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A B S T R A C T

Background aims: The appearance of genetically variant populations in human pluripotent stem cell (hPSC)

cultures represents a concern for research and clinical applications. Genetic variations may alter hPSC differ-

entiation potential or cause phenotype variation in differentiated cells. Further, variants may have properties

such as proliferative rate, or response to the culture environment, that differ from wild-type cells. As such,

understanding the behavior of these variants in culture, and any potential operational impact on manufactur-

ing processes, will be necessary to control quality of putative hPSC-based products that include a proportion

of variant threshold in their quality specification.

Methods:Here we show a computational model that mathematically describes the growth dynamics between

commonly occurring genetically variant hPSCs and their counterpart wild-type cells in culture.

Results:We show that our model is capable of representing the growth behaviors of both wild-type and vari-

ant hPSCs in individual and co-culture systems.

Conclusions: This representation allows us to identify three critical process parameters that drive critical

quality attributes when genetically variant cells are present within the system: total culture density, propor-

tion of variant cells within the culture system and variant cell overgrowth. Lastly, we used our model to pre-

dict how the variability of these parameters affects the prevalence of both populations in culture.

© 2024 International Society for Cell & Gene Therapy. Published by Elsevier Inc. This is an open access article

under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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Introduction

Over the last several years, the rapid advancement of human plu-

ripotent stem cell (hPSC)-derived cell therapies into clinical trials has

moved the field of regenerative medicine closer to a new era of thera-

peutics [1�3]. However, key challenges remain surrounding the safe

and reproducible expansion of cell therapies into defined large-scale

manufacturing production capable of meeting the therapeutic

demand [4,5]. Significant among these is to understand how genetic

variability can affect the manufacturing system.

Manufacturing of a hPSC-derived cell therapy requires the expansion

and maintenance of a genetically stable population of cells [4]. How-

ever, it is well established that hPSCs may acquire recurrent genetic

abnormalities that commonly present as either copy number variants

or gains of whole or regions of chromosomes; 1, 12, 17, 20 and X, upon

prolonged culture [1,4�8]. In the pluripotent state, these acquired var-

iants provide the abnormal cell with a selective growth advantage,

enabling them to overtake wild-type cells in culture [7,9,10]. Although

the potential impact of these mutations within the differentiated state

of specific regenerative applications is not yet known, it is worth noting

that most of the commonly observed genetic abnormalities have been

related to different tumorigenic phenomena [4,5]. One of the predomi-

nant features typically displayed by variant hPSCs, which is also a com-

plementary hallmark of cancer, is possession of a faster growth rate
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than their wild-type cells. Therefore, the appearance of genetically vari-

ant cells in culture creates a variable that has the potential to influence

manufacturing outcomes. Understanding the dynamics of how abnor-

mal cells arise and establish within cultures is essential for designing

strategies of process control during the expansion of hPSCs for

manufacturing purposes.

Previous studies have explored strategies to overcome the pres-

ence of genetically variant cells within an expanding culture. One

strategy has been to identify culture conditions that can reduce the

appearance of genetic variations. Maintaining cells in a hypoxic envi-

ronment has been shown to reduce oxidative stress and thus prevent

DNA mutation accumulation, offering a set of manufacturing parame-

ters that might be operationally more favorable [11]. Alternative

studies have explored identifying the mechanisms through which

variant cells exploit and overcome the culture environmental con-

straints that limit normal hPSCs expansion, in order to control their

proliferation [4,10,12]. However, the mechanisms that underpin this

aspect of variant hPSCs advantage currently remain insufficiently

defined to design a control strategy. Moreover, we have recently

investigated the behavior of karyotypically diploid wild-type and

genetically variant hPSCs when cultured together [10]; this study

provided an understanding of variant cell behavior and robust exper-

imental data that could support mechanistic analysis of the growth

interaction between wild-type and genetically variant cells.

