
ID: pcbi.1013439 — 2025/9/19 — page 1 — #1

PLOS COMPUTATIONAL BIOLOGY

OPEN ACCESS

Citation: Whaler B, Lythe G, Gillard JJ, Laws
TR, Carruthers J, Finnie T, et al. (2025)
Mechanistic within-host mathematical model of
inhalational anthrax. PLoS Comput Biol 21(9):
e1013439.
https://doi.org/10.1371/journal.pcbi.1013439

Editor: Brittany Rife Magalis, University of
Louisville, UNITED STATES OF AMERICA

Received: June 4, 2025

Accepted: August 14, 2025

Published: September 24, 2025

Peer Review History: PLOS recognizes the
benefits of transparency in the peer review
process; therefore, we enable the publication of
all of the content of peer review and author
responses alongside final, published articles.
The editorial history of this article is available
here: https://doi.org/10.1371/journal.pcbi.
1013439

Copyright: © 2025 Whaler et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the
original author and source are credited.

Data availability statement: Computer codes
(in Python) for reproducing the results in
Figs 2–6 and 8–13 are available from the
GitHub repository: https://github.com/Bevelynn/
within-host-anthrax-model.

RESEARCH ARTICLE

Mechanistic within-host mathematical
model of inhalational anthrax
Bevelynn Whaler

 

 

1∗, Grant Lythe1, Joseph J. Gillard2, Thomas R. Laws
 

 

2, Jonathan
Carruthers3, Thomas Finnie

 

 

3, Carmen Molina-París1,4, Martín López-García1∗

1 Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, United
Kingdom, 2 CBR Division, Defence Science and Technology Laboratory, Salisbury, United Kingdom,
3 Data, Analytics and Surveillance, UK Health Security Agency, Salisbury, United Kingdom, 4 T-6,
Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos,
New Mexico, United States of America

∗ B.Williams1@leeds.ac.uk (BW); M.LopezGarcia@leeds.ac.uk (ML-G)

Abstract
We present a mathematical model of the dynamics of Bacillus anthracis bacteria within
the lymph nodes and blood of a host, following inhalation of an initial dose of spores. We
also incorporate the dynamics of protective antigen, which is the binding component of
the anthrax toxin produced by the bacteria. The model offers a mechanistic description of
the early infection dynamics of inhalational anthrax, while its stochastic nature allows us
to study the probabilities of different outcomes (for example, how likely it is that the infec-
tion will be cleared for a given inhaled dose of spores) in order to explain dose-response
data for inhalational anthrax. The model is calibrated via a Bayesian approach, using
in vivo data from New Zealand white rabbit and guinea pig infection studies, enabling
within-host parameters to be estimated. We also leverage incubation-period data from
the Sverdlovsk 1979 anthrax outbreak to show that the model can accurately describe
human time-to-symptoms data under reasonable parameter regimes. Finally, we derive a
simple approximate formula for the probability of symptom onset before time t, assuming
that the number of inhaled spores has a Poisson distribution.

Author summary
We use a stochastic model to characterise Bacillus anthracis infection in rabbits and
guinea pigs. The model quantifies the kinetics of pathogenesis in different compart-
ments, which represent different areas that the infection spreads to. It allows us to
account for the large variability in infection timecourses between individual animals
exposed to a high aerosol dose of spores, and to capture the probability of infection
following exposure to a range of spore doses. We learn about the parameters of the math-
ematical model of inhalational anthrax through Bayesian statistical inference methods,
making use of previously-published experimental measurements of bacterial loads and
protective antigen (PA) levels in New Zealand white rabbits and guinea pigs, together
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with dose-response data sets for these animals. We then use a simplified version of the
model to simulate the time taken for an individual to show symptoms after exposure
and compare with human incubation-period data from the Sverdlovsk 1979 anthrax
outbreak.
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Introduction
Anthrax is the infectious disease caused by the bacterium Bacillus anthracis. Under adverse
conditions, B. anthracis forms dormant spores, which are unable to replicate. Inhalational
anthrax is initiated by B. anthracis spores inhaled by a host. The spores travel through the air
passages and some can be deposited in the alveoli of the lungs. The generally-accepted model
of inhalational anthrax infection is the Trojan horse model [1], which assumes that spores
are engulfed by alveolar phagocytes, such as macrophages [2] or dendritic cells [3–5]. Then,
once the spores have been phagocytosed, they germinate inside the host cell. If the result-
ing bacteria survive the microbicidal defences of the phagocyte, they can begin to replicate,
forming long chains of vegetative bacterial cells [6]. The infected phagocytes migrate to the
lymph nodes that drain the airways. Here, the intracellular bacteria are released into the extra-
cellular environment when the host cell ruptures and dies. The rupture of infected phago-
cytes is thought to be primarily due to the physical stresses put on the host cell membrane
from the chains of vegetative bacteria growing inside it. Once an infected host cell ruptures,
the extracellular bacterial chains continue to multiply. This leads to edema and hemorrhage
of the mediastinal lymph nodes, and large amounts of fluid in the pleural cavity, which can
severely affect breathing [7]. The bacteria also spread into the bloodstream and other organs
to establish a systemic infection [8].

One of the characteristic virulence factors that contributes to the pathogenic success of
B. anthracis is the production of three proteins that are collectively termed anthrax toxin: pro-
tective antigen (PA), oedema factor (EF), and lethal factor (LF). EF and LF are the active com-
ponents that have an effect on cells by interfering with their functions. However, on their own,
EF and LF are non-toxic, since they are not able to enter cells without PA molecules being
present. PA binds to receptors on host cells and is cleaved by a host protease called furin. This
creates a binding site for either EF or LF. Thus, EF in combination with PA forms the oedema
toxin, and LF in combination with PA forms the lethal toxin. These two toxins cause differ-
ent cellular responses and are essential factors for the survival of B. anthracis in an infected
host. Lethal toxin disrupts cell signalling pathways of macrophages and some other cells, lead-
ing to cell death. On the other hand, oedema toxin inhibits the phagocytosis of bacteria by
neutrophils [9]. In some cell types, oedema toxin also increases the levels of cyclic adenosine
monophosphate, which is a chemical messenger that plays a major role in controlling many
intracellular processes. During systemic infection, the toxins are distributed via the blood-
stream to different organs, where they affect the functioning of organs such as the spleen,
lymph nodes, liver, kidney, heart, and brain. Together, the anthrax toxins cause disregulation,
immune pathology, and death.

Inhalational anthrax is usually fatal if not rapidly detected and treated [10]. Although some
cases of inhalational anthrax can be resolved with antibiotic treatment, the fatality rates with
treatment are still rather high, since (often times) treatment is not started early enough after
exposure and symptom onset. Additionally, B. anthracis spores can be produced and pre-
served, making inhalational anthrax a potential biological terrorism threat [11]. We there-
fore aim to develop a mathematical within-host model of inhalational anthrax to improve our
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understanding of the early progression of the infection, and to help quantify key infection
mechanisms.

Several types of mathematical models have previously been developed to study inhalational
anthrax. Statistical dose-response models can be used to describe the probability of response
for different initial inhaled doses of spores, at the population level. However, these mod-
els provide limited information about within-host disease mechanisms, or the timescale of
pathogenesis. A standard approach in dose-response assessment is the use of single-hit mod-
els. These models assume that when an individual is infected with a pathogen, the organisms
act independently in the host so that the probability that any one organism in the initial dose
produces an eventual infection is independent of the size of the dose, and the probability of
infection is equivalent to the probability that at least one of the organisms in the initial dose
will lead to an infection. An example of these single-hit approaches is the exponential dose-
response model, which involves a single parameter to denote the probability that an individ-
ual organism will produce a response. The competing-risks model for inhalational anthrax
was proposed by Brookmeyer et al. [12] as an extension of the exponential dose-response
model. This is also a single-hit model, but allows some insight into disease mechanisms since
it includes parameters such as the germination rate of spores and the rate at which spores
are cleared from the lungs. However, it is still a rather simple model. The hypothesis of the
competing-risks model for anthrax is that if a single spore survives ingestion by a macrophage
and successfully germinates without being cleared, then the resulting bacterium will be cer-
tain to establish an infection. However, some immune cells may be able to kill vegetative B.
anthracis bacteria [13]. This implies that once a spore in an infected cell has germinated and
bacteria are released, it is not guaranteed that these bacteria will survive and cause infection.
Another simplification used in the competing-risks model is that the times until germination
or clearance of a spore are both assumed to be exponentially distributed. However, this might
not be the case. For instance, in the intracellular model presented in [14], as well as the one by
Pantha et al. [15], the consideration of the newly germinated bacterium means that the total
germination-maturation time is non-exponential.

Deterministic models have also been developed for inhalational anthrax, consisting of dif-
ferential equations to model variables of the within-host disease dynamics. These models can
capture and quantify key biological mechanisms. Some deterministic models are extremely
complicated, for example the model by Day et al. [16] includes variables for spores, bacteria,
toxin, different types of immune cells, and antibiotics. It models the dynamics in two com-
partments representing the lungs and the lymph nodes. Model parameters are not calibrated
with specific data, but the model aims to provide a qualitative description of the disease in
humans for sensible parameter choices. On the other hand, Gutting [17] has developed a sim-
ple model to describe the bacterial kinetics in a rabbit model of inhalational anthrax, and
used various data sets to calibrate model parameters. However, this model only describes
the amount of bacteria within the lung airways and the rabbit body as a whole, rather than
dividing the body into multiple compartments or incorporating the dynamics of the anthrax
toxin.

Here, a novel model of the within-host dynamics of inhalational anthrax is presented,
which could be considered to fall between the one by Day et al. [16] and Gutting [17] in terms
of model complexity. The stochastic nature of the within-host model presented here allows
it to capture the intrinsic randomness in infection dynamics. For example, the model con-
siders inter-phagocyte variability in the amount of bacteria released from an infected phago-
cyte by incorporating the rupture-size distribution from a previous intracellular model [14]
(developed by our group). Heterogeneity of the rupture size has been shown to be impor-
tant in a similar model for the pathogen Francisella tularensis [18], but is something that has
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not been considered in previous within-host models of inhalational anthrax. The stochas-
ticity is particularly important when modelling the outcome of infections initiated by a rela-
tively small number of spores deposited in the lungs. The within-host model also incorporates
the dynamics of the anthrax toxin during infection, since this is a key component of anthrax
pathogenesis and will also be important for modelling anti-PA treatments in future work.
The role of toxins was included in the model by Day et al. [16], but the toxin level was mod-
elled as a number between 0 and 1, with arbitrary units. Here the toxin parameters are instead
defined in biologically-relevant units and calibrated with available in vivo data to enable a
more detailed description of toxin dynamics.

