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ABSTRACT
Aim: This study investigated how human activities and local environmental variables shape tree assemblages (species com-
position in a defined location), comparing their effects on edible and inedible tree species. Three hypotheses were tested: (1) 
Environmental filtering impacts spatial beta-diversity more than dispersal limitation; (2) human activities significantly influ-
ence regional tree beta-diversity; and (3) predictors of beta-diversity differ between edible and inedible species.
Location: Tropical forest in Nigeria and Cameroon in West and Central Africa.
Methods: Tree data were collected between 2002 and 2019 from 66 forest plots. Species were categorised as edible and inedible 
by humans using interviews and online databases. Pairwise beta-diversity (partitioned into total beta-diversity and turnover) 
between plots was analysed using Generalised Dissimilarity Models (GDMs) with geographical distance, plot-specific variables 
(forest composition, climate, elevation, stem density, human influence indicators), and human influence indicators (distance to 
closest human presence [DCHP], and nearest anthropogenic edges [DNAE]) as predictors.
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Results: The dataset included 236 edible species (11,097 stems) and 472 inedible species (17,202 stems), with high species turn-
over (> 90%) dominating beta-diversity patterns. Due to local plot-level factors, environmental filtering (deviance explained for 
all species: 37.4%, edible: 18.9% and inedible: 31.4%) exerted greater influence on species assemblages than geographical distance 
alone. Beta-diversity drivers differed between edible and inedible species: elevation strongly influenced turnover in inedible spe-
cies, whereas forest composition significantly shaped the assemblage of edible species, reflecting patterns of human-mediated 
species selection and species dominance. Human presence impacted the overall beta-diversity of inedible species but only influ-
enced the turnover component of edible species.
Main Conclusions: Tree assemblages in the Nigeria–Cameroon forest region were primarily structured by local environmen-
tal conditions and human activities rather than by dispersal limitation. Effective conservation should incorporate sustainable 
human activities and traditional ecological knowledge, with further research needed to explore the long-term anthropogenic 
impacts on these forests.

1   |   Introduction

Forest biodiversity and forest function are rapidly changing 
at local, regional and global scales due to large-scale habitat 
loss and modification from anthropogenic activities (Bush 
et  al.  2015; Clement et  al.  2015; Helmus et  al.  2014; Jarzyna 
and Jetz  2018; McMichael et  al.  2017; Piperno et  al.  2015; 
Stahl 2015; Steadman 1993). Anthropogenic activities such as 
selective harvesting, illegal logging, clear-cutting for agricul-
tural purposes, foraging of fruit/seed for food, planting and 
conservation all modify the composition and distribution of 
species in tropical forests (Asuk et  al.  2022; Benchimol and 
Peres 2013; Elo et al. 2018). The form and magnitude of these 
impacts can vary depending on forest utilisation (e.g., for 
food, timber, medicine), intensity of use, duration of human 
activity and the type of species being utilised (Adeyemi 2016; 
Adnan et al. 2015; Aigbe and Omokhua 2015; Asuk et al. 2023; 
Jimoh et al. 2012). Investigations into the effects of anthropo-
genic activities on forest biodiversity have focused primarily 
on high-intensity human activities, such as logging, farming, 
infrastructure development and other activities that result in 
deforestation, fragmentation and forest degradation (Alahuhta 
et  al.  2017; Donoso et  al.  2017; Gallardo-Cruz et  al.  2009; 
García-Navas et al. 2020; Swenson et al. 2011). However, grow-
ing evidence suggests that low-intensity human activities such 
as foraging for food, selective species conservation, dispersal 
of seeds of desirable species (e.g., with human-edible fruits) 
and enrichment planting may modify forest ecosystems more 
than previously thought and thus potentially affect ecological 
and macroecological patterns (Asuk et  al.  2023; Chaturvedi 
et  al.  2017; Levis et  al.  2017; McMichael et  al.  2017; Piperno 
et al. 2015; Singh et al. 2022).

Low intensity human activities can intentionally or unintention-
ally have long-lasting effects on the forest (McMichael  2021). 
These ecological legacies from human activities might vary de-
pending on the species and the intensities of their utilisation (en-
richment or depletion) and ultimately induce post-disturbance 
succession affecting the trajectory of ecosystem processes 
over time (Asuk et al.  2023; McMichael 2021). Historical low-
intensity activities, such as deliberate planting and conservation 
of preferred tree species and selective logging, leave ecological 
legacies that have been linked to the modern floristic composi-
tion and structure of some areas of natural forests in Amazonia 
(Bousfield et al. 2023; Levis et al. 2017; McMichael 2021).

African forests harbour biodiversity hotspots with numerous 
endemic species (Agaldo et  al.  2016; Myers et  al.  2000; Oates 
et al. 2004; Seifert et al. 2022) and regulate the global climate by 
absorbing atmospheric carbon dioxide, thus mitigating climate 
change effects (Artaxo et  al.  2022; Hubau et  al.  2020; Núñez 
et al. 2022; Oyewole et al. 2019). In addition, African forests con-
tribute to water cycle regulation, soil conservation, agricultural 
support during crop failure and ecological balance (Meinhold and 
Darr 2022; Raj et al. 2022). Evidence from long-term studies re-
vealed that African forest species are more resilient to the impacts 
of El Niño-related droughts (Bennett et  al.  2021, 2023; Choury 
et al. 2022; Sullivan et al. 2020) and have a more stable carbon sink 
than Amazonian forests (Hubau et al. 2020). Although climate im-
pacts forest ecosystems differently, these findings suggested that 
spatial and temporal changes in the composition of Afrotropical 
forests could be due to factors other than climate. Understanding 
the processes which have shaped the forests in Africa is essential 
for developing effective conservation and management strategies. 
Yet, these forests remain largely understudied, particularly in 
terms of spatial plant composition patterns, and the effects of low-
intensity human impacts on such patterns.

The impact of low-intensity drivers on tropical forest composition 
can be assessed indirectly through the analysis of spatial beta-
diversity, defined as the dissimilarity in species composition be-
tween two or more communities separated in space (Anderson 
et  al.  2011; Asuk et  al.  2023; Biswas and Mallik  2011; Bush 
et al. 2015; Pound et al. 2019; Roberts et al. 2021; Singh et al. 2022). 
This is because the patchiness of human activities such as forag-
ing, preferential planting and deliberate conservation within the 
forest, leaves imprints on spatial patterns of species composition.