Here, we have applied a modeling technique previously developed

and demonstrated to represent cell behavior in a manner appropriate

for cell processing optimization [13�15]. This is a tailored ordinary dif-

ferential equation (ODE)-based modeling framework that represents

key mechanisms underpinning bioprocesses in terms relevant to pro-

cess control variables with the use of strategically collected experimen-

tal data [13]. In this study, we sought to develop a model that could

exploit the available data and current mechanistic understanding to

predict the proliferation of variant and wild-type cells when cultured

separately and together based on their innate properties and differential

modulation of these properties by culture state such as density or cell-

type population constitution. Our results show that the model is capa-

ble of representing the growth behaviors of wild-type and variant

hPSCs in both independent and co-culture systems, and it defined three

critical process parameters that determine the overgrowth rate of vari-

ant cells. Furthermore, we demonstrate how the model can be used to

determine conditions that either inhibit or enhance the overtaking of

variant cells. These findings have practical implications for the rapid

detection of undesirable genetic variants and the quality control of

hPSC-based cell therapies.

Methods

hPSC growth rate

Growth rate analysis was performed on two wild-type sublines

(H7.S14 and H7-H2B-RFP) and two variant sublines (H7v1,17,i20

and H7v1,12,17,20q-GFP), as previously described [10,12]. In sum-

mary, before experiments, the cell banks of wild-type early passage

sublines of the hPSC line H7 (WA07) [16] used in this study; H7.S14

and H7-H2B-RFP were characterized as karyotypically normal

based on at least 20 metaphases analyzed by G-banding and did not

possess the commonly gained 20q11.21 copy number variant as

determined by florescent in situ hybridization and/or quantitative

polymerase chain reaction for copy number changes [7,17]. The kar-

yotypes of the H7 genetically variant sublines H7v1,17,i20 [47,XX,

+del(1)(p22p22), der(6)t(6;17)(q27;q1), t(12;20)(q13;q11.2), i(20)

(q10)dup(20) (q11.21q11.21) and H7v1,12,17,20q-GFP [48,XX, +del

(1)(p22p22), der(6)t(6;17)(q27;q1), +12, ish dup (20q11.21q11.21)]

were confirmed by G-banding of 30 metaphase spreads and 20q

copy number variant in H7v1,12,17,20q-GFP determined by quanti-

tative polymerase chain reaction analysis and florescent in situ

hybridization. Human PSCs were cultured on Vitronectin (cat. no.

A14700; Thermo Fisher Scientific, Waltham, MA, USA) and main-

tained in E8 medium prepared in-house, consisting of Dulbecco’s

Modified Eagle’s Medium/F12 (cat. no. D6421; Sigma-Aldrich, St.

Louis, MO, USA) supplemented with 14 mg/L sodium selenium (cat.

no. S5261; Sigma-Aldrich), 19.4 mg/L insulin (cat. no. A11382IJ;

Thermo Fisher Scientific), 1383 mg/L NaHCO3 (cat. no. S5761;

Sigma-Aldrich), 10.7 mg/L transferrin (cat. no. T0665; Sigma-

Aldrich), 10 mL/L Glutamax (cat. no. 35050038; Thermo Fisher Sci-

entific), 40 mg/L FGF2-G3 (cat. no. Qk053; Qkine, Cambridge, UK)

and 2 mg/L TGF-b1 PLUS (cat. no. Qk010; Qkine) [18].

Each population was grown independently and in co-culture, with

the co-culture consisting of the mixture of wild-type cells and one of

the variant sublines. Cells in the independent cultures were seeded at

two different densities; 4.5 £ 104 cells/cm2 (higher density) and

2.25 £ 104 cells/cm2 (lower density), whereas co-cultures were

seeded at 4.5 £ 104 cells/cm2 containing an equal proportion of each

population (2.25 £ 104 cells/cm2). Cells were fed daily and main-

tained at 37°C under a humidified atmosphere of 5% CO2 in air [12].