Parameter calibration of the within-host model is performed by comparing realisations of
the stochastic model to in vivo data from rabbit and guinea-pig infections, as well as linking
the model to dose-response data for these animal species in order to ensure that the model
reliably describes the probability of infection following exposure to different doses of spores.
Building a model that offers a realistic mechanistic description of different animal responses
to the inhalation of B. anthracis spores is an important step towards the ultimate aim of devel-
oping a model that can predict the dynamics of human infection with and without treat-
ments. As well as enabling computation of the infection probability, the stochastic approach
also allows quantification of the incubation period distribution (i.e., the time between expo-
sure and symptoms onset). We illustrate this by fitting a simplified version of the within-host
model to human incubation-period data from the Sverdlovsk 1979 anthrax outbreak [19]. An
analytic approximation has also been derived, allowing rapid evaluation of the incubation-
period distribution, given dose.

Results
Within-host model for animals
Themathematical within-host model of inhalational anthrax is depicted in Fig 1 and
described in detail in the Methods section. The model assumes that each spore in the initial
inhaled dose of D spores has probability ̂𝜙 to be deposited in the lung airways. These spores
are then removed from the airways of the lungs at rate 𝜌, which encompasses three main
removal processes: (i) clearance of spores by ciliated epithelial cells that beat and propel mate-
rial up the airways to be expelled, (ii) phagocytosis of spores leading to killing of the spore or
rupture in a tissue not conducive to bacterial growth, and (iii) phagocytosis leading to sur-
vival of the spore, trafficking to the draining lymph nodes of the lungs, and rupture of the cell
releasing some positive number of bacteria into the lymph nodes. Only in case (iii) will the
spore have a chance to cause an infection. Therefore we define q to be the probability that a
given spore in the lungs will successfully infect a phagocyte and lead to some positive num-
ber of bacteria being released into the lymph nodes; that is, case (iii) (successful infection of
a phagocyte) occurs with probability q, and case (i) or (ii) (clearance) occurs with probability
1–q.

The variable P represents infected phagocytes (each assumed to have phagocytosed one
spore only) that will migrate to the lymph nodes and rupture, releasing some bacteria. The
time taken for an infected phagocyte to migrate to the lymph nodes and rupture, releasing
some positive number of bacteria, is assumed to be Erlang-distributed. The shape parame-
ter of this distribution is chosen to be n = 3, which is informed by an Erlang approximation to
the rupture-time distribution of the intracellular model calibrated in [14]. In our within-host
model, the unit of measurement for the amount of bacteria is colony-forming units (CFU)
because this is the unit of the data to which we calibrate the model. B. anthracis forms very
long chains of bacteria, where one chain is likely to produce one CFU. The number of CFU
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Fig 1. Diagram of the within-host model of inhalational anthrax. See the Methods section for a detailed description of the model.

https://doi.org/10.1371/journal.pcbi.1013439.g001

released from an infected phagocyte (the rupture size) is assumed to follow a geometric distri-
bution with mean R = 1.6 [14]. Note that many individual bacteria might emerge from a sin-
gle phagocyte, but these will have formed chains of bacteria, so the number of CFU (chains)
released is likely to be much lower than the number of bacteria. We expand on this in the
Discussion.

In the lymph nodes (LN), the extracellular bacteria replicate at rate 𝜆LN per CFU, while
death of extracellular bacteria in the lymph nodes is assumed to occur at rate 𝜇LN per CFU
due to the action of the host immune system. This single term accounts for multiple mecha-
nisms of extracellular bacterial death, such as from neutrophils, macrophages, dendritic cells,
lymphocytes, and soluble components of the innate immune system [13,16,20]. Furthermore,
a non-linear term in the death rate accounts for competition for resources between extracel-
lular bacteria, such that bacterial proliferation is modelled by logistic growth, with carrying
capacity KLN. Migration of extracellular bacteria from the lymph nodes to circulation in the
blood vessels occurs at ratemLNBLN if the amount of bacteria in the lymph nodes is greater
than the migration threshold,M (see the Methods section for a discussion on this). In the cir-
culation, proliferation of bacteria is modelled by logistic growth, with replication rate 𝜆C and
carrying capacity KC. Bacteria circulating in the blood are removed into organs such as the
liver and spleen at ratemC. Free protective antigen (PA), produced by bacteria in the lymph
nodes and circulation at rate 𝛽, is removed due to degradation or host cell binding at rate 𝜇T,
and moves between compartments in a similar way to bacteria. Table 1 provides a list of the
parameters in the within-host model.

If an individual inhales a dose of B. anthracis spores, it is possible that their innate immune
system will be capable of clearing the pathogen, without resulting in a detectable infection.
However, in some cases the infection cannot be contained and will become established. The
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Table 1. Descriptions (and units) of model parameters, organised by model compartment.
Parameter Unit Description

Lung airways 𝜙̂ - Probability that a given inhaled spore will become
deposited in the lungs

𝜌 h–1 Rate of removal of spores from the lung airways
q - Probability that a given spore in the lungs will lead to

a rupture event in LN
𝛿 h–1 Rate parameter of Erlang-distributed time for

migration to LN and rupture
Lymph nodes (LN) R CFU Mean of the geometric distribution of the rupture size

𝜆LN h–1 Logistic growth rate of extracellular bacteria in the
lymph nodes

𝜇LN h–1 Killing rate of extracellular bacteria in the lymph
nodes

KLN CFU Carrying capacity for logistic growth of extracellular
bacteria in LN

M CFU Threshold amount of bacteria needed in LN before
migration into circulation

mLN h–1 Migration rate of extracellular bacteria and PA from
LN into circulation

Circulation (C) 𝜆C h–1 Logistic growth rate of extracellular bacteria in the
circulation compartment

KC CFU Carrying capacity for logistic growth of extracellular
bacteria in the circulation

mC h–1 Migration rate of extracellular bacteria and PA out of
circulation

Protective antigen (PA) 𝛽 ng (CFU ⋅ h)–1 Production rate of PA by extracellular bacteria
𝜇T h–1 Removal rate of PA due to natural degradation and

binding to cells

https://doi.org/10.1371/journal.pcbi.1013439.t001

within-host model can be used to investigate the probability that infection becomes estab-
lished, given a known initial dose of inhaled spores. The calculation of this probability of
infection is shown in the Methods section, resulting in an expression for the per spore prob-
ability of infection, r, in Eq (5), and the exponential dose-response model shown in Eq (6).
The exponential dose-response model in Eq (6) is widely used in microbial risk assessment,
and has been previously used many times to establish dose-response curves for inhalational
anthrax. For example, Gutting et al. [21] have fitted the exponential dose-response model to
dose-response data sets for different animal species, in order to estimate the parameter r for
each species. The novelty of our approach is that Eq (5) allows for a mechanistic interpretation
of r in terms of the early within-host infection dynamics in Fig 1.

Here, the model in Fig 1 is calibrated using data from studies of New Zealand white rab-
bits [21,22] and guinea pigs [21,23]. For each species, the model is fitted to measurements of
bacterial CFU from animals that were exposed to a high dose of spores, as well as mortality
rates from dose-response data sets, simultaneously. In this way, it is possible to ensure that
the model accurately describes both the in vivo dynamics of infection, and the probability of
infection after exposure to various doses of spores. For guinea pigs, we also use measurements
of PA levels in the blood, which allows us to calibrate the model parameters that describe the
PA dynamics.

To calibrate the model for rabbit infection, we used the rabbit dose-response data set pre-
sented by Gutting et al. [21]. Additionally, we used data from a study by Gutting et al. [22]
in which rabbits were infected with the highly virulent Ames strain of B. anthracis in order
to characterise bacterial dissemination following exposure to a high aerosol dose of spores.
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This data set provides measurements of the number of bacterial CFU in the tracheo-bronchial
lymph nodes (TBLN) and blood of individual rabbits at times 1, 6, 12, 24, and 36 hours after
exposure to a mean inhaled dose of 4.428 × 107 spores. To calibrate the model for guinea-
pig infection, we used the guinea-pig dose-response data set presented by Gutting et al. [21].
Additionally, we used data from a study by Savransky et al. [23] in which guinea pigs were
infected with the Ames strain of B. anthracis using nose-only aerosol exposure. This data set
provides measurements of the number of CFU per ml of blood and the amount of PA (ng/ml)
in sera for individual guinea pigs at times 24, 30, 36, 48, and 72 hours after exposure to a dose
of 2 × 107 spores. The details of each data set are provided in the Methods section.

Rabbit model calibration. Themodel in Fig 1 was simultaneously fitted to rabbit dose-
response data and in vivo numbers of bacteria, using Approximate Bayesian Computation
Sequential Monte Carlo (ABC-SMC) [24], in order to estimate the posterior distribution of
the parameter vector (q, 𝛿, 𝜆LN, 𝜇LN,M,mLN,mC). Other parameters were fixed to the values
̂𝜙 = 0.092, 𝜌 = 0.0735 h–1, R = 1.6 CFU, KLN = 109 CFU, 𝜆C = 0.17 h–1, and KC = 1011 CFU. Jus-

tification for this and details about the ABC-SMC algorithm used are provided in the Meth-
ods section. We have not estimated the toxin parameters for rabbits, since the data set used
does not contain PA measurements.