Spatial beta-diversity has been successfully used to analyse dif-
ferences in tree species composition within and between forests 
(Condit et al. 2002), as well as to identify key drivers of spatial 
dissimilarity in the community composition of forest plots in 
Oban Forest in Nigeria (Asuk et al. 2023). Regarding the latter 
study, the impact of low-intensity anthropogenic activities on tree 
species diversity was assessed by comparing different ecological 
patterns in tree species that were foraged for food by humans 
and those that were not (Asuk et al. 2023). It was found that spa-
tial beta-diversity patterns and patterns of relative species abun-
dance varied according to the use of the tree species by humans 
(i.e., those utilised for food and those not utilised for food). In 
particular, species used for their fruits, nuts and seeds (edible) 
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showed no trends in spatial beta-diversity, while inedible species 
showed marked differences in species composition across space 
due to turnover across an elevational gradient (Asuk et al. 2023). 
This highlighted a potentially pervasive impact of low-intensity 
human foraging practices on tropical forest composition. For ex-
ample, humans may disperse the seeds of edible species across 
the landscape and conserve those trees by not cutting them for 
timber due to the fruits or seeds that they produce being highly 
valued as food sources, thus reducing spatial beta-diversity. 
Similarly, with timber harvest, certain species of trees are cut 
down, but some tree species with food value remain in the forest 
estate or within old, abandoned farm estates (Asuk et al. 2023; 
Ellis et al. 2021; Jansen et al. 2020; Levis et al. 2017). However, 
the pervasiveness of these effects across tropical ecosystems in 
West Africa at larger scales is largely unknown.

While there have been numerous ecological studies on the 
spatial beta-diversity of forest tree species, these have mostly 
focused on identifying high-intensity drivers of dissimilarity 
at global scales, as well as being mainly focused on temperate 
forests, with less work focused solely on tropical forests (Aspin 
et al. 2018; Barnagaud et al. 2017; Biswas and Mallik 2010, 2011; 
Devictor et  al.  2010; Fu et  al.  2019; García-Navas et  al.  2020; 
Herault et al. 2010; Jarzyna and Jetz 2016; Lueder et al. 2022; 
Swenson et al. 2011; Waddell et al. 2020; Zambrano et al. 2020). 
In addition, due to the rugged topography and remote nature of 
some West African forests, the intensity of impact from human 
activities on the ecosystem may vary depending on the acces-
sibility of these forests to people (Asuk et  al.  2023). As such, 
whether similar patterns to those observed by Asuk et al. (2023) 
in Oban Forest, Nigeria, hold at larger, regional and interna-
tional scales remains unclear.

Here, we use plot data from eight National Parks and Forest 
Reserves across Nigeria and Cameroon, which have continuous 
forests with varied human access and elevational variability 
and include some of the most diverse forests on the continent, 
to test the effect of low-intensity human impacts on spatial beta-
diversity at a regional scale. We focus on the Nigeria–Cameroon 
region, a system that is threatened and poorly researched, yet 
remains one of the most culturally and biologically diverse forest 
regions in tropical Africa (Fotang, Bröring, Roos, Enoguanbhor, 
Abwe, et al. 2021a; Fotang, Bröring, Roos, Enoguanbhor, Dutton, 
et al. 2021b). The forests where our plots were established have 
been exposed to varied intensities of human activities, ranging 
from farming, logging, fire and gathering non-timber forest 
products before they were made National Parks and Reserves 
(Choury et  al.  2022; Funoh  2014; Owono  2001; Rainforest 
Foundation UK  2016). Despite the creation of National Parks, 
these forests still face immense pressure from the inhabitants of 
hundreds of villages that rely on the forest for their livelihoods, 
thus impacting the forest in different ways.

The pressure on forest resources for human livelihoods, in com-
bination with other variables such as forest composition, climate 
variables, elevation and other plot-level variables, contributes to 
the process of environmental filtering, and thus the signal of such 
pressure is potentially visible in spatial patterns of tree species 
assemblage composition (Adnan et  al.  2015; Asuk et  al.  2023; 
Malizia et al. 2020; Verrico et al. 2020; Yano et al. 2021). In addi-
tion, variation in species composition across space is influenced 

by dispersal limitation (Mokany et  al.  2022) imposed by geo-
graphical distance and barriers between plots, including water 
bodies, forest fragmentation by major roads and the presence of 
human settlements (Abiem et al. 2023; He et al. 2020; Wayman 
et al. 2021; Yang et al. 2015; Zahawi et al. 2021). To explore dis-
similarity in species composition between forest plots in the 
Nigeria–Cameroon region, a beta-diversity framework was used 
to evaluate the impact of low-intensity anthropogenic activities, 
climatic variables (temperature and precipitation) and other 
plot-based variables on the composition of tree assemblages in 
tropical West Africa. Across all plots in our regional dataset, tree 
species were categorised into edible (produce seeds and fruits 
eaten by humans) and inedible (not eaten by humans) species. 
Spatial beta-diversity was then calculated for the different spe-
cies groups, with the drivers of beta-diversity identified using 
generalised dissimilarity modelling. These analyses were used 
to test the following hypotheses: (1) environmental filtering due 
to plot-level predictors (forest composition, climate, human in-
fluence, elevation and stem density) has a higher impact on tree 
species assemblages in the region than dispersal limitation, (2) 
human influence (measured as the distance to the closest human 
presence (DCHP) and the distance to the nearest anthropogenic 
edge (DNAE)) significantly impacts the spatial beta-diversity of 
forest trees at a regional scale, and (3) the predictors of spatial 
beta diversity will differ between edible and inedible species.

2   |   Methods

2.1   |   Plot Location and Human Population 
Demographics

The plots used for the study were spread across eight National 
Parks and Forest Reserves in Nigeria and Cameroon (see 
Appendix  S1, Table  S1). For all reserves, there are villages in 
proximity to the forest that rely on the forest for their liveli-
hoods, with farming as one of the main occupations. Oban 
Division of Cross River National Park, located in Nigeria, has 
a lowland rainforest ecosystem with thirty-nine villages and 
an estimated human population of 40,000 (Asuk et  al.  2023; 
UNESCO World Heritage Centre  2020). Takamanda National 
Park has thirty-two support zone communities with a total of 
28,000 inhabitants and, according to the Wildlife Conservation 
Society (WCS), 12,000 of these directly affect the Park (Ndobe 
and Mantzel  2014). The Campo Ma'an Reserve has a moist 
equatorial forest located in the centre of the forest belt that ex-
tends from Cross River (Nigeria), Mayombe Region (Congo and 
Gabon) and covers a part of South-west Equatorial Guinea with 
an estimated population of about 300,000 people (Owono 2001). 
Deng Deng National Park has about 16 villages with an esti-
mated population of 1300 inhabitants in proximity to the forest 
(Diangha 2015). Dja Faunal Reserve has about thirty-seven vil-
lages with 3000 people living in the reserve and surrounding 
the reserve along boundary roads, an additional population of 
about 22,500 people (1.5 people per square kilometre) directly 
impacting the forest (International Union for Conservation of 
Nature 2017; Nguiffo 2001). Mbam Djerem National Park has 
about seventy-four forest-dependent villages with an estimated 
population of 30,000 people who rely on the forest resources for 
their livelihood (Wildlife Conservation Society  2021). Ngoyla 
has about 13,000 inhabitants (Funoh 2014). Nguti forest has an 
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estimated population of 20,060 people in about fifty-four vil-
lages (Rainforest Foundation UK 2016).

