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Pathologist-like explainable AI for
interpretable Gleason grading in
prostate cancer

A list of authors and their affiliations appears at the end of the paper

The aggressiveness of prostate cancer is primarily assessed from histopatho-

logical data using the Gleason scoring system. Conventional artificial intelli-

gence (AI) approaches can predict Gleason scores, but often lack

explainability, which may limit clinical acceptance. Here, we present an alter-

native, inherently explainable AI that circumvents the need for post-hoc

explainabilitymethods. Themodel was trained on 1,015 tissuemicroarray core

images, annotated with detailed pattern descriptions by 54 international

pathologists following standardized guidelines. It uses pathologist-defined

terminology andwas trained using soft labels to capture data uncertainty. This

approach enables robust Gleason pattern segmentation despite high inter-

observer variability. Themodel achieved comparable or superior performance

to direct Gleason pattern segmentation (Dice score: 0:713±0:003 vs.

0:691±0:010) while providing interpretable outputs. We release this dataset to

encourage further research on segmentation in medical tasks with high sub-

jectivity and to deepen insights into pathologists’ reasoning.

Prostate cancer is amajor health issue, affecting approximately 5million

men globally, with around 1.5 million new cases reported in 20201. The

Gleason grading system, developed by Donald Gleason in 19742 and

most recently discussed and updated by the International Society of

Urology Pathology (ISUP) and by the Genitourinary Pathology Society

(GUPS) in 20193,4, remains the primary method for assessing tumor

aggressiveness and prognosis in patients with prostate cancer5.

For Gleason scoring in the context of primary diagnosis,

pathologists assess histological architectural features such as gland

shape and size based on tumor biopsy samples and assign Gleason

patterns ranging from 1 (resembling gland-like structures) to 5

(resembling least gland-like structures). Gleason patterns 1 and 2

were merged with pattern 3 in later modifications of the system6,

therefore, the Gleason score, which in tissue microarrays (TMAs) is

quantified as a sum of themost predominant and the highest Gleason

pattern, ranges from 6 (3 + 3) to 10 (5 + 5). Higher scores indicate

more aggressive tumors7. Despite its widespread use, however, the

Gleason system has limitations, including sampling bias and sub-

jective assessment of tumor architecture, resulting in significant

interobserver variability8.

Multiple studies have shown that artificial intelligence (AI)-based

image analysis has the potential to assist pathologists in Gleason

grading, potentially matching or exceeding human accuracy9–12.

Developing robust AI models for this task requires large datasets with

expert annotations. For Gleason grading, datasets such as the Glea-

son19 Challenge13,14 and the PANDA Challenge11,12 are openly available;

however, in most cases the available annotations indicate the area of

patterns relevant to the final scoring or merely the Gleason score,

without providing an explanation of the specific histological criteria

behind the decisions. Consequently, the typical approach to Gleason

grading with AI involves end-to-end models that predict Gleason pat-

terns or the scoredirectly from the images. Although thesemodels can

achieve high accuracy, their decision-making process lacks transpar-

ency, which may present a barrier to clinical adoption15,16, particularly

in light of patients’ right to explanation17. Especially in fields such as

Gleason grading, where there is a significant subjectivity in the

assessment8, the demand for clear and explainable explanations for AI-

assisted diagnostic systems is high.

In order to overcome interpretability issues for neural networks,

post-hoc explainability techniques such as CAM or Grad-CAM18, LRP19,
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and LIME20 have been developed that highlight regions of interest

relevant to the decision made. These heatmaps aim to provide visual

explanations for AI decisions, for example by indicating pixels that

have a high influence on the predicted outcome21,22. However, these

methods often provide pseudo-explainability with vague morpholo-

gical correlates. Interpreting the results requires specialized

expertise23, and it has been shown that using these approaches carries

a high risk of confirmation bias24,25, a cognitive tendency whereby

individuals favor evidence that confirms their pre-existing hypotheses

and beliefs. Additionally, such indicated regions may not always cor-

respond to the actual causative regions of the cancer patterns26,27, but

might instead show unwanted statistical correlations learned by the

neural network - a crucial factor that is rarely addressed. As patholo-

gists prefer simple, visual explanations that are grounded in mor-

phology and reflect their way of thinking, an inherently explainable

approach to AI with clear and intuitive explanations is needed28.

To address these significant limitations of traditional algorithm

development, we propose the use of a concept-bottleneck-like29

U-Net30 architecture to develop a pathologist-like, inherently explain-

able AI system (GleasonXAI), as presented in Fig. 1. For the develop-

ment, we compile and open-source one of the largest datasets of

annotations localizing explanations for Gleason patterns in TMA core

images. The resulting GleasonXAI offers interpretability for AI-assisted

segmentation of Gleason pattern by directly recognizing and deli-

neating pre-defined histological features, which are associated with a

textual explanation using terminology common to pathologists and

rooted in GUPS and ISUP recommendations.

Utilizing the approach,wedeveloped to train andevaluatemodels

with soft labels, we capture the intrinsic uncertainty in the training

data, thereby providing promising Gleason pattern segmentation in

spite of high interobserver variability, and exceeding the performance

of traditional approaches directly trained to predict Gleason patterns.

Results
Pathologist characteristics
Between March 2023 and October 2023, an international team of 54

pathologists from ten countries participated in the study, with the

majority of participants fromGermany (22) and theUSA (18). Among the

participants, 47 were responsible for explanatory annotations, six for

Gleason grade annotations, and one for creating the initial terminology,

which was later reviewed and adapted in a panel of nine of the partici-

pants (see Methods section). The pathologists had a median of 15 years

of clinical experience in pathology, with individual experience ranging

from one to 35 years. Notably, 28 of these 54 annotators had extensive

experience, defined as 15 years or more. In their clinical practice, the

participating pathologists signed out a median of 15 prostate cancer

cases per week, with the average individual prostate cancer caseloads

ranging from fewer than ten to 75 patient cases weekly.

Dataset characteristics
The annotated dataset generated in this study comprised 1015 TMA

core images. The retrospective collected images were sourced from

three distinct datasets, each created by a different institution. The

annotations consisted of areas to which explanations describing his-

tological patterns were assigned. Explanations could be mapped to

oneof the threeGleasonpatterns or further divided intomore detailed

sub-explanations, which describe more specific subgroups of the his-

tological features defined by their parent explanation. For additional

information, please refer to the Methods section.

For each of the Gleason patterns, there were a considerable

number of images containing associated annotations. Specifically,

55.76% of the images contained annotations for Gleason pattern 3

(566/1015), 74.48% for Gleason pattern 4 (756/1015), and 32.32% for

Gleason pattern 5 (328/1015) (see Fig. 2a). When analyzing the seg-

mentation masks on both the explanation and sub-explanation level,

the number of images containing the classes at least once exhibited a

higher variation, with values ranging from 57 to 729 for explanations

and zero to 526 for sub-explanations (see Fig. 2b, c). However, the

broader, classical explanations yielded a more balanced distribution,

with fewer small classes.

