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A B S T R A C T   

Physical gradients are major natural drivers of global biodiversity. A key question is understanding how 
biogeographic patterns are impacted by transformation of natural habitats. We aim to elucidate the complex 
relationships between two core biogeographic drivers of biodiversity—elevation and precipitation—, local 
deforestation, and their additive and interactive effects on Andean orchid diversity in the Colombian Andes. We 
sampled understory orchids across 341 plots pairing natural and transformed habitats along a wide elevational 
(1163–3415 m) and precipitation range (879–3817 mm per year). We found 35,891 adult individuals in 341 
species peaking at mid-elevations (~2500 m) and mid-to-high precipitations (>1600 mm/yr). Conversion of 
natural to transformed habitats caused substantial orchid diversity loss, with ten-fold fewer species at the plot 
level equating to a 6-fold loss in overall species richness, and 23-times fewer individuals. The additive and 
interactive effects better explained the main patterns: conversion reconfigured the natural mid-elevation trends 
in orchid diversity and positive trend in diversity with precipitation to a quasi-linear trend in transformed 
habitats. This reflects the inherent dependency of orchid species to a host tree as well as lower resilience to 
transformed habitats. Our findings highlight the importance of halting deforestation across environmental gra-
dients, but in particular at elevations and precipitations where reshaping of biogeographic patterns maximises 
the losses of biodiversity.   

1. Introduction 

Physical gradients are strong global drivers of concentrations and 
rapid turn- over of species (Antonelli et al., 2018; Pérez-Escobar et al., 
2022; Peters et al., 2016; Rahbek et al., 2019). For instance, abrupt 
changes in elevation or precipitation over short distances introduce 
barriers for species dispersal shaping biogeographic patterns of biodi-
versity. Evolutionary phylogenetic reconstruction of mountain floras 
shows taxon-dependant results, from highly restrictive barriers imposed 
by the events of mountainous uplift in the Himalayas (Kala Rana et al., 
2022), to a semipermeable barrier for some orchids in the Northern 
Andes (Pérez-Escobar et al., 2017, 2022). Yet natural habitats are being 
converted to farmland at massive spatial scales that span biogeographic 
gradients (Ganuza et al., 2022; Peters et al., 2019). A key question, 
therefore, is how biogeographic patterns are impacted by conversion of 
mountainous natural habitats to human-dominated land-uses. 

In unmodified systems, species richness of vascular plants is high in 
lowlands and decreases towards higher elevations in Africa and the 
Andes (Pérez-Escobar et al., 2022; Peters et al., 2016), whereas other 
studies show that Andean trees and epiphytic plant diversity peaks at 
mid-elevations (1400–1600 m for trees, Malizia et al., 2020; and ~1000 
m and 1500 mfor epiphytes, Cardelus et al., 2006; Krömer et al., 2005). 
Higher elevations show a reduction in species richness of many taxa 
related to low temperatures and frequent frost events (>3000 m), but 
harbour other endemic taxa such as Andean frailejones (Espeletiinae, 
Asteraceae; Cortés et al., 2018; Lüttge, 1997). In turn, precipitation 
promotes water interception, ecosystem productivity, and reduces 
drought stress exerting a positive effect on species richness (Gotsch 
et al., 2016; Hu et al., 2022; Karger et al., 2021), with higher species 
diversity at higher precipitations (Antonelli et al., 2018), although at 
extremely high precipitation plant species richness might decrease 
(Peters et al., 2016; Santillán et al., 2018; Tolmos et al., 2022). This 
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evidence shows that patterns and predictors of mountainous diversity 
appear to be context dependent due to the taxon-specific resource re-
quirements and evolutionary adaptations to their natural environment 
(Cortés et al., 2018; Peters et al., 2016). 

Between 1990 and 2019, 219 million hectares of tropical forests 
were deforested (Vancutsem et al., 2021). This conversion of natural 
habitats might affect natural biogeographical patterns. For instance, 
Andean birds are more severely impacted by habitat transformation at 
lower elevations (~1000 m), than above 2000 m (Mills et al., 2022), 
whilst in a multi-taxa study in African mountains the negative effects of 
habitat transformation are buffered at mid-elevations where the loss of 
fauna and flora is apparently offset by the effects of elevation (Peters 
et al., 2019). By contrast, epiphyte species richness has shown a mixed 
response between forest-use intensity and elevation (Guzmán-Jacob 
et al., 2020), whilst other studies have found high losses in species 
richness and total abundance regardless of the elevation and precipita-
tion gradient independently (Barthlott et al., 2001; Einzmann and Zotz, 
2017b; Köster et al., 2009; Parra-Sanchez and Banks-Leite, 2020, 2022). 
However, there is a big gap in understanding of the independent, ad-
ditive, or interactive effects of habitat transformation and core biogeo-
graphic forces of mountainous biodiversity. 

