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Abstract

A computational model for predicting regions of flow-induced crystallization (FIC) during processing of a polydisperse polymer melt is
presented. Flow produces local alignment of polymer segments that reduces the energy barrier for nucleation, which can lead to a dramatic
increase in the rate of formation of crystal nuclei. However, simulating FIC in a complex flow geometry is challenging due to the need to
couple a molecular-level description of chain configuration to the macroscale flow dynamics. This is compounded in polydisperse melts
as the most marked flow-induced effects occur from the long-chain species at low undercooling. In this work, we use the Rolie-Double-Poly
(RDP) model [Boudara et al., J. Rheol. 63, 71-91 (2019)] in combination with the polySTRAND model [Read et al., Phys. Rev. Lett. 124,
147802 (2020)] to create a computationally viable method for modeling FIC. This model is used to examine flow-induced crystallization
in a contraction-expansion geometry, where previous experiments [Scelsi et al., J. Rheol. 53, 859-876 (2009)] found a highly localized
region of crystal formation at and downstream of the wall of the constriction. © 2025 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https:/creativecommons.org/licenses/

by/4.0/). https://doi.org/10.1122/8.0000999

. INTRODUCTION

The modeling of flow-induced crystallization (FIC) of
polymers is important for controlling industrial processes.
Flow dramatically enhances the nucleation rate, which strongly
affects the crystal morphology. The ability to model FIC effec-
tively could significantly improve the efficiency of polymer
processing by allowing the final crystal structure to be deter-
mined by tailoring the processing conditions to suit.

A significant challenge in studying crystallization in poly-
mers is the wide range of length and time scales involved.
The formation of a crystal nucleus is an extremely rapid and
highly localized event that cannot be directly observed exper-
imentally [1]. However, with small-angle x-ray scattering
(SAXS) [2-6], it is now possible to track the formation of
shish-kebab crystals, as well as determining the pre-factors
for their development.

Molecular dynamics (MD) simulations do provide a means
to study flow-induced nucleation (FIN) by resolving nucle-
ation events from simulations of polymer moderately entan-
gled polymer chains under flow [7-12]. Recent studies have
reduced the degree of undercooling that is required for practi-
cal simulation [13-20]. Under strong, persistent extensional
flow (planar or uniaxial), where chains are extended even
below the Kuhn segment scale, crystallisation is strongly accel-
erated leading to highly stable crystals that persist even above
the melting temperature within simulation timescales [21].
There are also now detailed simulations showing the formation
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of particular crystal morphologies, such as the shish-kebab
structure of crystals [16,22]. There are also now some MD
studies examining molecular weight distribution in polymer 3
blends and solutions [20,23,24]. However, despite this recentgc’)
progress, there remains a considerable gap between the time 2
scales and molecular weights of polymers that can be simu-
lated in MD studies and those used in experimental investiga- &
tions or in industrial processing.

Given this difficulty of reaching the necessary time scales
and molecular weights while treating FIC at an atomistic
modelling level, it is necessary to turn to coarse-grained
approaches. It is hoped that these can capture the essential
physics of FIC, i.e., that acceleration of nucleation relates
to the flow-induced changes in chain configurations at differ-
ent scales. At larger scales, crystallization is accompanied by a
loss in chain entropy, which contributes to the free energy
barrier towards crystal nucleation. Flow leads to stretch and
orientation of the chains, which reduces chain entropy, and
reduces the change in chain entropy required for crystalliza-
tion. This effectively reduces the free energy barrier toward
nucleation, producing the accelerating effect of FIC.
Coarse-grained models for FIC typically capture this by focus-
sing on the chain orientation and alignment at the scale of the
Kuhn segment, which is the approach we will adopt here.
Some justification for this is found, for example, from the MD
simulations of Nicholson and Rutledge [8], who find a strong
correlation between the nucleation rate and the Kuhn segment
nematic order parameter. On smaller scales, flow can also lead
to stretching of the Kuhn segments themselves, changing their
internal configurations (e.g., changing the ratio of trans to
gauche configurations in PE) so that these internal configura-
tions more closely resemble those within the crystal. To be
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significant, this typically requires strong flows in which forces
developed in the chain become of order k3T /b, where b is the
Kuhn segment length. However, in principle, this happens to
some extent at all flow rates: Significant alignment at the
Kuhn segment level will be accompanied by changes in inter-
nal configurations. Capturing such effects in strong flows may
require the introduction of further parameters to distinguish
alignment and stretching of Kuhn segments, though we do not
believe this level of detail has been included in any of the
coarse-grained approaches detailed below.

At the highest level of coarse graining, continuum-level
models use differential equations [25-28] to describe crystal
nucleation and growth. These models use empirical laws to
relate the rate of nucleation to a property of the constitutive
equation (typically a measure of chain stretch of the largest
molecular weight component). For example, van Berlo et al.
[29] used the stretch of the longest relaxation time mode of a
multimode XPP model [30] to determine the flow-induced
nucleation rate of an iPP melt in a filament stretching exten-
sional rheometer (FiSER). Although these models enable
simulation of FIC in processing flow conditions, they do not
include a detailed description of how the polymer chain con-
formation controls the rate of nucleation. In particular, they
struggle to predict the effects of polydispersity, as the models
lack the necessary detail to capture the influence of chain
species of different lengths on nucleation. Although longer
chains do contribute disproportionately to crystal nuclei,
shorter chains typically make up the bulk of the polymer mass
and so their contribution cannot necessarily be neglected.

The GO model [31,32] provides an intermediate approach
between MD and continuum modelling. The nucleation
dynamics are simulated stochastically with a constitutive equa-
tion used to describe amorphous chain dynamics. This allows
it to access both long chains and low undercooling that cannot
be reached in molecular dynamics. The model compares well
with experiments [32,33]. However, this model is still com-
putationally too expensive to be used for simulations of pro-
cessing flows [1] where there is spatial variation in the
nucleation rate.

The polySTRAND model [34] directly addresses the chal-
lenge of providing a model for flow-induced nucleation that
is simple enough to be used in processing flow simulations,
but that is directly linked to the molecular origins of crystal
nucleation in polymers. It uses insights from both molecular
dynamics (MD) and kinetic Monte Carlo simulations within
the framework of thermodynamic modeling to provide a
continuum-level model for FIC in polymers. The effect of
polydispersity on both flow and nucleation dynamics is
accounted for: in particular, longer chains deform strongly
so attach more readily than shorter less deformed chains.
This long-chain enrichment that is predicted by the
polySTRAND model was confirmed in a recent MD investiga-
tion by Anwar et al. [20] where they found good agreement
between their MD simulation results for long-chain enrichment
and the calculations of the polySTRAND model.

All of these coarse-grained models require a constitutive
model that describes the conformation of the polymer chains.
Doufas et al. [25] used a modified Giesekus model, whereas
Steenbakkers and Peters [26] and Mcllroy and Graham [28]

both use the Rolie-Poly model [35]. All of the above models
consider a single chain species and so do not distinguish
between chains of different lengths in a polydisperse blend.
A recent constitutive equation that accounts for polydisper-
sity is the Rolie-Double-Poly (RDP) model [36]. The RDP
model accounts for linear and nonlinear couplings between
chain species. This allows for accurate predictions of the rhe-
ology of polydisperse polymer melts. The RDP model is a
highly simplified version of the work done by Read et al.
[37] for bidisperse materials and results in a model that is
computationally cheap and tractable for computational fluid
dynamics (CFD) simulations.