Agreement between pathologists varies depending on histo-
pathologic pattern
Understanding the interobserver variability in the ground truth for

Gleason grading was crucial for improving the reliability of our clas-

sifier, as inconsistent annotations can significantly impact model

performance.

In our dataset, the images were accompanied by Gleason score

information (see Methods section), generated for each core by a

consensus between one to six pathologists, to provide guidance to the

annotators. Pathologists were, however, encouraged to use explana-

tions of different Gleason patterns, if they disagreed. Comparing the

accompanying grade informationwith the annotatedGleason patterns

(see Fig. 3a), the grades largely aligned. The majority of discrepancies

occurred at the boundaries between Gleason patterns 3 and 4, and

Gleasonpatterns 4 and 5 - anexpectedobservation, asborderline cases

are a known source of interobserver variability. The high agreement is

also reflected in the Fleiss’ kappa31 values, which ranged from 0.23 to

1.00 within the annotator groups when identifying Gleason patterns

(see Fig. 3b, top), indicating fair to perfect agreement according to

Landis and Koch32.

Consensus on the specific histological patterns, however, and

consequently the appropriate sub-explanations and explanations, was

less frequent. The extent of this variability differs depending on the

specific explanation under consideration, with Fleiss’ Kappa values of

the groups ranging from −0.05 to 0.86 for the explanations.

An analysis of the distribution of the images across the number of

annotators that agreed on the presence of each explanation (see

Fig. 3b, left) revealed high levels of agreement for certain histological

features, such as poorly formed glands and individual glands. Specifi-

cally, 76.13% (555/729) of the images annotated with poorly formed

glands and 80.81% (445/563) with individual glands by at least one

annotator reached at least two-rater agreement. This is further sup-

ported by their respective mean Fleiss’ kappa values of 0:50±0:23 and

0:61±0:20 (see Fig. 3b, right), indicating moderate to substantial

agreement.

Conversely, there are also explanations, such as glomeruloid

glands and single cells, where it was rare for a second or third anno-

tator to agree (see Fig. 3b, left). Subgroup analyses identified parti-

cularly pronounced interobserver variability for the explanations of

single cells and compressed glands, with Fleiss’ kappa values of 0.145

and 0.180, respectively (see Supplementary Table 4). The explana-

tions of glomeruloid glands and comedonecrosis on the other

hand exhibited large variance in Fleiss’ kappa values across the

annotator groups denoted by values ranging from −0.031 to 0.796

and −0.052 to 0.852, respectively. Notably, with the exception of

compressed glands, these explanations were the rarest annotated

classes (see Fig. 2).

The agreement on the sub-explanation was notably lower, with

Fleiss’ kappa values ranging from −0.22 to 0.85 in the labels between

the groups, as illustrated by thepredominantly slight agreement shown

in Supplementary Fig. 1 for each label. As interobserver agreements for

most histologic patterns, which are equivalent to our explanations, are

reported to be fair ormoderate33–35, it is to be expected that agreement

on even finer details of the patterns will be lower. These results indi-

cated considerable noise in the identification of sub-explanations,

confirming the necessity of using the explanations that consolidate the

detailed sub-explanations into broader,medically coherent categories.

This step was crucial to reduce variability and to ensure more reliable

training of our classifier.

Article https://doi.org/10.1038/s41467-025-64712-4

Nature Communications |         (2025) 16:8959 2

www.nature.com/naturecommunications


Further details on the Fleiss’ kappa values and their bootstrapped

confidence intervals can be found in Supplementary Tables 4 to 9.

Pixelwise agreement between raters is lower in minority classes
Since the AI was tasked with learning the localization of the explana-

tions, the annotators’ agreement at the pixel level was crucial. As their

annotations served as the predictive targets for the AI, the level of

interobserver agreement induced an upper limit on the performance

the AI could reach.

A similar pattern of decreasing annotator agreement with increas-

ing explanation detail was observed when analyzing the number of

pixels with a unique majority vote. Of the 58.12% of pixels constituting
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Fig. 1 | Overview. a We developed GleasonXAI, a U-Net model that predicts the

presence of histological features closely aligned with the pathologists’ consensus.

Due to training with soft labels, the predicted distribution often reflects the agree-

ment of the annotators. b In the annotation process, up to six pathologists evaluated

the TMA core images, identifying areas for each Gleason pattern, which were then

merged using the simultaneous truth and performance level estimation (STAPLE)

algorithm. Subsequently, three pathologists independently annotated histologic

patterns based on a predefined ontology. We compared training on two labeling

approaches: soft and hard labels. In the soft label approach, each pixel is represented

as a distribution across the annotated classes, while the hard label method assigns a

class to each pixel through majority voting. Further details on post- and pre-pro-

cessing, such as the masking of background pixels, can be found in the Methods

section. Created in bioRender.com64.

Article https://doi.org/10.1038/s41467-025-64712-4

Nature Communications |         (2025) 16:8959 3

www.nature.com/naturecommunications


the foreground of the dataset, 97.54% could be assigned a unique

majority class when evaluating the Gleason patterns (36.23% with two

raters and 61.30% with three raters agreement). However, at the expla-

nation level, this dropped to 86.41% (41.07% with two raters and 45.35%

with three raters agreement, respectively), and further to 67.76% at the

sub-explanations level (37.80% and 29.96%, respectively), indicating a

considerable proportion of pixels with a high annotation uncertainty.

It is worth noting that the classes with the lowest number of

annotated pixels (see Fig. 4b) were also precisely the classes where

annotators demonstrated the least consensus. As illustrated in Fig. 4a),

this was particularly evident for the explanations of comedonecrosis,

single cells, glomeruloid glands, and compressed glands, where 88.46%

to 94.96% of all annotated pixels were annotated by a single rater.

The lower number of pixels with a unique majority vote indicated

that the agreement at the pixel level was weaker compared to the image

level. Consequently, it could be inferred that Fleiss’ kappa at image-level

representedanupperboundon theoverall agreement.Asdemonstrated

in Fig. 3c), the agreement on the existence of an explanation does not

necessarily concur with the agreement on the location, as the outline

and granularity of the annotation differs between the pathologists.

Model development and evaluation
Soft labels improve model performance by considering annotator

uncertainty. To develop a pathologist-like, inherently explainable AI

system for Gleason pattern segmentation (Gleason XAI), we selected a

soft label approach by treating the different annotations from different

annotators over the pixels as probability distributions. This approach

accounted for the high interobserver disagreement stemming from the

reviewers’ annotation uncertainty. Preserving all annotations instead of

merging themwith a traditionally usedmajority vote ensured that the AI

system could also reflect the nuances of expert judgment. For compar-

ison,we also included classical hard label approaches, using themajority

votes of our international expert team of pathologists.