We tackle the key question of how habitat transformation influences 
diversity across the biogeographic gradients of elevation and precipi-
tation, as two of the most influential drivers of biodiversity patterns 
(Antonelli et al., 2018; Pérez-Escobar et al., 2017; Rahbek et al., 2019a). 
We do so by focusing on the Colombian Andes, a global biodiversity 
hotspot that has undergone extensive human transformation (Rodríguez 
Eraso et al., 2013), and on the Orchidaceae, as the most hyperdiverse 
plant family in the Andean realm (Pérez-Escobar et al., 2022). Orchids 
show high species turnover across space and high sensitivity to local 
changes in habitat and geographical distance (Parra-Sanchez et al., 
2023a; Wraith and Pickering, 2018). We aim to untangle the indepen-
dent and interactive effects of biogeographic drivers (elevation and 
precipitation) in natural vs transformed habitats in shaping understory 
orchid communities. Specifically, we test four complementary hypoth-
eses: whether the main source of variation in orchid diversity patterns is 
explained by biogeographic drivers alone (Hypothesis 1), local defor-
estation (H2), or their additive (H3) or interactive effects (H4). We 
expect that patterns in transformed habi- tats will mirror those in natural 
habitats across the elevational and precipitation gradients. 

Fig. 1. Distribution of sampling plots and landscapes with their general precipitation and elevational characteristics in the study area, the eastern cordillera of the 
Colombian Andes. Inset panel displays study area within Colombia (red box), and elevation (digital elevation model from Tadono et al., 2014). The map shows the 
forest cover (green) and the absence of forest cover (grey; Vancutsem et al., 2021), landscapes (purple boxes), and sampling plots in natural (orange dots) and 
transformed habitats (red dots). Histograms display elevations (in metres above sea level; brick colour) and precipitation (in mm per year; blue colour) across 
sampling points. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2. Materials and methods 

2.1. Study area 

The study was located in the eastern cordillera of the Colombian 
Andes in the Departments of Cundinamarca, Boyacá, Meta, and 
Santander. Following Parra-Sanchez et al. (2023a), the random design 
covered the natural treeline. The treeline is the upper-limit boundary of 
the establishment of arboreal vegetation, between upper Andean 
montane forest and low-stature vegetation characterised by low canopy 
cover and encroached trees (Bader et al., 2007). Across the study area, 
we sampled 18 landscapes composed of natural and transformed habi-
tats (Fig. 1). We surveyed natural habitats and pasture across a 2252 m 
elevational range (1163–3415 m) and a 2937 mm precipitation range 
(879–3817 mm per year). Natural habitats were composed of moun-
tainous evergreen forests (bosque Andino and Altoandino; (Etter et al., 
2021) with average cloud cover of 82 % (Wilson and Jetz, 2016), and 
paramo habitats above the treeline (~2900 m)). Paramo (>3000 m) 
included grasslands, shrublands, and high-elevation isolated forest 
patches (Polylepis quadrijuga Bitter). All sampled natural sites belonged 
to the network of protected areas in Colombia (Sistema nacional de areas 
protegidas -SINAP, Santuario de Fauna de Flora de Iguaque and Parque 
Natural Chingaza). 

Natural habitat plots were paired with pasturelands as open habitats 
that have been completely transformed by human activities mainly for 
cattle production (n = 18 landscapes). Below the treeline (1163–2900 
m), we paired forests with nearby pastures, and above the treeline, 
natural paramo habitats were paired with high elevational pasturelands 
(Fig. 1; >2900 m). The vegetation in pasture plots below the treeline is 
composed of sparse trees and grasses, whilst above the treeline pastures 
were dominated by grasses and lacked frailejones (Asteraceae: Espele-
tiinae subtribe), which are a cluster of highly endemic, slow-growing 
plant species with high sensitivity to disturbance and narrowly 
restricted geographical distribution (Cortés et al., 2018). 