2.2   |   Plot and Species Composition Data

The study was carried out using tree data (min 10 cm DBH) 
from long-term plots established in the tropical forests of Nigeria 
and Cameroon, bordering countries in West and West-Central 
Africa, respectively (Figure 1). The forests of both countries are 
contiguous via their common borders (Enuoh and Ogogo 2018; 
Nigerian National Park Service 2019). The species composition 
data used for the study comprised single census tree-by-tree 
samples collected between 2002 and 2019 from five plots es-
tablished in Nigeria by the lead author (Asuk et al. 2022, 2023) 
and a further 61 plots established in Nigeria and Cameroon 
by colleagues, accessed via the Fores​tPlots.​net database 
(ForestPlots.net et  al.  2021; Lopez-Gonzalez et  al.  2009). The 
selected plots in Cameroon all measured 100 × 100 m except for 
one that measured 40 × 100 m (see Appendix S1, Table S2). The 
plots in Nigeria were smaller than those in Cameroon, measur-
ing 40 m × 120 m (see Appendix S1, Table S2).

The associated plot metadata included information on elevation, 
average plot slope, longitude, latitude, stem density, forest status 
and composition. Elevation above mean sea level was recorded 
during field inventories. The average slope of plots was mea-
sured at 20 m distance and scaled into five intervals: flat (0°–2°), 
almost flat (2°–5°), slightly sloping (5°–10°), moderately sloping 
(10°–20°) and steep (greater than 20°) slope. Geographical data 
consisted of information on longitude and latitude in metres 
(UTM) at the centre of the plots, collected during forest invento-
ries (used to measure geographical distance between plots). Stem 
density (the number of living individual tree stems per hectare) 
was generated by counting the number of stems in each plot 
with a minimum DBH of 10 cm. The forest composition in each 

plot was classified as either mixed (44 plots) or monodominant 
(12 plots) following Fores​tPlots.​net protocols for vegetation and 
compositional data (see Appendix S1, Tables S2 and S3). Forest 
status data contained information about the status of the forest 
within the plots in relation to past or present anthropogenic dis-
turbance as described by Fores​tPlots.​net, including old-growth, 
secondary forest, logged, burned and other mixed classifications 
(Lopez-Gonzalez et al. 2011).

2.2.1   |   Plot Selection Criteria

To reduce any area effect on tree composition and thus ensure 
a justifiable pairwise comparison of the plot data, differences in 
plot dimension/area (i.e., plots that were much larger/smaller 
compared to other plots) were reduced by selecting plots that 
were more similar in size. Data from the last three censuses 
collected between 2002 and 2019 were filtered from the multi-
ple census tree data for the study. Only plots that fell between 
the size range of 40 by 100 m and 100 by 100 m with mixed and 
monodominant species composition in old-growth and second-
ary forest ecotones were selected for the study. Specifically, for 
the Nigerian plots, five groups of three adjacent plots below 
100 m by 100 m in size were merged into plots of size 40 m by 
120 m. GPS coordinates for the centre plot among the three 
adjacent plots were used as the centre point for the new plot. 
Filtering and joining the plots resulted in a dataset consisting 
of 66 plots across the study region (i.e., Cameroon and Nigeria), 
with an average size of 94.6 m (std. 17.4 m) by 101.5 m (std 5.3 m) 
and containing a total of 28,299 individual trees.

2.3   |   Species Categorisation

Tree species were categorised into those with fruits, nuts and 
seeds that are edible to humans, and all other species were 

FIGURE 1    |    Map of Africa showing the location of Nigeria and Cameroon (a) and tree cover map of Nigeria and Cameroon showing the location 
of the 66 plots used for the study (b).
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classified as inedible. The categorisation was based on a com-
bination of structured questionnaires (see Appendix  S2) ad-
ministered to four forest-dependent/support zone communities 
within Oban Forest in Nigeria (Asuk et al. 2023), and secondary 
data on the utilisation of tree species collected from online da-
tabases between December 2021 and February 2022. These on-
line databases included Useful Tropical Plants database (https://​
tropi​cal.​thefe​rns.​info/​), the PlantUse database (https://​uses.​
plant​net-​proje​ct.​org/​en/​), the Royal Botanical Gardens Kew/
Plants of the World Online database (https://​powo.​scien​ce.​kew.​
org/​), PlantZAfrica (http://​pza.​sanbi.​org/​), World Agroforestry 
(https://​apps.​world​agrof​orest​ry.​org/​usefu​ltrees/​) and eBooks 
and journal publications.

2.4   |   Human Influence/Presence

Two variables were used as proxies to assess the impact of 
humans on the tree species composition in the region (see 
Appendix S3):

1.	 Distance to the nearest anthropogenic edge (DNAE), cal-
culated as the straight-line distance from the plot centre to 
the nearest anthropogenic edge of the forest (e.g., farm, set-
tlement, construction, but excluding footpaths) at the time 
of the census. Information on the nearest anthropogenic 
edge was available for the plots in the Oban Division data-
set, but for only a few other plots in the fores​tplots.​net da-
taset. For plots without this information, OpenStreetMap 
and Google Earth were used to approximate a straight-line 
distance from the GPS location of the centre of each plot 
to the nearest sign of anthropogenic edge, and to assess 
historical maps. OpenStreetMap is a community map with 
contributions from areas where data are missing in other 
online maps and has been used frequently in science and 
research (Grinberger et  al.  2022; Sehra et  al.  2013; Zhou 
et al. 2022). DNAE was used as an indicator to measure the 
possible presence of relatively high-impact human activity 
in the region.

2.	 Distance to the closest human presence (DCHP) – cal-
culated as the straight-line distance from the GPS centre 
point of the plot to the closest identified footpaths, often 
used to forage for food and hunting; thus, it was used as 
an indicator for relatively low-impact human activities. 
The human presence measurement was generated from 
OpenStreetMap and validated on Google Earth. Because 
of a combination of data from censuses carried out in dif-
ferent years, Google timelines on Google Earth were used 
to select an available aerial image closest to the years the 
census measurement was taken (see Figures S1 and S2 in 
Appendix S3). DCHP generally had shorter distances than 
DNAE and is arguably a more accurate measure of low-
impact human presence in the forest region.

2.5   |   Precipitation and Temperature Data 
Collection

The study utilised 5 km resolution Climate Hazards Group 
Infrared Precipitation with Stations (CHIRPS) daily precipita-
tion data (version 2.0; Funk et al. 2015) to generate mean yearly 

precipitation data for each plot. CHIRPS is considered a reli-
able source for studying precipitation trends in tropical Africa 
(Didi Sacré Regis et al. 2020; Dinku et al. 2018; Paredes-Trejo 
et  al.  2020). Maximum surface temperature data were gener-
ated from TerraClimate monthly temperature data with a 4 km 
resolution (Abatzoglou et al. 2018). Maximum temperature was 
used because of the known resilience of Afrotropical forests 
to recent temperature increases (Doughty et  al.  2023; Hubau 
et  al.  2020). These monthly data were aggregated into yearly 
means for the study.

2.6   |   Data Analysis

Data analysis involved three main steps: the generation of a 
tree species presence–absence matrix for each plot, the cal-
culation of Sørensen's pairwise beta-diversity between plots, 
and the use of Generalised Dissimilarity Models (GDMs) to 
identify variables that drive spatial beta-diversity. Overall 
beta-diversity (i.e., Sørensen's dissimilarity) was partitioned 
into turnover, to assess compositional shifts due to species 
replacement between plots, and nestedness-resultant dis-
similarity (herein ‘nestedness’) to assess if species-poor plots 
are nested subsets of species-rich plots (Ferrier et  al.  2007). 
Predictor variable distribution plots, Spearman's correlation 
between predictor variables, and Mantel correlations between 
other predictor variables and geographic distance were com-
puted (see Figures S3–S5 in Appendix S3). All analyses were 
completed using R (R Core Team 2022).

