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A B S T R A C T

We present a shared industry-academic perspective on the principles and opportunities for Quality by Digital Design (QbDD) as a framework to accelerate medicines 
development and enable regulatory innovation for new medicines approvals. This approach exploits emerging capabilities in industrial digital technologies to 
achieve robust control strategies assuring product quality and patient safety whilst reducing development time/costs, improving research and development effi-
ciency, embedding sustainability into new products and processes, and promoting supply chain resilience. Key QbDD drivers include the opportunity for new sci-
entific understanding and advanced simulation and model-driven, automated experimental approaches. QbDD accelerates the identification and exploration of more 
robust design spaces. Opportunities to optimise multiple objectives emerge in route selection, manufacturability and sustainability whilst assuring product quality. 
Challenges to QbDD adoption include siloed data and information sources across development stages, gaps in predictive capabilities, and the current extensive 
reliance on empirical knowledge and judgement. These challenges can be addressed via QbDD workflows; model-driven experimental design to collect and structure 
findable, accessible, interoperable and reusable (FAIR) data; and chemistry, manufacturing and control ontologies for shareable and reusable knowledge. Addi-
tionally, improved product, process, and performance predictive tools must be developed and exploited to provide a holistic end-to-end development approach.

1. Introduction

1.1. Background

Pharmaceutical development encompasses all the steps required to 
transform an active pharmaceutical ingredient (API) into a safe, effec-
tive medicine capable of being manufactured robustly and repeatably to 
the required quality for clinical and commercial scales. With the accel-
erating pace of drug discovery (Conroy, 2023), it is vital that product 
and process development keeps pace if we are to translate the advances 
in medical sciences to patient benefit as quickly, affordably and sus-
tainably as possible. However, medicines manufacturing remains a long, 
complex and resource-intensive process (Schlander et al., 2021). 
Furthermore, approximately 90 % of clinical drug development pro-
grammes may be unsuccessful due to a combination of poor clinical 
efficacy, issues with toxicity, weak drug-like properties, insufficient 
commercial requirements and/or strategic planning (Dowden and 
Munro, 2019; Harrison, 2016; Sun et al., 2022). As such, there is an 
urgent need to reduce material wastage, energy, manpower and time 
during chemistry, manufacturing and control (CMC) development. It is 
necessary to find ways to develop new products more efficiently and 
robustly by exploiting the advances being made in materials, analytical, 
pharmaceutical and process science and engineering. In conjunction 
with this, it is vital to exploit advances in data science and digital 
technologies. Due to the range of terms presented herein, a glossary of 
terms is provided in Section 4. With new innovative digital approaches, 
it is possible to build on the well-established principles of Quality by 
Design (QbD) (Juran, 1992; International Council for Harmonisation., 
2008).

1.2. Quality by design

QbD is a concept introduced by Joseph M. Juran, a pioneer in quality 
management, who asserted that quality should be integrated into the 
product’s design, as most quality issues stem from the initial design 
phase (Juran, 1992). QbD (International Council for Harmonisation., 
2008) was originally proposed for use in pharmaceutical manufacturing 
by the U.S. Food and Drug Administration (FDA) in 2002 (Caphart et al., 
2006; Department of Health and Human Services U.S. Food and Drug 
Administration, 2007), and was formally endorsed in 2009 
(International Council for Harmonisation, 2009). QbD principles have 
been increasingly adopted in the pharmaceutical industry to embed 
quality in drug design with rigorous, science-driven approaches, and an 
understanding of material and processing factors and associated risks 
that may impact on product performance and patient safety (Azad et al., 
2021; Barshikar, 2019; Davis and Schlindwein, 2018; Yu et al., 2014). It 
is vital to define the extent of variability in input materials that can be 
accommodated without impacting quality. Once the critical quality at-
tributes (CQAs), critical material attributes (CMAs) and critical process 
parameters (CPPs) are identified and their interdependencies are char-
acterised through targeted investigations, effective control strategies to 

manage potential risks of deviations can be developed.
QbD has five central components that have been described exten-

sively in the literature and regulatory guidance and/or case studies (Yu 
et al., 2014). These can be summarised as: 

1. A quality target product profile (QTPP) to pinpoint appropriate CQAs
2. Product design and understanding by performing a risk assessment to 

link CQAs to clinical safety and efficacy
3. Process design and understanding by defining CPPs, including a 

robust knowledge of scale-up and the impact of variations in CPPs 
and CMAs on CQAs

4. Development of a control strategy derived from the product and 
process understanding that ensures safety and efficacy (Lakerveld 
et al., 2015)

5. Process qualification to demonstrate that the controls are effective 
and to ensure continued improvement over time as new knowledge 
becomes available (Barshikar, 2019; Davis and Schlindwein, 2018)

The FDA and the International Council for Harmonisation (ICH) have 
published detailed guidelines on the implementation and regulatory 
aspects of QbD (Table 1) to help drive adoption and promote common 
practices for regulatory acceptability across the sector (Cook et al., 
2014).

1.3. Digital transformation of pharmaceutical development for CMC

With advancing capabilities in industrial digital technologies 
including Industry 4.0 (Arden et al., 2021; Azizi et al., 2023; Popov 
et al., 2022), Industry 5.0 and the underpinning engineering and phys-
ical sciences, it is increasingly possible to develop digital design methods 
that enable a systems-level approach to CMC development (European 
Commission and Directorate-General for Research and Innovation, 
2022). Whilst gaps in current modelling and predictive capability 
remain (Hausberg et al., 2019; Kitsios and Kamariotou, 2021; Litster and 
Bogle, 2019), ongoing research and progress in data science and 
computational capabilities are addressing these issues. The potential 
benefits from the digital transformation of CMC include accelerated 
development for sustainable products and processes, risk reduction via 
accurate predictive computational mapping of design spaces, cost 
reduction via leveraging predictive tools to reduce experimental work, 
efficient scale-up, digital technology transfer, and cost-effective opera-
tions and patient benefit (Conroy, 2023).

Digital transformation is vital to realise the ambitions and benefits of 
Industry 5.0 (Akundi et al., 2022; European Commission, 2021a, Euro-
pean Commission, 2021b, 2020; Ghobakhloo et al., 2023; Jafari et al., 
2022; Maddikunta et al., 2022; Nahavandi, 2019; Rane, 2023; Valette 
et al., 2023; Xu et al., 2021). Industry 5.0 aims to exploit the plethora of 
industrial digital technologies and predictive tools such as computa-
tional and data infrastructure, digital twins (mechanistic, data driven 
artificial intelligence (AI)/ machine learning (ML), and hybrid models), 
findable, accessible, interoperable and reusable (FAIR) data principles, 
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semantic tools, collaborative robotics, the internet of things (IoT), and 
immersive environments (augmented and virtual realities) (Hole et al., 
2021). The goal is to ensure manufacturing is sustainable, resilient and 
human-centric, placing people at the heart of manufacturing with 
technology augmenting human creativity to create social benefit 
(Akundi et al., 2022). Additional drivers for innovation include the need 
for enhanced supply chain discernability for more robust decision 
making, cost-reduction, and improved efficiency via data collection and 
analysis across the value chain (Bermingham, 2023). Digital trans-
formation is also being acknowledged and adopted by regulatory bodies 
(see ESI1) and is increasingly accepted as vital for firms to maintain their 
place within a competitive and dynamic global market. Furthermore, 
industrial digital technologies have growing potential to impact the way 
pharmaceutical companies design, develop and manufacture drugs 
(Destro and Barolo, 2022; Romañach et al., 2023; Urwin et al., 2023).

To achieve this Industry 5.0 vision, there must be a defined roadmap 
driven by business value, a robust technology literate workforce, and 
scalable, distributable technologies with secure, FAIR data systems 
(Wilkinson et al., 2016). Through improved exploitation of data to 
inform decisions, there is potential to realise environmental benefits 
through leveraging existing data and reducing the reliance on resource- 
intensive experimental efforts (Hughes et al., 2023; Wise et al., 2019).To 
support the rollout and adoption of digital technologies, actions have 
been proposed to assist organisations in their digital transformation 
(Golub et al., 2023; Hauck, 2024; Whatfix, 2024): 

1. Standardise and automate data collection, data control, data 
ownership, access management and development priorities using 
collaborative systems, skills and techniques, enabling better error 
detection and improved processes.

2. Industrialise application of AI and ML through development and 
adoption of standards to increase reliability of development, rollout 
and monitoring (Medicines & Healthcare products Regulatory 
Agency, 2024; Medicines & Healthcare products Regulatory Agency, 
2023; Medicines & Healthcare products Regulatory Agency and 
Brunel University, 2022; U.S. Department of Health and Human 
Services et al., 2016; U.S. Department of Health and Human Services, 

Food & Drug Administration et al., 2023; U.S. Food & Drug 
Administration, Health Canada, Medicines & Healthcare products 
Regulatory Agency, 2024; U.S. Food & Drug Administration et al., 
2021).

3. Recruit, develop and maintain a ‘tech-savvy’ workforce capable of 
driving innovation through knowledge of digital technologies.

4. Upskill existing employees to the required level of technical expertise 
and provide continued development. Personalise digitalisation to 
address business and employee requirements.

5. Enhance digital technologies based on employee and client feedback.
6. Encourage collaboration across the sector with industry, academia 

and regulators working to develop standards for suitability, inter-
pretability and credibility of AI and other digital technologies.

7. Establish a digital lifecycle approach by defining targets, identifying 
launch strategies for the global market and creating robust supply 
chains (GlaxoSmithKline plc., 2022; Golub et al., 2023; Hauck, 2024; 
Whatfix, 2024).

Digital tools are becoming increasingly sophisticated, user-friendly, 
and more accessible to researchers, manufacturers and decision- 
makers. This is exemplified by the recent surge in the use of genera-
tive pre-trained transformer (GPT) large language models, which have 
been transformative in providing non-experts with the benefits of AI 
tools (Eloundou et al., 2023; Mollick, 2022; Open AI, 2023). To navigate 
data integrity and security challenges presented by open access GPTs, 
pharmaceutical companies have started to implement internal solutions 
to incorporate AI trained on corporate and sector-specific data and 
improve their ways of working (Beckmann, 2023; Candelon et al., 
2023). Other examples of digital tool implementation include the 
growing use of automation in synthetic organic chemistry, which has 
rapidly increased the rate of candidate throughput in discovery phases 
(Wang et al., 2020). In addition, computer-aided drug discovery has 
been used for decades to virtually screen libraries of known compounds 
against newly identified biological receptors to identify new possible 
therapeutics (Gasteiger, 2020; Medina-Franco, 2021). The addition of 
modern AI tools recently demonstrated efficient automated recipe 
planning and experimental preparation of 15 drug or drug-like 

Table 1 
Examples of FDA and ICH initiatives to demonstrate QbD and promote adoption and harmonisation.