Modeling and model validation for manufacturing

Cell culture dynamics and their modulation were mathematically

represented using the ODE-based modeling framework previously

described [13]. This approach uses tailored ODEs and a limited range

of additional functions selected from a constrained library of building

blocks. The values of the parameters were optimized by simulta-

neously fitting experimental datasets to minimize least squares devi-

ation (i.e., a brute force screen of all combinations of parameter

values). Following Stacey et al. [13], a software interface was used in

which each block graphically corresponds to a building block from

the library and thereby represents a cell dynamic that is mathemati-

cally simulated by within the system of ODEs. The configurations

selected in this study are represented in graphical schemes within

the relevant section.

Underlying hypotheses were iterated in light of deviations

between simulation results and real-life data (i.e., experimental

data). An acceptable model fit was considered to show a strong corre-

lation between simulation and experimental data (R2) and no gross

systematic deviations in residuals across the model experimental

space. The degree of representation also was evaluated through the

adjusted R2, which penalizes for adding extra parameters in the

model that do not necessarily explain the variation of the experimen-

tal data (i.e., representing data noise rather than the cell behavior).

The best-fitting model was tested against independent data to vali-

date representation and predictive capability (as further discussed).

Hypotheses modeled and tested are described conceptually to fol-

low, including the correspond systems ODEs:

Hypothesis 1. (see “Modeling the independent growth behavior of

wild-type and genetic variant cells”): Quiescent cells are converted to

proliferative cells, proliferative cells grow exponentially with rate

reduced as a function of proliferative cell density:

dQ

dt
¼ �rrQ ð1Þ

dP

dt
¼ rrQ þ rgSðP; gc; gsÞP ð2Þ

where Q and P are, respectively, the densities of quiescent and prolif-

erative cells, t is time, rr is the rate at which quiescent cells become

proliferative, rg is the maximum growth rate for the proliferative cells

and the sigmoidal function S models the reduction in proliferation as

density increases, with a threshold gc and sensitivity gs. We use:

Sðx; c; sÞ ¼
1

1þ eðx�cÞs
ð3Þ
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Hypothesis 2. (see “Modeling the growth of wild-type and variant

hPSCs in co-culture system”): As hypothesis 1, but two populations

of quiescent cells are converted to proliferative cells of two types

(wild-type and variant) and the growth rate of each is reduced as a

function of the total density of proliferative cells.

dQ1

dt
¼ �rr;1Q1 ð4Þ

dQ2

dt
¼ �rr;2Q2 ð5Þ

dP1
dt

¼ rr;1Q1 þ rg;1SðP1 þ P2; gc;1; gs;1ÞP1 ð6Þ

dP2
dt

¼ rr;2Q2 þ rg;2SðP1 þ P2; gc;2; gs;2ÞP2 ð7Þ

where Q1, Q2, P1 and P2, respectively, are the densities of quiescent

wild-type, quiescent variant, proliferative wild-type and proliferative

variant cells; rr, n is the rate at which quiescent cells of wild-type (n =

1) and variant (n = 2) are converted to proliferative cells and all other

variables and parameters are as defined for hypothesis 1.

Hypothesis 3. (see “Restructuring the model to account for the

behavioral differences observed”): As hypothesis 2, but the wild-type

growth rate comprises a part that is attenuated by the total prolifer-

ative cell density, and a second part that is attenuated only by the

variant cell density:

dQ1

dt
¼ �rr;1Q1 ð8Þ

dQ2

dt
¼ �rr;2Q2 ð9Þ

dP1
dt

¼ rr;1Q1 þ rg;1SðP1 þ P2; gc;1; gs;1ÞP1 þ rh;1SðP2; gx; gyÞP1 ð10Þ

dP2
dt

¼ rr;2Q2 þ rg;2SðP1 þ P2; gc;2; gs;2ÞP2 ð11Þ

where rg,1 and rh,1, respectively, are the fraction of the wild-type

growth rate that depends on the total density and the variant den-

sity; gx and gy are the threshold and sensitivity of the growth rate

dependency on the variant density and all other variables and param-

eters are as defined for hypothesis 2.