2.2. Sampling design 

Orchid surveys were conducted from January 2019 to November 
2020. Below the treeline, we randomly placed between 1 and 18 sam-
pling plots keeping a minimum of 172 m distance apart (range =
172.3–2759 m, n = 148; Table S1). Larger natural and transformed areas 
had more plots to ensure broader coverage. All natural habitat plots 
were placed at least 30 m from the forest edge or roads. In the nearby 
transformed habitat, we established between 3 and 18 plots, located at 
least 60 m away from the forest edge and at a minimum of 193 m apart 
(range = 193–4225 m; n = 90 plots). Above the treeline, we randomly 
sampled plots in natural grasslands and shrublands, and high-elevation 
Polylepis forests, located at a minimum of 195 m apart (range =
195–15.170 m, n = 58). High-elevation transformed habitats consisted 
of pasturelands sampled at a minimum of 200 m apart (range =
200–4305 m, n = 45). 

We sampled 206 natural habitats plots (148 forest, 48 paramo, and 
10 paramo forest), and 135 transformed habitat plots (90 Andean 
transformed and 45 paramo transformed). We established a 10 × 30 m 
sampling plot within which we sampled all adult understory orchid in-
dividuals (Parra-Sanchez et al., 2023a). Thus, we had sampling plots of 
both natural and transformed habitats nested in the landscape (Fig. 1). 
Sampling substrates included the ground, standing tree trunks, fallen 
tree trunks and branches, vines, lianas, leaves on standing trees, her-
baceous plants, palm trees, tree ferns, or cycads from the ground floor up 
to 2 m. We then recorded species and number of individuals (i.e., ra-
mets). Ramets usually comprised various individual stems, but for our 
purpose, a ramet only counts as one single individual spatially separated 
from another set of stems of the same or another species (Sanford 1968). 
Identification to species or morphospecies was conducted following 
specialized literature and consultancy with local experts at the 

Herbarium VALLE. In the case of high levels of uncertainty in taxonomic 
identity, we morphotyped the species. All dubious individuals were 
placed in local nurseries for identification upon flowering. Species 
richness and the total number of individuals at each sampling plot were 
used as response variables. 

2.3. Predictors 

Elevation was taken in the field with a GPS garmin 60S device and 
later standardized with the ALOsPalsar terrain model by averaging the 
elevation within 50 m of the GPS point (Tadono et al., 2014). Precipi-
tation (mean annual precipitation) was extracted at 1 km radius from 
each sampling plot from CHELSA (MAP; climatologies at high resolution 
for the Earth’s land surface areas; Karger et al., 2020). Local habitat 
transformation was coded as binary factor, i.e., natural and transformed 
into pasturelands based on fieldwork. 

2.4. Statistical analysis 

We tested for independent, additive, and interactive effects between 
environmental variables and habitat transformation using GAMMs 
(General Additive Mixed Models). We assumed that an additive effect 
indicates the overall influence of both drivers as the sum of their indi-
vidual effects, whereas a significant interaction effect shows that the 
effects of habitat transformation are modulated by the environment. 
General Additive Models deal with non-linear relationships between 
response and predictor variable, and nonparametric smoothers are used 
to describe the relationship (Wood, 2006). This model is suitable for any 
curved-shaped patterns, such as those along elevation gradients (Anto-
nelli et al., 2018; Peters et al., 2019; Rahbek et al., 2019a). 

We fit the models with observed species richness and abundance as 
response variables at plot level, and z-transformed all predictor variables 
before analyses, so that the model-averaged parameter estimates were 
standardized and centred to zero. GAMMs were sequentially fitted with 
elevation, precipitation, and local habitat treated as a dichotomous 
factorial variable (natural vs transformed habitat). We used Poisson 
error, or quasipoisson error distribution when Poisson models showed 
overdispersion, and used landscape as a random effect. We constrained 
our models to three or four knots (k = 3–4) to avoid overfitting, 
Restricted Maximum Likelihood (REML) was used as the estimation 
method, and the maximum number of PQL iterations was set at 30. 