2.6.1   |   Presence-Absence Matrix and Beta-Diversity 
Calculation

For each plot, a presence-absence matrix was constructed sep-
arately for all species (a combination of edible and inedible 
species), edible species and inedible species. Then the pairwise 
dissimilarity (beta-diversity; Sørensen index) was computed 
between each plot and every other plot within the dataset for 
each presence-absence matrix. The pairwise dissimilarity was 
partitioned into the turnover (which is independent of richness 
differences) and nestedness components (Baselga  2012). All 
beta-diversity components were calculated using the ‘betapart’ 
package in R (Baselga et al. 2018; R Core Team 2022).

2.6.2   |   Generalised Dissimilarity Models (GDM)

GDMs and deviance partitioning are valuable tools for disen-
tangling what proportion of variation in dissimilarity between 
communities is due purely to the effect of distance between 
the communities, what proportion is explained uniquely by 
environmental gradients (plot-level variables including cli-
matic and anthropogenic variables), and what proportion of 
deviance is shared between the two (Buzatti et al. 2019; Ferrier 
et  al.  2007; Guerin et  al.  2021; He et  al.  2020). The ‘gdm’ R 
package (Ferrier et al. 2007; Mokany et al. 2022) was used to 
fit the GDMs by modelling a measure of the compositional dif-
ference between plots (here, the total pairwise beta-diversity 
and separately the turnover and nestedness components) 
against the selected environmental variables and geographic 
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distance to assess which predictor variables drive spatial 
taxonomic dissimilarity between plots. The environmental 
(climatic, anthropogenic and ecological) variables included 
elevation (masl), stem density (stems/ha), nearest anthropo-
genic edge (m), human presence (m), forest composition, total 
precipitation (mm/year) and maximum temperature (°C). 
Geographic distance (m) was also included as a predictor. 
GDMs utilise the pairwise dissimilarity from beta-diversity 
matrices as the response variable and transform this dissimi-
larity to allow for meaningful comparison with combinations 
of predictor variables on different scales in the form of plot 
pairwise distances (Mokany et al. 2022). A linear combination 
of I-spline basis functions fit using non-negative least squares 
regression was used to transform each predictor variable in 
the GDM (Mokany et  al.  2022). The spline function of each 
predictor variable is relatively flexible in shape. However, be-
cause GDMs assume that dissimilarity can only increase be-
tween two plots that become more different in their predictor 
variables, I-splines are constrained to increase monotonically 
(Mokany et al. 2022).

Separate GDM models were fitted for total beta-diversity, turn-
over and nestedness calculated from each of the three presence-
absence matrices (all species, edible species only and inedible 
species only) (Mokany et al. 2022). These models included all the 
environmental variables (elevation, average plot slope, precipita-
tion and temperature), plot-level variables (stem density and for-
est composition), and a measure of distance between each plot. 
The direct impact of each variable along the dissimilarity gra-
dient was assessed by applying a permutation (randomly shuf-
fling the values of each predictor variable across the 66 plots) 
and a backwards selection approach, allowing the calculation 
of variable significance and variable importance (applied using 
the function ‘gdm.varImp’ within the ‘gdm’ package; Ferrier 
et al. 2007; Mokany et al. 2022). This approach first fits a model 
using all the unpermuted predictor variables. The row contain-
ing a given predictor variable is then permuted 100 times be-
tween the plots (columns), and a separate GDM is fitted to each. 
Deviance between the unpermuted and permuted models is 
then calculated. The process is then repeated for each predictor 
in turn, whilst holding the others constant, to calculate impor-
tance scores and significance for each one. The least significant 
predictor is then dropped, and the permutation procedure is 
repeated with the remaining predictors until a model is found 
where all those remaining are significant (p < 0.05). The predic-
tor importance for each variable was calculated from the per-
cent change in deviance explained between the unpermuted and 
permuted models for that variable (Ferrier et al. 2007; Mokany 
et al. 2022). The variable (predictor) importance measures the 
influence of a variable in explaining changes in the response 
variable. The variable importance was then used to compute the 
absolute importance, which is a percentage-based measure of 
how much each predictor variable contributes to the total varia-
tion in beta-diversity explained by the model.

Geographical distance (the Euclidean distance between plots 
based on the x and y coordinates) was included as a predictor to 
account for the likelihood of effects of distance on plot-pairwise 
dissimilarity due to dispersal limitation (Mokany et  al.  2022). 
However, the dissimilarity driven by environmental gradients 
could be suppressed or wrapped up in the dissimilarity from 

the distance between plots, leading to the deviance explained 
by each to be shared. Therefore, four models were fitted for each 
response: Model 1 (full model containing all significant predic-
tor variables), Model 2 (containing only geographical distance), 
Model 3 (only environmental and human predictors that were 
significant from Model 1) and Model 4 (only significant human 
predictors from Model 1; see Table  2). Models 2–4 were used 
to calculate the shared amount of deviance explained between 
the geographical distance and the environmental predictors. 
Because Models 2 and 3 were made up of significant predictors 
from Model 1, they were not used to compute variable impor-
tance. The shared deviance between the environmental predic-
tors and geographical distance was generated using the formula 
(Ray-Mukherjee et al. 2014):

where, Vs is the shared deviance explained between the envi-
ronmental and geographical variables, Vfull is the total deviance 
explained by the model (model 1), Vg is the deviance explained 
by the model containing only geographical variables (model 2) 
and Ve is the deviance explained by the environmental model 
only (either model 3 or model 4).

3   |   Results

3.1   |   Regional Taxonomic Beta-Diversity, Turnover 
and Nestedness

Among the 66 plots, a total of 28,299 individual trees were 
sampled, with total (gamma) diversity of 708 species (includ-
ing 157 morphospecies) from 316 genera. In total, 236 of these 
species were classified as edible to humans, and 472 species as 
inedible, with 11,097 and 17,202 stems respectively (Table S4 in 
Appendix S4). The mean total pairwise beta-diversity between 
plots was similar (Figure 2) for all species (0.74 ± 0.13), edible spe-
cies (0.73 ± 0.14) and inedible species (0.75 ± 0.13). The turnover 
component of beta-diversity was the main determinant of the 
overall beta-diversity, while nestedness contributed a very small 
proportion. For all species, turnover (0.67 ± 0.15) accounted for 
90.5% of total beta-diversity, while nestedness resultant dissimi-
larity (0.07 ± 0.08) was responsible for 9.5%. For inedible species, 
turnover (0.67 ± 0.16) was responsible for 90.1% of total beta-
diversity, while nestedness (0.07 ± 0.09) accounted for 9.9% of 
total beta-diversity. Similarly, 89% of total beta-diversity for edi-
ble species was due to turnover (0.65 ± 0.17), and 11% was due to 
nestedness (0.08 ± 0.08). In addition to nestedness representing 
a low proportion of overall dissimilarity (Figure 2), no explan-
atory variables significantly explained variation in the GDMs 
with nestedness as a response; therefore, the metric and associ-
ated models were excluded from further discussion.