The values describing the variability of the culture in

“Manufacturing operational consequence of the model” were calcu-

lated from a time series of cell densities generated by simulating the

conditions in Table 1 in the best-fitting co-culture model with the

parameter values of Table 4. Then, these data were used to calculate

the culture density, proportion of variants and the variant over-

growth rate (4m) (Equation 12 and Equation 13). 4m was calculated

as the difference between the variant and wild-type growth rate,

where m represents the growth rate, N is the density, and t is the

time.

Variantsið%Þ ¼
NVariantsi ¢100%

NVariantsi þ Nwild�typei

ð12Þ

Dmiðh
�1Þ ¼

ln
NVariant ti

NVariant ti�1

� In
Nwild�type ti

Nwild�type ti�1

ti � ti�1
ð13Þ

Results

To define the growth dynamics of wild-type and variant hPSCs

during expansion in mosaic cultures, we first sought to develop a

mechanistic growth model representing the behavior of both cell

populations when grown independently. Using the wild-type and

two variant sublines (v1,17q,i20 and v1,12,17,20q-GFP), we simu-

lated characteristic behaviors cells exhibit across a standard culture

to quantify their growth properties. Subsequently, the model was

adapted to represent the co-culture scenario in which both popula-

tions exist and expand within the same culture system. The new

model structure allowed us to assess how the growth behavior of

both cell populations is altered compared with independent culture

and subsequently define an additional inhibitory mechanism, exerted

by variant hPSCs, that modulates the growth dynamics of wild-type

cells. Following validation of the best-fitting model structure by

degree of representation to a new data set, we used our model to

examine how specific culture parameters could alter the growth

dynamics of both wild-type and variant cell populations and ulti-

mately define the variant cells overgrowth rate.

Modeling the independent growth behavior of wild-type and genetic

variant cells

Using the ODE modeling framework, characteristic behaviors

exhibited across a standard culture were simulated to study the inde-

pendent growth behavior of wild-type and variant cell populations.

The model structure was based on hypothesized key cell dynamics:

first, after seeding, cells change from a non-proliferative to a prolifer-

ative state. Afterwards, the cells begin dividing at regular intervals

until, lastly, becoming inhibited by the cell density (daily medium

exchange was applied to prevent medium limitations) (Figure 1A).

The number of cells in a non-proliferative or proliferative state was

represented as independent species, shown as oval-shaped modules,

and their modeled dynamics were represented by equations indi-

cated by square modules. Parameters associated with each equation

are defined next to them in italic square modules (Figure 1B).

To optimize the model parameters for our wild-type and two vari-

ant sublines, we simultaneously fitted experimental data from each

population, acquired across regular time points from cell seeding (24

h) over a 3-day culture period (96 h). In the simulation data, we

observed that the model output appropriately represented the wild-

type and variants growth behavior, with low sensitivity to capture

data noise (Figure 1C�E). The simulation results displayed a strong

correlation to the experimental data (R2 = 0.96 and adj. R2 = 0.96),

and no systematic patterns were observed in the residual values

(Figure 1F). Collectively, these observations indicate the same model

structure can be used to represent the growth behavior of wild-type

and variant sublines when cultured independently. Moreover, differ-

ences in the fitted parameter values between the populations indi-

cate that the enhanced growth properties of variant hPSCs are likely

due to a faster growth rate and not differences in their ability to initi-

ate proliferation after seeding, for example (Table 2).

Table 1

Experimental computational conditions analyzing the variability of

the culture.

Condition Variant initial

density (£ 104 cells/cm2)

Wild-type initial

density (£ 104 cells/cm2)

1 3.0 3.0

2 3.0 1.5

3 2.25 2.25

4 1.5 3.0

5 1.5 1.5
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Figure 1. (A) Biological behavior aimed to be represented in the independent growth model, and (B) description of the software building blocks representing the behavior. Simulation

results (line) and experimental cell count (markers) across time for the (C) wild-type, (D) v.1.12.17.20 and (E) v.1.17.20 populations illustrate the model’s degree of representation. N � 6

and error bars are showing standard deviation. (F) Simulation results across residual values are low and show a lack of predictability. (Color version of figure is available online.)

Table 2

Table of fitted parameter values that characterize each population.