We tested four hypotheses. First, whether elevation or precipitation 
explain the variation in orchid diversity (species richness or abundance) 
across natural and transformed habitats (environmental model). Elevation 
and MAP were included as predictors and observed richness and total 
abundance as response variables (quassipoison family, and landscape as 
random effect). Second, that orchid diversity was best explained by the 
effect of the habitat transformation alone (transformation model). Models 
were fitted with local habitat transformation as the predictor, species 
richness and abundance as response variables, and landscape as a 
random effect. Third, that diversity was best explained by the effects of 
both habitat transformation and environment (the additive model: envi-
ronment + transformation). Elevation, MAP, and local habitat trans-
formation were included as additive predictors assuming that the whole 
effect of both sets of variables represents the sum of their individual 
effects. Finally, we tested the hypothesis that diversity was best 
explained by the interaction between habitat transformation and envi-
ronment (the interactive model), assuming multiplicative effects of the 
environment and habitat transformation. Elevation × habitat trans-
formation and MAP × habitat transformation were included as inter-
action terms. 

Model performance was evaluated via inspection of the model 
diagnostic plots, r-squared (r2), and hanging rootograms (“appraise” 

and “rootograms” functions from gratia package). Rootograms are 
diagnostic tools that assess model goodness-of-fit, identifying whether 
observed frequencies match expected frequencies from the model 

E. Parra-Sanchez et al.                                                                                                                                                                                                                        



Biological Conservation 292 (2024) 110538

4

(Kleiber and Zeileis, 2016). In rootograms plots, expected counts (given 
the model) are shown by the thick continuous line, observed counts as 
bars hanging from the line of expected counts, the x-axis shows the count 
bin (0 count, 1 count, 2 count, etc.), the y-axis the square root of the 
observed or expected count, and finally a reference line is drawn at a 
height of 0 with its uncertainty (+/−1). In hanging rootogram, the model 
over predicts a particular bin when the bar does not reach the reference 
line (observed counts bin are shown as bars), whilst the model under 
predicts a particular bin if the bar exceeds the reference line (Kleiber and 
Zeileis, 2016). 

2.5. Software 

Statistical analyses were conducted using R 3.4.1 (R Core Team, 
2022). Data formatting was performed via “tidyverse” package (Wick-
ham et al., 2019), with GAMMs run using the “mgcv” package (Wood, 
2017). Plots were elaborated in “ggplot” (Wickham, 2016) and “gratia” 

(Simpson Gavin, 2022). 

3. Results 

3.1. Species richness and abundance 

We found 35,891 adult individuals of 331 species of which 91.6 % 
species are epiphytes (303 vs. 28 terrestrial species), with a maximum of 
27 (range 0–27) species and 1012 (range 0–1012) individuals in a single 

plot (Supplementary material Table 1). We discovered several new 
species to science in both natural (Parra-Sanchez et al., 2023b; Parra- 
Sanchez et al., 2023c; Parra-Sanchez and Baquero, 2023) and trans-
formed habitats (Ordóñez-Blanco and Parra-Sánchez, 2022). 

3.2. Drivers of biogeographic patterns of orchid diversity in natural and 
transformed habitats 

We found statistical support for all tested hypotheses. Environmental 
and land-use predictors showed significant results across models, with 
land-use consistently influencing orchid diversity negatively, although 
model performance varied. 

Elevation and precipitation (environmental model) significantly 
impacted species richness (Fig. 2A, C) and total abundance (Fig. 2B, D). 
Both species richness (Fig. 2A; F-value = 21.98, p-value < 0.05; R- 
squared = −0.12) and abundance (Fig. 2B; F-value = 8.13, p-value <
0.05; R-squared = 0.12) peaked at mid-elevations (~2500 m) and then 
declined at around 3000 m. In contrast, precipitation showed a positive 
effect on species richness to ~1600 mm per year and level thereafter 
(Fig. 2C: F-value = 5.45; p-value < 0.05). Total abundance also revealed 
a positive effect of precipitation (to ~1800 mm per year) with a levelling 
thereafter until extreme values (>3300 mm per year), which caused a 
drop in abundance, although there was high uncertainty (Fig. 2D; F- 
value = 1.44, p-value = 0.24). 

Land-use (transformation model) negatively influenced both species 
richness and total abundance (transformed habitat on richness, t-value 

