principles, dictated by a strong degree of quantitative and
predictive product and process understanding (Su et al., 2019).

Quality by design (QbD). An efficient development procedure that
commences with predetermined objectives and focuses on product and
process understanding and control with a strong basis in rigorous sci-
ence and quality risk management (International Council for Harmo-
nisation, 2009; Yu et al., 2014).

Quality by digital design (QbDD). Application of extensive
modelling and data driven decision support tools to quickly, robustly
and sustainably drive an efficient development procedure that com-
mences with predetermined objectives and focuses on product and
process understanding and control with a strong basis in rigorous sci-
ence and quality risk management (International Council for Harmo-
nisation, 2009; Yu et al., 2014).

Quality by testing (QbT). Also referred to as quality assurance
(QA). A traditional control strategy based on batch processing, which
assesses the quality of a manufactured medicine by testing the final
product to determine if targets have been met (Rege et al., 2024; Yu
et al., 2014).

Quality management system. A structured framework that ensures
that a medicine manufacturer consistently meets patient requirements
and regulatory standards. It includes policies, procedures, processes and
resources that guide quality-related activities.

Quality target product profile (QTPP). A prospective summary of
the quality characteristics of a drug product that must be achieved to
ensure the desired quality, taking into account safety and efficacy of the
drug product.

Sensitivity analysis. A technique to establish how a range of values
of an independent variable influence a dependent variable within a
particular hypothesis, or effectively how causes of uncertainty within a
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model impact its overarching uncertainty.

Supply chain resilience. The ability to anticipate and/or act on
disruptions, to achieve a rapid and economical recovery, and thus regain
the normal running of operations (Tukamuhabwa et al., 2015).

Sustainability. Process targets to drive reduction in materials, en-
ergy, resources, carbon footprint and environmental impact etc. Often
set at organisational level.

Uncertainty. In modelling, this is considered a quantity that enables
modellers to assess the accuracy and reliability of models and to make
informed decisions based on the results.

Workflow. Systematic, science-based process design sequence of
tasks. Experimental, computational, and analytical tasks should be
clearly defined.
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