For both approaches, we compared our models trained on the

training data with different loss functions (see Methods section). Spe-

cifically, for the soft label approach, we used the cross-entropy loss and

our custom SoftDiceLoss, while for the hard label approach, we

employed the original Dice loss and cross-entropy loss (see Fig. 5). All

approaches were compared using the Macro SoftDice based on the loss

function of Wang et al.36, L1-norm, Dice and Macro Dice metrics on a

holdout test set. Due to the large interobserver disagreement and class

imbalancepresent in the sub-explanations,we trainedourmodelson the

broader, medically coherent explanation level of our ontology (see

Methods section, Fig. 8). A comparison of all methods, when trained on

the sub-explanations, aswell as the full numerical results can be found in

Supplementary Fig. 2 and Supplementary Tables 11 and 12.

For most models, the metrics showed a decline from the evalua-

tion on Gleason patterns to the explanations. This deterioration could

be attributed to the increased number of classes, greater class imbal-

ance in the segmentation task, and higher inter-rater variability, par-

ticularly affecting minority classes. Due to the high class imbalance in

the explanations, this trend was especially noticeable in the class-

balanced metrics (i.e, Macro Dice and Macro SoftDice).

Training onmajority-voting-based explanation labels, as opposed

to soft labels, resulted in a slight decrease in segmentation quality

when evaluated on the explanations, especially when comparing the

soft-label approaches with the cross-entropy loss. The difference

became much more pronounced when the predictions on the expla-

nations were mapped to the higher-level Gleason patterns, where

models trained on majority-voted labels performed worse than those

trained using soft labels. Trained on theGleason patterns, the hard and

soft label approaches performedonpar,with the cross-entropy loss on

the soft labels achieving the highest Dice and Macro Dice. Overall, the

soft label-based approaches consistently demonstrated superior per-

formance in terms of the segmentation metrics on the test data

compared to hard label approaches, when trained on the explanations.
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Fig. 2 | Class distribution.Number of TMA core imageswith at least one occurrence

of a the specified Gleason pattern, b the specified explanation, and c the specified

sub-explanation. Benign tissue is not included, as it is present in all images. Amapping

of sub-explanation numbers to text and is available in Supplementary Tables 1 to 3.

The mapping of the explanations to their long version is available in the Methods.

Colors of sub-explanations in (c) map to the colors of their parent explanation in (b).

All green colors map to Gleason pattern 3, blue colors to Gleason pattern 4, and red

colors to Gleason pattern 5. Source data are provided as a Source Data file.
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Importantly, we were able to preserve the segmentation quality

of the Gleason patterns even when training on the explanations.

Models using the SoftDiceLoss, trained on the explanations but

evaluated on the Gleason patterns, performed just as well as those

trained directly on the Gleason patterns. This was reassuring, as it

demonstrated that the inherent interpretability of ourmethoddidnot

come at the cost of reduced segmentation performance for the clin-

ical task.

Similarly to the segmentation performance, models trained on

explanations with our custom SoftDiceLoss exhibited better calibra-

tion to the pathologists’ annotation distribution compared to the

cross-entropy models trained with soft labels, as evidenced by a lower

L1-norm (see Fig. 5).

Since the models trained with SoftDiceLoss on the explanations

performed best across most metrics — except for the L1-norm on the

explanations— on both the explanations and Gleason patterns, we will

E
x
p

la
n

a
ti
o

n

b)

a)

Fleiss' Kappa
-0.2 0.0 0.2 0.4 0.6 0.8 1.0

c) TMA Core

image Patho. 1 Patho. 2 Patho. 3

Annotations:

/ background

/ background

G
le

a
s
o
n
 P

a
tt

e
rn

Test Text

Fig. 3 | Agreement of annotators for explanations on the image-level.

a Confusion matrix between the Gleason score presented to the annotators and

Gleason pattern of the applied explanations in the images (Each Gleason pattern

was counted only once per image, regardless of number of agreeing pathologists),

and b heatmap containing the number of TMA core images in which n out of the

three annotators indicated the presence of the Gleason pattern (left, top) and

explanations (left, bottom), and the resulting Fleiss’ kappa within groups of three

raters (on the right) as boxplot. In the boxplot, dots represent the Fleiss’ kappa

value of a group of n= 3 annotators. Boxes represent the inter-quartile range, with

the centre line marking the median, the white diamonds mark the mean value, and

whiskers extend to the minimum and maximum within 1.5 of the inter-quartile

range. For most Gleason patterns and explanations, the Fleiss’ kappa values of 14

groups of annotators are included. As not every group used all categories, the

number of groups taken into account is reduced for glomeruloid glands (13 groups),

single cells (13 groups), and comedonecrosis (11 groups). Precise numerical values

can be found in Supplementary Tables 8 to 10, and the figure for sub-explanations

in Supplementary Fig. 1. The mapping of the explanations to their long version is

available in the Methods. Exemplary differences in the consensus of the three

annotators are shown in (c) with an example for high agreement in the first row and

an example for labels with low class agreement in the bottom row. The scale bar

corresponds to 200 µm. Source data are provided as a Source Data file.
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use thesemodels for the remainder of the analysis and define them as

our GleasonXAI models. Further discussion on the calibration can be

found in the Supplementary Discussion.

GleasonXAI strongly alignswith pathologists. To further analyze the

performance capabilities of our GleasonXAI models, we examined the

distributions of predictions and the confusion matrices of the models

(see Fig. 6) on the test set.We combined the results of the threemodels

by averaging the predictive distribution and confusion matrices.

Our GleasonXAI models predicted the majority of classes in the

dataset with high reliability, often closely matching the prediction

frequency of the annotations. Classes that were rarely annotated were

predicted more frequently than they were annotated, and were also

assigned a greater probability mass (see Fig. 6a). However, for the

Fig. 4 | Agreement of annotators for explanations on pixel-level. Agreement

demonstrated by a the proportion of pixels annotated for a given class by at least

one annotator, stratified by the number of annotators indicating the presence of

the explanation and b the percentage of foreground pixels annotated with an

explanation by at least one annotator. The mapping of the explanations to their

long version is available in the Methods.

Fig. 5 | Results. Results for our models trained with different loss functions, eval-

uated on the Gleason patterns and the corresponding explanations. Using our

ontology, we mapped the labels upwards, allowing a comparison between the

models trained on the explanations with those directly trained on the Gleason

patterns. The bar plots display both the mean and the standard deviation of three

models trained with different seeds but the same hyperparameters, with the mean

values additionally indicated within the bars. The result of the n = 3 technical

replicates are indicated as dots. The green bar charts representmetrics for the hard

label approaches, while the blue bars correspond to the soft label approaches. For

the Dicemetrics, higher values indicate better performance, while for the L1-norm,

lower values are preferable. Source data are provided as a Source Data file.
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rarest explanations — such as glomeruloid glands, single cells, and

presence of comedonecrosis — the methods were not able to produce

predictions with high certainty, likely due to their rarity in the training

data and due to these classes rarely being themajority vote (see Fig. 4).