Fig. 2. Orchid species richness (A, C) and total abundance (B, D) along the elevational (in m.a.s.l.) and precipitation (in mm per year) gradient in the eastern Andes, 
Colombia. Plots depict the trend based on generalized additive models of species richness and total abundance (environmental model) for sampling plots (black dots), 
across the elevation (A–B) and precipitation (C–D) gradients. Grey shade shows the treeline’s elevation cut-off. Shades along the trendline show the uncer-
tainty (+/−0.05). 
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= −10.01; and abundance, t-value = −7.64; p-value< 0.05; R-squared 
= 0.18 and 0.14, respectively). Conversion of natural habitats to pas-
turelands resulted in substantial losses of orchid diversity, with ten-fold 
fewer species at the plot level (average 6.80 in natural vs 0.66 in 
transformed habitat; Fig. 3A, Table S2), equating to a 6-fold loss in 

overall species richness (300 vs 56), and 23-times fewer individuals 
(Fig. 3B; overall abundance = 31,256 vs 1434). Despite the low species 
richness in the transformed plots, 29 % of its species pool are endemic to 
Colombia and 37.4 % to the Andes, with one new species to science 
found in this habitat. Above the treeline, no orchids were found in the 

Fig. 3. Orchid species richness (A, C, E) and total abundance (B, D, F) along the land-use type and elevation (in m.a.s.l.) and precipitation (in mm per year) gradients 
in the eastern Andes, Colombia. Violin plots represent the effects of land-use on species richness (A) and total abundance (B) (transformation model), depicting the 
median value, and 25th and 75th percentile range for each land-use, the shaded area shows the kernel density of the variability range in natural (green) and 
transformed habitats (dark orange), whilst the circular dots represent the outliers in observed records of compositional turnover at each sampled plot. Trends are 
based on generalized additive models (GAMMs) testing for the effects of elevation by land-use (C,D) and precipitation by land-use (E,F), with shades along the 
trendline show uncertainty (Confidence intervals = +/−0.05). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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transformed habitats. 
Conversion of natural habitats reconfigured the mid-elevation trend 

in orchid diversity pattern with elevation in natural habitat to a quasi- 
linear trend in transformed habitats that does not vary across eleva-
tion (Fig. 3C–D; Table S2). The positive influence of precipitation on 
orchid diversity seen in the environment model was also reshaped into a 
quasi-linear pattern in transformed habitats (Fig. 3E–F). The additive 
effects of environment + transformation influenced orchid species 
richness (Fig. 3C–E; elevation, F-value = 20.12; transformed habitat, t- 
value = −18.14; p-value < 0.05) and total abundance (Fig. 3D–F; 
elevation, F-value = 11.34; transformed habitat, t-value = −7.81; p- 
value < 0.05), whilst the additive effects of precipitation were negligible 
(richness, F-value = 3.35; abundance, F-value = 2.77; p-value > 0.10). 
Likewise, the interactive model (environment × transformation) dis-
played statistical support for the interaction between elevation and the 
natural habitat with species richness (F-value = 5.367, p-value < 0.05) 
and total abundance (chi-squared = 38.77, p-value < 0.05). Our model 
did not detect any significant interaction between our biogeographic 
drivers and the transformed habitat (p-value > 0.17), nor the interaction 
between precipitation and the natural habitat (p-value > 0.08). 

In general, the interactive, additive (Fig. 4C) and, to a lesser degree, 
the transformation (Fig. 4; Fig. S1) models offered good statistical fit to 
our data (interactive R-squared = 0.182–0.401; additive, R-squared =

0.243–0.271; and deforestation, R-squared = 0.137–0.177). The envi-
ronment model presented a lower goodness-of-fit (R-squared = 0.12; 
Fig. 4A). Despite the interactive model having better r-squared values, 
the additive model showed minimal deviations from the observed data in 
the lowest counts that would indicate over-prediction (i.e., Rootogram 
bins 1–3), the zero-count bin is better fitted, and most of the count bins 
fall within the reference lines, implying that the model did not under-
predict observations (R2 > 0.162, Table S2). 

4. Discussion 

A key challenge is understanding how biogeographic patterns are 
impacted by conversion of natural habitats. Local-scale deforestation 
drives a severe loss of over 70 % of species richness and abundance in 
Andean orchid flora, and this conversion disrupts core biogeographic 
patterns of orchid diversity, rejecting our expectation. Our results 
highlight the importance of halting deforestation across environmental 
gradients, especially at elevations and precipitations where reshaping of 
biogeographic patterns maximises biodiversity loss. 

