
This is a repository copy of Process-Algebraic Semantics for Verifying Intelligent Robotic
Control Software.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/232695/

Version: Published Version

Proceedings Paper:
Attala, Ziggy orcid.org/0000-0002-4641-5354, Cavalcanti, Ana Lucia Caneca
orcid.org/0000-0002-0831-1976, Foster, Simon David orcid.org/0000-0002-9889-9514 et
al. (2 more authors) (2025) Process-Algebraic Semantics for Verifying Intelligent Robotic
Control Software. In: NASA Formal Methods:17th International Symposium, NFM 2025,
Williamsburg, VA, USA, June 11–13, 2025, Proceedings. The 17th NASA Formal Methods
Symposium (NFM 2025), 11-13 Jun 2025 Lecture Notes in Computer Science. Springer
Cham, USA.

https://doi.org/10.1007/978-3-031-93706-4

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1007/978-3-031-93706-4
https://eprints.whiterose.ac.uk/id/eprint/232695/
https://eprints.whiterose.ac.uk/

Process-Algebraic Semantics for Verifying

Intelligent Robotic Control Software

Ziggy Attala(B) , Fang Yan , Simon Foster , Ana Cavalcanti ,
and Jim Woodcock

University of York, York, UK

{ziggy.attala,fang.yan,simon.foster,ana.cavalcanti,jim.woodcock}@york.ac.uk

Abstract. Verification of robotic systems that use neural networks is
a challenge. In this paper, we present a formal technique supported by

tools to model and verify control software involving neural networks. Our
technique enables reasoning about the reactive, communication-based,
properties of a system through a process-algebraic lens. We support our
framework with a link to state-of-the-art ANN verification tools, using

them to prove contextual properties of a neural network. Our approach is
flexible, platform-independent, and focuses on the logic of neural network

models, instead of on a training method or specific use case.

Keywords: verification · Circus · theorem proving · Isabelle · Marabou

1 Introduction

The question of how we can, and should, use machine learning in robotics is of
significant interest to industry, to the public, and to governing bodies. Reliability

of robotics and autonomous systems (RAS) is a key concern in any context
where the system interacts with humans or hazardous materials. In general, the

fact that a robot has a physical presence and has the potential to affect its
environment directly typically raises safety concerns.

Here, we present an approach to modelling and verifying control software

for robotic systems that may include components realised by an artificial neural
network (ANN). Our approach is based on diagrammatic, behavioural models,
from which a process-algebraic formal semantics can be automatically generated.
Verification uses a refinement-based conformance notion, and is automated using

the theorem prover Isabelle [26] and the ANN verification tool Marabou [18]. We

consider the fully-connected feed-forward ANN model, but the nature of process
algebra means we can extend our semantics to provide a similar model for further
network types. In addition, our notion of conformance is general.

For modelling, we consider RoboChart [31], a diagrammatic modelling lan-
guage with semantics based on CSP [14]. It can capture reactive behaviour, par-
allelism, data flow, and event order and availability. RoboChart enables model-
based engineering, including notions of refinement and composition.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Dutle et al. (Eds.): NFM 2025, LNCS 15682, pp. 11–30, 2025.
https://doi.org/10.1007/978-3-031-93706-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-93706-4_2&domain=pdf
https://orcid.org/0000-0002-4641-5354
https://orcid.org/0000-0001-5603-3467
https://orcid.org/0000-0002-9889-9514
https://orcid.org/0000-0002-0831-1976
https://orcid.org/0000-0001-7955-2702
https://doi.org/10.1007/978-3-031-93706-4_2

12 Z. Attala et al.

In [1], we have described an extension of RoboChart that allows the definition

of behaviour using the hyperparameters of an ANN and state machines. Here, we

present a metamodel for that extension, well-formedness conditions, and their
implementation. We have extended RoboTool, a set of Eclipse plug-ins that
support design and verification using RoboChart, to deal with ANN models.

The work in [1] describes informally a semantics for our RoboChart exten-
sion. Here, we extend that semantics to cover normalisation, formalise it, and

describe its implementation to generate Circus automatically [27] models for use

in Isabelle. Circus is a combination of CSP and Z [34], and with its encoding in

Isabelle, we can deal with the rich data model of an ANN and of RoboChart.
Finally, here we generalise and formalise the notion of conformance described

in [1]. We mechanise it in Isabelle, prove key properties characterising it as a

simulation relation [15], and present two theorems that identify verification con-
ditions for (1) use in proofs based on Isabelle; and (2) joint use of Isabelle

and Marabou. Our notion of conformance can be used to compare arbitrary

RoboChart components. We pursue, in particular, an approach where a tradi-
tional component, specified using state machines, is compared to a component
defined by an ANN. As such, this part of our work is focused around ANN

models used for control, not recognition.
To summarise, our contributions here are as follows. First, we developed

a tool for modelling and analyzing software involving ANN components. Sec-
ond, we defined a denotational semantics for these components targeting Circus.
Third, we have developed a tool for the automated analysis of the Circus seman-
tics. Finally, we have proved theorems that allow for the sound use of ANN-
specific solvers to prove the properties of the system. Although our focus here is
on semantics and conformance for ANN components, the nature of our semantic

model and our notation for conformance is key to enabling the modelling and

analysis of software involving ANN components.
We discuss related work in Sect. 2. We provide an overview of our approach

in Sect. 3. We describe our extensions to RoboChart in Sect. 4. Section 5 presents
our mechanisation of the semantics, and associated lemmas and theorems. We

conclude and provide future directions for work in Sect. 6.