Model predictions from this calibration are shown in Fig 2, where the posterior parameter
set corresponding to the smallest distance from the data has been used to obtain 20 stochastic
model realisations. The plots show the predicted number of CFU in the two different model
compartments, along with the in vivo observations (dots showing the CFU measurements
from individual rabbits, provided in Table 4). The parameter sets in the posterior sample
have also been used to obtain predictions of the dose-response curve (see Eqs (5) and (6) in
the Methods section). In Fig 3, the pointwise median and 95% credible interval (CI) of the
model predictions from all parameter estimates in the posterior sample are compared with the
observed response rates in groups of rabbits exposed to different doses. The “response” mea-
sured in this data set was mortality, but we assume that established inhalational anthrax will

Fig 2. Stochastic model realisations compared to the CFU data used in the ABC-SMC for the rabbit model calibration. A sample of 20 model realisations
using the “best” posterior parameter set (the one corresponding to the smallest distance from the data in the ABC-SMC) is compared with the CFU loads in
the TBLN (left) and blood (right) of individual rabbits, provided in Table 4.

https://doi.org/10.1371/journal.pcbi.1013439.g002
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Fig 3. Posterior predictions of the dose-response curve, compared with the dose-response data used in the ABC-
SMC for the rabbit model calibration. Each parameter set in the posterior sample was used to obtain a prediction
from the mechanistic exponential dose-response model given by Eqs (5) and (6). The blue solid line shows the point-
wise median of these predictions and the shaded region shows the 95% credible interval. The dots represent the rabbit
dose-response data set from Gutting et al. [21], which was used in the calibration.

https://doi.org/10.1371/journal.pcbi.1013439.g003

invariably lead to death in the absence of treatment. Thus, the number of animals that died in
the study is assumed to be equivalent to the number that became infected [25].

From the marginal posterior distributions in Fig 4, one can see that it has been possible to
significantly constrain most of the rabbit model parameters. One parameter with a particu-
larly narrow posterior distribution is 𝛿, which determines how quickly infected phagocytes
migrate from the lungs to the lymph nodes and rupture. Once the first phagocyte has rup-
tured and released bacteria into the lymph nodes, the dynamics in the lymph nodes begins to
be dominated by the extracellular replication of bacteria, and the subsequent rupture events
do not have a significant impact on the dynamics of the model. Therefore, the variability
between different stochastic realisations of the model is mainly due to the randomness in the
time until the first rupture event occurs. If the value of 𝛿 is too small, there is likely to be a
long delay between exposure and the time at which bacteria are first detected in the lymph
nodes of an individual, which would not be consistent with the rabbits for which bacteria
were detected in the lymph nodes at 12 hours. On the other hand, if the value of 𝛿 is too large,
the first rupture event will be guaranteed to occur very quickly and this would not be con-
sistent with the one rabbit that did not have a measurable bacterial load at 36 hours. For the
posterior median value of 𝛿 = 0.02 h–1, and assuming the average number of phagocytes that
will rupture is 285 (a dose of 4.428 × 107 spores, ̂𝜙 = 0.092, and q = 7 × 10–5), the Erlang(3,
𝛿) distribution of the time for phagocytes to rupture predicts that in 50% of cases, the quick-
est rupture event will occur within around 13 hours of phagocytosis. This allows the model to
capture the observed variability between infection time courses of individual animals in the
study by Gutting et al. [22].

The posterior sample of values for the replication rate of extracellular bacteria in the lymph
nodes, 𝜆LN, has a median of 1.49 h–1 and a 95% CI of (1.04, 2.53). This is slightly larger than
previous estimates for the replication rate of B. anthracis in vitro. For example, a median esti-
mate of 0.97 h–1 was obtained by fitting a mathematical model of B. anthracis growth to data
from in vitro experiments carried out at Dstl [26]. Elsewhere, Day et al. [16] used an estimate
of 0.8 h–1 for the growth rate of extracellular bacteria in their model of inhalational anthrax,
and an estimate of 0.64 h–1 for the growth rate of intracellular B. anthracis has been obtained
by fitting a mathematical model to in vitromacrophage infection data [14]. Thus, our results
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Fig 4. Posterior distributions for each species. Kernel density estimates for the prior distribution (grey) and the marginal posterior distribution of each
parameter in the rabbit model (blue) and the guinea-pig model (orange). Parameter values that were fixed for the rabbit or guinea-pig model calibration are
indicated by vertical blue or orange lines, respectively. For each species, the corresponding posterior distribution was obtained by fitting the mechanistic
dose-response curve given by Eqs (5) and (6) to the dose-response data for that species from Gutting et al. [21], and simultaneously fitting the Markov-chain
model in Fig 1 to the CFU loads in the TBLN and blood from the rabbit data in Table 4, or the CFU loads and PA amounts in the blood from the guinea-pig
data in Table 5.

https://doi.org/10.1371/journal.pcbi.1013439.g004

predict that replication could be faster in vivo. However, in our posterior sample, smaller val-
ues of 𝜆LN correspond to smaller values of the removal rate of bacteria from the blood,mC.
Therefore, being able to better determine this removal rate would allow us to more confidently
estimate the replication rate of extracellular bacteria in the lymph nodes.

The killing rate of bacteria in the lymph nodes, 𝜇LN, has a fairly wide posterior distribution.
However, this parameter is estimated to be small, which is consistent with the competing risks
hypothesis that if bacteria are released from a phagocyte, then these will be almost certain to
proliferate and cause an infection.

The posterior sample of values for the migration threshold,M, representing the number of
bacterial CFU that must be present in the lymph nodes before migration into the circulation
compartment can occur, has a median of 467 CFU and a 95% CI of (21, 1.3×104). This migra-
tion threshold helps to explain the delay between observing bacteria in the lymph nodes and
in the blood.

Guinea-pig model calibration. For guinea pigs, Gutting et al. [21] estimated that the
probability of deposition was ̂𝜙 = 0.3. We therefore fixed this value of the deposition proba-
bility in the guinea-pig model. We consider 𝜌 = 0.0735 h–1, R = 1.6 CFU, KLN = 109 CFU, and
KC = 1011 CFU, as we did for rabbits (see the Methods section for justification).

With only data for the blood compartment, it is difficult to quantitatively estimate the
dynamics of infection in the lymph nodes of guinea pigs. Thus, we have aimed to reduce the
parameter space by assuming that some parameters determining the dynamics in the lymph
nodes would be relatively similar to the ones for rabbits. We have fixed the values of some
parameters to those estimated for the rabbit model of infection, while still allowing impor-
tant differences between the two animal models. In particular, we have fixed the values of
𝛿 = 0.02 h–1, 𝜆LN = 1.49 h–1, andmLN = 0.24 h–1 to the median values estimated for rabbits.
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We have then used ABC-SMC to estimate the posterior distribution of the parameter vector
(q, 𝜇LN,M, 𝜆C,mC, 𝛽, 𝜇T) describing guinea-pig infection. Similar to the rabbit model cal-
ibration, we have simultaneously fitted the model in Fig 1 to the guinea-pig dose-response
data from Gutting et al. [21] and the in vivomeasurements of bacterial CFU and PA from
Savransky et al. [23], provided in Table 5. Model predictions from this calibration are shown
in Figs 5 and 6.

Fig 4 and Table 2 compare the marginal posterior distributions of parameters that were
estimated separately for rabbits and guinea pigs. The posterior distribution for 𝜇LN is quite
different between the two species. This is because, overall, the data seem to indicate that the
growth of bacteria in the blood may be slower in guinea pigs than rabbits. In the model in
Fig 1, the overall growth rate of bacteria in the blood depends strongly on the growth rate of
bacteria in the lymph nodes. Therefore, the death rate of bacteria in the lymph nodes, 𝜇LN, is
estimated to be larger for guinea pigs than rabbits in order to represent slower growth in the
lymph nodes and hence capture the slower growth observed in the blood compartment. On
the other hand, the value of the migration threshold,M, is estimated to be slightly smaller
for guinea pigs than rabbits. It could be thatM scales between species according to relative
body weight and organ volume. The consequence of these two differences in parameter values
is that, for each species, the model predicts a similar delay between the time at which bacte-
ria begin replicating in the lymph nodes and the time at which bacteria are first detected in

Fig 5. Stochastic model realisations compared with the CFU and PA data used in the ABC-SMC for the guinea-pig
model calibration. A sample of 10 model realisations using the “best” posterior parameter set (the one corresponding to
the smallest distance from the data in the ABC-SMC) is compared with the CFU loads (top row) and PA amounts (bottom
row) in the blood of individual guinea-pigs, provided in Table 5.

https://doi.org/10.1371/journal.pcbi.1013439.g005
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Fig 6. Posterior predictions of the dose-response curve, compared with the dose-response data used in the
ABC-SMC for the guinea-pig model calibration. Each parameter set in the posterior sample was used to obtain a
prediction from the mechanistic exponential dose-response model given by Eqs (5) and (6). The blue solid line shows
the pointwise median of these predictions and the shaded region shows the 95% credible interval. The dots represent
the guinea-pig dose-response data set from Gutting et al. [21], which was used in the calibration.

https://doi.org/10.1371/journal.pcbi.1013439.g006

Table 2.Medians and 95% credible intervals of the marginal posterior distributions for each parameter and each
species.The values in bold indicate fixed values that were used.

Parameter Unit Rabbits Guinea pigs
Lung airways 𝜙̂ - 0.092 0.3

𝜌 h–1 0.0735 0.0735
q - 7.4×10–5 (5.4×10–5, 1.0×10–4) 3.8×10–5 (2.8×10–5, 5.2×10–5)
𝛿 h–1 2.0×10–2 (1.6×10–2, 2.4×10–2) 0.02

Lymph nodes (LN) R CFU 1.6 1.6
𝜆LN h–1 1.49 (1.04, 2.53) 1.49
𝜇LN h–1 7.3×10–3 (1.7×10–4, 2.7×10–1) 4.1×10–1 (3.4×10–4, 7.3×10–1)
KLN CFU 109 109
M CFU 467 (21, 1.3 × 104) 182 (16, 6.7 × 103)
mLN h–1 2.4 × 10–1 (9.5 × 10–3, 1.1) 0.24

Circulation (C) 𝜆C h–1 0.17 4.2 × 10–1 (1.2 × 10–1, 1.9)
KC CFU 1011 1011

mC h–1 1.4 (1.9 × 10–1, 7.1) 4.0 × 10–1 (1.2 × 10–1, 2.7)
Protective antigen (PA) 𝛽 ng (CFU ⋅ h)–1 N/A 3.1×10–4 (7.7×10–6, 2.3×10–2)

𝜇T h–1 N/A 6.1 × 10–2 (1.7 × 10–3, 3.4)

https://doi.org/10.1371/journal.pcbi.1013439.t002

the blood. That is, the net bacterial growth rate in the lymph nodes is estimated to be smaller
for guinea pigs, but the size that the bacterial population must reach before it starts to enter
the blood is also lower. However, for guinea pigs, since the death rate of extracellular bacte-
ria is closer to the replication rate, there is a larger probability that a small number of bacte-
ria released during a rupture event will die before managing to establish an exponentially-
growing population of bacteria (this can be seen in a couple of the realisations shown in
Fig 5). Hence, on average more rupture events are needed to establish an infection, which can
delay the infection slightly.