4.1. Biogeographic patterns in natural habitat 

Elevation and precipitation are important biogeographic forces of 

Fig. 4. Hanging Rootogram for illustrating the goodness-of-fit of each statistical hypotheses on species richness based on Generalized Additive Mixed Models 
(GAMMs). The x-axis represents the bin intervals of prediction errors, whilst the y-axis shows the frequency of occurrence. The expected counts, given by each model, 
are shown by the thick blue line, whilst observed counts are shown as bars, and the reference line is drawn at a height of 0 (±1). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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orchid diversity. We found that orchid communities exhibit a mid- 
elevation diversity pattern across elevation in natural habitat, peaking 
at ~2500 m, which aligns with patterns for Andean trees and other 
epiphytic plants (Gentry and Dodson, 1987; Krömer et al., 2007; Malizia 
et al., 2020; Salazar et al., 2015; Santillán et al., 2018). Elevation relates 
to many other physical variables, such as topography, hydrologic re-
gimes, and microclimatic factors, which might impact taxa that are 
drivers of orchid speciation and abundance, such as pollinators and 
mycorrhizae (Ackerman et al., 2023; Ramírez et al., 2011). For instance, 
most Andean bee species—one of the most important orchid polli-
nators—are restricted to Andean elevations between 1800 m and 
~2400 m (Apidae and Halictidae, Gonzalez and Engel, 2007), although 
patterns of other orchid pollinators such as fungal gnats and dipterans 
(e.g. mosquitoes and flies Ackerman et al., 2023) are still unknown. 

Precipitation drives high species richness at ~1800 mm per year and 
abundance at ~2000 mm per year, remaining constant thereafter. This 
finding aligns with local and regional patterns of rapid accumulation in 
species richness of vascular epiphytes at mid-precipitation, with a 
consistent and monotonically increasing trend as precipitation rises 
(Cardelus et al., 2006; Kreft et al., 2004; Krömer et al., 2013). Precipi-
tation is an important driver of orchid diversity, with many epiphytic 
species drought-intolerant (Mondragon et al., 2014; Zotz, 2016) and 
precipitation promoting high diversity as seen in cloud forest (Pérez- 
Escobar et al., 2022; Tremblay, 1997b). We found that abundance fell at 
very high precipitation (>3300 mm per year), potentially because this 
reduces recruitment of wind-dispersed orchids (Mccall, 2007; Mon-
dragon et al., 2014; Zuleta et al., 2016), although this pattern changes 
when accounting for land-use (see below). 

4.2. Impacts of local-scale habitat transformation on biogeographic 
patterns 

Habitat conversion exerts dramatic negative losses in orchid di-
versity and abundance—with >70 % of species and individuals lost 
below the treeline (~2900 m), and 100 % above the treeli-
ne—supporting findings from the Atlantic Forest (Parra-Sanchez and 
Banks-Leite, 2020), Venezuelan Andes (Barthlott et al., 2001), and 
Ecuador (Köster et al., 2009;but see Guzmán-Jacob et al., 2020, where 
alpha diversity of epiphytes did not differ significantly between natural 
and transformed habitats at low and high elevations). Habitat trans-
formation also drives a fundamental reorganisation of the mid-elevation 
richness-elevation relationship to a quasi-linear trend in the transformed 
habitats, and of the positive effects of precipitation in natural habitats 
(higher richness and abundance in natural habitats, except >3300 mm 
per year), which became negligible following natural habitat 
transformation. 

In contrast to our findings, the biodiversity-elevation trend between 
natural and transformed habitats converges at mid-elevations across 
taxa in Afromontane systems (Peters et al., 2019). This difference may 
reflect the presence of speciose communities evolved to live in more 
open-habitats at lower elevations that can invade mid-to higher-eleva-
tions in African mountains, versus the inherent dependency of orchid 
species to a host tree (96 % are epiphytes) and stable abiotic conditions 
within Andean forests (González del Pliego et al., 2016). Thus, many 
tropical orchids are pushed beyond their thermal limits (Acevedo et al., 
2020) and drought tolerance after clearance (Mccall, 2007; Mondragon 
et al., 2014; Olaya-Arenas et al., 2011). 

Whilst transformed habitats are unsuitable for most Andean orchids, 
nevertheless species endemic to Colombia and the Andes (29 % and 
37.4 % of the total transformed species pool, respectively) were 
retained, as well as a new species to science (Ordóñez-Blanco and Parra- 
Sánchez, 2022). Whether transformed habitats can sustain these species 
long term is a key question. High seed mortality (estimated one indi-
vidual survives per ~2000 seeds; Acevedo et al., 2020; Mondragon et al., 
2014; Tremblay, 1997a), low demographic viability (Ospina-Calderón 
et al., 2023), dispersal limitation across landscapes, and high species 

turnover among and between habitats and elevations (Guzmán-Jacob 
et al., 2020; Parra-Sanchez et al., 2023a) might further exacerbate the 
effects of deforestation on orchids. Yet for other taxonomic groups, 
transformed habitats can offer some resources, serve as corridors for 
dispersion, or reproduction opportunities (Driscoll et al., 2013; Einz-
mann et al., 2021; Einzmann and Zotz, 2017b; Ramírez-Delgado et al., 
2022). For instance, trees can serve as steeping stones to other species 
(Manning et al., 2006), whilst orchid bees are apparently insensitive to 
high levels of transformation because of their strong dispersal capabil-
ities (Apidae, Crall et al., 2020; Nunes et al., 2022). 