Source Initiative Purpose Reference(s)
U.S. Food & Drug 

Administration
Pharmaceutical Current Good 
Manufacturing Practices (CGMPs) for 
the 21st Century, 2002 (final report 
2004)

• First mention of QbD
• Promotes early adoption of technological innovation and 

quality systems approaches throughout pharmaceutical 
manufacturing.

• Promotes risk-based approaches

(Department of Health and Human Services U.S 
Food and Drug Administration, 2004)

Pilot program on QbD in relation to 
CMC, 2005

Companies invited to demonstrate QbD use in the context 
of CMC with a view to establishing a comprehensive 
quality overview of drug development and use of ICH Q8, 
Q9 and Q10.

(Bala et al., 2014; Department of Health and 
Human Services U.S. Food and Drug 
Administration, 2007)

Pharmaceutical Quality for the 21st 
Century A Risk-Based Approach 
Progress Report

Improvement of the CGMP process and quality review and 
regulation

(Department of Health and Human Services U.S. 
Food and Drug Administration, 2007)

International 
Conference of 
Harmonisation

ICH Q8(R2) Pharmaceutical Development (International Council for Harmonisation, 2009)
ICH Q9 (R1) Quality Risk Management (International Council for Harmonisation, 2005)
ICH Q10 Pharmaceutical Quality (International Council for Harmonisation., 2008)
ICH Q11 Development and Manufacture of Drug Substances 

(Chemical Entities and Biotechnological/Biological 
Entities)

(International Council for Harmonisation, 2012)

ICH Q12 Technical and Regulatory Considerations for 
Pharmaceutical Product Lifecycle Management

(International Council for Harmonisation, 2019)

ICH 2020 Annual Report revision of 
M4Q(R1)

The Common Technical Document for the Registration of 
Pharmaceuticals for Human Use

(ICH Secretariat with the ICH Management 
Committee and MedDRA Management 
Committee, 2021; International Council for 
Harmonisation, 2020)

ICH Q13 Continuous Manufacturing of Drug Substances and Drug 
Products

(U.S. Department of Health and Human Services 
et al., 2023)

ICH Q14 Analytical Procedure Development (International Council for Harmonisation of 
Technical Requirements for Pharmaceuticals for 
Human Use, 2023)
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substances (Coley et al., 2019; Liu et al., 2023). From an economic 
perspective, the use of AI tools has an estimated expected value of 
$15–28 billion (USD) per annum in R&D (Candelon et al., 2023). This 
estimation is due to an expectation that the use of AI tools will increase 
productivity by speeding up the process of NCE target identification, 
accelerating screening, and optimising formulation and product devel-
opment (Adabala Viswa et al., 2024).

For CMC, ML tools also have the potential to streamline process and 
product development and increase overall development speed (Conroy, 
2023; Nagaprasad et al., 2021). For example, to rationalise experimental 
solvent screening, which is expensive and time-consuming, it is only 
necessary to evaluate the handful of promising candidates identified by 
ML (Brown et al., 2018; Urwin et al., 2023). Digital-first approaches can 
also enable the identification of potential risks early in the development 
process to enable more efficient experimentation and reduce experi-
mental load. Several studies have demonstrated the ability of 
digital-first approaches to support decision making, e.g., selection of 
manufacturing route, optimal process conditions and additional exper-
imental conditions (Abasi et al., 2021; Agrawal et al., 2023; Bhalode 
et al., 2022; Boobier et al., 2020; Carou-Senra et al., 2023; Chen, 2024; 
Li et al., 2023; Maclean et al., 2024; Matić et al., 2023; Moreno-Benito 
et al., 2022; Mswahili et al., 2021; Nielsen et al., 2020; Ong et al., 
2022; Pereira Diaz et al., 2023; Sansare et al., 2021; Singh, 2024; 
Szilágyi et al., 2022; Urwin et al., 2023; Zaborenko et al., 2019) 
(Table 2).

Despite the advantages provided by physics-based mechanistic 
models, digital twins (DTs), statistical modelling, ML, and hybrid 
mechanistic-data driven approaches, the integration of these tools 
within pharmaceutical manufacturing remains bespoke. Isolated digital 
tools are usually only implemented on a single manufacturing step or a 
number of steps rather than the whole end-to-end (E2E) process from 
drug substance (DS) manufacturing to drug product (DP) manufacturing 
(Destro et al., 2021; Moreno-Benito et al., 2022; Ottoboni et al., 2022; 

Szilágyi et al., 2022), or for post-development optimisation (Içten et al., 
2020; Liu and Benyahia, 2021) (Table 2). Developing a cohesive strategy 
for the digitalisation of pharmaceutical control strategies carries po-
tential risks and requires significant investment of time and resources 
and working to improve regulatory certainty in the use of new methods 
(Ahluwalia et al., 2022). Digitalisation challenges also include risks such 
as cybersecurity and software issues, misinterpretation of data, and lack 
of training for implementation (Alguliyev et al., 2018; Axelrod, 2013; 
Bolbot et al., 2019; Humayed et al., 2017; Tyagi and Sreenath, 2021; 
Yaacoub et al., 2020).

1.4. Scope

Here, we propose a Quality by Digital Design (QbDD) framework as a 
holistic patient-centric approach for the integration of digital tools and 
data across process and product development and the manufacturing 
and packaging of pharmaceuticals. QbDD involves the application of 
extensive modelling, data driven decision support tools and generative 
AI-powered agents (Boiko et al., 2023; Bran et al., 2024; Chen et al., 
2023a; Chen et al., 2023b; Dong et al., 2024; Mahjour et al., 2023; 
Ramos et al., 2024; Ruan et al., 2024; Zhou et al., 2024), to quickly, 
robustly and sustainably drive an efficient development procedure. This 
approach commences with predetermined objectives and focuses on 
process and product understanding and control with a strong basis in 
rigorous science and quality risk management (International Council for 
Harmonisation, 2009; Yu et al., 2014). QbDD also enables easy multi- 
objective optimisation by including unconventional product develop-
ment objectives, for example carbon footprint or manufacturing cost 
reduction. Existing quality management systems in CMC include quality 
by testing (QbT), quality by control (QbC) and QbD. The proposed QbDD 
principles do not replace QbC and QbD but rather build upon their 
established approaches and technologies to deliver a systems-level dig-
ital transformation to CMC regulatory processes for medicines 

Table 2 
Examples of digital-first approaches relevant to CMC development processes.

Study Type Technique used Issue Outcome and Benefits Reference
Crystallisation ML Particle size quality 

requirement
Effective wet milling process development, 
reducing material wastage and experimental load, 
demonstrated use by Agrawal et al. (Agrawal et al., 
2023)

(Urwin et al., 
2023)

Hot melt extrusion QbD and DT Conveying, pressure build-up, 
and power consumption

Improved product quality so thus less wastage; 
highlights the need for accurate DTs and in silico 
process development

(Matić et al., 
2023)

Particle processes Hybrid ML/first principles Particle phenomena kinetics Successful prediction and hybrid model 
comparable to non-hybrid modelling in terms of 
accuracy, live training of the model also possible

(Nielsen et al., 
2020)

Nanomedicine 
solubility

AI/ML Hybrid (Support Vector Regression 
(SVR), Multilayer Perceptron (MLP), and 
Least Absolute Shrinkage and Selection 
Operator (LASSO))

Relationship between pressure, 
temperature and supercritical 
CO2

MLP successfully predicted supercritical CO2 
density, but SVR was more effective in predicting 
mole fraction

(Chen, 2024)

Dissolution testing First principles/empirical approaches Dissolution optimisation First principles effectively provide guidance for 
formulation and process development, and then, in 
combination with data-informed empirical models, 
can predict the effect of material attributes (MAs) 
and process parameters (PPs) on dissolution for 
batch or real-time release

(Zaborenko 
et al., 2019)

Dissolution 
performance of 
direct compressed 
tablets

Compartmental disintegration and 
dissolution model (population balance 
principles)

Dissolution optimisation Successfully predicted the effects of manufacturing 
conditions on disintegration. Utilised raw material 
properties as MAs and thus did not require large 
datasets. Suited to both DP development and live 
testing control strategies

(Maclean 
et al., 2024)

Continuous direct 
compression

First principles models, discrete elemental 
methods, flow sheet modelling, DT

Lengthy development times, 
material/ energy wastage, 
early project de-risking, 
improved quality

Mapping the steady state operation in the design 
spaces for feeding, mixing and compression. 
Determination of the impact of operating 
conditions, material and process parameters, and 
the dynamic response to disturbances. In turn this 
was used to de-risk and optimise drug product and 
process development while reducing the number of 
experiments

(Moreno- 
Benito et al., 
2022)
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development (Fig. 1). In parallel, the need for physical experimentation 
will decrease as digital transformation progresses towards the integra-
tion of cyber-physical systems (CPSs), with modelling and experiments 
(Fig. 2). In addition, physical experimentation will be directed towards 
supporting robust outputs of the digital twin modelling. Establishing this 
systems-level, holistic approach will allow more efficient and effective 
process and product design and development to deliver the required 
product performance whilst also delivering improved sustainability and 
resilience in medicines manufacturing.

This paper is written from the perspective of small molecule, oral 
solid dosage form CMC process development, but the intent, approach 
and benefits are applicable across the full scope of medicines 
development.