Cell line Variable Wild-type v.1.12.17.20 v.1.17.20

Conversion of cell state rate, h�1 Eq. 1, r r 2 2 2

Growth rate, h�1 Eq. 2, r g 0.026 0.035 0.032

Inhibition threshold, £ 105 cells/cm2 Eq. 2, g c 3.9 4.7 4.1

Inhibition sensitivity, £ 10�5 cm2/cells Eq. 2, g s 1.0 1.5 1.5
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Modeling the growth of wild-type and variant hPSCs in co-culture

system

Given that when variant hPSCs arise they exist within the same

culture environment as wild-type cells, we next adapted the growth

model to represent a scenario in which a wild-type and a variant cell

population grow together. We first hypothesized that in a simple sce-

nario, both populations would behave in a similar manner to their

respective independent cultures, with the exception that each popu-

lation would now be inhibited by the total cell density of the system

rather than their own individual densities (Figure 2A). To this end,

we applied the independent growth parameter values previously

described in Table 2 to the re-structured model (Figure 2B).

In the new simulations, we observed a high initial correlation to

the experimental growth data at early time points, which was then

followed by both populations systematically deviating from the

model (R2 = 0.88 and adj. R2 = 0.83, Figure 2C�D). As such, the resid-

ual values displayed a pattern of predictability over the time, with

underpredicted values for the variant populations and overpredicted

values for the wild-type cells at the later stages of culture

(Figure 2E�F). Systematic residual deviation at the end of the culture

indicated an inaccurate representation of the mechanisms driving

growth inhibition and, based on these findings, we concluded that

total system density is solely insufficient to predict co-culture behav-

ior of the wild-type and variant hPSCs and growth inhibition is driven

by an interaction between populations.

Restructuring the model to account for the behavioral differences

observed

Given that variant sublines v1,17q,i20 and v1,12,17,20q-GFP have

been reported to have the capacity to competitively inhibit the

growth of wild-type cells [10], we next simulated the suppressive

effect experienced by the wild-type cells by altering the model to

include an additional separate inhibition module in the wild-type

growth rate that was modulated by the variant cells (Figure 3A�B).

In the new model structure, both wild-type and variant populations

continue to be inhibited by the overall system density, but wild-type

cells possess a separate inhibitory parameter associated with the var-

iant population, allowing the variant to exert an independent and

additional inhibitory effect on the wild-type population. We hypoth-

esized that in our new co-culture model, both cell types would retain

some of their independent growth parameters (displayed in italics in

Table 3) and the simulations were set to only optimize parameters

that represented the wild-type cells growth rate, and their inhibition

(displayed in bold in Table 3).

Simulated data showed that the restructured model was an

improvement for appropriately representing the co-culture growth

of both wild-type and variant cells, given the strong correlation to

the experimental result (R2 = 0.92 and adj. R2 = 0.87) (Figure 3C�D).

In addition, we observed that no residual values showed systematic

patterns or predictability (Figure 3E�F). However, we noted residual

values tended to increase within the variant populations at high den-

sities, suggesting that in co-culture variants might also increase their

growth rate with respect to the model prediction when cultured

independent (Figure 3E�F).

Moreover, we found that the wild-type cell growth rate decreased

compared with the previously calculated independent growth rate

value (e.g., cond. 1 0.021 h�1 vs 0.026 h�1, as seen in Table 3 and

Table 2), indicating growth suppression due to the presence of the

variants. As the specific growth rates represent the fraction of the

growth inhibited by each of their modulators. In the wild-type cells,

the specific growth inhibited by the presence of the variants is overall

lower but occurs more quickly than the specific growth inhibited by

cell density (i.e., confluence). Overall, these findings suggest that vari-

ant cells provide a suppressive effect that acts throughout the co-

culture, although it is less impactful than the inhibition of wild-type

growth that is caused by confluence, which occurs at the end of the

culture period.