The aim of this work is to provide a computationally
tractable model for flow-induced crystallization during pro-
cessing of a polydisperse polymer blend. The RDP model
[36] is used to model the flow of the polymer chains, while
the polySTRAND model [34] is used to calculate the
crystal nucleation rate under flow conditions. An additional
benefit to using the polySTRAND model is that it requires
parameters that are independent of MWD. Therefore, the
polySTRAND model can effectively predict FIC for the same
polymeric materials with different MWD using the same set of
parameters. The subsequent crystal growth is described by the
Schneider rate equations [38].

The paper is organized as follows. In Secs. II and III, we
give details of the theory behind both the RDP model and
the polySTRAND model and how we obtained appropriate
values for the parameters in these models. This then leads s
into how we implement these models in our investigation.
The simulations were carried out in software rheoTool [39],
which is a toolbox within open-soure software openFOAM 3
[40]. We then outline the geometry used for the investigation,
which was chosen to show agreement with the experiments &
conducted by Scelsi et al. [41]. Finally, we show the results
of our investigation where we look at different flow rates and
how these affect the crystallization dynamics at play in the
geometry.

Z 4890100

Il. POLYDISPERSE ROLIE-DOUBLE-POLY MODEL

We use the RDP model [36] to describe the polymer
melt flow, as it is appropriate for blends of entangled linear
polymers. The RDP model has been successfully imple-
mented within openFOAM for a bi-disperse blend in the
work by Azahar et al. [42]. In our work, we generalize the
openFOAM implementation to include n interacting chain
species.

In the RDP model [36], the polymer stress 7p is the sum
of the stress contributions coming from the local average
conformation of each species A; weighted by their volume
fraction ¢; and the finite extensibility function fg(4;),

n

=Gy Y dfeA)A; with 2 = <%TrAi>7. (1)

i=1

Here, GY is the plateau modulus. The stretching ratio 4; is
the ratio of the current tube path length to the equilibrium
path length for chain species i. The finite extensibility
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function fg(A) is required to prevent chains stretching beyond
their maximum extension Ap,,. The original RDP model
used the Warner approximation [43] for fg(4), but here we
use the normalized Cohen approximation [44],

3—- lz/ﬂ’max 1 — l/ﬂ'max
2’2/ﬂ’mdx) <3 - l/lmdx) . @

This is based on a more accurate Padé approximant to the
inverse Langevin function force law for a freely jointed
chain. We also use the freely jointed chain model below to
calculate bond orientation, so using the more accurate Cohen
approximation gives a consistent description. We assume the
maximum stretch ratio is given by 12 = N,, where N, is
the number of steps per entanglement segment.

The average conformation tensor, A;, accounts for the
stresses that come from the interaction of the species i with
itself and the other (n — 1) species; therefore,

Je@) = (

A=) b 3)
=1

where A; is the stress conformation tensor on the i chains
coming from their entanglements with the j chains. This con-
formation tensor evolves as

1 2
Aj=——@A; -1 — <1 - >fE(/1 JAjj
Tdi Ts.i

—(A; -1 {ﬁ ;‘ + 2Bcer J ET(“ ( 1)1?5], o))

J s )‘j

where 7,; is the reptation relaxation time and 7,; is the
stretch relaxation time for each species. The parameter 3, is
the thermal constraint release coefficient, which we set as
B = 1 in this work. This coefficient accounts for constraint
release relaxation of species i due to the reptation of j chains.
In the linear rheology limit, the relaxation rate of the ij mode
is the sum of the rates 1/7,; and 1/7,; from i and j chains,
respectively. Therefore, the model is consistent with double
reptation theory [45], which models the relaxation of two
entanglements, where each entanglement involves an interac-
tion between chains of different lengths.

A key feature of this model is that the n? individual con-
formation tensors A;; are coupled via the terms involving the
stretch variables A4; and 4;, and therefore, this model cannot
be incorporated using the multimode formalism in RheoTool,
which is based on a linear superposition of uncoupled modes.
As a consequence, it is necessary to create a stand-alone RDP
model in which all n> modes are individually represented.
Although explicitly coding the equations for each conforma-
tion tensor is viable for a small number of modes, such as in a
bimodal blend for a larger numbers of chain species, it is
desirable to have an automated means for coding these equa-
tions. To achieve this, we use a script to automatically generate
the requisite openFOAM files for the RDP constitutive equa-
tions with the desired value of n. The script used to achieve

this is available in the Leeds Data Repository, https:/doi.org/
10.5518/1581 [46].

Since the RDP model is based on double reptation [45],
the linear relaxation modulus is given by

60 = G Z gy (Vs )

i=0 j=0

Here, the chains are ordered so that i = n corresponds to the
longest and slowest chain species, and an additional “0”
species has been included to represent fast relaxing chains
for which 7,0 is small compared to the flow time scale and
inverse shear rates. This species acts effectively as a solvent,
so it is not explicitly modelled using the RDP equations.
With these fast relaxing chains included in the summation, the
prefactor GR, is the plateau modulus, and ¢, represents the
volume fraction of each species, including the short chains.
Equation (5) is equivalent to a relaxation spectrum con-
sisting of n(n + 1)/2 Maxwell modes. Rearranging Eq. (5) as

G@t) = Z G?Vd)t <¢z —2t/74; + 22 d) et(rd,+r(1,)/rd,rd,>

j>i
(6)

it can be seen that the relaxation times of modes correspond-
ing to the interactions of the i chains with j chains with j > i o
all lie between 7,;/2 and 7,4, so all have similar relaxation &
times. From Eq. (6), the sum of the elastic moduli for these 8
modes is given by

=G <¢,.2 + 24 (Z ¢j> ) . (7)
>

We call the set of modes corresponding to the interactions of
the i chains with j chains with j > i, the ith “RDP Maxwell
mode,” because although not strictly identical in relaxation
time, they are sufficiently close for practical use. It can
readily be observed that the number of RDP Maxwell modes
corresponds to the number, n, of RDP chain species.

By integrating Eq. (6), we can obtain the viscosity in the
form

100 0l

£0:60:C ST

n=> ®)
i=0

where the viscosity contribution of the ith “RDP Maxwell
mode” is

_Go<¢7d,+2 ( ( 1>_1>>
b E of ()
Jj>i szf

In particular taking the limit in which 7,0 — 0, but G%Td,o is
finite, the terms associated with i = O reduce to an effective
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solvent viscosity

_ Gta0dby
ns = T

¢0+4Z¢j]. (10)
j=1

A. Obtaining a RDP fit to experimental linear and
nonlinear rheology

In this section, we consider the matching of an RDP
model to experimental linear and non-linear rheology data.
The flow-induced crystallization experiments of Scelsi et al.
[41] were performed using the metallocene catalyzed poly-
ethylene referred to as HDB6. Although this polymer con-
tains a degree of long-chain branching and, therefore, the
RDP model is not strictly applicable, we nevertheless use
these data illustratively.

For the simulations, we use an RDP model with four
species (n = 4) that contribute to nonlinear viscoelasticity
and enhanced crystal nucleation, together with a fast relaxing
mode that acts effectively as a solvent.

The parameter values for the RDP model are obtained
from the 11-mode relaxation spectrum used by Scelsi et al.
[41] grouped together to form the four RDP Maxwell modes
(as defined above) of our model, by making use of the linear
relaxation structure for the RDP model given in Eq. (6). The
three longest modes (which formed the stretching Pom-Pom
modes [47] in Scelsi model) were combined into the slowest
RDP Maxwell mode. The next six modes were combined in
pairs to give the next three RDP Maxwell modes. The
remaining two shortest modes were included as contributing
toward the solvent. However, since the total combined
modulus of all Pom-Pom modes in the Scelsi data is less
than the plateau modulus of high-density polyethylene, there
must be additional solvent contributions arising from shorter
time scale modes that are not captured by the 11-mode spec-
trum of Scelsi et al.