2. Quality by digital design roadmap

2.1. Towards QbDD

QbDD is enabled by the integration of digital technologies (including 
AI, ML and DTs) to collect and curate data, to train and apply predictive 
models, to enable reverse engineering and to use extended ontologies to 
manage and provide insights from data more effectively. These com-
ponents are unified by a holistic workflow that structures development 
activities. QbDD uses the collated data to inform early qualitative and 
quantitative decisions on process selection, process design, risk assess-
ment and control strategies. By focusing on high quality data collection, 
structure and connectivity as well as model development, training and 
validation, QbDD facilitates the identification and exploration of more 
robust multi-dimensional design spaces by incorporating quality, man-
ufacturability and sustainability criteria in early-stage decision-making. 
Patient-centric requirements (i.e., dose, route of administration and 
dosing frequency) dictate the objective criteria, and the design space is 
minimised early in development using predictive models (Fig. 2).

The exploration of a digitally augmented knowledge space in QbDD 
as opposed to the more sparse experimental design space in classical 
QbD (Fig. 2) has inherent advantages in terms of efficiency. Limited 
exploration of the knowledge space in traditional QbD may restrict 
further development. For example, in product lifecycle management, 
adding another presentation, such as a modified release tablet to com-
plement an immediate release tablet, is more challenging with the 
reduced knowledge space of QbD. By contrast, in QbDD, the augmented 
knowledge space could enable screening for multiple QTPPs (including 
ones classically considered during product life cycle management). For 

example, it would be possible to screen within the same development 
cycle for a product presentation for acute and chronic treatment rather 
than considering the second treatment later in another development 
cycle. QbDD in general, and the exploration of the augmented knowl-
edge space in particular, could also accelerate submission of the regu-
latory dossier by demonstrating to health authorities the full scope 
design space assessed while digital technologies populate sections of the 
dossier upfront.

2.2. QbDD Framework: An integrated predictive Toolbox

QbDD relies on establishing a holistic, systems-level framework to 
incorporate requirements across DS and DP development in a manner 
that informs agile, objective and explicit decision-making (Fig. 3). This 
framework enables systems-level modelling and optimisation to be 
applied across process design, process parameter selection, molecular 
systems, material attributes, bulk material properties, formulated 
product structure–function-process interactions, stability and biophar-
maceutical performance in relevant patient sub-populations (Riaz 
Ahmed et al., 2022). For example, predictive models can be used to 
design a particle formation process (i.e., crystallisation, spherical 
agglomeration or combined crystallisation/milling) to deliver the 
desired particle attributes. This targeted approach may save time and 
resources when compared with the traditional approach of making 
different samples with a range of properties and testing each to see 
which ones are best. Thus, models could enable efficient delivery of the 
desired material attributes (e.g., flowability) and assign appropriate 
excipients to enable effective continuous direct compression. In this 
way, the QbDD strategy minimises the risks and resource requirements 
associated with downstream processes enlarging the design space 
(Butters et al., 2006). Thus, the systems-level integration of QbDD al-
lows for earlier, whole design-space refinement in place of ‘one process 
at a time’ development.

While QbDD will rely on the development of new digital tools, it will 
also utilise and build upon existing models and approaches. Examples of 
existing tools include, the manufacturing classification system (MCS) 
(Leane et al., 2015), the biopharmaceutical classification system (BCS), 
the developability classification system (DCS) (Amidon et al., 1995; 
Butler and Dressman, 2010), and process systems engineering absorp-
tion, distribution, metabolism and excretion (ADME) and pharmacoki-
netics/dynamics (PKPD) frameworks, e.g., gPROMS 
FormulatedProducts (Siemens, 2025a, 2025b), GastroPlus® (Parrott 
and Lavé, 2002) and SimcypTM (Certara, 2023; Jamei et al., 2009; 

Fig. 1. Illustration of QbDD scope adapted from (Su et al., 2019) showing the relationship between manufacturing technology development and strategies to define 
and control quality.
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SimulationsPlus, 2023). Additional existing models include reaction 
kinetics modelling (Grom et al., 2016; Wang et al., 2020), population 
balance models for crystallisation (Aamir, 2010; Ma and Roberts, 2019), 
filtration models (Ottoboni et al., 2022), wet granulation models 
(AlAlaween et al., 2016; Bellinghausen, 2020; Ismail et al., 2019; Jang 
et al., 2020) and direct compression modelling (Bekaert et al., 2022; Dai 
et al., 2019; Martin et al., 2021). The use of these predictive models to 
inform experimentation is inherently iterative. Model input and model 
parameters are refined, and physical experimentation feeds back into 
these digital tools. This partnership between digital and physical is an 
inherent part of the QbDD strategy and will be explored in the following 
sections.

Informed by industry and academia, an expanded set of tools is 
proposed to enable QbDD and the digital transformation of CMC with a 
view to reducing material and energy wastage and increasing overall 

sustainability across process and product development (CMAC, 2021). 
Specifically, three predictive modelling toolboxes are proposed covering 
all stages of product and process development: a biorelevant perfor-
mance classification system (BPCS), an advanced manufacturing clas-
sification system (MCS + ) that builds advanced simulation capability 
into the existing MCS, and a crystallisation classification system (CCS).

The BPCS is being developed to build on the existing BCS and DCS by 
connecting these classification systems to physiological- and population- 
based pharmacokinetics models (Amidon et al., 1995; Butler and 
Dressman, 2010). The BPCS will categorise APIs and formulations based 
on the effective range of API release achievable within a given popula-
tion (Abuhassan et al., 2024, 2022a, 2022b; Prasad et al., 2022; Silva 
et al., 2023). In the longer term, this classification system should also 
aim to cover the development of dosage forms using models that self- 
learn from clinical outcomes and/or endpoints.

Fig. 2. The transition from QbD to QbDD with reference to its effect on the knowledge space and the use of an existing data fabric (see Section 2.4.3) to inform 
experimentation and CPSs at each stage of development (as part of self-driving DataFactories (see Sections 2.4.1 and 2.4.3)) to enable a range of benefits. PP and MA 
refer to process parameters and material attributes, respectively.

Fig. 3. A high level QbDD workflow is shown indicating the key stages where predictive tools will be required. For simplicity, this workflow does not show the 
feedback loops inherent in process development, but examples of feedback loops are discussed in this section.
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The MCS categorises drug products based on processing route and is 
governed by properties of the API and the needs of the formulation 
(Leane et al., 2024, 2018, 2015). The MCS + is being developed to build 
upon the MCS by using particle and bulk property assessment to first 
predict outcomes for critical DP unit operations (e.g., blending, granu-
lation and compression) which in turn enables early decision-making for 
DS process development (with respect to targets such as particle size and 
morphology) (Azad et al., 2021). Digital tools that are applicable to 
MCS + relate particle properties to manufacturability targets, such as 
flowability, compressibility or stability, in order to guide decisions in 
product and process development. Predictive tools relating to excipient 
choice and DS interaction with excipients are also of interest for the 
MCS+, particularly for understanding the edges of the design space 
when defining an operating window that does not compromise disso-
lution and bioavailability.

The CCS is being developed as a predictive system of models span-
ning molecular properties, crystallisation thermodynamics, solvent in-
teractions and kinetics through to particle version and form selection 
and physical and bulk properties. As these properties impact manufac-
turability and choice of formulation process, being able to predict them 
computationally is particularly advantageous. Thus, the CCS targets 
prediction of manufacturability, stability and performance parameters. 
Example digital tools include: estimating flow function coefficients from 
predicted particle size distribution (Pereira Diaz et al., 2023), optimal 
solvent selection to achieve desirable particle attributes (Nakapraves 
et al., 2022), cocrystal prediction (Devogelaer et al., 2020; Gröls and 
Castro-Dominguez, 2021; Loschen and Klamt, 2015), avoidance of un-
desirable solvate formation (Bhardwaj et al., 2015) and minimising 
environmental impact from solvent selection (Henderson et al., 2011). 
These and other models in the CCS will benefit from improvements in 
fundamental mechanistic understanding (Warzecha et al., 2020) as well 
as from access to comprehensive data sets collated from data-rich ex-
periments exploring the response of molecules under different process 
conditions. To make the CCS a reality, an improved understanding of the 
complex interaction between solvents and process conditions and the 
degree to which molecular properties can inform predictions is also 
needed. Indeed, analysis of crystallisation kinetics through absolute rate 
theory signposts how molecular properties of solvents and solutes can in 
the future be integrated into predictive process models (Schroeder, 
2024). A fully developed CCS will enable in silico process and particle 
design by guiding solvent selection, estimating kinetics and predicting 
physical form, particle attributes and impurity rejection as a function of 
molecular properties and process conditions.

2.3. QbDD Framework: Building a digital workflow

The proposed QbDD digital-first approach for a given API (Fig. 3) sets 
the overall product development objectives by identifying QTPP re-
quirements such as dosage form, dosage, dosing frequency, delivery 
mechanism and pharmacokinetic parameters that ensure product safety 
and efficacy. Following this, prior knowledge of the API target is 
collated, and in-silico predictions are carried out to produce an initial 
data package of predicted and measured physical properties that may 
include aqueous solubility, permeability, pKa, chemical stability, 
anticipated impurities and target impurity profiles (Stage 1 in Fig. 3). 
This information is then input to the BPCS, MCS + and CCS to explore 
likely outcomes from different processing routes and conditions and to 
target subsequent modelling and experimental efforts.

The BPCS is used to predict the target solid form, dosage, API particle 
attributes and formulation characteristics required to achieve safe and 
effective release within the target population. Coupled with information 
on particle and bulk properties, BPCS outputs are then fed into the MCS 
+ to inform both the manufacturability requirements of the system and 
the formulation route selection/suitability. The CCS then guides process 
and particle design via process, solvent and process parameter selection. 
Thus, QbDD essentially enables an in silico reverse engineering approach 

that first identifies targets and then determines suitable biorelevant 
performance, manufacturability and finally API crystallisation objec-
tives. The resulting output from the three classification systems will be 
recommendations for product composition and process conditions to 
achieve the necessary API attributes (CCS output), drug product per-
formance and stability (MCS + output), and performance in the target 
patient population (BPCS output). Process economics, manufacturability 
and sustainability targets are then determined as well as known con-
straints (Stage 2 in Fig. 3). Process options and models relevant to these 
targets are also identified (Stages 3 and 4).