This hypothesis is further supported by the observation that the non-

predicted explanations are often most frequently confused with clas-

ses that frequently overlap within the pathologists’ annotations, i.e.

55.23% of the pixels annotated with comedonecrosis were also labeled

with solid groups of tumor cells by at least one annotator. However,

probability mass was assigned to these rare classes, which indicates

that they are not fully unrecognized, but rather their predictions are

aligned with the pathologist annotations.

The confusion matrix in Fig. 6b illustrates the annotations versus

the predictions, revealing minimal confusion between explanations of

different Gleason patterns, as indicated by the gray boxes, which

underscored the strong performance of our models trained for Glea-

son pattern segmentation. Notably, explanations of Gleason patterns 3

and 5 were rarely misclassified as one another. As demonstrated in

Fig. 6c, misclassifications predominantly occurred between adjacent

Gleason patterns. This outcome was expected, as many cases could be

medically categorized as falling between the Gleason pattern stages,

and aligned with the pathologists’ grading discrepancies shown in

Fig. 3a, where they also mostly differed between adjacent classes.

Overall, all Gleason patternswere detectedwith comparable reliability,

regardless of the number of belonging explanations, share of the

dataset or the segmentation quality of the underlying explanations.

The class that was most frequently falsely classified was benign

tissue, which we hypothesize is likely due to label uncertainty in the

border regions of the annotations. This uncertainty might have arisen

from the inherent difficulty in precisely determining annotation

boundaries, as demonstrated in Fig. 3c. Despite this, most of the pre-

dicted classes were predicted with high accuracy, with the lowest

accuracy observed for the Gleason pattern 4 explanation of poorly

formed glands at 44.4 % ( ± 1.18% SD) and the highest for the explana-

tion of individual glands at 73.8 % (±2.66% SD).

GleasonXAI generates detailed segmentation maps. As segmenta-

tion maps that achieve high Dice scores can still exhibit unwanted

properties like visual artifact or clutter37, we qualitatively verified the

correctness of our segmentationmaps by visualizing them (see Fig. 7).
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Fig. 6 | Comparison between GleasonXAI predictions and pathologist’s anno-

tations. Comparison described by a proportion of predicted probability mass for

each explanation, compared to the soft-label probability mass and the proportion

of pixels with a majority vote for an explanation compared to the number of pixels

with an argmax prediction for this explanation, and b the confusion matrix for the

argmax prediction and the majority label, presented in percentages of pixels. The

gray boxes highlight the explanations corresponding to a common Gleason pat-

tern. For a more comprehensible representation, c illustrates the confusion matrix

in percentage when the explanations were mapped to Gleason patterns. The

mapping of the explanations to their long version is available in the Methods.
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Fig. 7 | Result Visualization. Visualization of examples of segmentation results for

the GleasonXAI model compared to the three pathologists’ annotations. The seg-

mentation images depict the argmax of the per-pixel distribution for the predic-

tions of the model. a, b showcase examples of high agreement between the three

annotators and the model. c–g highlight cases with greater disagreement among

the three annotators, where the segmentation maps of the model often fell

between the annotators’ interpretations, reflecting the training objective of our

soft-label approach. h, i illustrate instances of strong disagreement between the

model and the annotators. Green labels belong to Gleason pattern 3, blue to

Gleason pattern4 and red toGleasonpattern 5. Themapping of the explanations to

their long version is available in theMethods. The scale bar corresponds to 200 µm.
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For these visualizations of the test data,we averaged the predictions of

the three GleasonXAI models. A further analysis of the structure of the

predicted features is available in the Supplementary Fig. 5.

Themodels generally aligned well with the provided annotations,

often producing segmentation maps that integrate elements from

each individual annotation. This alignment was not restricted to the

majority classes; themodel also effectively captured fine details of less

prevalent classes, even when there was no consensus among annota-

tors on the presenceof certain patterns.Notably, ourmodel frequently

generated more detailed segmentation masks than those in the

reference testset (see Fig. 7g), accurately predicting smaller details

that were not annotated by multiple pathologists, confirming the high

quality of our segmentations. These findings were encouraging as the

model was able to also capture fine structural details and was not

distracted by more coarse annotations.

Discussion
The development of trustworthy and explainable machine learning

models is crucial for their adoption in clinical practice38. However, pre-

vious studies have focused on detecting Gleason patterns using an end-

to-end AI approach. This provides limited explainability, if any, through

the use of post-hoc methods, which leaves room for potential inter-

pretation and confirmation biases27. This study introduces a pathologist-

like and inherently explainable model for the segmentation of Gleason

patterns, trained directly on a uniquely curated dataset of expert-

annotated morphological concepts. In this approach, concept-level

annotations from a large, international panel of 54 pathologists that

captures the full spectrumof ISUP-conformantGleasonpatterns (3 + 3 to

5 + 5) are applied. In contrast to prior work, which typically addresses a

limited subset of patterns or relies on labels without explicit

interpretability39, our model is grounded in clinically meaningful mor-

phological categories that align with diagnostic practice. In addition, we

publicly release a large annotated dataset of 1015 prostate cancer TMA

core images along with localized, concept-based explanations.

By utilizing soft-label loss functions, such as our SoftDiceLoss,

along with tailored assessment metrics, we were able to successfully

train an AI system on a segmentation task characterized by substantial

interobserver variability. The resulting AI is inherently explainable,

directly providing explanations for tissue characteristics in accordance

with the WHO/ISUP guidelines6. It demonstrates reliable performance

across all but the rarest classes, which simultaneously exhibited the

highest discordance (e.g., comedonecrosis, glomeruloid glands and

single cells), often annotated only by a minority of the raters.

Remarkably, these results were achieved without any loss in the

segmentation quality for Gleason patterns compared to conventional

methods trained directly on them (see Fig. 5, mean Dice ± SD:

0:713±0:003 vs. 0:691±0:010). This is particularly encouraging, as

inherently explainable XAI methods often suffer from an unfavorable

performance-interpretability trade-off 40. By treating the per-pixel

annotations of multiple pathologists as soft-labels, rather than rely-

ing on high-variance, majority-voted labels, we were able to improve

segmentationperformance compared tohard label-based approaches,

while also preserving and respecting the inherent uncertainty and

ambiguity in Gleason pattern explanations.