Our strategy (which is applicable to any Maxwell mode fit
to linear viscoelastic data) is to match the modulus g; and
viscosity 7; of the ith RDP Maxwell mode to the summed
moduli and viscosities, respectively, of the associated com-
bined Pom-Pom (Maxwell) modes. This gives us sufficient
information to fit the volume fraction, ¢;, and the reptation
relaxation times, 7,4, for the respective RDP species (given
the one-to-one correspondence between RDP chain species
and RDP Maxwell modes).

This strategy is represented in Fig. 1, which shows how
each of the RDP (double reptation) modes contributes to the
relaxation spectrum. Each RDP mode (species i entangling
with species j) is represented by a small square, with its indi-
vidual weighting indicated. These RDP modes are summed
around the “L”-shaped regions to give the RDP Maxwell
modes. The correspondence of the RDP Maxwell mode to
the Pom-Pom (Maxwell) modes of Scelsi et al. is indicated
along the upper line, while their correspondence to RDP chain
species is indicated along the right. Further details of how the
values of 7;; and ¢; were calculated are given in the
supplementary material.

Having calculated the values for 7,; and ¢;, we then veri-
fied that these values match the linear relaxation data from

Gy’ - Zg;
Solvent 91 92 93 9a
1,234,567 89,1011

Maxwell Modes gpa™ = Z g;

4] 60 |60 |40 |00 | @

3| &9 o0 (o0, [ & | 99

370 3% 32 374

RDP
Species

j2| o6 |60 | 62 00 60

2°0 21

1| ¢4 o2 b0, ¢ b

170 152 1°3 1°4

0 ¢02 ¢o¢)1 cbod)z ¢)0¢3 ¢0¢4 }Solvent
0 1 2 3 4
i

FIG. 1. Diagram showing how the individual contributions from the four-
mode RDP model are mapped onto the multimode Maxwell modes used by
Scelsi et al. [41]. See text for description of figure.

HDB6 [41]. From the computed values of ¢;, we calculate
the remaining volume fraction ¢y =1— > ¢;, which is
treated as a solvent. We obtain an effective relaxation time 2
for this mode by fitting to the high-frequency linear visco- g
elastic data giving an effective relaxation time of 5 x 10™*s
corresponding to a solvent viscosity of 641 Pas. The compar-
ison with the measured linear viscoelastic data for HDB6 &
over the frequency range from 1072 to 10?s~! is given ing
Fig. 2. Here, we show the predictions using the original
Maxwell mode spectrum of Scelsi et al. [41] as given in
Table S1 of the supplementary material: This gives a perfect
description of the data. We also show the predictions from
our RDP model. Here, it is evident that there is a good match
to the data, but the process of grouping the Maxwell modes
together into just four RDP Maxwell modes gives a slightly
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FIG. 2. Figure comparing the measured loss and storage moduli of HDB6
(points and circles) at 155 °C with the original Maxwell mode spectrum of
Scelsi et al. [41] (dashes) and our predictions from our RDP model (dots).
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TABLE I. Table showing the volume fractions and relaxation times that
were calculated to match the HDB6 rheology at 155 °C from Ref. [41].

Chain species b T4iS TyiS
Solvent 0.7668 5% 107 5x107*
1 0.0936 0.0231 0.01
2 0.0685 0.2323 0.01
3 0.0456 2.296 0.01
4 0.0256 35.7 0.5

worse prediction of the storage modulus, with the largest dis-
crepancy being at low frequency. The loss modulus predic-
tion from the RDP model is almost indistinguishable from
the original Maxwell modes, which is a result of matching
the viscosities of the lumped modes.

The stretch relaxation times, 7,;, cannot be obtained from
linear rheology but need to be determined from nonlinear
rheology. Since we are aiming only at a qualitative compari-
son with the HDB6 data of Scelsi ef al. [41], the matching of
the HDB6 data will be imperfect. The HDB6 material con-
tains long-chain branches, so the RDP model does not
strictly apply. The values in Table I were chosen so that only
the longest mode, 4, becomes stretched at the highest shear
rates in the simulations and provides an approximate fit to
the transient extensional viscosity of HDB6 at € = 0.3 s7! as
shown in Fig. 3. However, as expected, this does not provide
a good fit to other extension rates.

All the rheology data for HDB6 [41] were measured at
155°C, whereas the crystallization experiments were per-
formed at 125 °C. Consequently, to perform calculations at
this lower temperature, a time-temperature shift occurs,
where all the relaxation times are multiplied by 7.783 [41]
and increase the solvent viscosity to 4996 Pas.

Treating the short chains as a solvent means that they are
no longer included explicitly in the RDP model, which has
the effect of diluting the polymer concentration. To account
for this, it is convenient to renormalize the volume fractions

10° 4
w
<
T €=30
= 107 4 £€=10
« E=
‘ e £=1
. . £=03
e £=0.1
3] . . .
10 . « £=0.03
1072 107t 10° 10! 102

t (s)

FIG. 3. Comparison of the extensional viscosity, n*, for HDB6 (symbols)
with the predictions from our RDP model (lines) at T = 155 °C. It should be
noted that our model is not intended to provide a detailed fit to this data but
does approximately match the degree of extension hardening at £ = 0.3s7.
The figure shows the results, from left to right, for £ = 30 s7h e=10s71,
g=3sLée=1s1ée=03s1,&=0.1s"', andé=0.03s"".

TABLE II. Table showing the renormalized concentration and relaxation
times for each RDP mode used in the simulations at 125 °C along with the
renormalized modulus used.

Chain species <;b,.* TaiS TS G,*;, kPa
1 0.401 0.179 0.0778 107
2 0.294 1.81 0.0778 107
3 0.195 17.9 0.0778 107
4 0.110 292 3.89 107
used in the RDP model as
. &b;
L =T 11
R (11)
with the renormalized modulus given by
. 20
Gy = — ¢ Gy. (12)

The values for the RDP parameters used in the simulations
are summarized in Table II.

lll. POLYSTRAND MODEL

The polySTRAND model [34] provides a close analytical
approximation to the GO model [31,32] calculation of the
rate of crystal nucleation in a flowing polydisperse polymeric &
material. The GO model is based on the premise that flow- g
induced alignment of chain species i produces an additional &
free energy benefit Af; per Kuhn segment for attachment to a
growing nucleus compared to an isotropic orientation. Each ¥
chain species has different degrees of alignment and obtains &
a different benefit. The GO model uses this to define a
Monte Carlo simulation for a growing crystal nucleus, built
from the units of the Kuhn segments of the various chain
species. In contrast, the polySTRAND model considers the
thermodynamic limit of a large number Ny of such Kuhn
segments in the growing nucleus and obtains an (almost)
analytical expression for the free energy F(N7; {¢;}, {Afi})
as a function of nucleus size N7, the free energy benefit Af;
for each chain species, and their volume fraction ¢; in the
melt. (The last two steps of the calculation are numerical: a
solution of one nonlinear equation and a minimization of
resulting free energy over the number of chain strands). This
calculation finds that the composition of the nucleus differs
from that of the background melt, such that species with
more favourable Af; are over-represented in the crystal
nucleus in terms of both number of chain strands and
number of Kuhn segments. Details of this calculation can be
found in the original polySTRAND paper [34] and are sum-
marized in the supplementary material.