Model validation

Validation by representing a new data set

To validate our restructured model, we performed two assess-

ments of model performance using wild-type hPSCs and variant sub-

line v.1,12,17,20. First, we simulated the growth of both cell types

across a range of seeding densities using the previously determined

parameter values (Table 3) to evaluate whether the model could rep-

resent a new data set that was not used during its construction. A

six-point seeding density series, with both populations contributing

proportionally to the overall density (50:50), was used to simulate

cell growth. Model performance was evaluated by comparing simula-

tion results against experimental data acquired at 24-h and 96-h

time points. These time points were selected based on the model

characteristics to show early systematic deviation in growth rates rel-

ative to model prediction or changes in late-stage inhibition. In our

simulation data, we observed the culture system acquired a higher

proportion of variant cells and a lower proportion of wild-type as the

overall density was increased, fitting with our previous observations

(Figure 4A�B). Furthermore, the simulated data showed a strong cor-

relation coefficient of R2 = 0.94 for all density conditions (Figure 4C),

and adj. R2 = 0.93. However, although the simulation appropriately

represented the behavior, simulations of the wild-type population

started to underperform at low densities (Figure 4D�F), with values

under-predicting its behavior at densities below 2 £ 104 cells/cm2

(also Figure 4A�B).

Optimizing the parameter values on a broader data set

Given the systematic deviation in the model residuals at low den-

sity, we combined all the previously used growth data to further opti-

mize our parameter values against culture scenario’s containing

different ratios of variant hPSCs; 0%, 50% and 100%. We had previ-

ously shown that conversion of the cell state rate does not drive

behavioral performance (Table 2 and Table 3); therefore, we excluded

the parameter to reduce the model’s complexity. Of note, we

observed that the parameters optimized from the broader data set

qualitatively replicated our previous growth rate observations

despite showing small differences in their values (Table 4). The vari-

ant growth rate remained higher than the wild-type, and the specific

wild-type growth rate inhibited by the variant population was lower

and still occurred faster than the specific growth inhibited by the

confluence state. Based on these results, we concluded that the model

structure appropriately represents the co-culture behavior.

Lastly, we simulated the previously used six-point density series

with the optimized parameters. Comparison with the experimental

data showed that the model results appropriately represented the

behavior (R2 = 0.94, Figure 4G�H, and adj. R2 = 0.93), although under-

predicted values were still visible at low densities (Figure 4I�K).

Moreover, we did notice an improved representation of the wild-

type population across low densities with the new parameter values

relative (Figure 4L) to the previous (Figure 4C).

Manufacturing operational consequence of the model

Our model representation revealed that as a consequence of vari-

ant hPSCs possessing a faster growth rate than their wild-type coun-

terparts, as overall culture density increases, there is also a greater

increase in the proportion of variant cells over wild-type cells in the

system. Thus, variability within the culture can be defined by the fol-

lowing variables: variant overgrowth rate, overall density and pro-

portion of variants in culture. To gain further insight into the

interaction of these three variables and to identify strategies for
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Figure 2. (A) Biological behavior represented with overall density as growth inhibitor and (B) software building blocks representing the behavior. Simulation results (line) and

experimental counts (markers) versus time for the co-culture of the (C) wild-type and v.1.12.17.20 and (D) wild-type-RFP and v.1.17.20. N = 2, error bars show the range. (E) Resid-

ual versus simulation results and (F) versus time show predictable behavior in the later points. (Color version of figure is available online.)

388 C. Beltran-Rendon et al. / Cytotherapy 26 (2024) 383�392



Figure 3. (A) Co-culture representation, incorporating the variant’s growth inhibitor effect over the wild-type, and (B) the software building blocks to represent the behavior. Simu-

lation results (line) and experimental counts (markers) across time for the restructured model representing the co-culture of the (C) wild-type and v.1.12.17.20 and (D) wild-type-

RFP and v.1.17.20 populations. N = 2, error bars show the range. (E) Residual versus simulation results and (F) versus time do not display predictability. (Color version of figure is

available online.)
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manufacturing control, we simulated the effect of variant hPSCs

across a range of culture parameters (Table 1). We calculated the

overall culture density and proportion of variants at various passages,

as well as the variant overgrowth rate (4m) over each passage inter-

val (according to Equation 13). In line with previous findings, a cul-

ture system with the presence of variants is subject to a variant

overgrowth. The effect of this variant overgrowth rate increases both

as the overall density and the proportion of variants increases.