Following the first four in silico stages in the workflow, the first 
experimental call outs occur in Step 5 to enable model calibration and 
refinement. During development, predictive tools may require some 
level of experimental input and can be trained and calibrated with 
model-driven callouts for automated, data-rich, small-scale (<2 g or <
10 mL), materials-sparing experiments. Model-driven experimental 
platforms (Christensen et al., 2021; Rogers et al., 2020), identify oper-
ational constraints and allow faster option assessment, process verifi-
cation, process validation and data feedback to inform the overall 
model. Some phenomena are currently not well covered by predictive 
simulation tools, e.g., fouling, nucleation or mechanical properties of 
bulk materials, and will require further investigation and model 
development.

After model calibration and refinement, conceptual process and 
product options are investigated via model driven development (Stage 
6). Process model validation in this stage may require physical experi-
mentation to assess discrepancies such as those caused by non-modelled 
phenomena. Stage 6 determines which process options will be taken 
forwards, and this is followed by an initial quality risk assessment using 
process models coupled with practical constraints (Stage 7). When 
combined with sensitivity analysis and holistic design space process 
optimisation against the process objectives whilst ensuring quality, the 
risk assessment allows for the initial definition of a control strategy 
(Stages 8 and 9). The application of stages 1–9 (Fig. 3) ensures that the 
QTPP is met and delivers the required product performance in a science- 
led, digital-tools-enhanced, materials-sparing and efficient manner. In 
Stage 10, the process is operated to produce material. The material and 
associated process analytical technology (PAT) data are analysed, and 
results used to determine if the QTPP is met and the model is credible. 
Product performance can then be assessed, relevant data is used for 
further model improvement, and the product lifecycle is managed with 
ongoing improvements facilitated by the digitally augmented knowl-
edge space (Stage 11 and 12).

Subsequent iterations of the MCS + and CCS and potentially BPCS 
may occur in both early and late-stage process development as further 
data become available. Examples of this are: (a) should API particles not 
be conducive to direct compression and instead result in poor blend 
dispersion, poor drug loading or lack of tablet uniformity, alternative 
routes such as roller compaction, wet granulation or solid dispersion 
methods must be considered; (b) should issues with end-product prop-
erties be identified during product analysis, this information is fed back 
to the classification systems to alter the formulation; (c) should a 
formulation fail to release the API in the expected manner, the excipient 
choice, formulation process parameters, formulation processing route or 
even the DS particle production route may be reconsidered. As new and 
improved models become available, an increasing reliance and trust in 
digital design methodologies should continually reduce the reliance on 
experimental data (as indicated by the decrease in physical and increase 
in virtual experiments in Fig. 2), and in turn reduce any need to revisit 
the classification systems in subsequent stages of development.

Other feedback loops may occur throughout the QbDD workflows. 
For example, if a suitable operating space (i.e., one that assures quality, 
manufacturability and sustainability objectives within the process and 
operating constraints) cannot be found following model validation, it 
may be necessary to return to Stage 2 to assess if any objectives can be 
relaxed before proceeding with Stage 8. Likewise, if scale up verification 

C.L. Mustoe et al.                                                                                                                                                                                                                               International Journal of Pharmaceutics 681 (2025) 125625 

7 



and validation experiments do not meet predicted outcomes e.g., due to 
non-modelled phenomena, it may be necessary to revisit the models, the 
model parameters (Stages 4 and 5) or redesign the experimental set up 
(Step 6) before proceeding.

Making decisions on a quantitative basis early in development using 
this approach can have significant benefits for the cost, time and ulti-
mate sustainability of medicines development. To truly realise fully 
predictive capabilities for early decision-making, further development 
and validation of predictive tools and multi-scale, multi-physics model 
frameworks is required (Fig. 3) (Liu et al., 2021; Niederer et al., 2021; 
Onaji et al., 2022). However, ongoing development of increasingly 
capable mechanistic (Chaudhury et al., 2014; Ottoboni et al., 2022), AI 
(Chakravarty et al., 2021; Coley et al., 2019; Madarász et al., 2023) and 
hybrid models (Abouzied et al., 2023; Bhalode et al., 2022; Chen, 2024; 
Gaddem et al., 2024; Nielsen et al., 2020; Tsopanoglou and Jiménez del 
Val, 2021), across different scientific endeavours highlights both the 
accelerating progress and the huge potential achievable.

2.4. QbDD elements

2.4.1. Cyber-Physical systems
QbDD will benefit from the growing capabilities of cyber-physical 

systems (CPSs) that interlink computational technologies with phys-
ical processes, as part of cyber-physical research infrastructures (CPRIs), 
to analyse, monitor and control their functionality in a consistent, 
robust, safe, efficient and concurrent manner (Alguliyev et al., 2018; 
Baheti and Gill, 2011; Lee, 2006; Marwedel, 2021; Robotics Growth 
Partnership, 2022; Sanislav and Miclea, 2012). CPSs, as a concept, are 
now considered vital in terms of innovation across Europe and the 
United States (Alguliyev et al., 2018; Robotics Growth Partnership, 
2022), as reflected in the drive towards Industry 4.0. With the Industry 
5.0 focus on placing humans at the heart of manufacturing, to be 
effective in realising the envisioned transformation, CPSs should func-
tion as a collaborative synergistic human–machine interface providing 
well-trained, technology-savvy workers with ready access to data and 
models across DS and DP activities (European Commission, 2021b, Eu-
ropean Commission, 2021a, 2020; Jafari et al., 2022; Nahavandi, 2019).

QbDD could also benefit significantly from the accelerating appli-
cation of self-driving laboratories (SDLs) utilising CPSs driven by data, 
models, optimisation approaches and AI. SDLs have demonstrated 
increased data acquisition (e.g., an increase of sample throughput of 
50–100 times compared to human testing alone) (Berkeley Lab, 2024; 
Biron, 2023), novel material discovery (Burger et al., 2020; Yang and 
Tomoshige, 2024), real-time monitoring and analysis (Harmon, 2023), 
and even multicontinental DT and CPS co-ordination (Bai et al., 2024). 
Furthermore, multiple SDLs have demonstrated real-time recording, 
storage and interaction with data whilst also using human input and 
literature data (Acceleration Consortium and University of Toronto, 
2024; Aspuru-Guzik Group, 2024; Bai et al., 2024; Harmon, 2023; 
Intrepid, 2024). QbDD has not yet been implemented in existing phar-
maceutical SDLs in a full E2E capacity (Acceleration Consortium and 
University of Toronto, 2024; Berkeley Lab, 2024; Intrepid, 2024). To this 
end, CMAC is actively developing QbDD-enabling SDLs or Data-
FactoriesTM. These DataFactories include SDLs capable of collecting 
targeted experimental data for APIs, excipients, and products under a 
wide range of conditions. They do so by exploiting automated dosing or 
sample handling, mobile robotics, small-scale experiments with inte-
grated sensing/analytics/imaging for information extraction and global 
optimisation approaches for self-learning experimental planning to meet 
the process objectives. These SDLs focus on model-driven data genera-
tion via repeatable experimentation with data structured in FAIR for-
mats (discussed further in Section 2.4.3) and currently target 
crystallisation screening and scale-up (Pickles et al., 2024; Pickles et al., 
2022a; Pickles et al., 2022b), amorphous materials, direct compression 
(Abbas et al., 2025), stability and dissolution testing (CMAC, 2021).

2.4.2. Data systems and architectures
The data sources and requirements across a QbDD framework are 

numerous (e.g., Fig. 4), and an underlying data structure is necessary to 
facilitate the integration, collation, management and application of data 
between and across these platforms. Data systems and architectures 
provide a standardised structure for data collection, processing, orga-
nisation, security and storage (University of York, 2024). Several local 
and enterprise-level data frameworks have been developed including 
highly ordered data warehouses and more unstructured data lakes and, 
more recently, data meshes and data fabrics (IBM, 2024) (please see 
Section 4 for full definitions). Due to issues such as lack of flexibility and 
lack of quality (IBM, 2024), data fabrics and data meshes may be utilised 
in preference to data warehouses and data lakes (Dibley, 2022; Garani 
et al., 2019; Garcia et al., 2008; Hlupić et al., 2022; IBM, 2024; Nambiar 
& Mundra, 2022; Thantilage et al., 2023). Data fabrics and data meshes 
enable data to be efficiently managed and made accessible to a range of 
human users, applications and other systems further down the supply 
chain, either in a decentralised (mesh) or centralised (fabric) form 
(Blohm et al., 2024; Hechler et al., 2023). For the implementation of 
QbDD, the centralised management and accessibility of a data fabric 
makes it the preferred data architecture for a holistic, human-centric 
QbDD framework. Data fabrics enable full integration of different data 
sources and pipelines across different locations, allowing the collation 
and curation of all data and metadata to streamline access and drive 
modelling approaches (IBM, 2024). Important elements for a FAIR 
QbDD data fabric include; attributable, legible, contemporaneous, 
original accurate, complete, consistent, enduring and available (ALCOA 
+ principles) data; cybersecurity; ontologies; extract-transform-load 
(ETL) or extract-load-transform (ELT) tools to ensure all data can be 
correctly tagged, aggregated and served up to queries or data-driven 
services including dashboards; and AI/ML (Bartley, 2024; Durá et al., 
2022; Kavasidis et al., 2023; Samson, 2021; Seenivasan Mphasis and 
Seenivasan, 2023; Sembiring and Novagusda, 2024; Singhal and 
Aggarwal, 2022).

Investment in establishing standardised data architectures (Veeva 
Systems Inc., 2025; Walsche, 2021) and systems will be valuable in 
developing and deploying modelling and data-driven approaches. 
Effective mechanistic digital twins and ML-based or hybrid predictive 
models with known uncertainties are facilitated by structured training 
data in which metadata describing those data are adequately captured. 
For example, a powder flow prediction model trained on data collected 
on one type of instrument with one methodology has a lower accuracy 
when predicting the outcomes for the same physical property measured 
using another instrument that uses a different measurement methodol-
ogy (Pereira Diaz et al., 2023). Capturing the metadata, such as differ-
ences in methodology (e.g., equipment scales and conditions) (Wang 
et al., 2021), is therefore essential to improve predictive model perfor-
mance and ensure interoperability and repeatability. As recently 
demonstrated for high shear wet granulation (Wang et al., 2021), ma-
terial data fusion and multivariate modelling can also speed up process 
development by connecting several different data sets and reducing the 
volume of experimentation required. FAIR data collected from multiple 
sources, enriched with metadata and in machine-ready format is then 
appropriate for advanced analytics, i.e., ML and AI.