For a given set of ¢; and Af;, the free energy barrier
toward nucleation, AF;\ can be computed as the maximum
of F(Nr; {¢;}, {Af;}) with respect to Ny. This free energy
barrier affects the rate of nucleation. For the GO model under
quiescent conditions (no flow), Hamer et al. [48] provided an
accurate analytical calculation of the nucleation rate in terms
of the relevant time-parameter 7y, which is the time scale

90300
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associated with Kuhn segment attachment/detachment. The
polySTRAND model makes use of this prior work by com-
paring AF,, calculated under flow conditions with AF;,
which is the free energy barrier calculated under quiescent
conditions with Af; = 0. The nucleation rate under flow is
then obtained as

N = N, exp (AF; _ AF;), (13)

where the quiescent nucleation rate Nq is found separately
using the calculation of Hamer et al. [48]. It was found that,
with this procedure, the polySTRAND model predicted
nucleation rates in the GO model with a high degree of accu-
racy, overcoming any approximations resulting from taking
the thermodynamic limit.

This calculation gives the nucleation rate per Kuhn step,
whereas experiments measure the rate per unit volume.
Hence, the rate of nucleus formation per unit volume is
given by

N :pKNA, (14)

where py is the Kuhn step density of the polymer.

A. Calculating Af; with finite extensibility

There remains to determine the values of Af; for each
chain species under flow. From the RDP calculation, we
have the structural conformation information for each species
A; from which we can estimate Af;. This depends upon the
degree of alignment at the Kuhn lengthscale, which is
assumed to be proportional to the Kuhn segment nematic
order, P, g ;. In the published polySTRAND model [34], the
bond orientation for species i was calculated as

1
Pacs =5 (A — 1) (15)

where Al(-f:r)lax is the largest eigenvalue of the orientation
tensor A; and N, is the number of Kuhn steps per entangle-
ment. Then, Af; = TPy, with Prg; = Amax/Ne, where T
is a constant of proportionality determined experimentally.
However, using this method, Pk, can take values greater
than one under strong flow, which is unphysical. The calcula-
tion is also inconsistent when finite extensibility becomes
important. Consequently, we propose a modified method
for calculating P,g; that corrects these issues, and the
details of which are presented in the supplementary
material. We reconsider the freely jointed chain calculation
that leads to the force law for finite extensibility used in the
Rolie-Double-Poly model and throughout the literature in
polymer rheology [44,49]. Here, we follow similar reason-
ing to the calculation by Li and Larson [50], which was
developed for measuring bond orientation in bead-spring
simulations of dilute polymers.

The fundamental model, at the level of a tube segment, is a
chain subsection of N, freely jointed bonds each of fixed length
I. We nondimensionalize the force f; acting along the tube axis
for chain species i as X; = f;l/kgT. In the freely jointed chain

model, this force is given by the inverse Langevin function, but
here we use the Cohen approximation [44],

32;
me(li), (16)

X =
where fg(1;) is the finite extensibility function given in
Eq. (2).

We then calculate P, g ; for species i as a product of two
terms, which are as follows: (i) the orientation order parame-
ter of a freely jointed chain segment along the local tube
axis, calculated in terms of X;, and (ii) the orientation order
parameter of tube segments relative to the direction of the
largest principal component of A;. As shown in the
supplementary material, this gives

b _1(X243-3XicothXp\ (Al an
2.Ki — ) Xz /'LlZ ’

1

with X; obtained from Eq. (16). In the limit of strong orienta-
tion and strong stretching, Afﬁax ~ 3A7 and X; becomes large
so that P, x; approaches a value of one, as required.

In the limit of small stretch, Eq. (17) reduces to

Prki=1 0?;\76 (Al = 27): (18)
Comparing with Eq. (15), we see that the form is similar, butfg
the numerical prefactor is smaller, so that when using%
Eq. (17), it becomes necessary to use a larger value of the pro- §
portionality constant I' in Af; =T'P,k; to obtain similarg
results as compared to the original polySTRAND formulation. &

IV. SIMULATION OF FLOW-INDUCED
CRYSTALLIZATION

To use the above models to simulate flow-induced crystal-
lization in a complex flow, we developed an implementation
of these equations using the rheoTool' toolbox within
openFOAM [40].

A. Interpolation formula for the polySTRAND model

Although the polySTRAND model is significantly faster
computationally than the original GO model simulations, it
still requires several numerical steps to compute a free energy
barrier toward nucleation. These are computationally costly
to implement at each point in time and space in a large flow
simulation. Therefore, we seek an efficient way to incorporate
the polySTRAND calculation of the nucleaction rate within
the simulations. We have found that the results of the
polySTRAND model can be precomputed for a reasonable
range of chain orientations and then embedded into
openFOAM via an interpolation formula with a small number
of parameters. This avoids solving the full polySTRAND
model equations at each point in space and time, thus creating
a much more efficient simulation.

We illustrate this methodology for our specific simula-
tions. In Sec. II, we presented a rheological parameterization
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for the HDB6 material, comprising four species of polymer
chain calculated using the RDP model, plus one further
species acting as unoriented solvent and for which, therefore,
Afo = 0. The volume fractions for these five species are
given in the second column of Table I. We use the
polySTRAND model to compute the effect of chain orienta-
tion, deduced from the RDP model, on flow-induced crystal
nucleation rate.

Since at small values the enhancement of the nucleation
rate is exponential in Af;, our proposed interpolation formula
relates the natural logarithm of the normalized nucleation rate
log(N/N,), calculated from the polySTRAND model, to the
free energy change per Kuhn segment, Af;, for each species i.
The formula is a quotient function that comprises two poly-
nomials in Af; for the numerator and the denominator. We
found that quadratic order polynomials were sufficient to
obtain a good fit to the polySTRAND results. The general
structure of this interpolation formula is

<NA> D il + 32D i< bl
log T
q

1 + Zi C,'Afi + Zi ngi d,JAf,Aﬁ ’
In keeping with the observed behavior of the polySTRAND
model, this formula is linear in Af; for small orientations but
approaches an asymptotic value for the nucleation rate at
high orientations when the nucleation energy barrier is
reduced to near zero.

The coefficients a;, by, ¢;, and d;; are fitting parameters
that need to be adjusted for each specific material (i.e., they
depend on the chemistry-dependent polySTRAND parame-
ters, as well as on the specific volume fractions of the com-
ponent species).

Now that we have the volume fractions of our chain
species matched to rheological data, we can calculate the
nucleation rate for various combinations of Af;. There are
certain combinations of Af; that would not occur during our
simulations, so we have reduced the range of the shorter fast
relaxing species compared to the longer chain species. This
allows our fitting procedure to be more accurate.

The range for Afy was 0-0.8. Af3 and Af, were 0-0.3. Afj
was 0-0.2. For each chain species, we used six data points,
which gives 1296 overall data points with the different combi-
nations of Af; taken into account. We perform a least squares
fit to these data using the interpolation formulae, Eq. (19).

Sample results of fitting the nucleation rates obtained from
the polySTRAND model to the above formula are shown in
Fig. 4. These are shown for some specific values of Afj, Af,
and Af; and for the full range of Afy, though (as indicated
above) the fitting was done for a wider set of values of Af;.

19)

B. Logarithmic version of the Schneider rate
equations

The polySTRAND model computes the rate of formation
of nuclei from which crystals grow. We assume that, while
flow accelerates nucleation, the polymer nevertheless crystal-
lizes in a spherulitic structure. At higher flow strengths,
shish-kebab structures are formed, but we assume that this
limit is not reached. With these assumptions, the growth of
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FIG. 4. Figure showing how Eq. (19) captures the enhancement of the nucle-
ation rate as a function of Afj_4. The points show the values of log (%) calcu-
q
lated from the polySTRAND model and the lines show the results of fitting to
Eq. (19). The nucleation rate results are shown for some specific values of Af,
Af>, and Af; as a function of Afy, although the fitting was done for a wider set
of values of Afj_3. The figure shows the fit (progressing from bottom to top)
when Af; = Af, = Afs = 0; Afi = 0.04, Af; = 0.06, Afs = 0.12; Af; = 0.08,
Af, = 0.12, Af = 0.18; Afi = 0.12, A, = 0.18, Afs = 0.24; and Af; = 0.2,
Afy = A3 =0.3.

isolated crystallites is described by Schneider rate equations
[51]. These are given as follows:

DN
Dr

DR

— = 2G;N,

Dt

DS
2 4nG,R.
DT

’

(20)

% = G,

Dt

where % represents the material derivative. All quantities are
per unit volume, V represents the volume of the crystalline
phase, S is the total surface area of the crystallites, R is the
total radius, and N is the number of nuclei. The quantities N
and G represent the nucleation rate per unit volume and the
crystal growth rate, respectively.