We hypothesize that the benefits of using soft labels become

more pronounced in scenarios with greater class imbalances and

increased label uncertainty. This is especially visible when directly

comparing the Macro Dice scores of cross-entropy models trained on

soft labels (mean ± SD: 0:625±0:032) against those trained on majority-

voted explanations labels (mean ± SD: 0:168 ±0:033), when evaluated on

the Gleason patterns. The considerable interobserver disagreement

resulted in substantial sample variance for the majority-voted labels,

contributing to label-noise, while additionally requiring the exclusion

of 13.59% of all foreground pixels for the explanations (see Fig. 4). By

utilizing soft labels, we are able to incorporate all annotations —

including minority opinions or classes that would otherwise be dis-

carded in majority voting, or cases with multiple medically plausible

annotations. This approach allows us to retain everypixel andprovides

an estimated annotation confidence, resulting in more conservative

and distributed predictions and better predictions for minority

classes.

Consequently, when training on Gleason patterns, the soft labels

and the SoftDiceLoss did not provide a great advantage over the hard

label-based approaches. Due to the relatively high level of agreement

among pathologists on Gleason pattern level (see Fig. 3a), many soft

labels closely match with the majority-voted labels, and the class dis-

tribution is more balanced. This observation aligns with recent

literature41, which suggests that label smoothing — a label augmenta-

tion technique that produces distributional labels — is particularly

beneficial in settings characterized by high label noise and class

imbalance.

GleasonXAIwasnot able topredict the rarest of classes in amajority

vote evaluation (see Fig. 6), among them the morphological finding of

comedonecrosis, which is an important histologic feature pathologists

must evaluate during risk stratification42. We attribute this to their

extreme rarity and the high inter-rater variability, even resulting in

infrequent majority annotations among pathologists for these classes

(see Figs. 3 and 4). As a result, these classes were consistently ranked as

the second most likely or lower in the predictions. Nonetheless, the

explanations weremostly confusedwithin the Gleason patterns, and the

overall sensitivity regardingGleasonpattern5 is high.Aside for the rarest

classes, the remaining minority classes were predicted with high accu-

racy, oftenmore frequently and with greater probability mass than they

were annotated (see Fig. 6a). Thus, the probability of amissed Gleason 5

pattern and a subsequent underdiagnosis is low. This behavior may be

attributed to our class-averaged loss function, which emphasizes per-

formance forminority classes or due to smaller, unannotated structures

in the image, that were nonetheless predicted by GleasonXAI. Future

studies could build upon this work by performing a targeted data col-

lection for these less frequent explanations to further enhance the

clinical utility of the model.

Whereas the pathologists achieved agreement similar to the lit-

erature in Gleason pattern annotation and some of the

explanations34,35,43, our analyses also revealed a higher-than-expected

level of disagreement in others, such as single cells and comedonecrosis33.

This couldbe causedby theoverall rarity of thesepatterns in thedataset,

but also by the low number of observers. While each image was anno-

tated by three expert pathologists — thereby exceeding the standard of

care in terms of the number of observers — increasing the number of

pathologists per image could therefore further improve the estimation

of the underlying diagnostic distribution for each location. This would

not only reduce sampling noise in the annotations, thereby improving

the learning signal for hard label approaches, but also provide more

precise estimates of diagnostic uncertainty. Such improvements would

yield better and more continuous targets for the soft label approaches

and allow for finer evaluation of the corresponding metrics.

Our work revealed a blind-spot in segmentation research using

soft-labels. While recent segmentation loss-functions have been

developed for training with soft labels36, the evaluation and the pre-

sentationof results forpathologists still hingeonhard labels. Evenwith

a perfectly estimated diagnostic distribution, a learned minority opi-

nion within the diagnostic distribution would not be reflected in

metrics based on hard labels or in visualizations that present only the

most likely explanation of the predictive distribution. Since the goal of

the study was to develop a model that closely matches the patholo-

gists’ consensus, addressing this challenge is beyond the scope for this

paper. However, future work on the use of predictive distributions and

soft labels in medical segmentation tasks is crucial. A potential

approach could involve threshold-based multi-label approaches or

adapting conformal prediction techniques44 to segmentation tasks.
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The primary goal of our study was not to achieve state-of-the-art

performance in Gleason pattern segmentation or grading, but rather

to introduce an approach for inherent and reliable explainability in

Gleason pattern segmentation with annotations using pathologists’

terminology. For this, we focusedour attentionon the segmentationof

TMAs, which, due to their smaller physical size are easier and more

reliable to annotate by our pathologists. We envision the extension of

our approach to WSIs to be straightforward by combining commonly

used patchwise prediction pipelines with explanation-level annotated

data. Promising first results were achieved with a direct application of

GleasonXAI onGleason pattern-annotatedWSIs,which canbe found in

the Supplementary Notes: Additional Results, but it demonstrated the

need for further refinement of the AI, especially in the precision of

Gleason pattern 5. Future work could focus on collecting larger data-

sets for training, including WSIs. Our approach could likely benefit

frommodern techniques like semi-supervised pre-training, even larger

datasets, or more advanced training techniques like additional aug-

mentations or ensembling. We encourage other researchers to further

explore and improve upon this challenging segmentation task.

In summary, we developed GleasonXAI, a pathologist-like model

trained on expert-derived annotations from an international panel of

pathologists, addressing the need for transparent AI in prostate cancer

grading. This approach has been shown to increase users’ confidence

and trust in AI45. More importantly, it can also decrease reading time,

especially for non-experts46. In times of declining specialist numbers

and rising cancer incidence, such explainable AI systems are essential

to meet clinical demand. To support further research, we publicly

release the largest dataset of localized Gleason pattern explanations,

aiming to advance explainable AI for high-variability medical tasks.

Methods
Inclusion and Ethics
The research complies with all ethics regulations. The study’s ethics

vote was approved by the ethics committee of the University Clinic

Mannheimof theMedical Faculty of theUniversity ofHeidelberg, since

our research involved no patients and no patient data was collected.

Informed consent was obtained from all participating pathologists

who performed the annotations of the publicly available data sets. Sex

and gender of the participating pathologists were not collected or

analyzed, as these variables were not relevant for the study objectives.

As compensation for the annotators, we offered the opportunity to be

credited as a co-author of our work.

Development of an explanatory ontology
To gather meaningful explanations for the dataset, we developed a

comprehensive medical ontology with detailed explanations for the

Gleason patterns 3, 4, and 5, based on the histological description of

Iczkowski KA. for Gleason grading47. In collaboration with an experi-

enced uro-pathologist (NTG), these explanations were shortened, split

into distinct classes and translated into German for our German col-

laborators (see Supplementary Tables 1–3). Our main goal was to

establish a criteria-based ontology for each Gleason pattern, incor-

porating distinct characteristics unique to each specific pattern, that

should be later annotated by experienced pathologists.