The probability, q, that a deposited spore in the lungs leads to a phagocyte rupture event,
during which bacteria are released in the lymph nodes, is estimated to be extremely small.
In particular, for rabbits, q is estimated to be around 7 × 10–5, and for guinea pigs it is esti-
mated to be around 4 × 10–5. These small values of q help explain the relatively high ID50 for
anthrax that has been observed for these species. Furthermore, the probability q is estimated
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to be slightly smaller for guinea pigs than rabbits. This is expected since a higher fraction of
inhaled spores is likely to be deposited in the lungs of guinea pigs than rabbits [21], yet the
dose-response data sets show that the probability of infection for a given dose of spores is sim-
ilar between rabbits and guinea pigs. This implies that, in guinea pigs, fewer of the deposited
spores will lead to bacteria in the lymph nodes. Biologically, this could be due to a difference
between New Zealand white rabbits and guinea pigs in their ability to clear spores from the
lungs; for example, due to a difference in the density of macrophages lining the lungs, the
speed at which these macrophages phagocytose spores, or the ability for these macrophages
to kill intracellular B. anthracis once phagocytosed. Each of these possibilities would affect the
probability of rupture in the lymph nodes, given that a spore has been deposited in the lungs.
On the other hand, the difference in the probability q could be due to a difference in the clear-
ance of spores by the ciliated epithelial cells. However, there is evidence that physical clear-
ance rates in the lungs are broadly similar between rabbits and guinea pigs [27]. Therefore,
we believe that species differences in the probability of rupture events in the lymph nodes are
likely to be due to differences in antimicrobial activity.

Since the data set from Savransky et al. [23] includes PA levels in the blood of guinea pigs,
this has allowed us to calibrate the model parameters corresponding to PA dynamics, which
we could not do for the rabbit model. For the production rate of PA, 𝛽, the posterior distribu-
tion in Fig 4 has a median of 3.1×10–4 ng (CFU ⋅h)–1 and a 95% CI of (7.7×10–6, 2.3×10–2).
This seems consistent with the results in [26] from calibrating a model with in vitro data sets
from Zai et al. [28] and Charlton et al. [29], corresponding to median estimates for 𝛽 of 2 ×
10–5, 10–4, and 3 × 10–2 ng (CFU ⋅ h)–1.

Towards modelling human incubation periods
We illustrate the possible applicability of our modelling approach to human inhalational
anthrax by considering a simpler version of the model (see Fig 7). Here we have combined the
lymph nodes and circulation compartments from the model in Fig 1 into a single compart-
ment, since we have very little human data from which to infer parameter values such as the
migration rates, migration threshold, and bacterial proliferation rates in different compart-
ments. Furthermore, we do not think it would be realistic to make use of the parameter val-
ues obtained from the calibration with rabbit or guinea-pig data to inform these inter-organ
infection dynamics for humans. Details of how the human model is simulated are provided in
the Methods section.

We have performed parameter inference via ABC-SMC, using incubation period data
from an anthrax outbreak that occurred in Sverdlovsk, Russia in 1979, when B. anthracis
spores were accidentally released from a military microbiology facility on April 2. The dates of
symptom onset for 30 autopsy-confirmed anthrax victims have been reported by Abramova
et al. [19]. To obtain a value for the number of days between exposure and symptom onset
for each of these individuals, we assume that all exposures to the spores occurred on April
2 [12]. Examples of symptoms reported by these individuals include fever, dyspnea, cough,
headache, vomiting, chills, weakness, abdominal pain, and chest pain. Therefore, we assume
that “symptom onset” in this data set means the first time that one of the above symptoms was
observed (i.e., prodromal symptoms onset). We note that a limitation of these data is that the
disease course of some patients may have been impacted by taking tetracycline as a form of
post-exposure prophylaxis, but with an unknown start date and unknown duration [30]. His-
tograms of the incubation period data are shown in Fig 8, and the model fits to the data in
Fig 9. We assumed that the doses of spores to which the individuals were exposed follow the
distribution estimated by Wilkening for their “Model D” [31, Fig 11].
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Fig 7. Diagram of the simplified within-host model of inhalational anthrax for humans. See the Methods section
for a description of how the model is used to simulate individual incubation periods.

https://doi.org/10.1371/journal.pcbi.1013439.g007

Fig 8. Human incubation period data set from the Sverdlovsk outbreak [19]. Left: Histogram of the number of days to symptom onset for the 30
individuals. Right: Cumulative distribution of number of days to symptom onset.

https://doi.org/10.1371/journal.pcbi.1013439.g008

Prior to the parameter inference, as in the rabbit and guinea-pig models, the mean rup-
ture size was set to R = 1.6 CFU. We then obtained a posterior distribution for the parameter
vector (𝜌, 𝛿, 𝜎, p), where we have used a parameter transformation of 𝜎 = 𝜆 – 𝜇 and p = 𝜇

𝜇+𝜆 .
That is, 𝜎 represents the net growth rate of extracellular bacteria in the human body, and p
represents the probability for extracellular bacteria to be killed by host immune cells before
replicating. To transform back to the original model parameters,

𝜆 = 𝜎(1 – p)
1 – 2p

, 𝜇 = 𝜎p
1 – 2p

. (1)
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Fig 9. Pointwise median and 95% credible interval of the model fits to the human incubation period data [19].
For each parameter set in the posterior sample (see Fig 10), a sample of 30 finite incubation periods was obtained
from stochastic model simulations. We plot here the median and 95% CI (across all posterior parameter sets) of the
cumulative daily fractions of these simulated incubation periods.

https://doi.org/10.1371/journal.pcbi.1013439.g009

While finding parameter values for which the model is able to describe the human incu-
bation period data, we imposed a constraint on the parameters so that the model produces a
consistent dose-response curve. In particular, we fixed the value of r, which determines the
exponential dose-response relationship in Eq (6). Wilkening [31,32] has previously mod-
elled the incubation period distribution for human inhalational anthrax using data from the
Sverdlovsk outbreak. They assumed an ID50 (the dose at which there is a 50% chance of infec-
tion) of 8,600 spores, since this is a nominal value for highly virulent B. anthracis strains.
Thus, we set the probability that a single spore will produce a response to r = 8.06 × 10–5

(equivalent to ID50 = 8, 600). Then, using Eq (5), we set the probability that a given inhaled
spore is deposited in the lungs, phagocytosed, and leads to a rupture event, to be

𝜙 = ̂𝜙q = r(1 + p
R(1 – 2p)

) . (2)

For larger values of p (meaning death of extracellular bacteria is more likely), this prob-
ability, 𝜙, increases, since more rupture events will be required in order to have the same
probability of infection establishment for a given initial dose of spores.

During the ABC-SMC algorithm, values for the parameters (𝜌, 𝛿, 𝜎, p) were sampled
from the log-uniform prior distributions shown in grey in Fig 10. For each sampled set of
parameter values, we compared the model with the observed incubation period data by using
the model to simulate finite incubation periods for 30 individuals (same as the number of
observed incubation times in the data set in Fig 8). That is, for each individual, we sampled
an exposed dose from the distribution estimated by Wilkening for “Model D” [31, Fig 11]
and simulated the model as many times as necessary to obtain a finite incubation period. We
then calculated the Euclidean distance between the cumulative daily fractions of the sets of
simulated and observed incubation times, for days 0 to 40.

The marginal posterior distributions obtained via ABC-SMC are shown in green in Fig 10.
The distribution of the phagocytosis rate, 𝜌, is very narrow. The median value of 𝜌 = 0.004 h–1
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Fig 10. Posterior distribution for the human model. Kernel density estimates for the prior distribution (grey) and the marginal posterior distribution
(green) of each parameter in the human model. This posterior distribution was obtained by fitting the simple model in Fig 7 to the Sverdlovsk outbreak
incubation periods data set in Fig 8.

https://doi.org/10.1371/journal.pcbi.1013439.g010

is consistent with a previous estimate of 0.07 day–1 for the clearance rate of spores from the
lungs, which was based on data from examination of the lungs of non-human primates at
varying times after inhalation [12,25,33].

From Fig 10, we learn that the net bacterial growth rate, 𝜎, is likely to be between around
0.1 and 1.5 h–1, but we are not able to constrain p. That is, given a net bacterial growth rate
within this range, the human incubation period data can be captured with a wide range of
values of the bacterial death rate, 𝜇 (see Fig 11).

Using Eq (2), we can transform the posterior distribution for p into a distribution for 𝜙,
which is the probability that an inhaled spore leads to a phagocyte rupture event during which
bacteria are released in the lymph nodes. This is shown in Fig 11. The value of 𝜙 is estimated
to be larger for the human model than it was for rabbits and guinea pigs. This is because
we have assumed that humans are more sensitive to infection by B. anthracis (i.e., the ID50

is assumed to be lower for humans). In other words, the value we used for the parameter r
is higher than the one estimated for rabbits and guinea pigs. Therefore, we are making the
assumption that humans have a higher probability of infection for a given dose of inhaled
spores. Still, the area of smaller 𝜙 in the posterior distribution in Fig 11, corresponding to
smaller values of p and 𝜇, is likely to be the most realistic.