Eq. (20) does not account for the impingement between
neighboring crystals, which becomes significant as V
approaches unity. Using the method of Avrami [52], we
define the volume fraction of the crystal phase corrected for
impingement as &,, where

Se=1—exp(=V). 2n

As the rate of nucleation depends exponentially on the
values of Af; this can produce large spatial gradients in the
local nucleation rate N' within the simulation. This occurs par-
ticularly at the wall of the contraction in contraction-expansion
flow. This makes the numerical solution of the Schneider rate
equations, Eq. (20), challenging due to the presence of the
advection terms in the material derivative. This problem can
be mitigated by instead computing with quantities related
to logarithmic functions of variables associated with
crystal growth. In order to form these functions, we need

£0:60:2} G20T 4890100 0}
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TABLE III. Table showing the model parameters for the simulations at T = 125 °C. The growth rate and nucleation rates are for crystallization without flow.

Parameter Value Method

Px 3.04x10* cm™ Calculated using literature data [53]," findings from Matsuyama et al. [54], and Eq. (33)

Pa 0.965 gcm™ Obtained from Matsuyama et al. [54]

M, 1600 g mol~! Literature data and Eq. (35) [55]

Mono 28 gmol™! Literature data®

Ce 6.81 Literature data [53]

My 190.7 g mol™! Calculated using literature data [53]*

N, 8.39 Calculated using literature data and Eq. (34) [53,55]*

7, 9ns Finding from Szanto et al. [56]

7 0.127 ns Calculated using literature data [53,55]," findings from Szanto et al. [56], and Eq. (36)

Pe lgem™ Finding from Martin et al. [57]

r 1.49x107%cm Finding from Zhou et al. [58]

M, 5.35% 10° g mol ™! Calculated using the findings from Martin et al. [57] and Zhou et al. [58]

n* 43400 Obtained by fitting € and us in the polySTRAND model to the form of the nucleation barrier reported by Yi et al. [59] and
to literature data [53,57,58]*

Gy 0.3 um g7! Obtained from Hoffman et al. [60]

Nq 476 x 10780571 Obtained from fitting € and yg in the polySTRAND model to the nucleation barrier found by Yi et al. [59]

Nhet I1x1072cm™3s7! Chosen to provide a floor rate of crystal nucleation in the melt, see Sec. IV B.

To, T'ee 2, 10/3 T’y value suggested by Anwar and Graham [20] from molecular dynamics simulations of a bimodal polyethylene blend.

Here, I'rg is the value adjusted to take account of the numerical factor of 10/3 arising from the change in the calculation of

P,  with finite extensibility.

Carnegie Mellon University, Sample molecular weight calculation (2023), https:/www.cmu.edu/gelfand/lgc-educational-media/polymers/what-is-polymer/

molecular-weight-calculation.html (accessed January 23, 2023).

to define an appropriate scale for each of the quantities
under consideration.

Although, in principle, using the quiescent nucleation rate
for the scales for each quantity in the Schneider rate equations
is the logical choice, the quiescent nucleation rate, pKNq, in
our example is of order 107> cm~3s~!. This vanishingly
small rate is far too small to provide a sensible scaling. In
practice, this means that the energy barrier to nucleation is
such that any nucleation events under quiescent conditions
will be from heterogeneous rather than homogeneous nucle-
ation. We can, therefore, add an additional rate of nucleation
Npe to tepresent the heterogeneous nucleation rate per unit
volume. Provided that the value of Ny is sufficiently low that
it does not lead to the growth of a significant number of crys-
tallites on the time scale of the simulations, its value does not
affect the flow-induced acceleration. In the following calcula-
tions, we include a heterogeneous nucleation rate of
Niet = 1 x 1072cm™3 s~!, which is sufficiently small to not
produce significant crystallization but is much larger than the
quiescent homogeneous nucleation rate. With the inclusion of
this heterogeneous nucleation rate, Eq. (20) becomes

DN

B = N + Npet. (22)

The inclusion of Ny, therefore, provides a floor for the
nucleation rate in regions where N is effectively zero. In such

regions, the expected number density of crystal nuclei
formed is given by

N, = Nheltchara (23)

where #4,,; 1S a characteristic simulation time.

Using N,, we can define a new dynamical variable

N
uy — 10g(1 + ]7), 24)

such that

602} G20T 48903100 0}

N =N.(e™ — 1). (25) 8

Substituting this into the first of the Schneider rate equations,
we obtain an evolution equation for uy in the form

160 A
140 A
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[
Q9
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©
o
_5 80
o=
b
< 601 N .
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z Af,=0.51,Af;,=0
40 A Af,=0.51, Af; =0.043,Af,, =0
Af, = 0.51, Afy = 0.043, Af, = 0.042, Af, = 0
20 Af, = 0.51, Afy = 0.043, Af, = 0.042, Af, = 0.03
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FIG. 5. Graph of nucleation barrier as a function of nucleus size Ny (in
units of number of Kuhn segments) as predicted by the polySTRAND
model. This shows how each of the different chain species in the polymer
melt reduces the nucleation barrier. Each chain species contributes in a
non-trivial way, highlighting the importance of taking all the species into
account in our calculations of the nucleation barrier. This figure shows
the results, from top to bottom, for Af; =0, Afi_3 =0, Afs =0.51,
Afi—, =0, Afs = 0.043, Afy = 0.51; Afi =0, Af, = 0.042, Afs = 0.043,
Afy = 0.51; and Af) = 0.03, Af, = 0.042, Afs = 0.043, Afy = 0.51.
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FIG. 6. This image shows the dimensions for our computational domain.
Inspiration taken from Ref. 41.

DMN N + Nhe{
—_— = 26
Dt N, e¥n (26)
The subsequent Schneider rate equations can be treated in a
similar way.
For R, we define a typical scale as R, = N hethtczhaI and

R
Ug = log<1 + R—C>, 27
where
D 2G;N
ZUR _ 25 (28)
Dt R.e'r

Medium

Coarse

FIG. 7. This figure shows the mesh block structure and the zoomed in view
of the contraction region for different mesh resolutions.
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TABLE 1IV. Table showing the different mesh statistics for the coarse,
medium, and fine meshes.

Coarse mesh Medium mesh Fine mesh
Points 346 562 1381122 1941402
Cells 172 000 688 000 968 000
Faces 689 280 2754 560 3874700
Internal faces 342720 1373440 1933300

Similarly, for S, we define S, = Npet G223, such that

s “char?
S
us =log( 1 +—1, 29)
Se
satisfying
Du 4nG,R
o _ T (30)
Dt Scets
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FIG. 8. Line plots showing how the logarithmic measures of crystal number
and volume fraction, uy and uy, respectively, vary across the narrow
part of the contraction as a function of distance from the symmetry line, for
Q = 1.68mm?s~! and r = 10s. Both quantities have a maximum at the wall
and decrease toward the center line with convergence with mesh refinement
seen for both functions. The x-axis represents the distance from the symme-
try line set at 0. Both plots show the results, from top to bottom, for the fine,
medium, and coarse mesh.
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TABLE V. Table showing the different flow rates used in the simulations
along with the corresponding pressure drop.