Underpinning the overgrowth is the variant cells higher growth rate

in comparison with wild-type hPSCs and the earlier density mediated

inhibition of the wild-type population than that of the variant. How-

ever, we noted as the culture becomes more confluent the variant

also becomes inhibited, and thus its overgrowth rate starts to

decrease (Figure 5). Overall, our model demonstrates that the rate at

which variant cells overtake a wild-type population can be predicted

at given process parameters when the growth behavior of both wild-

type and variant hPSC populations is known.

Discussion

Manufacturing of hPSC-based cell therapy requires an under-

standing of the culture parameters that control the expansion of

genetically variant cells, as they have the potential to compromise

operational processes [4,5]. Here, we report that the independent

growth behavior as well as the selective growth and competitive

advantage of genetically variant hPSCs can be mathematically repre-

sented using an ODE framework.

Our model showed how the system parameters controlling indepen-

dent growth behavior of wild-type and genetic variant populations are

altered when both populations exist within a co-culture environment.

Furthermore, our model revealed that under the presence of variants,

cell behavior changes with the state of the culture. The data generated

showed that wild-type cells experience a variant overgrowth rate, and

this overgrowth increases as the culture system becomes more conflu-

ent. Moreover, the low degree of representation obtained of wild-type

cells at low densities in the co-culture model, mainly under-predicting

the behavior, suggests that cells are less susceptible to experiencing an

inhibition driven by variants at low densities.

Alternative models cited in the literature (in particular the gener-

alized logistic model, or the competitive generalized logistic model)

would likely have produced a similar outcome based on similar

mechanistic routes [19]. We have favored the ODE approach

described due to the clear attribution of each parameter to a biologi-

cal behavior. This facilitates mechanistic analysis of cause-and-effect

as well as future development of the model to cover wider scenarios

(such as a cell death phase). We have previously described this build-

ing block approach to modeling biomanufacture systems and the

advantages we believe it holds in communication in multidisciplinary

environments.

Of particular value, these observations lead to an operational sce-

nario whereby controlling the state of the culture could determine

the outcomes of the process. Use of operational protocols that oper-

ate in the low-density region would permit scenarios in which wild-

type cells experience less variant-mediated inhibition. Thus, the cul-

ture system would consequently have a lower variant overgrowth

rate effect, thereby reducing the rate at which variant hPSCs can

overtake wild-type cells.

The ability of our computational model to quantify cell behavior

opens the opportunity to define future operational scenarios.

Although only two genetically variant sublines were employed in

this study, as our knowledge of other undesirable variants becomes

clearer, manufacturers will need to know how quickly arising var-

iants reach the threshold for detection and the value of this point in

their manufacturing trains. In this scenario, protocols could be

designed to operate at high densities, enabling the system to experi-

ence a higher overgrowth rate that would permit faster detection of

genetic mosaicism [3].

In manufacture of a hPSC-based cell therapy, a timely detection of

variants is important for product release and de-risking the therapies.

The modeling system developed in this study could be applied in two

complementary different ways to facilitate the timely detection of

variants arising in hPSC cultures. First, tracking the growth patterns

of expanding cultures would enable the detection of variant hPSCs by

identifying a deviation of growth characteristics outside the biologi-

cal variability of the culture system predicted by the model. Addition-

ally, a useful manner for using this resource would be to deliberately

subject a duplicate culture to conditions predicted by the model to

facilitate overtake of variant cells. If present in culture, variants

should reach the threshold required for detection by genetic or

modeling methods (e.g., growth rates as explained previously) more

quickly, thus allowing more timely detection of their potential pres-

ence in hPSC populations destined for clinical use.

We note that in the final version of our model there is the indica-

tion that further model parameters are required to more precisely

represent wild-type and variant cell behavior at lower density values.