Recall that 𝜙 is defined as the product of the model parameters ̂𝜙 and q. The deposition
probability of inhaled spores in the lungs, ̂𝜙, depends on the properties of the aerosol inhaled,
such as particle size. Thus, if these properties were known, an estimate for ̂𝜙 could be obtained
from the Multiple-Path Particle Dosimetry (MPPD) software, which is a computational
model that can be used for estimating the deposition and clearance of aerosols in the respi-
ratory tract of humans and various laboratory animal species [34]. This could then be used to
recover a posterior distribution for q from the posterior distribution of 𝜙.

In Fig 12 we observe a correlation between 𝛿 and 𝜎, since if rupture occurs earlier, then the
net growth rate of extracellular bacteria needs to be slower in order to explain the incubation
period data.

Approximating the dose-dependent incubation period distribution. An analytic
approximation for the incubation period distribution of our simple human model can be
derived by assuming that all initially inhaled spores are independent, and that symptom onset
occurs when at least one of these spores has given rise to a population of N extracellular bac-
teria. In reality, multiple spores could contribute to the bacterial population reaching size N,
but the assumption of independence is valid for low deposited doses since the probability of
enough host cells rupturing within a sufficiently short time window to substantially affect
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Fig 11. Kernel density estimates for the marginal posterior distributions of 𝜆, 𝜇, and 𝜙.These are obtained by transformations of the posterior
distribution for 𝜎 and p, using Eqs (1) and (2).

https://doi.org/10.1371/journal.pcbi.1013439.g011

Fig 12. Scatter plots showing the relationships between pairs of parameters in the posterior sample for the human model.

https://doi.org/10.1371/journal.pcbi.1013439.g012
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the expected delay is assumed to be negligible [25]. For a Poisson-distributed inhaled dose of
spores with mean D, and assuming independence between these spores, the probability that
symptom onset occurs before time t (i.e., at least one of the initial inhaled spores has given
rise to a population of N extracellular bacteria by time t) is

F(D, t) = 1 – exp(–DF(1, t)),

where F(1,t) is the probability that a single inhaled spore will lead to symptom onset before
time t.

The probability, F(1,t), that a single inhaled spore will lead to symptom onset before time
t, is the product of the probability that a single inhaled spore will establish an infection (the
probability r, given by Eq (5)), and the probability that symptom onset occurs before time t,
conditioned on infection establishment. Given that a single spore will establish an infection,
the time until symptom onset depends on the time taken for the spore to be phagocytosed,
the time taken for the infected phagocyte to rupture and release bacteria, and the time taken
for this population of bacteria to reach size N. To derive an approximation for F(1,t), we use
a fixed time, T, to approximate the delay between a rupture event and the time at which the
extracellular bacterial population reaches the threshold, N. The fixed time, T, is defined as the
time taken for the mean of the bacterial population (represented by a stochastic birth-and-
death process) to reach size N, starting from a single CFU, and with net growth rate 𝜎. That
is,

T =
logN
𝜎 .

Then, the probability that a single inhaled spore will lead to symptom onset before time t is

F(1, t) =
⎧⎪⎪⎨⎪⎪⎩

0 t≤ T,
rFR(t – T) t > T,

where FR(t) is the probability that the single inhaled spore will lead to a rupture event before
time t (given that this spore will eventually lead to an established infection). That is,

FR(t) =∫
t

0
(1 – e–𝜌(t–s))𝛿

nsn–1e–𝛿s

(n – 1)!
ds

= 1 – e–𝜌t ( 𝛿
𝛿 – 𝜌)

n

–
n–1
∑
k=0

1
k!
e–𝛿t(𝛿t)k ⎛

⎝
1 – ( 𝛿

𝛿 – 𝜌)
n–k⎞
⎠
,

which is a convolution between the cumulative distribution function of the exponentially-
distributed time until phagocytosis (with rate 𝜌), and the probability density function of the
Erlang-distributed time between phagocytosis and rupture (with shape parameter n = 3 and
rate 𝛿).

Finally, to condition on infection establishment, we divide F(D,t) by the probability of
infection for an inhaled dose D (the probability I(D), given by Eq (6)). Thus, for a Poisson-
distributed inhaled dose of spores with mean D, the cumulative distribution function of the
incubation period, conditioned on infection becoming established, can be approximated by

F∗(D, t) =
⎧⎪⎪⎨⎪⎪⎩

0 t≤ T,
1

I(D) (1 – exp (–rDFR(t – T))) t > T.
(3)
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Fig 13. Comparison between the incubation period distributions obtained by stochastic model simulations and
the approximation in Eq (3).The doses considered are 1, 10, 100, 103, 104, and 105 inhaled spores. For each dose, the
blue line was obtained by simulating 4 × 102 finite incubation periods using the stochastic model. The orange dashed
line was obtained by the approximation in Eq (3). The parameter values used were the medians of the marginal posterior
distributions in Fig 10: 𝜌 = 0.004 h–1, 𝛿 = 0.107 h–1, 𝜎 = 0.217 h–1, p = 0.01.

https://doi.org/10.1371/journal.pcbi.1013439.g013

Eq (3) is obtained in a similar way to the one obtained by Brookmeyer et al. [12]. However,
Brookmeyer et al. assumed a single exponential distribution, representing the time until “ger-
mination”, whereas we assume separate distributions for the phagocytosis time and the time
to host cell rupture, with the latter being Erlang-distributed. We also assume a fixed delay,
T, between the time at which extracellular bacteria are first present and the time of symptom
onset. This is similar to the approach by Toth et al. [25], who estimated this fixed time to be
2.3 days. In comparison, using a threshold of N = 1010 CFU [32] and the posterior median net
growth rate of 𝜎 = 0.217 h–1 (Fig 10), we obtain T≈ 4.4 days.

Fig 13 shows some dose-dependent incubation period distributions obtained from simu-
lating the stochastic model, compared with the approximation in Eq (3). We use the median
values of 𝜌 = 0.004 h–1, 𝛿 = 0.107 h–1, 𝜎 = 0.217 h–1, and p = 0.01 from the marginal posterior
distributions in Fig 10. Using Eq (2), we set the value of 𝜙 so that the model predicts an ID50

of 8,600 inhaled spores; with values of r = 8.06 × 10–5, R = 1.6, and p = 0.01, this results in a
value of 𝜙 = 8.11 × 10–5.

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013439 September 24, 2025 18/ 32

https://doi.org/10.1371/journal.pcbi.1013439.g013
https://doi.org/10.1371/journal.pcbi.1013439


ID: pcbi.1013439 — 2025/9/19 — page 19 — #19

PLOS COMPUTATIONAL BIOLOGY Mechanistic within-host mathematical model of inhalational anthrax

Discussion
We have proposed a mathematical model of the within-host infection dynamics of inhala-
tional anthrax, the disease caused by the bacterium Bacillus anthracis. The stochastic approach
used allows us to describe the probabilities of different outcomes. For instance, the model
incorporates inter-phagocyte variability in rupture size, which is the number of CFU ulti-
mately released from an infected phagocyte. In particular, the rupture size is assumed to fol-
low a geometric distribution, estimated from a previous intracellular model of B. anthracis
infection [14]. This rupture size probability distribution plays an important role when using
the model to determine the probability of infection following inhalation of a dose of spores.
Similar to the competing-risks model by Brookmeyer et al. [12], the model that we use here
is an extension of the exponential dose-response model in which mechanistic detail has been
incorporated in the dose-response parameter r. The standard competing-risks model involves
parameters for the two competing processes of spore germination and spore clearance, but
does not explicitly consider phagocyte rupture or extracellular bacterial dynamics. Here, the
formula for the dose-response parameter, r, obtained in Eq (5), takes into account the deposi-
tion probability of inhaled spores, the stochasticity of rupture events, and the possibility that
even if a few bacteria are released from a rupturing cell, infection might not become estab-
lished if these few bacteria are killed by the host immune system. This novel approach could
potentially also be applied to other intracellular pathogens.

In order to calibrate model parameters, stochastic realisations of the model were compared
with in vivo bacterial counts from rabbits [22] and guinea pigs [23] that had been exposed
to a high dose of the virulent Ames strain of B. anthracis. At the same time, the probability
of infection resulting from the stochastic model was compared with dose-response data sets
from rabbits exposed to the Ames strain, and guinea pigs exposed to the M36 strain or Ames
strain [21]. Our results show that the single model structure proposed here is able to describe
both the in vivo dynamics of infection and the probability of response, in two different animal
species, with slightly different values for some parameters.

As B. anthracis replicates, it forms long chains of bacteria. When quantifying bacteria in
units of CFU, the authors of the data that we have used did not describe the steps that would
be needed to break these chains. Without such steps, the bacteria in a given chain will not
have dissociated from each other, and each chain will form a single colony where it lands
on the agar media. Therefore, it is reasonable to assume that we have modelled the number
of “infectious units” or “chains”, rather than the actual number of bacteria. The relevance of
Bacilli chains to virulence is not fully understood. However, this process is clearly an adap-
tation that aids the survival and replicative success of the bacteria; this is evidenced by the
known and evolved mechanisms of genetic control of chain formation [35]. It is assumed that
these chains contribute to the disease through capillary blockage [36]. Such blockages can
make tissues hypoxic (thereby releasing nutrients from dead cells) and prevent immune cells
from accessing infected niches. It is conceivable that these chains also contribute to protec-
tion against further phagocytic attack (although this protection is driven mainly by toxin and
capsule).

Due to lack of data, it has been necessary to use data corresponding to different strains of
B. anthracis (Sterne, Ames, M36) and different animals to inform different parts of our model.
For example, the conditional rupture size distribution was informed by an in vitro experiment
that used Sterne strain and mice cells [14,37]. We then used this rupture size distribution in
the within-host model, which was calibrated with data from rabbits and guinea pigs infected
with virulent B. anthracis strains. Due to a lack of data for the lymph nodes compartment in
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guinea pigs, some of the guinea-pig parameter values were set equal to estimates from the rab-
bit model. Since the CFU counts suggest an initially slower increase in CFU concentration in
the blood of the guinea pigs compared with the rabbit data set, it seems likely that there would
also be slower growth of CFU in the lymph nodes of the guinea pigs compared with the rab-
bit model predictions. However, since we do not have data for the CFU in the lymph nodes
of guinea pigs, we set most of the parameters determining the dynamics in this compartment
to be equal to their median estimates from the rabbit model. The only one of these parame-
ters that we did not fix for guinea pigs was the death rate of bacteria in the lymph nodes. In
practice, this approach is equivalent to specifying that a difference in the bacterial death rate
mostly accounts for any differences between the dynamics in the lymph nodes compartments
of the two species. This assumption could be relaxed if more data become available.