Q(mm?s™) AP (MPa)
1.26 9
1.68 10.5
2.19 12
2.62 135

Finally, for V, we define V. = N G314 with

\%
uy zlog(l +Vc) G1)
so that
DuV GsStot
—— = 32
Dt V. et (32)

C. Crystallization model parameters

The polySTRAND flow-induced crystallization model
requires a number of parameters, which are known to varying

-04 -03 =02 -=0.1 0.0

X (mm)

-0.7 =06 =05

-04 -03 -0.2 -0.1 0.0

X (mm)

-0.7 -0.6 -0.5

FIG. 9. Line plots showing the magnitude of the z-component of the veloc-
ity along with its gradient in the x-direction across the narrow part of the
constriction for the four different flow rates investigated at = 10s.
The x-axis represents the distance from symmetry line along the center of the
contraction. In both figures, the lines show the results, from top to bottom,
for Q =2.62,Q=2.19,Q =1.68, and Q = 1.26.
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degrees of certainty [34]. We consider the parameters in the
model relevant to the case of polyethylene at 125 °C, as used
in the experiments of Scelsi et al. [41].

The density of Kuhn segments is given by

7paNA

PK= (33)

where p, is the amorphous density of the polymer, Ny4 is the
Avogadro number, and Mk is the Kuhn molecular weight
found from Mg = MnonoCo, Where Mpono is the monomer
molecular weight and Co, is the characteristic ratio.

The number of steps per entanglement segment is given
by

(34)

1.54

\

-0.6

1.0 A

-04 -03 -0.2 =01 0.0

X (mm)

-0.7 -0.5

1.0

-04 -03 -0.2 -01 0.0

X (mm)

-0.7 -0.6 =05

FIG. 10. Line plots showing the stretch for the different chain species at a
flow rate of Q = 1.68mm?s~" and also the values of A4 for the different
flow rates at = 10s. The line plots show the change in these variables from
the wall of the contraction region to the center of the channel across the
center of the contraction. The x-axis represents the distance from the center
of the contraction. The top figure shows the results, from top to bottom, for
Aa, A3, A2, and A;. The bottom figure shows the results, from top to bottom,
for Q =2.62,Q=2.19,Q =1.68, and Q = 1.26.
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where M, is the entanglement molecular weight calculated
via

PRT

M, = ,
e GR,

(35)

where R is the real gas constant, T is temperature, and G?v is
the plateau modulus.

We also need to obtain parameters governing the quies-
cent nucleation kinetics so that we can predict FIC using the
polySTRAND model. The monomer attachment time, 7y, is
given by projecting the entanglement time 7, down to the
Kuhn step length scale,

Te

N (36)

To "R Tg =

The form of the quiescent nucleation barrier is found from
the quiescent free energy of crystallization per monomer, €g,
and the surface energy cost, ug, which are chosen to match
the literature data for the quiescent nucleation rate, N,, and
critical nucleus size, n”*. The latter can be estimated via

37

where the mass of the critical nucleus (assumed to be spheri-
cal) is M,» = 4rnp_N, Ar,3 /3, for lamella thickness 2r; and
crystal density p,. Values for n* and N 4 were available in the
literature, and these can then be matched in the model by

1.000e+00 1.496 2.243

Ay

adjusting the parameters €g and ug given the known value
for 7.

Estimates for the spherulitic growth rate, G;, can be
obtained from the literature. Likewise, values for the prefac-
tor I that relates Af to P,; are suggested in the literature
[20,34]. Note there is a need to distinguish between I'y for
the original model and T'rrg when finite extensibility is
included as discussed in Sec. II A above. There is some
debate over the choice of I', and further details are given in
Sec. VC.

Table III gives a summary of the parameter values used
and the methods and references used to determine them.

We now examine how the effect of flow changes the
energy barrier to nucleation. The nucleation rate is related to
the nucleation barrier via an exponential function. Therefore,
flow can have a dramatic effect on the nucleation rate. In a
polydisperse melt, each chain species needs to be taken into
account to get an accurate prediction of the nucleation
barrier.

Figure 5 shows how each of the different chain species in
our polymer melt contributes to the reduction in the energy
barrier. The values chosen for Af; in Fig. 5 are the maximum
values for Af; obtained from a simulation in Sec. VB
(Fig. 13). This illustrates how flow dramatically reduces the
nucleation barrier within the melt in our simulations.

Figure 5 shows that the barrier to nucleation decreases by
multiple order of kgT due to the flow. The critical nucleus
size also decreases by a factor of 20 to roughly 1500 mono- 3
mers. A large proportion of this reduction is due to thegc’)
longest chain species, and the rest is a result of the remaining g

£0'60:2} 20T
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FIG. 11. This figure shows how the A, parameter changes due to the flow rate of the different simulations at r = 10s. As expected, most of the activity is in
the contracting region. The tables underneath the contour plots show the maximum value for 4; for the rest of the chain species in the different simulation runs.
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three smaller chain species. Although the contribution of the
smaller, fast relaxing, chain species may appear insignificant
when compared to the long-chain species, these small chain
species make up a larger volume fraction of the melt so do
contribute to the reduction of the energy barrier in a nontriv-
ial way.

D. Contraction geometry

For our investigation, we chose to look at the effects of a
contraction expansion geometry based on the experimental
study conducted by Scelsi er al. [41]. The dimensions used
for the geometry are shown in Fig. 6. The mesh is oriented
such that in a Cartesian coordinate system, the z-axis repre-
sents the vertical direction and the x-axis is the horizontal
direction.

Since the geometry is symmetric about the center line,
only half of the contraction geometry needs to be calculated.
The fluid flow is developed by imposing a non-zero pressure
difference between the inlet and the outlet with no-slip boun-
dary conditions applied at the walls, with linear extrapola-
tion' used for the boundary conditions for the conformation
tensors at the wall.

Figure 7 shows the overall block structure of the mesh
along with a view of the contraction region for three different
mesh resolutions. The summary statistics for each mesh are
given in Table IV.

The variables that are most sensitive to mesh resolution
are from the Schneider rate equations. The line plots in Fig. 8
show how logarithmic measures of crystal number and
volume fraction uy and uy develop across the center of the
contraction from the wall to the symmetry-line of the contrac-
tion for different meshes. There is convergence of our solu-
tions for both quantities in the contraction region as the mesh
resolution increases.

V. RESULTS

In this section, we discuss the results from a set of simula-
tions in which the rheology model detailed in Sec. 1 is com-
bined with the flow-induced crystallization implementation
detailed in Sec. 2, for prediction of crystallization under
flow. We first consider the flow dynamics and then how this
affects the crystallization dynamics. We compare our results
qualitatively with those of Scelsi ef al. [41].

The flow is driven by imposing a nonzero pressure dif-
ference between the inlet and the outlet. Table V shows
the four different values used for the pressure drop and the
corresponding area flow rate since the simulation is
two-dimensional.

A. Polymer flow configuration

Figure 9 shows the magnitude of the z-component of the
velocity and its gradient in the x-direction across the narrow
part of the contraction. The latter is the dominant contribu-
tion to the shear rate in the contraction region. The results are
shown for four different flow rates at the end of the simula-
tion (t = 10s) where the flow has reached steady state;
however, the crystallization kinetics are continuously
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developing. As expected, the highest shear rates are found at
the wall of the contraction region decreasing to zero at the
center line of the geometry.