Additionally, we conducted a panel discussion with expert uro-

pathologists (n = 9) to gather feedback on our approach. A key out-

come was the need to adapt our ontology to current ISUP/WHO ter-

minology. The wording changes were made while preserving the

original content, resulting in our adapted ontology (see Fig. 8).

For ourmodel development, we defined three distinct levels: Each

Gleason pattern (depicted in dark blue) was assigned a set of broader,

medically coherent explanations (depicted in light blue), which

themselves contained multiple sub-explanations (depicted in white).

These sub-explanations represent the original annotations that were

gathered.

Utilized datasets
In our work we focused on TMAs, as their reduced physical size

allowed for more and more precisely annotated images per patholo-

gist. We utilized data from three different data sources: 595 TMA core

images were received from TissueArray.com LLC48, 641 from Arvaniti

et al. Harvard Dataverse49,50, and 331 from the Gleason19 Challenge13,14.

The datasets were filtered to match our requirements of containing

prostate adenocarcinoma tissue with Gleason Patterns 3, 4, and 5.

Initially, out of these 1567 images, 1180 TMA cores of prostate ade-

nocarcinomas were identified as eligible for annotation with detailed

explanatory features, of which 1015 images were selected for the

development and evaluation of our models.

Annotating Procedure
To ensure high-quality annotations, we recruited an international team

of 54 pathologists fromuniversity clinics, non-university public clinics,

and private pathology practices through the ISUP platform or direct

email invitations. Of the 54 annotators, 53 took part in the annotation

process, which involved two tasks: First, three to four pathologists

annotated the most prevalent and malignant Gleason pattern in the

TMA core images; second, three annotators applied the explanatory

ontology using the sub-explanations to generate detailed and

explainable annotations. To minimize potential bias related to indivi-

dual pathologists’ experience, we ensured that the average experience

within each group of three pathologists annotating the same dataset

was at least 10 years. Pathologists with less than or equal to 5 years of

experience were systematically grouped with two highly experienced

colleagues (≥15 years), except in one group where the average

experience fell slightly below 10 years due to the unforeseen dropout

of a senior pathologist without a suitable replacement.

The first task was only conducted on the TissueArray.com dataset,

as the Gleason 19 challenge and Harvard Dataverse datasets already

contained annotations of the Gleason patterns. The annotators were

informed of the Gleason grading from the metadata of the Harvard

Dataverse dataset (generated by a single pathologist based on hema-

toxylin and eosin staining and Immunohistochemical tests48), but could

specify alternative patterns if they disagreed with the provided grading.

TheGleason grade annotations from the pathologists were thenmerged

using the STAPLE algorithm51. Similarly, theprovided annotations for the

Gleason19Challengedataset (generatedbyup to six pathologists14)were

merged using the same algorithm. The resulting output masks were

reviewed for quality and filtered by an observer (SLP).

After the merging of the Gleason Grade annotation masks, addi-

tional filtering was required. Of the 1567 images, 244 were removed

since they didn’t fit the tissue requirements of containing prostate

carcinoma with a Gleason Grade above 2. An additional 143 were

removed due to missing annotators, small or no Gleason grade areas,

containing only Gleason Grade 1 or 2 annotations post-merge, or other

quality concerns. In 19 cases in the Gleason 19 Challenge dataset, the

merged grade annotations produced by STAPLE did not align with any

meaningful biological patterns (e.g., too small or fragmented areas),

though individual annotator labels did. For these cases, the annotation

of the pathologist, whose annotationwas deemed the closestmatch to

the STAPLE output by an observer (SLP), was selected (see Supple-

mentary Fig. 9 for a representative image).

For the second task, the TMA core images and their corresponding

Gleason pattern annotation maps from the first task were divided in 15

distinct sets. Each set was provided to a group of annotators, who were

then tasked with annotating specific histological patterns within the

predefined areas to explain the respective Gleason pattern and assign a

corresponding explanatory text. A free-text option was available if the

pathologists disagreed with the provided explanation choices. For each

annotated image from the first task, the pathologists of the second task

received up to two different images, each with the outline of the anno-

tation area for a single Gleason pattern (single-grade images). In cases
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where the assigned Gleason grades were identical (i.e., 3 + 3, 4 +4, or

5 + 5), only one single image with the corresponding area marked was

presented (see Supplementary Fig. 10).

After the annotation with the explanatory labels, additional ima-

ges (n = 165) had to be excluded due to an insufficient number of

raters. The objective was to obtain annotations from three

pathologists for each image. We used the annotations of the first three

pathologists who responded and completed their tasks. Pathologists

who dropped out early in the annotation process were replaced, and

their contributions were not included in the final dataset, if they

annotated less than a quarter of their assigned data. The images for

which we did not receive full annotations from three pathologists by

compressed or angular glands 

or glands with irregular edges

[compressed glands]

Gleason Pattern 3

variable sized individual 

glands that are well-formed 

and discrete units

[individual glands]

single or fused glandular 

structures connected to each 

other (no intervening stroma or 

mucin)

confluent sheet of contiguous carcinoma 

cells with multiple glandular lumina that 

are easily visible at low power (objective 

magnification 10x)

contains a tuft of cells that is 

largely detached from its 

surrounding duct space 

except for a single point of 

attachment

cribriform glands

[cribriform glands]

Gleason Pattern 4

glomeruloid glands

[glomeruloid glands]

rare small cribriform variant 

resembling glomerulus 

structures of kidney

poorly formed and fused 

glands

[poorly formed glands]

solid groups of tumor cells

[groups of tumor cells]

Gleason Pattern 5

presence of comedonecrosis

[comedonecrosis]

presence of comedonecrosis 

with karyorrhexis within 

papillary, cribriform spaces

single cells

[single cells]

cords / line arrays

(cords)

single cells with vacuoles 

(signet ring cells) lacking 

glandular lumina

compressed (variable sized) 