3.2   |   GDM Results

As expected, Model 1 (a combination of geographical dis-
tance, environmental variables and human variables) had 
the highest deviance explained, with 46.7%, 41.0% and 25.9% 
explained for total beta-diversity, for the models containing 
all, inedible-only and edible-only species groups, respectively. 

(1)Vs = Vfull −
(

Vfull − Vg
)

−

(

Vfull − Ve
)
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Similarly, Model 1 also recorded the highest percentage of 
deviance explained in turnover (species replacement) for 
the inedible, all and edible species groups with 47.9%, 43.5% 
and 27.7% (Table 1). Model 3 (models run with environmen-
tal and human predictors only) recorded the second highest 
deviance explained for total beta-diversity with 37.4%, 31.4% 
and 18.9% (all, edible, inedible species groups, respectively), 
while the deviance explained in total beta-diversity for Model 
2 (models run with only geographical distance as predictor) 
was 18.3%, 17.4% and 13.2% for all, inedible and edible spe-
cies groups, respectively (see Table  1). Finally, the deviance 
explained for total beta-diversity recorded in Model 4 (only 
human variables) was 18.0%, 13.4% and 7.24% in all, inedible 
and edible species. However, Model 4 had a higher deviance 

explained for turnover in inedible species than Model 2. In 
some cases, half of the deviance explained by environmental 
variables alone (Model 3) is tied up with distance (Model 2), 
with percentages of shared deviance ranging from 9.0%, 7.8% 
and 6.2% for dissimilarity due to total beta-diversity to 9.5%, 
5.8% and 4.2% for dissimilarity due to turnover in all, inedible 
and edible species groups, respectively (see Table 1).

3.2.1   |   Drivers of Spatial Taxonomic Beta-Diversity 
Across All Edible and Inedible Species

A total of six variables (geographical distance, elevation, stem 
density, DNAE, DCHP, forest composition) out of the eight 

FIGURE 2    |    Boxplots of pairwise spatial dissimilarity of all (a), edible (b) and inedible (c) tree species found in the region. Plots display total beta-
diversity (Total) as well as the turnover (Turn) and nestedness (Nest) components.

TABLE 1    |    Results from the GDMs analysing the dissimilarity in species composition between forest plots and the deviance explained (DE) by 
each model in percentages.

Groups

All Edible Inedible

Total Turn Total Turn Total Turn

Model 1 (DE %) 46.73 47.91 25.89 27.74 41.01 43.45

GDM deviance 93.86 113.58 170.63 208.1 112.2 142.2

Null/predicted deviance 176.20 218.03 230.25 287.99 190.19 251.47

Intercept 0.62 0.41 0.74 0.42 0.66 0.48

Model 2 (DE %) 18.26 17.3 13.22 13.19 17.38 15.54

Model 3 (DE %) 37.43 40.09 18.88 18.75 31.43 33.70

Shared deviance (Model 3 and 2 in %) 8.96 9.48 6.21 4.20 7.80 5.79

Model 4 (DE %) 17.95 14.88 7.24 13.22 13.36 17.55

Shared deviance (Model 4 and 2 in %) 4.11 1.28 2.55 3.18 1.49 1.48

GDM deviance 144.56 185.59 189.01 221.1 164.78 207.33

Intercept 1.02 0.93 0.77 0.46 1.18 0.91

Note: ‘Total’ refers to total Sørensen's beta-diversity while ‘Turn’ refers to the Simpson's turnover partition of beta-diversity. Shared deviance (%) was calculated from 
the deviance explained by the full model, the geographical distance only model and the environment only model. Model 1 (all significant predictor variables, p < 0.05; 
see Table 2) was partitioned into Model 2 (only geographical distance), Model 3 (only significant environmental and human predictors from Model 1, p < 0.05) and 
Model 4 (only significant human predictors from Model 1, p < 0.05; see Table 2). Models 2 and 3 were only used to calculate the shared amount of deviance explained. 
Rows in bold show the percentage deviance explained for the models. Significance of italic values represents the level of significance was p < 0.05.
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8 of 17 Diversity and Distributions, 2025

variables included (including temperature and precipitation) 
in model 1 significantly affected beta-diversity at varying lev-
els of importance across all groups (all, edible and inedible) 
(Table 1).

3.2.1.1   |   All Species Models.  In the all-species model 
(all; Table 2), geographical distance (with an absolute impor-
tance of 24.73%), elevation (21.58%), DCHP (20.15%), for-
est composition (18.42%) and stem density (15.11%) were 
significant predictors of total beta-diversity. Geographical 
distance, the variable with the highest importance in three 
of the six models (total beta-diversity for all and inedible spe-
cies and turnover in edible species), showed a rising trend up 
to 200–300 km before levelling off (Figure 3a,f,h). The I-spline 
for elevation, the second most important variable, increased 
gently up to 500–700 m, then sharply increased after that 
point (Figure 3b,g,j). The I-spline for DCHP, the third key pre-
dictor, had a slight initial rise followed by a steady increase 
(Figure 3c). Forest composition had a minor yet significant lin-
ear relationship with beta-diversity (Figure 3d,k), while stem 
density within plots had the lowest variable importance val-
ues (Table 2, Figure S6 in Appendix S5). The turnover model 
identified DCHP (30.49%), elevation (28.59%), geographical 
distance (22.65%), stem density (10.74%) and DNAE (7.53%) as 
significant predictors, with trends similar to those in the total 
beta-diversity model (Figure 4a, Table 1, Figure S7 in Appen-
dix  S5), but interpretations should be made with caution as 

the data spread shown on the x-axis was skewed, with only a 
few forest plots having high values of DCHP or DNAE (see rug 
plot on the x-axis in Figures 3a and 4a,h, Figure S4).

3.2.1.2   |   Edible Species Models.  For the edible species 
model (Figure  4e–g), total beta-diversity was significantly 
influenced by forest composition (44.72%), geographical dis-
tance (32.82%) and elevation (22.46%), in order of decreasing 
variable importance (Table 2 and Figure 3). The I-splines indi-
cated that the relationship between forest composition and total 
beta-diversity exhibited a slight linear trend (Figure  3d); geo-
graphical distance had an initial steep linear trend that then 
plateaued, while stem density had a steeper linear trend 
(Figure  3e–g). The turnover resultant beta-diversity of edible 
species was driven by four significant variables: geographical 
distance (highest absolute variable importance score—37.2%), 
DCHP (27.7%), stem density (17.8%), DNAE (lowest variable 
importance score—17.3%) (Table 2, Figure 4e–h). The I-splines 
indicated that the relationship between geographical distance 
and turnover had an initial steep linear trend that then remained 
constant at the peak (Figure 4i), just as seen in turnover total 
beta-diversity. The turnover I-spline for DCHP exhibited a very 
steep initial increase, followed by a continuous linear increase 
(Figure 4f), while for stem density it increased gently then pla-
teaued between 400 to 500 stems per hectare before increasing 
again (Figure 4g), and for DNAE it exhibited a positive roughly 
linear relationship (Figure  4h). However, caution should be 

TABLE 2    |    Results from the GDMs showing variable importance from Model 1 (all significant predictor variables, p < 0.05) and Model 4 (only 
human predictors from Model 1).