We next examine the stretch, A; = 1/34/TrA;, of each
species within the blend. The upper plot in Fig. 10 shows
the stretch, 4;, of the different chain species at flow rate
0 =1.68mm?>s™! at r = 10s across the contraction. From
Fig. 9, we can observe that the wall shear-rate is around
15 s~!, which is sufficient to produce significant extension of
the slowest chain species, since 7,4 = 0.5, but not of the
three faster modes. The lower plot in Fig. 10 shows how the
stretch of the slowest chain species, A4, varies with the flow
rate. In all cases, we can see that the stretch is largest at the
wall for all chain species and decreases toward the center
line. However, A4 does not decrease to unity on the center
line, demonstrating that there is stretch of this chain species
due to the extensional deformation induced by the contrac-
tion. Nevertheless, the largest contributing factor to the

i
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FIG. 12. The top line plot shows how Af; develops across the contraction
when Q = 1.68 mm?s~! and ¢ = 10s. The bottom line plot shows how Af;
develops across the contraction for the four different flow rates investigated
at t = 10s. The line plots show the change in these variables from the wall
of the contraction region to the center of the channel in the middle of the
mesh. The x-axis represents the distance from the center of the mesh, where
the center is set at 0. The upper plot shows the results, from top to bottom,
for Afa, Afs, Af>, and Af;. The lower plot shows the results, from top to
bottom, for Q =2.62, Q =2.19,Q = 1.68, and Q = 1.26.
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Q=1.68 \ Q=2.19 |

Max Af Chain Species | Max Af
1

1 0.025 1 0.03 0.035 0.038
2 0.037 2 0.042 2 0.046 2 0.049
3 0.038 3 0.043 3 0.047 3 0.05
4 0.42 4 0.51 4 0.59 4 0.65

FIG. 13. This figure shows how the contraction affects the Afy parameter at the end of the simulations for the different flow rates at # = 10s. The tables under-

neath give the maximum value for Af; for the rest of the chain species in each simulation.

stretch is the shear rate at the wall, rather than the extension
rate along the center line.

Figure 11 provides contour plots of A4 for the entire simu-
lation domain after a time of 10 s for each of the flow rates.
Although the largest values occur near the wall at the center
of the contraction, where the largest shear rates occur, advec-
tion by the flow leads to the formation of a “fang” of
stretched material downstream corresponding to the birefrin-
gence structures report by Lee ef al. [61]. This suggests that
the majority of the crystal nucleation will occur at the wall of
the contraction region with crystals advecting from this
region. We also observe a broader region of stretch within
the contraction due to the extensional flow. As noted above,
the strain rates are not sufficient to induce large stretching
of the other chain species, whose maximal values are given
in the tables underneath each picture.

B. Crystallization dynamics

Having determined the polymer conformation from
solving the flow for the RDP model, we can now proceed to
calculate how this changes the rate of nucleation. The upper
plot in Fig. 12 shows the free energy change per Kuhn
segment, Af;, across the center of the contraction for each of
the chain species when Q = 1.68mm?s~! and ¢ = 10s. As
might be expected, these results mirror the corresponding
values for A; of the different chain species shown in Fig. 10
with the largest values of Af; found at the wall and decreasing
toward the center line. It is important to note that although
the change in free energy corresponding to the longest chain

990300 01

species, Afy, is largest, Af; # 0 for all four chain species. As

a consequence, all chain species contribute to the reduction &
of the nucleation barrier as shown in Fig. 5. The lower plot ¥
in Fig. 12 shows how Af; develops across the contraction for §
the four different flow rates investigated.

Figure 13 provides an equivalent contour plot to Fig. 11
for the values of Afy at + = 10s. The tables beneath each
picture show the maximum value of Af; for the remaining
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FIG. 14. Line plot that shows the comparison of the uy parameter for the
different flow rates at r = 10s. This line plot shows the change in uy from
the wall of the contraction region to the center of the channel in the middle
of the mesh. The x-axis represents the distance from the center of the mesh,
where the center is set at 0. The lines show the results, from top to bottom,
for Q =2.62,Q=2.19,Q=1.68, and Q = 1.26.
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FIG. 15. This figure shows how the development of uy changes for the different flow rates at t = 10s.

chain species. The spatial distribution of Af; mirrors that
found for the chain stretch, with the highest values occurring
at the wall of the contraction region owing to the strong
shearing forces present in this region. Afy is largely being
unaffected before the contraction. It is important to note that
the nucleation rate increases exponentially with the change in
free energy. Hence, we expect that all accelerated crystal
nucleation will originate in the contraction and be advected
from there, with crystal growth occurring downstream.

Figure 14 shows how uy = log(l + N/N,), which mea-
sures the number density of crystal nuclei, varies across the
center of the contraction from the wall to the symmetry line
at t = 10s. The largest values of uy are found at the wall of
the contraction due to the large values of Af;. uy decreases
toward zero away from the wall. Although the values of Af;
remain above zero away from the wall, this is insufficient to
provide a significant increase in the rate of nucleation when
compared with the heterogeneous background rate and when
compared to the time taken for the polymers to advect
through this region. Close to the wall, not only is the nucle-
ation rate higher, but the no-slip boundary condition means
that the polymers have a longer residence time in this region,
giving greater time for nuclei to develop.

Figure 15 shows the distribution of uy throughout the
flow domain after + = 10s. At low flow rates, crystal nucle-
ation is confined to the narrow region of fluid that has been
advected from the wall of the contraction where the strong
shear results in an increase in the nucleation rate, N. This
characteristic “fang” shape forms along a streamline of the
flow and is seen in the experiments of Scelsi et al. [41]. This
“fang” lengthens and becomes more prominent as the flow
rate increases since the increased flow increases the distance
travelled by the polymers from the onset of the flow. There is
also a broadening of the crystal nucleation region further into
the bulk flow as flow rate increases. This can be attributed to

the higher extension rate at the higher flow rate, meaning that
extension contributes more to the deformation of polymer
chains at the higher flow rates, hence leading to more nucle-
ation further away from the wall in the bulk. 3
We next examine uy, the logarithm of the volume fraction §
before correction for impingement. Figure 16 shows the%
development of uy from the wall of the contraction to the $
center of the mesh at 7 = 10s. Compared to the correspond- ¥
ing figure for uy, Fig. 14, the large values are more closely &
confined to the region near the wall. This is because, in addi-
tion the number of nuclei being larger, the fluid velocity is
slower giving a longer residence time for the crystals to grow
before being advected downstream. Figure 17 compares the
distribution of uy at t = 10s. The spatial distribution of uy is
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FIG. 16. Line plot that shows the comparison of the uy parameter for differ-
ent speed simulations at # = 10s. The line plot shows the change in uy from
the wall of the contraction region to the center of the channel in the middle
of the mesh. The x-axis represents the distance from the center of the mesh,
where the center is set at 0. The lines shows the results, from top to bottom,
for Q =2.62,Q=2.19,Q =1.68, and Q = 1.26.
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FIG. 17. This figure shows how uy changes when the flow rate is changed in each of the four different cases investigated at r = 10s.

almost identical to that of uy, with highest level of crystal
development occurring at the wall of the contraction with
advected crystals continuing to grow as they are advected
downstream. The characteristic “fang” shape is again present
and becomes more defined with increasing flow rate.

This then gives us the platform to look at the results of the
experimentally measured volume fraction, &;, that is cor-
rected for impingement of crystals. Figure 18 compares the
distributions of & at t = 10s. This shows that true volume
fraction of crystals as would be observed experimentally,
unlike uy that is on a logarithmic scale. The observable crys-
tallization is confined to the “fang” of material that has been
advected downstream from the wall of the contraction.