Designing these experiments is particularly important for defining

the rate of emergence of a new variant that will initially be a single

cell. Although not evaluated in this study, the set-up of these experi-

ments could be easily designed and enriched by computational mod-

els, requiring only changes to the input variables to establish the

experimental conditions that could provide a better understanding of

the system (e.g., seeding densities, passage number). At the same

time, the knowledge gained from these experiments could facilitate

building the computational model further, leading to an iterative

experimental and simulation research cycle.

In conclusion, our work has shown how computational models

can help unlock complex biological systems by generating new

insights about the mechanisms driving these behaviors and testing

Table 3

Fitted parameters that characterized the conditions in the restructured model.

Condition 1 2

Parameter Variable wild-type v.1.12.17.20 wild-type v.1.17.20

Conversion of cell state rate, h�1 Eqs. 8 and 9, r r 2 2 2 2

Cell density inhibits wild-type and variant populations

Specific growth rate, h�1 Eqs. 10 and 11, rg 0.018 0.035 0.02 0.032

Inhibition sensitivity, £ 10�5 cm2 /cells Eqs. 10 and 11, g s 1.0 1.5 1.0 1.5

Inhibition threshold, £ 105 cells/cm2 Eqs. 10 and 11, g c 3.9 4.7 3.9 4.1

The presence of variants inhibits the wild-type population

Specific growth rate, h�1 Eq. 10, r h 0.003 � 0.002 �

Inhibition sensitivity, £ 10�5 cm2 /cells Eq. 10, gy 1.5 � 6 �

Inhibition threshold, £ 103 cells/cm2 Eq. 10, gx 7 � 4.5 �

The optimized parameter values are displayed in bold, and the manually assigned (obtained from the monoculture model)

are shown in italics.
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Figure 4. Simulation results (line) and experimental counts (markers) across starting densities representing a new data set at (A) 24 and (B) 96 h of culture. N = 3, error bars show SD.

(C) Residual versus simulation results. Relative error between the simulation and experimental results at (D) 24 and (E) 96 h of culture. (F) R2 across starting densities for the co-culture

representation and the representation of each population in co-culture. Simulation results (line) and experimental counts (markers) across starting densities represented with the fit-

ted parameters at (G) 24 and (H) 96 h of culture, and their relative error (I) and (J). N =3, error bars show SD. (K) Residuals versus simulation results. (L) R2 across starting densities for

the co-culture representation. SD, standard deviation. (Color version of figure is available online.)
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hypotheses. Moreover, it has demonstrated that the ODE modeling

framework can represent the complexity of cell dynamics to an

acceptable degree for manufacturing applications. Undertaking

future studies to assess the degree of representation under a wider

range of conditions generating more diverse growth rates across

wild-type and variant cells will provide further insight into mecha-

nisms driving variant’s competitive growth advantage.
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Table 4

Fitted parameter values that characterize both populations seeded at different proportions.

Parameter Variable Wild-type v.1.12.17.20

Conversion of cell state rate, h�1 Eqs. 8 and 9, r r 2 2

Cell density inhibits wild-type and variant populations

Specific growth rate, h�1 Eqs. 10 and 11, rg 0.018 0.034

Inhibition sensitivity, £ 10�5 cm2/cells Eqs. 10 and 11, g s 1.0 2.5

Inhibition threshold, £ 105 cells/cm2 Eqs. 10 and 11, g c 3.6 5.0

The presence of variants inhibits the wild-type population

Specific growth rate, h�1 Eq. 10, r h 0.013 �

Inhibition sensitivity, £ 10�5 cm2/cells Eq. 10, gy 2.5 �

Inhibition threshold, £ 103 cells/cm2 Eq. 10, g x 13 �

The optimized parameter values are displayed in bold, and the manually assigned (obtained from the monoculture

model) are shown in italics.

Figure 5. Relationship between culture density, percentage of variants and variant

overgrowth rate shows that variants intrinsically experience an overgrowth in co-cul-

ture. The variant overgrowth rate is represented in the color-scale bar. (Color version

of figure is available online.)
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