Recently, there have been initiatives to embrace FAIR data principles 
and replacing traditional data tables in databases with detailed knowl-
edge graphs (Strömert et al., 2022; Voigt and Kalidindi, 2021; Wulf 
et al., 2021). A knowledge graph, consisting of an ontology and appro-
priate data, can be used to capture and represent knowledge and re-
lationships between data entities in the domain, enabling semantic tool 
development to improve data access and usability. In general, ontologies 
describe classes of objects, entities or concepts and the relationships 
between them (Lomax, 2022). An ontology forms a machine-readable 
knowledge model that supports FAIR data generation through con-
necting data and meta data intuitively and aids the discovery of de-
viations, thereby decreasing errors and enabling quantification of 
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uncertainty and confidence in data (Francisco and Remolona, 2018; 
Lomax, 2022; Strömert et al., 2022; Venkatasubramanian et al., 2006; 
Viswanath et al., 2022). Developing a complete QbDD ontology for CMC 
in pharmaceutical manufacturing will require significant time, resources 
and maintenance. To alleviate these challenges, existing ontologies must 
be leveraged, such as those developed for pharmaceutical engineering 
(covering material properties, molecular structure, experiments, re-
actions, phases and operations (Hailemariam and Venkatasubramanian, 
2010), secondary process training (Chalortham et al., 2013; Oyebola 
and Opeoluwa, 2015) and the Chemical Entities of Biological Interest’s 
(ChEBI) ontology of molecular entities developed by European Bioin-
formatics Institute (EBI) (Chemical Entities of Biological Interest 
(ChEBI), 2024). This endeavour will also benefit from groups and or-
ganisations working together to form the basis of a standard knowledge 
model for the domain, driving adoption of the resulting ontology and 
maintaining it to ensure longer-term impact.

2.4.3. QbDD Framework: The underlying data fabric
Establishing a CMC data fabric can facilitate the integration and 

transfer of data between the predictive models, digital twins, Data-
Factories (Pickles et al., 2024) and other targeted experimental data 
sources used to identify material attributes, process parameters and 
associated quality attributes. Critically, an underlying data fabric will 
also rely on the accessibility of data generated by multiple analytical 
instruments. Instrument compatibility with standardised communica-
tion protocols, such as Standardisation in Laboratory Automation (SiLA) 
(SiLA, 2018), and Robotic Operating Systems (ROS) (Open Source Ro-
botics Foundation, 2024), will be more and more integral to realising 
this potential. Developing CMC ontologies and connected knowledge 
graphs to enable FAIR data will also address the industry-wide chal-
lenges of connecting data silos and data interoperability. This connec-
tivity will benefit complex data sets spanning all stages of development 
for whole-process design and optimisation, sustainability metrics and 

intellectual property management. Data in QbDD should not be isolated 
by a geographical research site or operational team; instead, it must be 
transparent to all institution members and, potentially, regulators 
through federated systems (Ahluwalia et al., 2022).

The data fabric will also connect predictive models with the self- 
driving DataFactories required to generate data to train, calibrate and 
evaluate model predictions. Model-driven automated experimental 
frameworks investigate gaps in existing knowledge using AI and model- 
driven decision-making (Gregoire et al., 2023) and can develop suites of 
data that provide value to future campaigns and contribute to the 
development of improved material and process understanding 
(Abouzied et al., 2023; Boobier et al., 2020; Carou-Senra et al., 2023; 
Chen, 2024; Mswahili et al., 2021; Nielsen et al., 2020; Ottoboni et al., 
2021; Patel and Shah, 2022; Pereira Diaz et al., 2023; Vassileiou et al., 
2023). The ambition of such digital design efforts are that reliable, 
credible predictive models generated by the data fabric support the 
development of process-mirroring digital twins that can dynamically 
replicate processes and allow for analysis, control and optimisation of 
critical attributes in real time.

2.4.4. Interconnectivity of QbDD elements
Fig. 5 demonstrates a potentially fully integrated QbDD platform in 

which four CPRI platforms are brought together by the QbDD data 
fabric: 

• The Skills platform of CPRI comprises multi-skilled Industry 5.0- 
ready researchers working in a diverse and inclusive interdisci-
plinary laboratory environment for innovation of medicines 
manufacturing.

• The Measure platform consists of multiple types of CPSs (A,B, and C 
in Fig. 5). This platform is a human-centric integrated CPRI that 
builds on individual CPS for individual unit operations (A in Fig. 5) 
to integrate experiments across multiple process Stages (B in Fig. 5) 

Fig. 4. A high-level diagram of elements interconnected and enabling the QbDD workflow.
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and ultimately E2E use (C in Fig. 5) with data and metadata feeding 
into the research data fabric (D in Fig. 5).

• The Model platform of the CPRI is a systems-level manufacturing 
knowledge model for CMC where predictive models of single rate 
processes (E in Fig. 5) and drug substance/drug product models (F in 
Fig. 5) can be integrated into an E2E model framework (G in Fig. 5) 
as a system-level digital twin and utilised to inform knowledge 
management (H in Fig. 5).

• The CPRI Make platform is an integrated, scaled-down, material- 
sparing E2E customisable manufacturing research test bed to vali-
date the quality, sustainability and resilience of adaptive processes 
and control strategies. In this platform, initial processes (I in Fig. 5) 
are developed to create integrated small scale, flexible, modular 
continuous processing platforms (J in Fig. 5), which in turn can be 
combined to generate E2E integrated flexible, modular continuous 
processing platforms (K in Fig. 5) and multi-route E2E integrated 
flexible, modular continuous processing platforms (L in Fig. 5).

2.5. Digital-first workflows

The integration of the Measure, Model and Make framework (Fig. 5) 
requires guided decision-making and handovers through digital work-
flows. Workflows provide a structured approach to process and product 
development, and the transparency provided in key decision-making 
reduces process risk and uncertainty (Agrawal et al., 2023). Reasoning 
and support for each decision are clear and accessible to different dis-
ciplines, geographies and phases of the development process, which will 
only benefit regulatory processes. Benefits have been reported in the 
development and application of workflow methodologies to improve the 
development of different stages of pharmaceutical development (Brown 
et al., 2018; Hatcher et al., 2020; Ottoboni et al., 2021; Pickles et al., 
2024; Urwin et al., 2020). Additionally, in other groups (Agrawal et al., 
2023; Hu et al., 2024; Lorenz et al., 2021; Sperry et al., 2021), with 
typical advantages being reduced development time and resource 

requirements.
The overarching QbDD workflow (Fig. 3) drives the digital-first 

strategy, with an ultimate goal to exploit predictive models to rapidly 
identify the optimum materials, equipment and process conditions 
under which QTPPs can be achieved. This workflow with associated sub- 
workflows connect key decision points for each selected process stage 
with predictive models and data derived from model-driven experi-
mental design to interrogate reaction mechanisms, parameterise 
models, quantify uncertainty and optimise design solutions. The QbDD 
data fabric ensures workflows can callout to required data across 
development process operations. Via DataFactories, workflows can also 
trigger the generation of targeted, reproducible data to drive models 
applied at key development stages (Pickles et al., 2024; Pickles et al., 
2022b). Workflows also integrate the Skills platform (Fig. 5) into the 
QbDD framework up/reskilling users through guided decision-making 
and accessibility and interpretability of the data and associated 
models. For example, dashboards can summarise experimental progress, 
data trends, model performance and other useful metrics for each QbDD 
stage. Templates must be also integrated to facilitate FAIR data capture 
for sample data, operation-specific data and metadata.

2.6. Validation and maturity of models and digital technologies

Many digital platforms may follow the same basic installation, 
operation and performance qualifications (IQ, OQ and PQ) that standard 
equipment follows. Overall IQ, OQ and PQ can ensure any models or 
other digital technologies, including automation, robotics and control 
systems, fit the design specifications. Additionally, these models and 
digital technologies may require monitoring and controlling using 
appropriate calibration and validation to achieve reliable and robust 
system performance (Creaner and Fitzgerald, 2024). Similarly, the 
cyberphysical infrastructure underpinning QbDD may require the use of 
verification, validation and uncertainty quantification (VVUQ) pro-
cesses vital to the model life cycle. Computer Systems Validation (CSV) 

Fig. 5. A QbDD data fabric structures data and data handovers between the four CPRI platforms in this diagram. Labels Skills, Measure, Model and Make, and letters 
(A)-(L) are described in Section 2.4.4.
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ensures models function as intended, consistently and accurately (The 
FDA Group, 2023). Model verification establishes if the model fits its 
mathematical description (The American Society of Mechanical Engi-
neers, 2024). Model verification should occur throughout the product 
life cycle as defined by the FDA in their Appendix to Q8, Q9 and Q10, 
ensuring the model fulfils its acceptance criteria (U.S. Department of 
Health and Human Services, Food and Drug Administration, Center for 
Drug Evaluation and Research (CDER), Center for Biologics Evaluation 
and Research (CBER), 2012). Scientific model validation establishes 
model accuracy relative to experimental set up (Ahmed et al., 2012; The 
American Society of Mechanical Engineers, 2024), as demonstrated by a 
number of studies (Barrasso et al., 2015; Chen et al., 2023; Kodam et al., 
2012; Moreno-Benito et al., 2022; Ranjan Yadav et al., 2022; Sadeghi 
et al., 2022; Unnikrishnan et al., 2021). Uncertainty quantification 
captures the effect of variations in modelled and experimental process 
parameters on the output and key performance indicators (The Amer-
ican Society of Mechanical Engineers, 2024). Workflows and data flows 
can similarly be validated by assessing if workflow output matches a 
defined, measurable objective in a transparent, repeatable way. Work-
flow and data flow validation is ongoing with every iteration of the 
workflow and with ongoing assessment of data provenance and repre-
sentation, for instance. For QbDD methods and approaches, credibility 
aims can be identified as part of the risk assessments. Then, a suitable 
verification and validation strategy can be designed and implemented to 
establish the overall credibility of the model, and experimental data then 
can be used to inform and alter the model as required (Ahmed et al., 
2012; The American Society of Mechanical Engineers, 2024).