0.000e+00 0.25

T e —

S
0.5

The “fang” structure becomes more defined with increasing
flow rate and also grows in length. The latter is partly a con-
sequence of comparing the results at a fixed flow time (rather
than at fixed volumetric flow) so that at higher flow rates the
crystals get advected further down stream. This localization 2
of crystallization to the “fang” is precisely where crystalliza- &
tion is found experimentally [41]. However, we observe crys-
tallization at lower flow rates than observed in experiment.
There are a number of potential reasons for this discrepancy.
First, as noted in Sec. Il A, the RDP model does not strictly :
apply to the polyethylene melt used in the experiments,
which contains some long-chain branches. In particular, the
choice of stretch relaxation times does not capture that

£0:60:Z} 5202 429030
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FIG. 18. This figure shows how &, develops for the different flow rates at # = 10s.
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FIG. 19. This figure shows how variation in I' affects the profile of ; when Q = 1.68.

transient extensional viscosity over the range of extension
rates. Smaller values of 7,; would shift the onset of flow-
induced crystallization to higher flow rates, but the spatial
distribution would remain the same. There are also several
parameters in the polySTRAND model, whose values are
only known approximately, but which affect the magnitude
of flow-induced nucleation. Notably among these, I" is the
constant of proportionality that relates the Kuhn segment
nematic order parameter, P,g;, to the crystallization free
energy change per Kuhn segment, Af;.

C. Variation of the I' parameter

In the polySTRAND model, the free energy of attachment
of each chain species Af; is assumed to be proportional to the
Kuhn segment nematic order parameter P, ; with constant
of proportionality I'. In the original polySTRAND paper
supplementary material [34], it is suggested that I" should be
of order 1 with its value chosen to fit to experimental mea-
surements on FIC. A value of I" = 0.65 is suggested for poly-
ethylene based on MD simulations that provide a direct
calculation of P,g; . However, as these MD simulations
combined the carbon and hydrogen atoms for computational
efficiency, this may give rise to a discrepancy between these
results compared to experimental results for polyethylene.
We also note that our new method of calculating P, g ;, given
in Sec. IIT A, results in a factor of 3/10 in the small stretch
limit given by Eq. (18), as compared to the original
polySTRAND model [34]. This suggests that I', using our
new calculation, should be a factor of 10/3 larger than the
value of T" from the original polySTRAND model. To
account for this increase, we chose a value of I" = 2 for our
simulations presented above. However, given the uncertainty
in this estimate we now consider how changes to I affect the
prediction of crystallisation.

The prediction for the crystal volume fraction & for three
different values of T'=1,2, 10/3 are shown in Fig. 19.
Since I' is the constant of proportionality between Af; and .
P, g, increasing I" produces an exponential increase in the§
rate of flow induced nucleation. As a consequence, predic-%
tions of the degree of FIC, but not its location, are very sensi- %
tive to the value of this parameter. In particular, it can be 3
seen that if T" is reduced to unity we no longer 0bserve§
crystal formation at this flow rate. This may partially explain ™
why our simulations with I' = 2 predict the onset of FIC at
lower flow rates than found in experiment.

VI. CONCLUSION

The aim of this paper was to demonstrate that it is possi-
ble to use molecularly informed coarse-grained models to
predict flow-induced nucleation within a complex flow
geometry for a polydisperse polymer melt by combining the
RDP and polySTRAND models. Implementing this model
within the RheoTool within OpenFOAM required a number
of key developments, including modifications to the underly-
ing models. These are as follows:

1. Our reason for using the RDP model is that it accounts
for interactions between polymers of differing lengths,
which are not present in models that use a simple super-
position of stress contributions. As a result, its linear rhe-
ology does not reduce to a simple superposition of one
Maxwell modes per component but is instead given by
double reptation. Hence, we needed to develop a proce-
dure for mapping from a Maxwell mode fit to linear rhe-
ology data onto a discrete set of RDP model species. This
was achieved via matching the modulus and viscosity of
combinations of the Maxwell modes to determine the
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corresponding volume fraction and reptation relaxation
times of the RDP species.

2. Another challenge with the RDP model is that the number
of constitutive variables increases with the square of the
number of chain species, and since these evolution equa-
tions are coupled, they cannot be assembled using the
existing multimode functionality in RheoTool. It was,
therefore, necessary to find a way to automatically gener-
ate the constitutive equation code of the RDP model for a
general number of chain species. This was achieved using
a script that generates the RheoTool files for the RDP
constitutive equations for n chain species.

3. The key parameter required from the RDP model to input
into the polySTRAND model is a prediction of the bond
orientation distribution P; x from the configuration tensor.
We found that the formula for obtaining P, ¢ used in the
original polySTRAND model [34] was not consistent
with finite extensibility of the chain, which meant that in
a strong flow it was possible for P, ¢ to exceed unity. To
resolve this, we provide a consistent calculation for Pk
using a similar approach to Li and Larson [50] but
applied to entangled polymer melts.

4. Previously, the polySTRAND model had only been
applied to spatially homogeneous flows [34]. Although it
is computationally far less intensive than other coarse-
grained methods that retain molecular detail, such as the
GO model [31], it still requires three nested nonlinear
numerical procedures: a solution of a nonlinear equation,
which is performed at every point of a minimisation over
the nucleus aspect ratio, all of which is finally maximized
over nucleus size to find the nucleation barrier. Instead of
performing this calculation at each point in space and
time, we were able to increase the efficiency of our simu-
lations by using a precalculated interpolation function,
Eq. (19) for the nucleation rate as a function of Af;.

5. Having determined the rate of nucleation, the final part of
the calculation is to calculate the growth of the crystallites
from the Schneider rate equations [51]. A computational
challenge here is that the nucleation rate depends expo-
nentially on local changes in chain conformation free
energy and can be highly localized resulting in large
spatial gradients in the number and volume density of
crystals. To mitigate numerical errors associated with
advection, we used logarithmic functions of these quanti-
ties for calculating their evolution. This increases the
numerical stability of our simulations.

As a demonstrator of this methodology, we considered
flow-induced crystallization within the contraction expansion
geometry considered by Scelsi et al. [41]. Our model predicts
accurately the location of the crystallites, which are confined
to highly localized “fangs” that result from material advected
downstream from the high shear region near the wall of the
contraction. This demonstrates that in this geometry it is
shear rather than extension that induces the vast majority of
the nucleation. Our simulations do, however, underestimate
the flow rates required to observe crystallization relative to
experiments. The exponential dependence of the rate of crys-
tallization on free energy associated with chain configuration

means this onset flow rate is very sensitive to model parame-
ters whose values we do not know precisely, without further
experiments.

The goal of our work is that such model parameters
should depend only on the local chemistry of the material,
i.e., the monomer type. Once these parameters are known,
this modeling approach should be predictive of the effects of
molecular weight, long-chain branching, and flow. While
there are multiple such parameters required for a full descrip-
tion, the number is not so large to be beyond reach to deter-
mine these through experiment and simulation; we hope that
this acts as a prompt for further investigation.

Further enhancements to this model would be to allow for
variations in temperature and also to account for changes in
melt rheology as a result of crystallization. In their model,
Roozemond et al. [27] accounted for rheological changes
through an empirical scaling of the modulus as a function of
crystal volume fraction. More recently, Andreev and
Rutledge [62] provided a slip-link model for a partially crys-
tallized entangled polymer melt by introducing additional
cross-links to represent molecules tied between developing
crystallites. As well as changes to the rheology of the melt,
there will also be compositional changes as longer chains
will be disproportionately incorporated into crystallites,
which will reduce their concentration within the melt phase.

SUPPLEMENTARY MATERIAL

O 0L

See the supplementary material for details of (I) the fitting &
of the Rolie-Double-Poly model to linear rheological data%
given by a set of Maxwell modes, (II) the polyfSTRAND §
model calculation, and (III) the derivation of our new expres- ¥
sion for the Kuhn segment orientation using the freely &
jointed chain model.
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