Although we have followed a Bayesian approach to model calibration, which allows uncer-
tainty in parameter estimates to be quantified, we have not considered the parameter values
to vary between individual animals. This is clearly a simplification which could be improved
with approaches such as mixed effects modelling, which allow the estimation of probability
distributions that describe how parameters vary across a population. However, this approach
would be difficult here, since we do not have more than one measurement for each animal.
Some parameters may be easier to assign a probability distribution to than others. For exam-
ple, in a dose-response model for Q fever (a bacterial infection caused by Coxiella burnetii),
Heppell et al. [38] approximated a distribution for the probability of deposition ( ̂𝜙 in our
model) using the MPPD model software package [34].

The within-host model incorporates the dynamics of PA, which is the binding component
of the anthrax toxin. Since PA is thought to be the limiting toxin component and is the one
targeted by the therapeutic antibody, the model only includes variables for the amount of PA,
and neglects the other two toxin components, EF and LF. We used measurements of PA lev-
els in the blood of infected guinea pigs to calibrate the parameters describing PA dynamics for
this species. However, we did not have data for the PA levels in infected rabbits and therefore,
we were not able to estimate values of the corresponding parameters for rabbits. A limitation
of the model is that it does not incorporate the effect of the anthrax toxin on bacterial dynam-
ics. In future, further data could be used to inform an additional mechanism in the model to
describe how toxin levels inhibit the immune response to B. anthracis, and in turn, study the
effect of anti-PA treatments.

To ensure that the model is simple enough to be calibrated with available data, while still
offering a realistic mechanistic description of the infection, we focus on the number of extra-
cellular spores in the lung airways, and the number of bacterial CFU and amount of PA in the
lymph nodes and circulation. In future, if relevant in vivo data sets become available to jus-
tify the additional complexity, a more detailed spatial structure could be included, with addi-
tional compartments representing other organs and tissues that may become colonised dur-
ing the infection. Furthermore, the model is not currently able to explain observations such
as spores detected in lymph nodes of mice [39], since it is assumed that at most one spore is
engulfed by each phagocyte in the lungs and that only bacteria are released from rupturing
phagocytes in the lymph nodes. However, in future, the model could be extended to include
the uptake of multiple spores by individual phagocytes, which may be more likely for high
inhaled doses. This would also allow us to consider that cells may release a mixture of spores
and bacteria when they rupture, which could explain the detection of spores in lymph nodes.
The model could then also be adapted to include the fact that these spores may be engulfed by
other phagocytes in the lymph nodes, leading to further rounds of intracellular replication.

Our approach assumes that early infection events (e.g. during the first 48 hours post-
exposure) are the crucial ones for determining the dose-response probabilities and variability
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in the incubation period. Furthermore, the model assumes that killing of extracellular bacte-
ria in the lymph nodes occurs at a constant rate of 𝜇LN per CFU. However, actions of the host
immune system that occur later in infection, which are not included in the current model,
may be important for modelling the infection dynamics at later times post exposure. For
example, the model predictions by Day et al. [16, Fig 2] suggest that neutrophils may not be
crucial in the first 48 hours but could help to control the infection at later times if the bacterial
load is relatively low. Thus, our model may provide predictions that are less realistic beyond
48-72 hours post exposure.

To illustrate how the mathematical model of inhalational anthrax developed here could be
used to link to human data, we adapted the within-host model by leveraging human incuba-
tion period data from the Sverdlovsk outbreak [19]. This data set is useful since the date on
which exposure occurred can be reasonably estimated and there have been estimates obtained
for the distribution of doses that individuals were exposed to. However, this data set has been
excluded from some studies in the literature [40], since it is unknown whether, or for how
long, individuals may have taken antibiotics post-exposure.

In future, the within-host model could be linked to Quantitative Microbial Risk Assess-
ment (QMRA) techniques [41] to estimate exposure risks at the population level. This type
of approach has previously been applied to pathogens such as the bacterium F. tularensis
[18] and SARS-CoV-2 [42,43]. Dispersion models that describe the airborne spread of B.
anthracis spores in indoor or outdoor settings, and predict a distribution of initial doses of
spores among an exposed population, can be linked to the outputs of the within-host model
(e.g. likelihood of symptom onset for a given dose) to predict, in different scenarios, the distri-
bution of the number of casualties and fatalities, and the earliest time of symptom onset. Ulti-
mately, the aim is to predict how many individuals would become infected in different expo-
sure scenarios and on what timescale, to aid in the identification of a time window during
which treatment would be most effective.

A benefit of the mechanistic modelling approach proposed here is that the underlying
mechanisms of the model can be extended and modified as new scientific knowledge and data
are generated. Since the parameters of the model have mechanistic interpretations, the model
can be used to investigate the effects of different biological parameters. Changes can also be
made to model different situations, such as incorporating additional mechanisms to represent
treatments. Future work may use pharmacokinetic (PK) data to describe how the within-host
concentration of the treatment changes in time, and pharmacodynamic (PD) data to define
an extracellular killing rate of bacteria as a function of antibiotic concentration [44]. It would
then be possible to use the resulting model to quantify the effect that treatment decisions
(such as the initial timing, frequency, or dose) have on reducing the probability of infection.

Methods
Mathematical model
The within-host model of inhalational anthrax shown in Fig 1 is a hybrid model comprising
both discrete and continuous variables. A multi-dimensional continuous-time Markov chain
(CTMC) is used to describe the discrete variables representing the numbers of extracellular
spores, infected cells, and bacterial colony-forming units (CFU) within various compartments
of the body following exposure. On the other hand, ordinary differential equations (ODEs)
describe the continuous variables representing the amounts of the protective antigen (PA)
component of the anthrax toxin. The compartments considered are the airways of the lungs
(A), the draining lymph nodes of the lungs (LN), and the blood/circulation (C). The model
contains the following variables:
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• SA(t) is the number of extracellular spores in the airways of the lungs.
• P(t) is the number of infected phagocytes migrating from the lungs to the draining
lymph nodes.

• BLN(t) is the amount of extracellular vegetative bacteria in the lymph nodes compart-
ment, measured in CFU.

• BC(t) is the amount of extracellular vegetative bacteria in the blood compartment,
measured in CFU.

• PALN(t) is the amount of PA (units ng) in the lymph nodes compartment.
• PAC(t) is the amount of PA in the blood compartment.

The model is used to simulate an individual’s infection time course following inhalation
of a number of B. anthracis spores. After inhalation, spores are transported through the res-
piratory system and can become deposited in different areas, or may be exhaled without
becoming deposited. Hence the initial dose of spores that is delivered to the lungs is gener-
ally smaller than the original inhaled dose [45]. This is captured in the model by specifying
that each inhaled spore becomes deposited in the lungs with probability ̂𝜙. In the model, time
t = 0 represents the time at which inhaled spores become deposited in the lungs. The initial
number of spores deposited in the airways is sampled from a binomial distribution, SA(0)∼
B(D, ̂𝜙), where D is the dose of spores that the individual is exposed to through inhalation,
and ̂𝜙 is the probability that a given inhaled spore is deposited in the lungs [46]. These spores
are then removed from the lung airways at rate 𝜌. For each spore that exits the airways, it is
either cleared from the host (and therefore has no further chance to cause infection) with
probability 1–q, or it successfully infects a phagocyte with probability q.

The variable P represents the number of phagocytes (each assumed to be initially infected
with a single spore) that will eventually rupture in the lymph nodes and release some bacte-
ria. The time taken for a given infected phagocyte to migrate to the lymph nodes and rupture
is assumed to follow an Erlang distribution with shape parameter n = 3 and rate parameter
𝛿. This is implemented in the model by partitioning the infected phagocyte population into
three stages such that P(t) =∑3

i=1 Pi(t), where Pi(t) represents the number of infected phago-
cytes in stage i∈ {1, 2, 3}. Each phagocyte begins in stage 1 and passes through the three
stages in order, where the time spent in each stage is exponentially-distributed with rate 𝛿. It
then releases some (random) amount of vegetative bacteria into the lymph nodes upon leav-
ing the third stage. The random variable for the number of CFU released from one of these
infected phagocytes, referred to here as the rupture size, is assumed to follow a geometric
distribution. That is, the probability that the rupture size of a cell initially infected with one
spore is equal to k∈ℕ is given by 1

R (1 –
1
R)

k–1
, where R is the mean of this geometric rupture

size distribution. This is based on a model at the intracellular scale, which was proposed and
calibrated in [14].

In the lymph nodes compartment, extracellular bacteria replicate at rate 𝜆LN, and die at rate
𝜇LN. A second, density-dependent death rate is also included, which increases with the num-
ber of bacteria in the compartment. This results in logistic growth of the bacterial population,
representing the limited resources for proliferation.

If an infection becomes established in the lymph nodes and the number of bacteria con-
tinues to grow, this will lead to damage to the lymph nodes. It will also eventually result in
an inflammatory response, which will cause the tissues and blood vessels to become leaky in
order to facilitate an influx of immune system cells. However, this can also allow bacteria to
escape from the lymph nodes and enter the circulation. This is represented in the model by
assuming that once the amount of bacteria in the lymph nodes reaches a threshold,M (repre-
senting a certain level of damage to the lymph nodes), bacteria begin to migrate to the blood
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compartment at ratemLN. In the circulation compartment, extracellular bacteria prolifer-
ate with net growth rate 𝜆C. This can be interpreted as the difference between the bacterial
replication and death rates, but these are combined into a single parameter since the values
of these individual rates would not be identifiable for this model. Although bacteria move
through the blood to reach various organs, they are unlikely to spend much time in the blood
until the disease is in the final bacteraemic stages. Therefore, the model assumes that bacteria
are removed from the blood into tissues and organs at ratemC.