3. Outlook and recommendations

3.1. Outlook

QbDD facilitates the digital transformation of CMC processes for 
medicines product and process design and manufacturing by establish-
ing a holistic cyber-physical framework. This framework can be realised 
using inclusive, digitally-encoded CMC workflows that guide all devel-
opment stages and objectives. The implementation of systematic work-
flows has been shown to improve the overall efficacy of automation and 
predictive models (Coley et al., 2019; Içten et al., 2020; Ottoboni et al., 
2022). Furthermore, automated workflows have the potential to over-
come complexity barriers, and rapidly equip experimentally trained 
scientists with access to digital tools for efficient process development 
(Golub et al., 2023; Hauck, 2024; U.S. Food & Drug Administration, 
2021; Whatfix, 2024). Development of these workflows will require 
collaborative efforts between academia, industrial partners and regu-
latory stakeholders to drive standardisation, acceptance and adoption 
across the range of materials, processes and unit operations relevant to 
all dosage form development.

Further investment in the development of data infrastructure is 
required to drive the digital transformation of CMC. This development 
will enable the ability to acquire, curate, store and analyse data and/or 
metadata generated on-demand from SDLs, simulations and other 
experimental sources. In turn, this develops process understanding and 
our ability to train and develop models that evaluate design space, 
manufacturability and sustainability. SDLs and DataFactories are 
already being developed by a range of initiatives for pharma and non- 
pharma applications (Acceleration Consortium and University of Tor-
onto, 2024; Berkeley Lab, 2024; Biron, 2023; Intrepid, 2024; Pickles 
et al., 2024; Pickles et al., 2022b; Pickles et al., 2022a; University of 
Liverpool, 2024), demonstrating the ability to enhance efficiency of 
R&D. A CMC ontology and associated knowledge graph can both ensure 
data collected is FAIR, maximising opportunities to extract knowledge 
and value and will facilitate model development and process scale-up. 
Standardisation of data collection, data structuring and experimenta-
tion via SDLs may also provide significant benefits through regulatory 
process innovation, for example simplifying assessment and review of 

data associated with a new product (Berkeley Lab, 2024; Biron, 2023).
Although this perspective paper focuses on the potential for QbDD 

across CMC product and process design, the principles can be readily 
extended to drug discovery, synthesis, scale-up, manufacture and life 
cycle management. Drug discovery and synthesis prediction, AI, digital 
twins, CPSs and ML can inform the CCS, MCS + and BPCS (An and 
Cockrell, 2022; Blanco-González et al., 2023; Bordukova et al., 2024; 
Coley et al., 2019, 2018; Cumming et al., 2013; Dara et al., 2022; David 
et al., 2020; Elbadawi et al., 2021; Gregoire et al., 2023; Grom et al., 
2016; Jayatunga et al., 2022; Jiménez-Luna et al., 2021; Jing et al., 
2018; Lavecchia, 2015; Lo et al., 2018; Medina-Franco, 2021; Patel 
et al., 2020; Patel and Shah, 2022; Subramanian, 2020; Vamathevan 
et al., 2019; Wu et al., 2023; Yang et al., 2019; Zhang et al., 2017). For 
example, the resultant isolated compound and its associated impurities 
can inform crystallisation requirements, processability and overall 
product quality (An and Cockrell, 2022; Blanco-González et al., 2023; 
Bordukova et al., 2024; Coley et al., 2019, 2018; Cumming et al., 2013; 
Dara et al., 2022; David et al., 2020; Elbadawi et al., 2021; Gregoire 
et al., 2023; Grom et al., 2016; Jayatunga et al., 2022; Jiménez-Luna 
et al., 2021; Jing et al., 2018; Lavecchia, 2015; Lo et al., 2018; Medina- 
Franco, 2021; Patel et al., 2020; Patel and Shah, 2022; Subramanian, 
2020; Vamathevan et al., 2019; Wu et al., 2023; Yang et al., 2019; Zhang 
et al., 2017). Additionally, QbDD has potential in the packaging space. 
In line with MCS+, CCS and BPCS, challenges such as moisture ab-
sorption, hydrolysis, material interactions, friability, light sensitivity, 
counterfeit products and poor patient compliance inform packaging 
selection (Allain et al., 2016; Bahaghighat et al., 2019; Chen and Li, 
2003; Cramer, 1998; Feenstra et al., 2014; Naveršnik and Bohanec, 
2008; Remmelgas, 2017; Waterman and MacDonald, 2010; Zhao et al., 
2022). Thus, predictive models (Crews et al., 2018; Feenstra et al., 2012; 
Naveršnik and Bohanec, 2008; Remmelgas, 2017), real-time modelling 
(Vijayakumar et al., 2024), digital twins (Schrimpf, 2022), ML 
(Deshpande, 2023; Jones, 2024), and AI (Brownett-Gale, 2024; Tubet-
tificio Perfektup, 2023), have been implemented previously. Further-
more, a similar digital-first approach has been previously suggested in 
RNA vaccine research, albeit not in an end-to-end capacity, demon-
strating QbDD’s applicability to non-solid dosage forms (Nair et al., 
2024). In the broader supply chain context, digital twin supply chains 
(DTSCs) are also emerging (Srai et al., 2024, Srai et al., 2020, Srai et al., 
2019). DTSCs have been explored in relation to synchronisation of 
pharmaceutical production and logistics operations (Guo et al., 2024), 
simulation-based capacity planning (Santos et al., 2020), inventory 
optimisation (Marmolejo-Saucedo, 2020), and data standardisation and 
integration along the value chain (Werner et al., 2021). As seen in these 
extensive examples, QbDD’s workflow-guided integration of digital 
tools has potential impact beyond the scope of this publication and with 
continuing improvements in predictive tool availability will gain 
increasing momentum in the coming years.

QbDD will require ongoing investment of time and resources to 
develop and integrate the advanced manufacturing and digital tech-
nologies to establish mature cyber-physical infrastructure for modern 
CMC development. Whilst digital technologies such as AI are having 
impact in drug discovery (Adabala Viswa et al., 2024; Chakravarty et al., 
2021), organisations also require a clear business case showing the ex-
pected return on investment and improved outcomes in CMC develop-
ment and manufacturing processes. By reducing materials, instrument 
time, staff time and potential exposure to more potent materials, the use 
of AI, ML-driven, physical and hybrid predictive models and DTs could 
improve overall efficiency, safety and sustainability of CMC develop-
ment efforts. There is also a need to build trust and confidence in models 
and digital technologies and ensure data integrity and the cybersecurity 
of data transfer and data systems. QbDD also increases the number of 
product and process prototypes investigated (mostly in the virtual 
space), which, in turn, increases the likelihood of identifying and 
developing products that maximise patient benefits. International reg-
ulators including the Medicines & Healthcare Products Regulatory 
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Agency, the European Medicines Authority and the U.S. Food and Drug 
Administration are adopting and encouraging digital transformation in 
pharmaceutical manufacturing (European Medical Agency, 2020; Eu-
ropean Medicines Agency, 2024; European Medicines Agency, 2017; 
European Medicines Agency, 2016; European Medicines Agency and 
Heads of Medicines Agencies, 2020; Pauli and Williams, 2018; Riaz 
Ahmed et al., 2022; U.S. Food & Drug Administration, 2021, 2019; Yu 
et al., 2019) (see ESI 1 for further details). This guidance provides 
increasing momentum behind the adoption of novel, digital technolo-
gies, infrastructure and innovative ways of deploying them.

In conclusion, QbDD facilitates the efficient and robust development 
of processes that deliver drug products which meet quality, manufac-
turability, process sustainability, regulatory and business targets with 
enhanced understanding of these processes. The enabling technologies 
for QbDD are cost-effective, available and proven and combine FAIR 
data principles, a QbDD data fabric, predictive models and material- 
sparing, highly automated experimentation. Through these, QbDD 
provides the science-driven rationale, data transparency and trace-
ability, more robust design space, real-time process improvements and a 
formalised decision process to enable organisations to enhance R&D 
productivity and provide regulatory confidence and assurance. Ulti-
mately, this allows for the realisation of Industry 5.0 principles in 
pharmaceutical process and product development that can help to sus-
tainably translate new medical science into new medicines to improve 
the lives of patients.

3.2. Recommendations for realising QbDD

Table 3.

4. Glossary

In this section, we provide a list of definitions and abbreviations to 
remove ambiguity for the terms used throughout this paper.

Active pharmaceutical ingredient (API). Any component that 
provides pharmacological activity or other direct effect in the diagnosis, 
cure, mitigation, treatment, or prevention of disease, or to affect the 
structure or any function of the body of man or animals.

Artificial intelligence (AI). A system which carries out computer 
and machine-driven problem solving, in a way that mimics human in-
telligence. The FDA defines AI as a machine-based system capable of 
providing predictions, suggestions or decisions impacting actual or 
simulated environments and uses information from human and machine 
sources to analyse these environments to generate appropriate models to 
exert an appropriate response (U.S. Food & Drugs Administration, 
2024).

Attributable, legible, contemporaneous, original accurate, 
complete, consistent, enduring and available (ALCOA þ ) data. 
Defined by the FDA as the guiding principles for data integrity as laid out 
under CGMP, where all data must be traceable, decipherable and 
gathered and recorded within the appropriate time scale (concurrently if 
possible). Additionally, the first version must be kept, and all data must 
be correct, recorded in its entirety, and collected and recorded in the 
same manner throughout. Data must also be held in a manner that is 
lasting and accessible (Samson, 2021; U.S. Department of Health and 
Human Services et al., 2016).

Biopharmaceutical classification system (BCS). A system classi-
fying a drug substance based on its minimum aqueous solubility in the 
pH range of 1–7.5, dose, and human fraction absorbed or intestinal 
membrane permeability. This system categorises drugs into four classes 
according to their permeability and solubility (Amidon et al., 1995). It 
has been suggested that the regulatory criterion for a highly soluble 
drug, whose highest dose (approved) strength is soluble in 250 mL 
aqueous media over the pH range of 1.0–6.8, is conservative for BCS 
Class I drugs and that further biowaivers for acidic drugs, BCS Class IIa, 
should be considered (Amidon et al., 1995).

Biorelevant performance classification system (BPCS). A system 
developed to (i) identify effective range of release achievable in popu-
lation subsets and (ii) develop new release systems using models that 
self-learn from clinical outcomes and/or endpoints.