or angular atypical glands

3.07

atypical glands with an 

irregularly separated, ragged 

edge
3.02

either minute or large and 

cyst-like atrophic atypical 

glands
3.04

well-formed, relatively 

uniform atypical glands with 

evenly distributed lumina
3.06

atypical glands lying very 

closely together (with little 

stroma between adjacent 

atypical glands)
3.05

atypical glands infiltrate 

between benign glands

3.08

atypical glands are looser than 

a nodule and are infiltrative
3.03

larger than a normal prostate 

gland; tends to fragmentation

4.08

4.09

4.10

4.16

4.17

irregular contours, jagged 

edges of atypical glands
4.03

large atypical glands

4.02

atypical glands fused or grown 

together into cords or chains

4.04

slit-like lumina

4.01

irregular distribution of lumina 

4.05

solid nests of tumor cells

5.01

presence of comedonecrosis 

with intraluminal necrotic 

cells
5.03

5.04

5.07

5.06

 single, individual atypical 

glands separated from each 

other
3.01

poorly formed and fused 

glands

(poorly formed glands)
4.06

cribriform glands

4.07

glomeruloid glands

4.15

presence of comedonecrosis

5.02

single cells

5.05

cords / line arrays

poorly formed lumens, cells 

with clear cytoplasm lying next 

to each other without true 

definition of the gland
4.11

poorly formed lumens, cells 

with clear cytoplasm lying next 

to each other without true 

definition of the gland

 - fusion of acini into more 

solid sheets with the 

appearance of back-to-back 

glands without intervening 

stroma 4.144.13

poorly formed lumens, cells 

with clear cytoplasm lying 

next to each other without 

true definition of the gland

 - small, hyperchromatic 

nuclei 

poorly formed lumens, cells 

with clear cytoplasm lying next 

to each other without true 

definition of the gland

 - nests of clear cells 

resembling renal cell 

carcinoma 4.12

Fig. 8 | Overview of the explanatory Gleason pattern ontology. Generic terms

based on the WHO and ISUP2014 guidelines summarize the explanations corre-

sponding to our initial ontology version. As the term “hypernephroid pattern” is

now discouraged, we replaced it with “poorly formed lumens, cells with clear

cytoplasm lying next to each other without true definition of the gland”. Gleason

pattern classes are marked in dark blue, explanation classes in light blue, and sub-

explanations inwhite. For our figures, we use shortened names of the explanations,

which are shown in square brackets for explanations, and in the numbering in the

bottom right for the sub-explanations.
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the end of the process were removed. This occurred primarily due to

late dropouts, but also due to single images being skipped. We

reviewed the skipped images to account for potential systematic bia-

ses, but were unable to identify any consistent issues. Overall, anno-

tations for 1015 TMA core images from 42 of the 47 involved

annotators in the explanation annotation phase were included.

All annotations were performed using the online annotation tool

PlainSight52. Further details on the data selection is available in the

Supplementary Notes: Data Selection.

Data preparation
After the raters completed the explanatory annotations, explanations

provided via the free text option had to be standardized. This was

achieved bymapping them to their nearest equivalent in the ontology.

Sorted by the time of polygon creation, empty explanation fields

were filled with the next available explanation. This reflected the

expected behavior outlined in the instruction video provided to the

raters: polygons were drawn first, and afterwards the explanations were

selected. If multiple explanations were selected for a polygon, each

explanation was included in the data as a copy of the original polygon.

For our model training, we created segmentation masks for each

annotator and TMA core image pairs. As the explanations for each

Gleason pattern were annotated separately on single-grade images, we

drew the annotations of each single-grade image in theorder theywere

created, with the single-grade images themselves being sorted by their

corresponding Gleason pattern in ascending order. Annotations that

were provided later therefore override previous annotations of the

same or lower Gleason patterns that share the same pixels.

The tree-structure of the ontology allowed us to create three

datasets from our annotations (sub-explanations, explanations, and

Gleason patterns, see Fig. 8), by remapping the sub-explanation

annotations upwards in the ontology. This was deemed necessary for

the model development, due to concerns of the sample size for the

sub-explanations and the issue of class imbalance.

For both training and label analysis, weusedmerged grade images

to review the complete grading and interpretations provided by the

pathologists for the TMA core images.

Model Development
To develop a pathologist-like, inherently explainable AI system (Glea-

son XAI) for detecting Gleason patterns on TMA cores, we employed a

concept bottleneck strategy29, predicting the explanations directly for

each pixel, with the ability to later remap them to their corresponding

Gleason pattern. This provides inherent explainability by basing the

decision for a Gleason pattern solely on the predictions of the asso-

ciated explanations, which can in turn be verified by expert patholo-

gists in contrast to black box decisions on the Gleason pattern.

Inspired by recent positive results53, we selected a U-Net30 with an

Image-Net54-pretrained EfficientNet-B455 encoder as our segmentation

architecture. To validate our architectural choice, we compared the

results on additional different architectures. The comparison can be

found in the Supplementary Notes: Additional Results.

We trained models on all three levels of our ontology (see Fig. 8).

At each level of the classhierarchy, anadditionalbenign tissue classwas

included to account for unannotated regions.

As the white background of the slide would be falsely labeled as

benign tissue, we used Otsu’s thresholding56 followed by morphological

closing and opening operations to detect and mask out these regions

during the loss-computation (see Supplementary Fig. 11a). During

inference, the entire image was processed, however, the loss functions

and the metrics were computed using only foreground pixels. For our

segmentation visualizations, we alsomasked out the background pixels.

Due to high interobserver variability in the annotations, particu-

larly for the explanations and sub-explanations, using majority voting

or more sophisticated annotation merging approaches like STAPLE to

obtain definite per-pixel labels was not feasible. Instead, we used a soft

label approach, obtained by combining the annotations into a per-

pixel annotation distribution (see Supplementary Fig. 11b). This

method preserved human uncertainty in the labeling process and

retained annotations for minority classes or cases where multiple

explanations might be feasible.

When training segmentation models with majority-voted labels,

often a combination of cross-entropy loss and variants of the Dice

loss57 is used. However, the Dice loss does not apply to soft labels. We

therefore implemented the SoftDiceLoss, a straightforward extension

of the Macro Dice loss, only changing the domain of the target vari-

ables to the interval [0,1]. This is similar to the one proposed by Wang

et al.36, however, we found that their loss function led to training

instabilities in our training, providing worse results in terms of our

metrics between different seedings.

For comparison with existing literature, we also nonetheless

included models trained with the cross-entropy and class-averaged

Dice loss on majority-voted labels. For better comparability between

the soft- and hard-label methods, we decided against using STAPLE to

preserve the decision boundaries. These loss-functions were only

computed over foreground pixels that possess an unambiguous

majority vote (84.41% of the pixels on explanation level, 97.54% on

Gleason patterns, see Fig. 4). Of the pixels where all three pathologists

disagreed on the explanation, 64.82% were labeled as benign tissue by

one annotator and most of the time as different explanations of the

sameGleasonpatternby theother two. They can thereforebe assumed

to be partially caused by differences in the delineation, and thus

should have only a minor effect if removed.

Each model was trained three times with different seeds, using a

batch sizeof 12 for 200epochs. The starting learning ratewas set to 5e-

5, and it was reduced by a factor of three if the validation loss did not

decrease for two consecutive epochs. The L2 parameter regularization

coefficient was set to λ=0:02. Both parameters were found through

hyperparameter optimization using the optuna58 library. We used

AdamW59 as optimizer with default parameters (β1 =0:99, β2 =0:9).

Models were saved after each epoch, and the epoch with the lowest

validation loss was selected for testing.