The possible transitions considered in the CTMC part of the within-host model are shown
in Table 3. Additionally, the amounts of PA (units ng) in the lymph nodes and blood compart-
ments are given by the continuous variables PALN(t) and PAC(t), respectively. These follow
the ODEs

dPALN

dt
= 𝛽BLN – (𝜇T +mLN)PALN,

dPAC

dt
=mLNPALN + 𝛽BC – (𝜇T +mC)PAC.

(4)

The amount of PA increases from production at a rate proportional to the amount of extra-
cellular bacteria, where 𝛽 is the production rate of PA per CFU. On the other hand, PA is
removed due to natural degradation. It also interacts with host cell membranes and is cleaved
by the host furin, to create a binding site for the active toxin components, LF and EF. To
model these two removal mechanisms, the amount of PA decreases at a rate proportional
to the current amount of PA, where 𝜇T is the rate of decrease from both natural decay and
binding. The rates at which PA is transported between the different model compartments are
assumed to be the same as those for the bacteria.

When making use of the model to compare to data, the stochastic model was simulated
using the Gillespie algorithm [47] with the transition probabilities given in Table 3. The con-
tinuous variables, PALN and PAC, do not follow discrete transitions in the same way as the
variables in Table 3. Instead, at each time step of the Gillespie algorithm, these continuous
variables are updated by solving Eq (4) for the given time step, with initial conditions and the
values of BLN and BC set to their values at the previous time step. Note that none of the rates of
the discrete transitions in Table 3 depend on the variables PALN and PAC, which allows us to
take this approach. The model is simulated in this way until either BC(t)≥ 1 or SA(t) + P(t)
+ BLN(t) = 0. If BC(t)≥ 1 is reached (which can only happen once the bacterial load in the
lymph nodes is above the migration threshold, BLN(t)≥M), the rest of the time course is sim-
ulated using an ODE system representing the mean-field model. The final state of the model
from the stochastic simulation is taken as the initial condition for the mean-field ODE version
of the model, which is given by the following differential equations:

dSA
dt
= –𝜌SA,

dP1
dt
= q𝜌SA – 𝛿P1,

dP2
dt
= 𝛿P1 – 𝛿P2,

dP3
dt
= 𝛿P2 – 𝛿P3,

dBLN

dt
= 𝛿RP3 + 𝜆LNBLN (1 –

BLN

KLN
) – (𝜇LN +mLN1BLN>M)BLN,

dBC

dt
=mLNBLN1BLN>M + 𝜆CBC (1 –

BC

KC
) –mCBC,
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Table 3.The transitions and their corresponding rates in the Markov chain part of the within-host model in
Fig 1.The symbol 1A represents an indicator function, which is equal to 1 if A is true, and 0 otherwise. Variables not
directly involved in the corresponding reaction are not shown in the transition, since they remain constant during the
event. The continuous variables for the amounts of PA (units ng) in the lymph nodes and blood compartments do not
undergo discrete transitions in the same way as the other variables listed here but instead follow the ODEs in Eq (4).
Transition Rate
SA ⟶ SA – 1 (1 – q)𝜌SA
(SA,P1)⟶ (SA – 1, P1 + 1) q𝜌SA
(Pi,Pi+1)⟶ (Pi – 1, Pi+1 + 1) 𝛿Pi, i = 1, 2
(P3,BLN)⟶ (P3 – 1, BLN + k) 𝛿P3 1

R (1 –
1
R )

k–1 , k∈ℕ
BLN ⟶ BLN + 1 𝜆LNBLN
BLN ⟶ BLN – 1 𝜇LNBLN + 𝜆LN

B2LN
KLN

(BLN,BC)⟶ (BLN – 1, BC + 1) mLNBLN1BLN>M
BC ⟶ BC + 1 𝜆CBC
BC ⟶ BC – 1 𝜆C

B2C
KC
+mCBC

https://doi.org/10.1371/journal.pcbi.1013439.t003

dPALN

dt
= 𝛽BLN – (𝜇T +mLN)PALN,

dPAC

dt
=mLNPALN + 𝛽BC – (𝜇T +mC)PAC.

Dose-response relationship
In order to use the model in Fig 1 to calculate the infection risk from exposure to different
doses of spores, one can consider a simple discrete-time branching process approximation of
the model. The timings of the events are ignored since we only need to focus on the chain of
events that occurs, leading to a discrete-time process that represents the probabilities of differ-
ent outcomes at each initial stage of the infection. We assume that the probability of response
(i.e., an established infection) for a given dose depends on the early-time dynamics in the
airways and lymph nodes, but not in the blood.

There are two possible fates of each inhaled spore in the early stages of infection in the
lungs and lymph nodes. These are established infection or clearance. Starting with a single
inhaled spore, an infection will only become established if all three of the following occur.
First, the inhaled spore must be deposited in the alveoli of the lungs, which occurs with prob-
ability ̂𝜙. Then, this spore must be phagocytosed by a host cell that will ultimately release
some positive number of bacteria into the lymph nodes, which occurs with probability q. If
this happens, the infected host phagocyte migrates to the lymph nodes and releases k∈ℕ bac-
terial CFU with probability 1

R (1 –
1
R)

k–1
, where R is the mean of this geometric rupture size

distribution. Finally, this population of bacteria in the lymph nodes, starting at size k, must
not become extinct.

In the early stages of infection, when the amount of bacteria in the lymph nodes is rel-
atively small, one can neglect the density dependent term in the death rate of bacteria, so
that bacteria are assumed to be independent of each other, with replication and death rates
of 𝜆LN > 0 and 𝜇LN > 0, respectively. Due to the presence of the migration threshold,M, it
can also be assumed that migration of bacteria to the blood will not occur until the infec-
tion is established in the lymph nodes; therefore, migration is neglected in the very early
stages. Thus, once released into the lymph nodes, extracellular bacteria can be killed by host
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immune cells with probability p = 𝜇LN
𝜇LN+𝜆LN , or proliferate extracellularly with probability 1–

p. It is assumed that p<0.5, otherwise the extracellular bacterial population would be certain
to go extinct. The size of the bacterial population in the lymph nodes follows a simple one-
dimensional random walk, with zero the only absorbing state, and probabilities p and 1–p of
moving from state j to j–1 and j + 1, respectively. Mathematically, we say that an infection
is established if the bacterial population described by this discrete-time process approaches
infinity rather than hitting zero. If the population starts in state k after a rupture event, it is

well known that the probability of ultimate extinction of this process is ( p
1–p)

k
. Therefore the

probability that infection is established by a single inhaled spore is given by

r = ̂𝜙q
∞
∑
k=1

1
R
(1 – 1

R
)
k–1 ⎛
⎝
1 – ( p

1 – p
)
k⎞
⎠

= ̂𝜙q 1
R

⎡⎢⎢⎢⎢⎣

∞
∑
k=0
(1 – 1

R
)
k
–

p
1 – p

∞
∑
k=0
( p
1 – p

(1 – 1
R
))

k⎤⎥⎥⎥⎥⎦

= ̂𝜙q 1
R
[R –

Rp
R(1 – 2p) + p

]

=
̂𝜙qR(1 – 2p)

R(1 – 2p) + p
.

(5)

If multiple spores are initially inhaled, the probability of an infection becoming established
is equal to the probability that not all of the inhaled spores are cleared (i.e., at least one of
the inhaled spores leads to an established infection). Since the initial spores are assumed to
be independent of each other, the dose-response curve can therefore be described using the
exponential dose-response model. That is, for a Poisson-distributed dose with mean D, the
probability of infection is given by

I(D) = 1 – e–rD, (6)

where r is the probability that a single spore will produce a response, given by Eq (5).

Rabbit and guinea-pig data sets
We used data from a study by Gutting et al. [22] in which rabbits were infected with the
highly virulent Ames strain of B. anthracis in order to characterise bacterial dissemination
following exposure to a high aerosol dose of spores. The mean inhaled dose given was 4.428 ×
107 spores. The data set contains the number of bacterial CFU in the tracheo-bronchial lymph
nodes (TBLN) and blood of rabbits at times 1, 6, 12, 24, and 36 hours after exposure. Between
4 and 10 rabbits were sacrificed to obtain the measurements at each time point. For the mea-
surements of CFU in the TBLN, Gutting et al. pooled all lymph nodes that they could find
from the tracheal and bronchial regions, to obtain the number of CFU in the TBLN of each
animal. However, the lymph nodes varied in size and number from animal to animal. For
the blood measurements, Gutting et al. used a conversion factor of 56 millilitres of blood per
kilogram of body weight to convert measurements of CFU/ml to total CFU counts in the
circulation. The data used is provided in Table 4.

We also used data from a study by Savransky et al. [23] in which guinea pigs were infected
with the Ames strain of B. anthracis using nose-only aerosol exposure. The dose given was
specified by the authors as 2 × 107 spores. The data set contains measurements of CFU and PA
in the blood of guinea pigs at times 24, 30, 36, 48, and 72 hours after exposure. Four animals
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Table 4. Data for the number of CFU present in the tracheobronchial lymph nodes (TBLN) and blood of rabbits
at different times after exposure to a mean inhaled dose of 4.428 × 107 spores.The number of CFU in the TBLN
could not be quantified for all rabbits at 24h and 36h, due to the CFU being too numerous to count after plating. This
is why we only have a lower bound for the number of CFU for some of the rabbits at these times. For the rabbits that
died before the time point at which they were scheduled to be sacrificed, we assume that if they had survived then
their CFU measurement would have been greater than the highest measurement observed for a surviving animal,
which was 8.9 × 107 CFU in the TBLN and 8.4 × 107 CFU in the blood. These data were obtained during the study
published by Gutting et al. [22]
Time (hours) CFU in TBLN CFU in blood
1 0 0

0 0
0 0
0 0

6 0 0
0 0
0 0
0 0
0 0

12 0 0
0 0
17 0
17 0
18 0

24 0 0
0 0
0 0
0 0
0 0
1.7 × 103 1.4 × 106
1.4 × 104 1.3 × 106
> 2.6 × 104 7.6 × 105
> 2.7 × 104 2.0 × 105
> 2.7 × 104 7.1 × 105