Chemistry, manufacture and control (CMC). Crucial activities 
when developing new pharmaceutical products. CMC involves defining 
manufacturing practices and product specifications that must be fol-
lowed and met to ensure product safety and consistency between 
batches. CMC begins after a lead compound is identified through drug 
discovery and continues through all remaining stages of the drug 
development life cycle. In addition to the pharmaceutical product, CMC 
also applies to the facility where manufacturing occurs.

Critical material attribute a.k.a. critical quality attributes of 
materials (CMA). A measurable material property whose variability has 
an impact on a critical quality attribute and therefore it should be 
monitored and controlled to ensure desired drug product quality.

Critical process parameter (CPP). A term used in pharmaceutical 
production for process variables which have an impact on a critical 
quality attribute (CQA) and, therefore, should be controlled to ensure 
the drug product obtains the desired quality (International Council for 
Harmonisation, 2009).

Critical quality attribute (CQA). A measurable physical, chemical, 
biological, or microbiological property or characteristic that should be 
within an appropriate limit, range, or distribution to ensure the desired 
product quality. It is primarily based upon the severity of harm and does 
not change as a result of risk management (International Council for 
Harmonisation, 2009).

Crystallisation classification system (CCS). A predictive classifi-
cation system spanning the production of primary particles to formu-
lated product and addressing manufacturability, stability, and 
performance parameters, which is being used to develop integrated 
platforms to support efficient and science-driven development from 
molecule to particle.

Cyber-physical research infrastructure (CPRI). UK Research and 
Innovation (UKRI) defines this as “the integration of digital and physical 
systems to create new capabilities and opportunities for research and 
innovation” (Simon Hart, 2023).

Cyber-physical system (CPS). The interlink of computational 
technologies with physical processes to analyse, monitor and/or control 
their functionality in a consistent, robust, safe, efficient and concurrent 
manner (Alguliyev et al., 2018; Baheti and Gill, 2011; Lee, 2006; Mar-
wedel, 2021; Sanislav and Miclea, 2012).

Data fabric. A management system that enables full integration of a 
number of different data sources, pipelines and storage (IBM, 2024). 
This allows active metadata to be generated and enables collection of 
FAIR data. Data fabrics enable these data to also be accessible to 
humans, applications and other systems further down the supply chain 
(Blohm et al., 2024; Hechler et al., 2023).

Data lakes (DLs). Larger, less organised archives than data ware-
houses, which do not have a fixed structure (Dibley, 2022; Hlupić et al., 
2022) and are used for storage and governance of a large range of data 
including structured and unstructured data (Hlupić et al., 2022; Nam-
biar and Mundra, 2022b). DLs are designed for decision-making and 
analysis, as they enable storage and processing in near real-time (Hlupić 
et al., 2022).

Data mesh (DM). A management system where data is collected by 
domain owners who generate data products. Multiple systems can then 
be combined and utilised by a range of users as required in a “shopping 
for data” and “self-service” manner, making reusable data more acces-
sible (Blohm et al., 2024; Hechler et al., 2023).

Data warehouse (DW). A highly ordered archive that houses, or-
ganises and structures historical data. It enables data from a range of 
sources and geographical locations to be easily accessed either on pre-
mises or as a Cloud-based platform (Garani et al., 2019; Garcia et al., 
2008; Nambiar and Mundra, 2022; Thantilage et al., 2023).

DataFactories. An autonomous experimental platform capable of 
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Table 3 
Recommendations for Realising QbDD. The example timeline assumes ongoing application of QbD within an organisation and will differ from one organisation to another.

Recommendation Example Timeline for Related Activities Associated Benefits
Near term 
(1–2 years)

Medium term 
(3–5 years)

Long term 
(5 þ years)

Introduction of advanced computational 
resources

• Identify and develop relevant ML, mechanistic 
and hybrid models

• Verify and validate models

• Assess model credibility and regulatory 
readiness level (guidelines to be 
determined through regulatory 
engagement, see near-term goals)

• Continue model development and 
validation

• Implementation of models according to 
credibility assessment and technology 
readiness level

• Continue model development, validation 
and assessment

• Continue model implementation 
according to credibility and lifecycle 
requirements

• Promotes and enables digital first 
approaches such as workflow guided DTs, 
ML, predictive models and hybrid 
approaches

• Enhances efficiency and sustainability of 
CMC by early design space refinement via 
virtual assessment delivering approved 
medicines to patients faster

• Reduces risk of unforeseen late-stage 
design space re-assessment and expansion

• Reduced material wastage, energy and 
workforce time

• Mitigates environmental impact 
(promoting sustainability) and reduces 
risk for researchers with virtual 
assessment of less-desirable operating 
conditions

• Standardised approaches to evaluate 
model suitability and credibility for 
different contexts of use.

Introduction of new data technologies 
including: 

• ontologies
• FAIR data approaches

• Map data interdependencies and meta-data
• Identify data integration approach (internal 

development vs. external software solutions)

• Implement and test ontology solutions
• Test and measure data FAIRness

• Expand ontology as needed
• Continue to periodically test data 

FAIRness

• Provides additional transparency, data 
integrity and traceability in process and 
product development

• Facilitates seamless data connectivity
• Provide standardised framework to assess 

FAIR data approaches and benefits
• Enables regulators to more easily assess 

the validity of the processes and products 
developed

Develop and use holistic, consistent and 
standardised digital workflows to guide 
QbDD 

• Develop sub workflows for the high-level 
workflow presented in this work with 
institution-specific pathways

• Revise workflows to integrate new, 
credible digital tools with the goal of 
continued reduction of physical 
experimentation

• Continue workflow revision to minimise 
physical experimentation by further 
incorporation of new or better digital tools

• Establishes a comprehensive platform for 
QbDD.

• Combines a patient-focused QTPP with 
route selection, modelled CPPs, minimal 
small-scale experimentation and rapid 
digitally enabled technology transfer and 
scale-up.

• Drives and integrates digital and 
experimental activities.

• Captures all key CMC objectives, 
constraints, decision points and data 
requirements to drive and coordinate 
digital and experimental activities

• Rapidly equips experimentally trained 
scientists with digital tools for efficient 
process development

(continued on next page)
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Table 3 (continued )
Recommendation Example Timeline for Related Activities Associated Benefits

Near term 
(1–2 years) 

Medium term 
(3–5 years) 

Long term 
(5 þ years)

• Accelerates the adoption of QbDD 
principles across pharmaceutical 
development and manufacturing 
organisations

• Increases the R&D productivity and 
efficiency in terms of both cost and 
sustainability

• Standardises interfaces between 
workflows, data, predictive data, 
predictive models and simulations

• Delivers a more robust design space with 
known uncertainties and sensitivities that 
can be used to evaluate risks and define 
the control strategy

Introduction of new technologies such as 
self-driving labs (SDLs) or DataFactories 
(DFs) and integrate these platforms using 
workflows

• Identify areas where SDLs and DFs are needed 
(i.e. areas of interest for ML or hybrid model 
development)

• Identify, procure and integrate instruments 
and software for FAIR data generation

• Develop plan for data integration into wider 
ontology

• Integrate data collection with wider 
ontology

• Continue instrument integration and 
platform development

• Collect data and ensure continued data 
FAIRness

• Assess new available technologies for 
incorporation into existing DFs/SDLs or 
development of new DFs/SNLs

• Assess continued viability of existing DFs/ 
SNLs − if they have they achieved their 
data collection goals, can they be 
repurposed or can individual components 
be repurposed

• Enables implementation of digital-first 
approaches

• Standardises approaches to FAIR data 
generation and reporting.

• Allows for efficient, repeatable, data-rich 
and model-driven experimental data 
generation

• Allows for targeted generation of data to 
train, parameterise and calibrate models 
and validate predictions

• Significantly accelerated experimentation 
rate, lower amounts of material and 
automation reduce exposure risk for staff

Engage regulatory stakeholders (e.g. the 
UK-based digital CMC Centre of 
Excellence in Regulatory Science 
(CERSI))

• Develop national and international guidelines 
to assess model credibility and regulatory 
readiness level

• Provide regulatory-relevant training for stake-
holders in model credibility and regulatory 
readiness level assessment

• Establish and agree upon international 
guidelines with multiple international 
regulatory bodies

• Provide training for model developers 
and industry researchers on testing, 
implementation and integration of 
digital tools in industry according to 
agreed guidelines

• Publish harmonised international 
guidelines

• Periodically assess guidelines with the 
development of new and existing 
technologies

• Continue to provide relevant trainings

• Encourages adoption across the sector
• Provides a common language and format 

for regulators, industry and academia
• Drives standardisation

Training and upskilling existing and future 
workforce (this work lies within the 
remit of current Centres for Doctoral 
Training (CDTs) amongst other training 
programs)

• Identify, apply for and support opportunities 
for multi-disciplinary training with QbDD 
focus for current and future workforce (e.g. 
CDTs and training development programs and 
platforms).

• Develop QbDD-relevant trainings such as: 
integration and use of FAIR data and data 
structures; model and SDL development and/or 
implementation; model credibility and regula-
tory readiness

• Implement, facilitate, and encourage 
QbDD-relevant trainings/training pro-
grams for current and future workforce

• Develop training for new technologies as 
required

• Continue QbDD-relevant training for cur-
rent and future workforce

• Continue to develop training for new 
technologies as required

• Builds on existing knowledge and enables 
continued improvement of existing 
processes

• Provides additional tech-savvy workforce

Assure all areas of development, from 
digital twins and predictive models to 
CPS

Ensure all models and platforms: 
• Have associated risk assessments with 

verification and validation control strategies

• Continue to assure all areas of QbDD 
development with actions listed under 
near-term goals

• Continue to assure all areas of QbDD 
development with actions listed under 
near-term goals

• Fulfils the requirements of VVUQ
• Establishes the overall credibility of the 

models, CPS and more generally of QbDD
(continued on next page)
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collecting targeted experimental data for APIs, excipients, and products 
under a wide range of conditions exploiting automated dosing or sample 
handling, mobile robotics, small-scale experiments with integrated 
sensing/analytics/imaging for information extraction and global opti-
misation for self-learning experimental planning to meet objectives.

Design space. The combination of materials and process conditions 
which provide assurance of quality for a pharmaceutical product. This 
can be defined by determining the bounds of the critical process pa-
rameters and critical material attributes that guarantee the attainment 
of the targeted critical quality attributes (International Council for 
Harmonisation, 2009).