Our study has two key caveats. First, we focus on the lower part of 
the tree trunk, understory vegetation, and ground, which represents a 
subset of epiphyte species (Alzate-Q et al., 2019; Krömer et al., 2007) 
that may be particularly sensitive to change. Understory orchids are 
exposed to less microclimatic variability than tree crowns (Einzmann 
et al., 2021), which likely make the canopy more resilient to distur-
bance. Future research might cover entire trees, from understory to 
canopy, and further exploration of functional traits across large spatial 
scales could provide insight into the potential of species to respond to 
habitat transformation. Second, community-level metrics (i.e., richness 
and abundance) can be less sensitive to ecological processes than metrics 
that account for species turnover, via the loss of sensitive specialist 
species buffered to some extent by the arrival of generalist species 
(Larrea and Werner, 2010; Spake et al., 2022). Andean orchids exhibit 
high turnover across communities (Parra-Sanchez et al., 2023a, 2023b, 
2023c), but the high net loss of orchid species and abundance provide 
strong evidence of the detrimental effects of habitat transformation. 

5. Conclusions 

Actions prioritizing the protection of highly diverse areas, in 
particular, where major losses of biodiversity can be averted are crucial. 
Our findings highlight elevations (~2500 m, mid-elevation) and pre-
cipitations (>1600 to <3300 mm/yr) where deforestation has the 
maximum negative impacts on orchid diversity. This suggests that 
practitioners should use our findings to guide locations at highest pri-
ority of protection from conversion, which is especially important given 
the international pledge at COP26 to establish new protected areas (‘30 
× 30’). It could also be used to target better placement of mandatory set- 
asides in Andean countries such as Ecuador and Colombia (República de 
Ecuador, Proyecto Socio Bosque (PSB), 2008; República de Colombia, 
Ley 388, 1997), so that neighbours form larger and better-connected set- 
aside forests, especially in mid-elevations and higher precipitation areas 
that can preserve higher orchid diversity. 

Local-scale actions to retain and potentially restore orchid commu-
nities in mountainous regions also require improving landscape con-
nectivity to facilitate orchid dispersal across human-modified 
landscapes, due to dispersal limitation (Parra-Sanchez et al., 2023a), 
and increase the likelihood of an influx of both epiphytic orchids and 
hosts (Einzmann and Zotz, 2017b; Mondragon et al., 2014; Zotz, 2016). 
We provide three recommendations to do so. First, retain tall trees in 
nearby natural habitat remnants as a source of forest trees, biomass, and 
epiphyte species (Wies et al., 2021; Woods et al., 2015). Second, allow 
growth of young trees near mature trees to boost the likelihood of oc-
cupancy by orchids (Richards et al., 2020) and hopefully to offset further 
loss of matrix trees (e.g., 141 trees disappeared of 763 surveyed over a 
span of 8-years in Panamanian lowlands; Einzmann and Zotz, 2017a, 
2017b). Third, translocate adult orchid individuals between natural 
habitats and transformed habitats, which might enrich the matrix 
(Benavides et al., 2023; Reid et al., 2016). In conclusion, failure to adopt 
such approaches to prioritizing protected areas and improved connec-
tivity will continue to exacerbate the dramatic loss of orchids and re- 
shaping of core biogeographic patterns driven by habitat conversion. 
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Kreft, H., Köster, N., Küper, W., Nieder, J., Barthlott, W., 2004. Diversity and 
biogeography of vascular epiphytes in Western Amazonia, Yasuní, Ecuador. 
J. Biogeogr. 31, 1463–1476. http://onlinelibrary.wiley.com/doi/10.1111/ 
j.1365-2699.2004.01083.x/full. 
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the indigenous Muisca people. Lankesteriana 23 (2). https://doi.org/10.15517/lank. 
v23i2.54032. 
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