36 0 0
3.0 × 106 2.6 × 104
1.6 × 107 6.2 × 104
4.4 × 107 8.4 × 107
8.9 × 107 9.3 × 106
> 2.6 × 104 3.0 × 105
> 2.6 × 106 6.0 × 105
> 2.7 × 106 1.2 × 105
died (assume > 8.9 × 107) died (assume > 8.4 × 107)
died (assume > 8.9 × 107) died (assume > 8.4 × 107)

https://doi.org/10.1371/journal.pcbi.1013439.t004

were scheduled to be sacrificed at each time point. Savransky et al. measured the number of
CFU per ml of blood, for which the lower limit of detection was 100 CFU/ml. They also mea-
sured the amount of PA in sera. The lower limit of detection for the PA measurements was 1.3
ng/ml. The average circulating blood volume of a guinea pig is reported to be 75ml per kg of
body weight [48], and the guinea pigs used in the study by Savransky et al. weighed between
635g and 874g. Therefore, to convert the concentrations of CFU and PA to the total amounts
in the circulation, we assumed a value of 57ml≈ 75ml/kg × 0.7545kg for the circulating blood
volume of a typical guinea pig used in the study. The data used is reported in Table 5.
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Table 5. Data for the number of CFU and amount of PA present in the blood of guinea pigs at different times
after exposure to a mean dose of 2 × 107 spores. For the guinea pigs that died before the time point at which they
were scheduled to be sacrificed, we assume that if they had survived then their CFU and PA measurements would
have been greater than the highest measurements observed for a surviving animal, which were 2.5 × 1010 CFU and
1.5 × 106 ng of PA. These data have been obtained from [23, Fig 3] and converted to the amounts in the whole blood
compartment by assuming a volume of 57 ml of blood in a guinea pig.
Time (hours) CFU in blood PA in blood (ng)
24 < 5.7 × 103 <74.1

< 5.7 × 103 <74.1
< 5.7 × 103 <74.1
< 5.7 × 103 <74.1

30 < 5.7 × 103 <74.1
5.7 × 103 <74.1
7.1 × 103 <74.1
1.1 × 104 234.8

36 < 5.7 × 103 <74.1
2.1 × 104 83.1
2.2 × 104 405.8
4.0 × 104 548.9

48 1.1 × 104 <74.1
3.4 × 105 2.8 × 103
7.4 × 106
died (assume > 2.5 × 1010) died (assume > 1.5 × 106)

72 2.5 × 1010 1.5 × 106
died (assume > 2.5 × 1010) died (assume > 1.5 × 106)
died (assume > 2.5 × 1010) died (assume > 1.5 × 106)
died (assume > 2.5 × 1010) died (assume > 1.5 × 106)

https://doi.org/10.1371/journal.pcbi.1013439.t005

Rabbit model calibration
Prior to the parameter inference, we fixed the values of some model parameters that could be
informed from the literature. For example, using a combination of particle deposition data
and Regional Deposited Dose Ratio (RDDR) software, Gutting [17] estimated the deposition
probability for inhaled B. anthracis spores in the tracheo-bronchial and pulmonary regions of
rabbit lungs to be ̂𝜙 = 0.092. We have therefore fixed this value of the deposition probability in
our rabbit model. Furthermore, Gutting [17] used data to estimate values for the rates of two
removal mechanisms of spores from rabbit airways; namely, the mucociliated (physical) clear-
ance rate, kc = 0.0628 h–1, and the rate of transport of spores from the lung airways into the
lung tissue, kp = 0.0107 h–1. We have made use of these estimates to set a value for the overall
rate of removal of spores from the airways in our model, given by 𝜌 = kc + kp = 0.0735 h–1.

We used the (conditional) rupture size distribution given by the best-fitting parameters
from the intracellular model calibration in [14]. This is a geometric distribution with a mean
of R = 1.6 CFU (i.e., if a phagocyte engulfs a spore and subsequently ruptures, it is assumed to
release 1.6 CFU on average). This is very similar to the (per spore) rupture size in the model
by Day et al. [16], where it was assumed that a phagocyte would release 5 CFU into the lymph
nodes after engulfing 3 spores in the lungs.

We set the growth rate of bacteria in the circulation compartment of rabbits to be 𝜆C =
0.17 h–1. This was estimated from data of B. anthracis growth in rabbit sera from [49]. We also
fixed KLN = 109 CFU and KC = 1011 CFU. It is necessary to include these carrying capacities in
order to ensure that the model does not predict uncontrolled growth of extracellular bacteria.
However, saturation of the bacterial populations is not observed in the data during the time
period of observation, so it would not be possible to identify a value for these parameters with
the available data.
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Themodel in Fig 1 was simultaneously fitted to rabbit dose-response data and in vivo num-
bers of bacteria, using Approximate Bayesian Computation Sequential Monte Carlo (ABC-
SMC) [24], in order to estimate the posterior distribution of the parameter vector (q, 𝛿, 𝜆LN,
𝜇LN,M,mLN,mC). Values of these parameters were sampled from log-uniform prior distribu-
tions.

For each sampled parameter set, the exponential dose-response curve was calculated
according to Eqs (5) and (6), to obtain the probabilities of infection pD = I(D) for each dose D
in the dose-response data set. Then for each dose D, a number of infections was sampled from
a binomial distribution, B(ND, pD), where ND is the size of the exposed group for dose D in
the data set. The endpoint of the dose-response study was lethality, whereas we refer to pD as
the probability of infection (by which we mean development of pathological disease). How-
ever, for rabbits, established inhalational anthrax will very often lead to death in the absence
of treatment, so we make the simplifying assumption that the probability of death is equiv-
alent to the probability of infection [25]. Therefore, the Euclidean distance was computed
between the set of sampled numbers of infections from the model and the observed numbers
of deaths in each group from the data, giving a distance measure between the model and the
dose-response data for a particular parameter set.

To obtain a distance measure between the model and the in vivo bacterial counts from
Table 4, a different stochastic realisation of the model was compared to the observation of
the number of CFU in the TBLN and blood for each animal, using the Euclidean distance
between the logarithms of the model output and observed data. For time points at which
there were animals with no CFU observed in the lymph nodes, the smallest simulated values
from the set of model realisations were compared with these unobserved data points. In the
cases of animals where we only have a lower bound on the observed number of CFU, the dis-
tance between the model output and this observation was taken to be zero if the model output
was above this lower bound. Otherwise, the Euclidean distance between the logarithms of the
model output and the lower bound was taken.

Guinea-pig model calibration
We simultaneously fitted the model in Fig 1 to the guinea-pig dose-response data from Gut-
ting et al. [21] and the in vivomeasurements of bacterial CFU and PA from Savransky et al.
[23], provided in Table 5.

For each sampled parameter set, we compared the exponential dose-response curve
(computed using Eqs (5) and (6)) to the guinea-pig dose-response data in the same way as
described above for the rabbit model calibration. We also compared four stochastic model
realisations to the four data observations at each time point in Table 5, where the model out-
puts were ordered at each time point so that the smallest model outputs were compared with
the smallest data points. For measurements that were below the lower limit of detection, the
distance between the model output and the observation was taken to be zero if the model out-
put was below this limit of detection. Otherwise, the Euclidean distance between the loga-
rithms of the model output and the limit of detection was taken.

Simulating human infection from exposure to symptom onset
To simulate human infection, we use the simplified model in Fig 7, which considers only the
lung airways and a single ‘whole body’ compartment in which extracellular bacteria arrive due
to rupture events, replicate at rate 𝜆, and die at rate 𝜇. The total amount of extracellular bacte-
ria at time t post exposure is denoted by B(t) (see Eq (7)). Here we describe the method that
we use to simulate the incubation period (time between exposure and symptom onset) for an
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individual from the Sverdlovsk outbreak data set, in order to compare our model output with
the data.

In order to simulate the infection of an individual, we first need to sample the dose of
spores, D, that the individual is initially exposed to. Wilkening [31] used an atmospheric dis-
persion model to simulate the Sverdlovsk release and estimated the dose to which the victims
would have been exposed. We have assumed that the distribution of exposed doses among
the victims follows the empirical distribution obtained by Wilkening for their ‘Model D’ (see
[31, Fig 11]), since our model corresponds to the same exponential dose-response curve.
Given an exposure dose, D, sampled from this distribution, the initial number of spores that
are deposited in the lungs and will eventually be phagocytosed and lead to a rupture event,
SP(0), is sampled from the binomial distribution B(D,𝜙).

Since we want to use the model to simulate the incubation period of an infected individ-
ual, we also need to specify how ‘symptom onset’ is represented in the model. For exam-
ple, one could specify a threshold for the number of bacteria or the toxin concentration at
which symptoms are assumed to first appear. For this illustration of the model, we assume
that symptom onset occurs when the bacterial load is 1010 CFU, which is the same threshold
value used by Wilkening [32].

After inhalation of B. anthracis spores, it is possible that the infection will be cleared before
symptom onset occurs. However, as the bacterial load increases, clearance of the bacteria
becomes less likely. In particular, the probability of clearance starting from a bacterial load
of B(t) = k is (𝜇𝜆 )

k
(given that 𝜇 < 𝜆). We make the assumption that once the bacterial load

reaches a level of b CFU such that (𝜇𝜆 )
b < 10–5, the individual will not recover. Therefore

the model is simulated as a Markov chain until either B(t)≥ b or all populations (spores in
the airways, infected phagocytes, extracellular bacteria) become extinct. If the threshold b is
reached, the current state of the model is then taken as the initial condition for the following
mean-field ODE version of the model:

dSP
dt
= –𝜌SP,

dP1
dt
= 𝜌SP – 𝛿P1,

dP2
dt
= 𝛿P1 – 𝛿P2,

dP3
dt
= 𝛿P2 – 𝛿P3,

dB
dt
= 𝛿RP3 + (𝜆 – 𝜇)B. (7)

Note that here we are only considering the spores that will eventually cause a rupture event
in the lymph nodes. That is, the variable SP represents the number of spores in the lung air-
ways that will eventually be phagocytosed and cause the infected phagocyte to rupture in the
lymph nodes.

If the infection is cleared before the bacterial load reaches b CFU, then the incubation
period is considered to be ‘infinite’. Otherwise, the incubation period is recorded as the time
that the bacterial load reaches the symptom onset threshold (i.e., B(t) = 1010 CFU).
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