Developability classification system (DCS). A methodology of 
categorising a drug substance, building on the BCS, to account for the 
effects of an approximation of human fasted state intestinal solubility, a 
given solubility limited absorbable dose and a given dissolution rate in 
relation to particle size. This allows identification of development risks 
and enables CQAs to be identified for APIs exhibiting dissolution rate 
limited absorption (Butler and Dressman, 2010).

Digital-first. During development, in silico modelling is used to 
inform and guide process design before any experimental work is un-
dertaken. The sole purpose of any initial experimental work is to achieve 
model parameterisation.

Digital twin (DT). Integrated digital framework to collate, analyse, 
visualise, and apply data, models, and knowledge of the rapid design, 
control, operation, and testing of continuous and modular processes for 
active pharmaceutical ingredient (API) crystallisation and drug product 
(DP) production. The DT will combine the overarching digital definition 
of the materials, products, equipment, and processes. The FDA defines 
digital twins as a group of informational structures that simulate the 
configuration, framework and performance of a physical instrument or 
experiment and have a synergistic relationship with the physical twin by 
utilising live data from the physical twin, whilst informing physical next 
steps (U.S. Food & Drugs Administration, 2024).

Digital twin supply chain (DTSC). The above applied to the field of 
supply chain to allow simulation of the broader context of pharmaceu-
tical processing.

Digitalisation. A process that can include both the increased use of 
robotics, automated solutions, and computerisation, thereby allowing 
reduced costs, improved efficiency and productivity, and increased 
flexibility.

Drug product (DP). A finished dosage form, e.g., tablet, capsule, or 
solution, which contains a drug substance, generally, but not neces-
sarily, in association with one or more other ingredients.

Drug product performance. In vivo may be defined as the release of 
the drug substance from the drug product leading to bioavailability of 
the drug substance. The assessment of drug product performance is 
important since bioavailability is related both to the pharmacodynamic 
response and to adverse events.

Drug substance (DS). An active ingredient that is intended to 
furnish pharmacological activity or other direct effect in the diagnosis, 
cure, mitigation, treatment, or prevention of disease or to affect the 
structure or any function of the human body but does not include in-
termediates used in the synthesis of such ingredient.

Efficiency (of API production). Optimal operating parameters to 
meet sustainability and volumetric throughput per unit time targets.

EPSRC Future Manufacturing Research Hub in Continuous 
Manufacturing and Advanced Crystallisation (CMAC). A national 
centre for medicines manufacturing research, skills, technology and 
translation (CMAC, 2022).

Excipient. A constituent of a medicine other than the active sub-
stance, added in the formulation for a specific purpose (such as binding, 
disintegration or lubrication). While most excipients are considered 
inactive, some can have a known action or effect in certain circum-
stances, which may enhance or control API performance (Kar et al., 
2018; The International Pharmaceutical Excipients Council (IPEC 
Federation), 2023).Ta
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Extract-transform-load (ETL) or Extract-load-transform (ELT). 
ETL is the processing of data on a distinct server before sending to a data 
warehouse, whereas ELT involves processing of data within the data 
warehouse and thus raw, unstructured data can be sent directly to a data 
warehouse in this way, removing the need for a step-wise approach 
(Bartley, 2024).

Findable, accessible, interoperable, reusable (FAIR). Principles 
for good data practice, first established in 2016 (Wilkinson et al., 2016).

Generative pre-trained transformer (GPT) model. A large lan-
guage model trained on unlabelled text which generates original human- 
like responses using an artificial neural network (Eloundou et al., 2023).

Installation qualification (IQ). In the context of QbDD, this can be 
considered as documentation of the model having met the requirements 
defined by the model designer for configuration and initial imple-
mentation, possibly defined by an installation checklist, system speci-
fications and/or datasheets (Egnyte, 2024; The FDA Group LLC, 2024). 
This can include suitable use, associated software requirements, envi-
ronmental requirements, and calibration and verification requirements 
(Precision Solutions Inc., 2024).

Machine learning (ML). Computer-based development of algo-
rithms for problem solving where the computer can learn and adapt 
without human interaction that may be used to train AI (U.S. Food & 
Drugs Administration, 2024).

Manufacturability (of drug product). The properties of a drug 
substance to be manufactured by an intended route for a desired 
formulation.

Manufacturing classification system (MCS). A means of catego-
rising drug products based on processing route. It summarises conclu-
sions from a dedicated Academy of Pharmaceutical Sciences (APS) 
conference and subsequent discussion within APS focus groups and the 
MCS working party (Leane et al., 2018, 2015). The MCS is intended as a 
tool for pharmaceutical scientists to rank the feasibility of different 
processing routes for the manufacture of oral solid dosage forms, based 
on selected properties of the API and the needs of the formulation (Leane 
et al., 2024).

Manufacturing classification systemþ (MCS þ). A system devel-
oped by the International Society for Pharmaceutical Engineering (ISPE) 
(Potter, 2022), that provides a framework for classifying manufacturing 
processes based on their complexity and potential impact on product 
quality. MCS + builds upon the original Manufacturing Classification 
System (MCS) developed by ISPE, but includes additional factors such as 
process variability, criticality of process steps, and complexity of 
equipment and automation (Potter, 2022).

Model Validation. In modelling (and more specifically within this 
publication), this is evaluation of the model outputs against an inde-
pendent data set that has known outputs and has not been used in the 
training of the model.

Objective. A quantitative or qualitative value or goal for which the 
achievement thereof defines the success of an optimisation, be the 
optimisation machine learning or otherwise.

Operation qualification (OQ). In the context of QbDD, this consists 
of establishing and assessing the various aspects of the model which may 
affect the overall quality of the process controlled (The FDA Group LLC, 
2024). It ensures reproducibility and reliability within appropriate 
operating conditions and that strategies for maintenance, deviation 
checks, performance checks and calibrations are put in place (Powder 
Systems, 2024; Precision Solutions Inc., 2024).

Performance qualification (PQ). A verification step for equipment 
or model use in which a qualification and verification group monitors, 
checks and reports if the quality requirements are achieved, ensuring 
reliability over time (Powder Powder Systems, 2024; The FDA Group 
LLC, 2024). Methodologies and validations to this end could include the 
following: data summaries, suitable calibrations and validations, vari-
ability limits and experimental verification strategies (Precision Solu-
tions Inc., 2024).

Process analytical technology (PAT). Mechanism to design, 

analyse, and control pharmaceutical manufacturing processes through 
measurement of material and quality attributes (U.S. Department of 
Health and Human Services et al., 2004).

Process Validation. The FDA defines this as “the collection and 
evaluation of data which establishes scientific evidence that a process is 
capable of consistently delivering quality product throughout the 
product lifecycle” (Bizjak and U.S. Food & Drug Administration, 2020; 
Tartal and U.S. Food & Drug Administration, 2015; U.S. Department of 
Health and Human Services et al., 2011). It generally consist of 3 stages: 

1. Initial R&D experimentation and risk assessment to give an indica-
tion of the nature of the manufacturing process, allowing develop-
ment of a control strategy.

2. IQ, OQ and PQ to ascertain the suitability of the technology utilised 
for its proposed purpose. Planning and carrying out of experimen-
tation to prove this.

3. Continued observation of the process and technology utilised to 
allow optimisation based on data collected and human experience 
(Bizjak and U.S. Food & Drug Administration, 2020; U.S. Department 
of Health and Human Services et al., 2011).

Process Verification. The FDA defines this as “confirmation by 
examination and provision of objective evidence that specified re-
quirements have been fulfilled” (Tartal and U.S. Food & Drug Admin-
istration, 2015). This is vital to ensure a controlled state is maintained 
throughout a process (U.S. Department of Health and Human Services 
et al., 2011).

Quality. The suitability of either a drug substance or a drug product 
for its intended use. Includes attributes such as identity, strength, and 
purity.

Quality by control (QbC). Also referred to as quality control (QC). 
Control strategy where active process control ensures product quality. 
This builds on QbT by implementation of PAT and seeks to rectify issues 
with a lack of integration between unit operations. It can be considered 
as the proposal and implementation of a manufacturing system using an 
active process control system developed in agreement with process 
automation principles, dictated by a strong degree of quantitative and 
predictive product and process understanding (Su et al., 2019).

Quality by design (QbD). An efficient development procedure that 
commences with predetermined objectives and focuses on product and 
process understanding and control with a strong basis in rigorous sci-
ence and quality risk management (International Council for Harmo-
nisation, 2009; Yu et al., 2014).

Quality by digital design (QbDD). Application of extensive 
modelling and data driven decision support tools to quickly, robustly 
and sustainably drive an efficient development procedure that com-
mences with predetermined objectives and focuses on product and 
process understanding and control with a strong basis in rigorous sci-
ence and quality risk management (International Council for Harmo-
nisation, 2009; Yu et al., 2014).

Quality by testing (QbT). Also referred to as quality assurance 
(QA). A traditional control strategy based on batch processing, which 
assesses the quality of a manufactured medicine by testing the final 
product to determine if targets have been met (Rege et al., 2024; Yu 
et al., 2014).

Quality management system. A structured framework that ensures 
that a medicine manufacturer consistently meets patient requirements 
and regulatory standards. It includes policies, procedures, processes and 
resources that guide quality-related activities.

Quality target product profile (QTPP). A prospective summary of 
the quality characteristics of a drug product that must be achieved to 
ensure the desired quality, taking into account safety and efficacy of the 
drug product.

Sensitivity analysis. A technique to establish how a range of values 
of an independent variable influence a dependent variable within a 
particular hypothesis, or effectively how causes of uncertainty within a 
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model impact its overarching uncertainty.
Supply chain resilience. The ability to anticipate and/or act on 

disruptions, to achieve a rapid and economical recovery, and thus regain 
the normal running of operations (Tukamuhabwa et al., 2015).

Sustainability. Process targets to drive reduction in materials, en-
ergy, resources, carbon footprint and environmental impact etc. Often 
set at organisational level.

Uncertainty. In modelling, this is considered a quantity that enables 
modellers to assess the accuracy and reliability of models and to make 
informed decisions based on the results.

Workflow. Systematic, science-based process design sequence of 
tasks. Experimental, computational, and analytical tasks should be 
clearly defined.
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