Groups

All Edible Inedible

Total Turn Total Turn Total Turn

Variable importance (Absolute importance)—Model 1

Geographical distance 
(m)

19.89 (24.73) 16.31 (22.65) 27.05 (32.82) 32.39 (37.20) 23.31 (30.26) 22.42 (29.58)

Elevation (masl) 17.36 (21.58) 20.58 (28.59) 18.51 (22.46) — 21.39 (27.78) 27.04 (35.67)

Stem density (stems/
ha)

12.16 (15.11) 7.73 (10.74) — 15.47 (17.77) — —

DNAE (m) — 5.42 (7.53) — 15.08 (17.33) — —

DCHP (m) 16.21 (20.15) 21.95 (30.49) — 24.12 (27.70) 22.11 (28.71) 26.35 (34.76)

Forest composition 14.82 (18.42) — 36.86 (44.72) — 10.20 (13.25) —

Temperature — — — — — —

Precipitation — — — — — —

Variable importance (Absolute importance)—Model 4

Geographical distance 
(m)

40.02 (50.82) 51.804 (54.52) 59.56 (70.74) 43.00 (50.63) 54.29 (57.67) 44.44 (47.08)

DNAE (m) 15.62 (18.04) — 24.64 (29.26) 15.33 (18.05) — —

DCHP (m) 26.99 (31.15) 43.21 (45.48) — 26.59 (31.31) 39.85 (42.33) 49.96 (52.92)

Note: Variable importance is the percentage change in deviance explained between the unpermuted and permuted models for that variable, while absolute importance 
is the percentage of the explained deviance that each variable contributed to the GDM model. ‘Total’ refers to total Sørensen's beta-diversity while ‘Turn’ refers to the 
Simpson's turnover partition of beta-diversity. DNAE is the ground distance of plots to the nearest anthropogenic edge. DCHP is the ground distance to the closest 
human presence to each plot. ‘m’ is the ground distance measured in metres. Values within brackets are the absolute importance of each variable in relation to other 
variables. Dashed lines indicate where variables were non-significant within models.
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taken when interpreting this relationship, as most of the trend 
in DCHP was driven by four points with higher values, while 
other plots were skewed (Figure 4f).

3.2.1.3   |   Inedible Species Models.  The model for total 
beta-diversity using the inedible species data included four 
significant predictors: geographic distance, which had 
the highest variable importance value (contributing abso-
lute importance of 30.26% to the total explained deviance in 
the GDM model.), DCHP (28.71%), elevation (27.78%) and for-
est composition (13.25%) (Table  1). The effects of geograph-
ical distance on total beta-diversity increased (based on 
the I-splines) with a steep linear trend and then remained 
constant at its peak (Figure 3h). The I-spline for DCHP exhib-
ited a very steep initial increase followed by a continuous 

linear increase (Figure  3i), while for elevation it showed 
a gentle trend that levelled off at about 600 m followed by a 
sharp continuous increase (Figure  3j), and for forest com-
position, it had a minor yet significant linear relationship 
(Figure  3k). Inedible turnover resultant beta-diversity mod-
els showed that elevation had the highest variable importance 
value, contributing 35.67% to the model deviance, followed by 
DCHP (34.76%) and geographical distance (29.58%). The total 
beta-diversity models for edible and inedible species had three 
significant variables in common (geographical distance, ele-
vation and forest composition). While there were differences 
in the relative ranking of variables based on variable impor-
tance values, the maximum I-spline values for these variables 
were higher when using the inedible species data than when 
using the edible data.

FIGURE 3    |    Plotted I-splines of the three variables with the highest importance scores from the GDMs, analysing the spatial relationship between 
geographical gradients, environmental variables and tree species composition. Plots are the Total Sørensen's beta-diversity for all the species in the 
region (a–d), for the edible species category (e–g) and for the inedible species (h–k). Plots are organised from top to bottom based on increasing abso-
lute variable importance (percentage contribution by variable to the model outcome).
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4   |   Discussion

4.1   |   Drivers of West African Tropical Forest Tree 
Beta-Diversity

The dissimilarity in tree species composition observed in the 
Nigeria–Cameroon forest region was primarily due to species 
replacement between plots, which was driven by geographi-
cal distance, elevation, human influence (relatively low and 
high intensity impacts), forest composition and stem density. 
Geographic distance had the largest variable importance score 
for total beta-diversity in all and inedible species and turnover 
in edible species, and there was low shared explanatory power 
between distance and environment in the relevant model. This 
result indicates that dispersal limitation plays a strong role in 

driving the spatial beta-diversity patterns observed in the re-
gion. This dispersal limitation could be due to the possible im-
pact of natural geographical barriers such as water bodies, or a 
result of fragmentation by large roads and human settlements, 
driving turnover in species composition (Abiem et  al.  2023; 
He et al. 2020; Wayman et al. 2021; Yang et al. 2015; Zahawi 
et al. 2021).

Elevation, DCHP and forest composition were also important 
variables explaining turnover in inedible and edible species. 
Elevation plays a crucial role in driving the composition of tree 
species assemblages, exerting varying niche-based effects on 
species due to changes in climate, wind, soil, the identity of seed 
dispersers and the activities of humans along the elevational 
gradient, all of which could result in strong environmental 

FIGURE 4    |    Plotted I-splines of the variables with the highest importance scores from the GDM, analysing the spatial relationship between the 
turnover component of Sørensen's beta-diversity and geographical gradients, environmental variables and tree species categories. Plots columns are 
arranged from left to right with all species (a–d), edible species category (e–h) and inedible species category (i–k). Plots are organised from top to 
bottom based on increasing absolute variable importance (percentage contribution by variable to the model outcome).
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filtering and the replacement of species (Adnan et  al.  2015; 
Asuk et al. 2023; Malizia et al. 2020; Verrico et al. 2020; Yano 
et al. 2021).

The effects of plot-specific variables resulted in a large propor-
tion of the model deviance being explained by environmental 
filtering, a finding that has also been reported in studies of a 
wetland nature reserve in China, a montane forest in North 
America and a tropical island in South China (He et al. 2020; 
Jiang et al. 2021; Verrico et al. 2020). The impact of environmen-
tal filtering on the tree species community composition in the 
Nigeria-Cameroon region was further evidenced through higher 
explained deviance in the models with environmental variables 
alone (Model 3) compared to that explained by geographical dis-
tance solely (Model 2) or by only the human predictors (Model 
4). A similar study in the Cuitzeo basin, Mexico, revealed that 
environmental heterogeneity has a greater impact on spatial 
beta-diversity, due to niche-based processes, than geographical 
distance (Vega et  al.  2020). Other work has shown that envi-
ronmental heterogeneity can explain why turnover has greater 
effects on beta-diversity than nestedness (Ferenčík et al. 2024), 
as we observed here.