The TMA core images possessed resolutions between 2232 × 2215

px² and 5632 × 5632 px², stemming from different scanners and dif-

ferent physical sizes of the images. As the individual datasets had dif-

ferent pixel spacings (Gleason19 Challenge: 0.25 μm
px
, Harvard

Dataverse: 0.23 μm
px
, TissueArray.com: 0.5455 μm

px
), we tested multiple

resolutions for segmentation performance and then bi-cubically

interpolated all images to a common physical pixel side length of

1.392 μm
px
. At this resolution, the smallest images filled a 512 × 512 px²

patch and the largest images reached 1358 × 1358 px². We augmented

the images during training using the light augmentations without

stain-normalizations, as recommended by Tellez et al.60 and extracted

randompatches of size 512 × 512px², while avoidingpatches consisting

only of background. For the validation set, we always extracted the

central 512 × 512 px² patch of each image. At test time, we utilized the

computationally more expensive sliding window approach, imple-

mented byMONAI61, extracting 512 × 512 px² patches,with 50%overlap

and Gaussian weighted averaging with default parameters. A graphical

overview of our approach can be found in Supplementary Fig. 11.

The dataset was randomly split into training, validation and test

datasets, comprising 70%, 15%, and 15% of the TMA cores, respectively.

We optimized the assignment of images to the training, validation, and

test splits tominimize the L1-norm (seeModel Evaluation) between the

class distributions of the pixels between the splits. The class distribu-

tions are shown in Supplementary Fig. 12.

Statistics and software
Software. All code was written in Python (3.10.13). PyTorch (2.1.1),

PyTorch Lightning (2.2.0.post0), Albumentations (1.3.1), Pillow (9.5.0),
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Openslide (1.4.2), Pyvips (3.0.0), Shapely (2.1.1), OpenCV (4.8.1.78),

MONAI (1.3.0), Hydra (1.3.2), NumPy (2.2.6), Pandas (2.1.1), Timm

(0.9.2),WandB (0.17.1), Tensorboard (2.16.2), Omegaconf (2.3.0), SciPy

(1.11.3), Scikit-learn (1.3.2), Scikit-image (0.22.0), Statsmodels (0.13.2),

Matplotlib (3.8.0), and Seaborn (0.13.2) were used for image proces-

sing,model development and training, data analysis, and visualization.

Pathologists’ caseload. The participating pathologists were asked to

provide an estimate of the number of prostate cancer patients they

examined per week, with their responses provided in ranges. To

address the issue of overlapping ranges, a representative value was

determined for each pathologist by calculating the mean of their

submitted range. The median of these means was reported in the

results.

Interobserver agreement. To analyze the annotator concordance

while accounting for agreement occurring by chance, we calculated

Fleiss’ kappa31 within each rater group and label using the

statsmodels62 implementation.

For this calculation, we binarized the pathologists’ decisions by

evaluating, for each image and label, whether the label was used by the

annotator, resulting in nine decisions per image and annotator. Fleiss’

kappa values were then calculated for each label within each group. To

assess overall agreement within each group, we calculated Fleiss’

kappa across all decisions of the group regardless of the labels. Addi-

tionally, we quantified the overall agreement for each label by calcu-

lating Fleiss’ kappa across all decisions for that label in all TMA core

images.

Model evaluation. In our setting, which used soft labels for segmen-

tation tasks, traditional metrics like Dice score, Intersection-over-

Union, accuracy, and ROC curves offer an incomplete picture, as they

rely on hard labels and do not take into account the reviewers’ clinical

uncertainty.

Therefore, we reported the complement of the mIoUD (α =0:5,

β=0:5) loss by Wang et al.36, a segmentation Dice loss that was

developed for soft labels, as our primary metric (referred to as Macro

SoftDice for brevity). Importantly, this loss averages over all classes,

which is important for datasets containing large class imbalances. As

discussed in Methods: Model Development, using this loss during

training leads to worse performance for our model in terms of all

metrics compared to our SoftDiceLoss. Due to its sound theoretical

motivation and to avoid having to use our own loss function as target

metric, we used the Macro SoftDice.

Additionally, we focused on evaluating the predictive calibration

by measuring the divergence between the predictive and target dis-

tributions. Contrary to hard label-based metrics, this approach

accounted for pathologists’ diagnostic uncertainty. We reported the

L1-norm normalized to the range (0,1), from now on called L1-norm,

between the predictive and target distributions:

L1ðp
seg , yseg Þ=

1

2NCP

X

N,C, P

n, c,p= 1

pn, c,p � yn, c,p

�

�

�

�

�

� ð1Þ

A pathologist will most likely interact with the visualization of the

most probable class per pixel, asmodel explanations need tobe simple

and efficient in clinical practice16. Therefore, to maintain compatibility

with adjacent literature and to provide intuitively understandable

metrics, we also reported the Dice and the Macro Dice scores, com-

puted globally over all pixels. Thesewere calculated between the pixel-

wise maximum of our predictive distribution and the majority vote of

the annotationdistribution as our secondarymetrics.We also included

a confusion matrix of the explanation predictions.

In our dataset, a unique majority vote could not be defined for

pixels, where all three pathologists disagreed. Therefore, we

computed these metrics only over foreground pixels with an unam-

biguousmajority vote. The primary goal of this paper was to develop a

pathologist-like, inherently explainable segmentation model for Glea-

son patterns on TMAs. Accordingly, we also evaluated the perfor-

mance of the models in Gleason pattern segmentation. We compared

models trained on the (sub-)explanations of our ontology to models

trained solely on the Gleason patterns. For our models trained on the

(sub-)explanations, we remapped the predictions to the Gleason pat-

terns by aggregating the corresponding probabilities of the predic-

tions, summing up the predicted probabilities of the (sub-)

explanations that — according to our predefined ontology — corre-

sponded to a Gleason pattern.

We reported the mean and standard deviation of the metrics,

averaged over three runs.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
The annotation data based on all three datasets generated in this study

and the TMA core images of the TissueArray.com LLC dataset used in

this study have been deposited in the Figshare repository at https://

doi.org/10.6084/m9.figshare.27301845 63. The TMA core images of the

Gleason 19 challenge used in this study are available on the Grand

Challenge platform at https://gleason2019.grand-challenge.org/

Register/. The TMA core images of the Arvaniti et al. The Harvard

Dataverse dataset used in this study is available in the Harvard Data-

verse repository at https://doi.org/10.7910/DVN/OCYCMP. The WSI

images of the AGGC dataset used in this study in the Supplementary

Notes are available on the Grand Challenge platform. Access can be

obtained after registration at https://aggc22.grand-challenge.org. The

WSI images of the DiagSet dataset used in this study in the Supple-

mentary Notes can be obtained by registering at the database and

providing a description of the intended use at https://ai-econsilio.diag.

pl. Source data are provided with this paper.

Code availability
The code for the model development and the statistical analyses is

available on GitHub at https://github.com/DBO-DKFZ/GleasonXAI.
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