Climate variables (precipitation and max temperature) may theo-
retically also contribute to environmental filtering effects, despite 
not being significant individual predictors of beta-diversity in the 
Nigeria–Cameroon region. While He et al.  (2020) reported that 
the difference in regional tree species composition can be driven 
by spatial variation in climate, Bennett et al. (2023) showed that 
protected Afrotropical forests are less sensitive to fluctuations in 
climate variables compared to forests in the Amazon.

4.2   |   The Impact of Human Influence on Spatial 
Beta-Diversity

The indicators of human influence (DCHP and DNAE used 
in Model 4) were significant drivers of patterns of spatial beta-
diversity in the region. The percentage of deviance in the GDMs 
explained by human influence (Model 4) was higher than geo-
graphic distance for the turnover models for both inedible and 
edible species. Collectively, human influence had higher vari-
able importance values for the turnover models for all species 
(38%) and edible species (45%), while for inedible species, DCHP 
was the second most important variable in both the total beta-
diversity (22%) and turnover (26%) models. In addition, the vari-
able importance values observed for DCHP across the groups 
(All, Edible and Inedible) suggest possible modification of the 
forest due to the ecological legacies from humans that live in close 
proximity to the forest plots (Adnan et al. 2015; Asuk et al. 2023; 
Singh et  al.  2022). Indigenous human communities, some of 
whom have historically transitioned from a nomadic lifestyle to 
stable settlements near or within forests (Adnan et al. 2015; Asuk 
et al. 2023), can transform the forest through forest resource util-
isation, leaving footprints visible in the tree species assemblages 
(Jaeger et  al.  2022; Lueder et  al.  2022; Williams et  al.  2020). 
There are about 250 forest-dependent villages that are cultur-
ally and spiritually connected to the Nigeria-Cameroon forest 
region studied here (Diangha 2015; Funoh 2014; Nguiffo 2001; 
Owono  2001; UNESCO World Heritage Centre  2020; Wildlife 
Conservation Society 2021), and the interaction of the villages' 

inhabitants with the forest is linked to practices such as me-
dicinal use, land management, food foraging, wildcrafting and 
conservation traditions (Falconer 1993; FAO 1999). In addition, 
there has also been a historical shift in the region from sustain-
able, small-scale agricultural and logging practices to large-
scale plantation farming (like cocoa plantations) and extensive 
commercial logging, which has likely impacted forest ecosys-
tems to varying degrees (FAO  1999; Fongnzossie et  al.  2020). 
The different uses of forests and individual tree species can re-
sult in different impacts on tree species composition in different 
places, which explains why human influence is an important 
driver of spatial beta-diversity (Asuk et al. 2023; Ellis et al. 2021; 
McMichael 2021; Piperno et al. 2015).

4.3   |   Predictors of the Beta-Diversity of Edible 
and Inedible Species

The identity and strength of effect of variables driving differ-
ences in species composition in the region differed between ed-
ible and inedible species. These observed differences could be 
attributed to the history and frequency of forest disturbance, 
successional processes, varying distances of plots from high-
intensity and low-intensity human activities, and differences in 
topography, climate and soil conditions (Williams et  al.  2020; 
Fotang et al. 2021a, 2021b; Yuan et al. 2022; Asuk et al. 2023). 
While low-intensity human influence (DCHP) had a higher 
impact on inedible species (34.8% and 28.7% absolute impor-
tance in turnover and total beta-diversity) than edible species 
(27.7% absolute importance), high-intensity human activities 
(DNAE—distance to nearest anthropogenic edge) such as log-
ging, agricultural expansion and other large-scale disturbance 
were more important drivers of the turnover of edible species. 
However, no effect of human activities was observed on the total 
beta-diversity of edible species and elevation was not a driver of 
the turnover of edible species.

A previous study in one of the areas in the region analysed here 
that used elevation as a proxy for the level of human impact 
(where local villages were located at low elevations) found a 
positive relationship between turnover and elevation for ined-
ible species, which was not apparent for edible species (Asuk 
et al.  2023); the implication being that humans are spreading 
the seeds of the edible species along the elevational gradient, 
reducing turnover. The non-significant influence of human 
predictors on total beta-diversity, and elevation on the turnover 
of edible species compared to that of inedible species, observed 
in this study, partly aligns with these previous findings (Asuk 
et  al.  2023) More broadly, the results from the present study 
corroborate previous studies that showed that human activi-
ties, including logging, agricultural expansion and harvesting 
for livelihoods (like firewood and other non-timber forest prod-
ucts), significantly alter species composition in African trop-
ical forests (Assede et  al.  2023; Asuk et  al.  2023; Auliz-Ortiz 
et al. 2024; Hussein 2023).

Forest composition (mixed or monodominant forest) was a sig-
nificant predictor of the total beta-diversity of edible species, 
having the highest variable importance score for this model; 
it was a less important driver of the beta-diversity of inedible 
species. In addition, stem density was only a predictor of the 
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turnover of edible species. Monodominant forests are charac-
terised by one single species making up more than 60% of the 
tree canopy, and this condition could be due to coppicing (sprout 
or regrowth formed at the tree base or root), the presence of 
fast-growing species, or edaphic factors (ter Steege et al. 2019). 
Gilbertiodendron dewevrei (De Wild.) J.Léonard, a dominant 
inedible timber species in the Cameroon region (Heimpel 
et  al.  2024), made up 68 to 87% of all trees in nine plots and 
43 to 56% in three additional plots. More broadly, one (inedible) 
species dominated the plots in up to twelve locations (FAO 1999; 
Hundera 2007; Klein et al. 2003; Shiembo et al. 1996). Therefore, 
the differences in predictors of the beta-diversity of edible and 
inedible species could be attributed to higher stem density and 
dominance in inedible species, leading to high inter-specific 
competition for space and an increase in the dissimilarity ob-
served in edible species. For example, a dominant inedible spe-
cies like Gilbertiodendron dewevrei could reduce the number of 
edible species within the plot, causing greater spatial turnover.

Stem density being a non-significant predictor in the inedible 
species models may be due to the influence of other ecological 
and human factors influencing the community composition of 
inedible species, such as greater adaptability and ability to sur-
vive in smaller, isolated habitats, or possibly due to human uses 
that are not linked to being edible, e.g., for medicine and gum 
(Bailey et al. 2010; de Lima Filho et al. 2021; Fahrig 2003).

Comparing the results of this study with those of Asuk 
et al. (2023) indicates that the factors driving the beta-diversity 
of inedible species are similar at both local and regional scales 
in West African tropical forests, while there are differences in 
regards to the beta-diversity of edible species. Findings from 
other studies in the Amazonhave suggested that the selection 
and stewardship of desired tree species by indigenous human 
populations over time could leave strong imprints on patterns 
of forest composition and that such impacts may vary across re-
gions (Levis et al. 2017; Roberts et al. 2021; Scerri et al. 2022). 
Some of the primary species favoured by local communities for 
their food and trade value in the region include African Walnut 
(Coula edulis Baill), Bush Mango (Irvingia spp.), Kola Nut (Cola 
spp.), Baobab (Adansonia digitata  L.), African Bush Mango 
(Irvingia gabonensis (Aubry-Lecomte ex O'Rorke) Baill), Safou 
(Dacryodes edulis  (G. Don.) H. J. Lam), African Breadfruit 
(Treculia africana  Decne. ex Trécul), Bitter Kola (Garcinia kola  
Heckel), African Star Apple (Chrysophyllum albidum  G. Don) 
and Monkey Kola (Cola lepidota K. Schum. and Cola pachycarpa  
K. Schum.) (FAO 1999; Fongnzossie et al. 2020; Hundera 2007; 
Klein et al. 2003; Shiembo et al. 1996). However, the utilisation 
of these species can vary across the cultures in the region.

4.4   |   Study Limitations

Understanding the impact of human influence on tree species 
dissimilarity in the Nigeria-Cameroon forest region using this 
dataset presents significant challenges. The lack of historical 
data on how long-term human impacts have shaped current 
forest structure and species composition limited the conclusions 
that could be drawn in terms of human impacts. In particu-
lar, the proxies for human activities from OpenStreetMap and 
Google Earth, combined with the lack of data on changes in 

human impacts through time, could result in an incomplete un-
derstanding of the historical drivers of spatial beta-diversity. The 
plot dataset lacked systematic sampling in space, particularly 
across key variables such as DCHP (Distance to Closest Human 
Population) and DNAE (Distance to Nearest Agricultural 
Expansion), making relatively small numbers of plots responsi-
ble for the strong gradients observed in the I-splines. This means 
that the attribution of a large role of DCHP must be considered 
with some caution; however, it should be noted that even with-
out these few data points above (Figures 3 and 4), the response 
shape was also positive across the narrower DCHP range.

The available data from plots that fit the selection criteria were 
constrained in terms of the spatial and temporal scope, with sin-
gle census data collected from a limited number of plots between 
2002 and 2019. This limitation hindered the observation of long-
term trends and changes in species composition and human influ-
ence, potentially not fully representing broader regional patterns.

While the study provides valuable insights, these limitations 
could impact the precision of inferences regarding past human 
impacts on tree species composition, as well as the spatial and 
temporal dynamics of tree species dissimilarity. Addressing 
these limitations in future research is essential for a more ac-
curate and comprehensive understanding of human impacts on 
forest ecosystems.

5   |   Conclusion

Tree species dissimilarity in the Nigeria–Cameroon forest was 
primarily driven by the interplay between dispersal limitation, 
environmental filtering and human influence. Environmental 
filtering due to plot-specific predictors had a greater impact on 
tree species assemblages than geographical distance, thus sup-
porting the hypothesis that localised plot-specific conditions 
such as elevation, stem density, forest composition, and, to some 
extent, climate exert a stronger influence on species turnover 
(with higher explanatory power) than geographical distance 
alone (Asuk et al. 2023; He et al. 2020). However, climate vari-
ables (temperature and precipitation) did not have an indepen-
dent effect on tree species assemblage composition in the region.

Human influence significantly impacted tree species assem-
blage composition in the study area, with distinct impacts on 
edible and inedible species. While both low- and high-impact 
human activities shaped the regional turnover of edible species, 
only low-intensity use contributed to the total beta-diversity 
and turnover of edible species. This supported the notion that 
human proximity to forests alters species assemblages, poten-
tially through foraging, seed dispersal and selective harvesting. 
Elevation, by contrast, was the most important variable re-
sponsible for the turnover of inedible species and did not im-
pact the turnover of edible species, likely due to the restriction 
of high-impact activities like logging to lower elevations, while 
low-impact activities such as food gathering for seeds and fruits 
occurred across a wider elevational gradient (Asuk et al. 2023; 
Levis et  al.  2017). Additionally, forest composition (mixed or 
monodominant forest) significantly influenced beta-diversity in 
edible species only, possibly due to the monodominance of ined-
ible species such as Gilbertiodendron dewevrei in several plots.
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Despite the aforementioned study limitation, our findings sug-
gest that humans are not just agents of deforestation but also 
active participants in shaping forest diversity in the Nigeria–
Cameroon forest region. Their varied use of tree species for food, 
materials and other livelihoods can differentially influence spe-
cies turnover, particularly in edible species and interact with 
environmental filtering and geographic constraints to shape 
patterns of beta-diversity across the landscape. Conservation 
strategies should evolve from simplistic preservationist models 
to integrated strategies like community-managed food forests 
that use traditional knowledge, recognise the ecological impacts 
of seemingly low-impact human activities, and support sustain-
able land use for lasting forest resilience. Further research is 
needed to fully understand the long-term effects of anthropo-
genic disturbance on forest composition in Afrotropical ecosys-
tems and tropical forests more widely.
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Additional supporting information can be found online in the 
Supporting Information section. Appendix S1: Information on the 
dimension, size, census year of plot establishment and plots located in 
different forest compositions.  Table S1: Demographics of the villages 
around the forest used for the study.  Table  S2: Information on tree 
data from plots used for the study, including location of plot code, coun-
try of location, dimension and year censuses.  Table S3: Distribution 
of edible and inedible tree species found in mixed and monodominant 
forest plots.  Table S4: Distribution and descriptive statistics of predic-
tor variables included in the GDMs models.  Appendix S2: Qualitative 
data collection and structured questionnaire used for collection of data 
on forest tree species utilisation in Oban Division, Cross River National 
Park.  Appendix S3: Methodology for assessing human impact on 
tree species composition using proximity measures.  Figure S1: Open 
street map showing distance from plot to closes path representing dis-
tance to closest human presence (DCHP) and distance from plot to 
human settlement representing distance to nearest anthropogenic edge 
(DNAE).  Figure S2: Map from Google Earth showing how distance 
from plot was measured based on historical images that coincided 
with date of plot census (see top left bar).  Figure S3: Distribution of 
predictor variables used in the study.  Figure S4: Plots showing cor-
relation coefficient and non-significant correlations (at p < 0.05) of pre-
dictor variables included in the model.  Figure S5: Mantel's correlation 
of the geographical distance matrix generated from the plot longitude 
and latitude, against other environmental variables.  Appendix S4: 
Summary of alpha diversity and total tree stem count.  Table S5: Alpha 
diversity of plots forest categorised as mix and mono dominant forests.  
Appendix S5: GDM Results.  Table S6: Plotted I-splines of the three 
variables with the highest importance scores from the GDMs analysing 

the spatial relationship between geographical gradients, environmental 
variables and tree species composition. Plots are the Total Sørensen's 
beta-diversity for all the species in the region (a–d,l), for the edible spe-
cies category (e–g) and for the inedible species (h–k). Plots are organised 
from top to bottom based on increasing absolute variable importance 
(percentage contribution by variable to the model outcome). The red 
border represents the plot for I-splines that was not presented in the 
main manuscript.  Table S7: Plotted I-splines of the variables with the 
highest importance scores from the GDM, analysing the spatial rela-
tionship between the turnover component of Sørensen's beta-diversity 
and geographical gradients, environmental variables and tree species 
categories. Plots columns are arranged from left to right with all species 
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Plots are organised from top to bottom based on increasing absolute 
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