2 Related Work

Many component-level verification approaches and tools exist for ANNs, such

as [13,20,35]. We can leverage them for software system-level reasoning.
The use of hybrid automata is dominant [17,23,30,36] for verifying AI-

enabled systems. In this line of work, the physical properties of a system, includ-
ing the scenarios, the robotic platform, and the software, are captured in a sin-
gle hybrid automaton, with each ANN in a single state. In contrast, we use a

diagrammatic domain-specific language (DSL), namely RoboChart, to capture

software models from which we can calculate mathematical models automati-
cally. Moreover, as a platform-independent account of the software, a RoboChart
model can generate code with a related notation available to capture physical

Semantics for Verifying Intelligent Robotic Control Software 13

Fig. 1. Our toolchain for modelling and verifying neural control software for robotics.
Black edges are steps automated by tools, and green edges are currently completed

manually. (Color figure online)

behavior [25]. On the other hand, some hybrid automata work can deal with

verifying quantitative properties, which is not our focus here. However, there is
potential to prove quantitative properties on RoboChart models involving ANN

components using the technique presented in [33].
The work in [28] considers ANN components in the context of Simulink

diagrams [24]. Similar to what we do, the goal is to use ANN components
to replace Simulink controllers. System-level properties are proved using the

Simulink Design Verifier [29]. The use of Simulink enables automation and links
to other (industry) tools, including, for example, a C code generator, and the use

of the CMBC model checker [7] to verify its properties. That work, however, does
not provide a formal semantics for ANNs or a general notion of conformance.

VEHICLE [8] is a DSL with support for the specification of properties of
ANN components using HOL, the base logic of Isabelle. It is based on lambda

calculus supporting arithmetic, vectors, and logic. The tool can translate VEHI-
CLE specifications to Marabou input and a loss function for training, an activity

we do not cover. System-level verification, however, is not considered in [8], but
the authors indicate that this can be enabled via a separate prover.

Isabelle also verifies ANNs in [4], where the authors formalise concepts com-
mon to ANNs. The models are platform-independent and can be used to verify

properties using Isabelle’s theories for real arithmetic. There are two encodings
of an ANN: the ‘textbook’ style, as graphs, and layer style, capturing Tensor-
flow layers. This work has close links to practical file formats for the specification

of hyperparameters; it can support the automated interpretation of a network

trained in TensorFlow in Isabelle and can be used to establish the correctness of
transformations from one file format to another. That work is well aligned with

the proof of properties of classification networks. Unlike us, however, they are

concerned with ANNs in isolation.

14 Z. Attala et al.

3 Overview

Figure 1 gives an overview of our work and tools. Our modelling approach is
mechanised as part of RoboTool [31], a set of Eclipse plug-ins that implements
RoboChart and related notations. In the mechanisation of our extension of
RoboChart, we leverage the Eclipse Modelling Framework (EMF) [5] to imple-
ment its metamodel, and Sirius [32] to enable graphical modelling. We enable

textual editing of models via an Xtext grammar [2]. The well-formedness con-
ditions are mechanised through a validation checker written in Xtend [2]. A

pre-release version of this tool is available online
1.

We have mechanised our semantics of RoboChart ANNs using a model-to-
text translation from RoboChart to CSP, enabling FDR [12] for model checking.
This requires a severe abstraction for scalability, and because FDR cannot deal
with real numbers, it is not suitable for our work here. We outlined these seman-
tics in [1], but we generated our semantics manually in that work.

For verification with Isabelle, we translate RoboChart to Circus using a

model-to-model transformation implemented in Epsilon [19]. We then generate

a textual artefact that defines the semantics in a format that is accepted by our
encoding of Circus in Isabelle, called IsaCircus 2.

We require a reachability condition expressed as a predicate on a vector space

to use ANN-specific tools such as Marabou. To obtain this condition formally,
we use Hoare and He’s Unifying Theories of Programming [15] (UTP) and its
mechanisation in Isabelle, Isabelle/UTP [9]. Using a UTP theory for Circus,
we can give a predicate semantics for RoboChart, including ANN components,
and establish verification conditions for conformance in terms of reachability

conditions. Here, we show how to use Marabou [18] to prove such conditions.
All engineering activities associated with RoboTool, from validation to

semantics generation, are automated. The automated translation from IsaCircus
to Isabelle/UTP is in progress, using the semantics in [27].

The following section presents how we define ANN components in

RoboChart.

4 RoboChart with ANN Components

This section presents our RoboChart extension: metamodel, well-formedness
conditions (Sect. 4.1), and semantics (Sect. 4.2). A full account is in [6].

4.1 Metamodel and Well-Formedness

Our extension of RoboChart adds a few classes to its metamodel, shown in Fig. 2.
They introduce the concept of an ANN as an abstract class. Instances of ANN
can be a RoboChart controller—our focus here—or an operation. Figure 2 shows

1 https://github.com/UoY-RoboStar/robotool-ann/releases/tag/NFM-19122024.
2 https://github.com/UoY-RoboStar/NFM2025/tree/main/RoboChart2IsaCircus.

https://github.com/UoY-RoboStar/robotool-ann/releases/tag/NFM-19122024
https://github.com/UoY-RoboStar/robotool-ann/releases/tag/NFM-19122024
https://github.com/UoY-RoboStar/robotool-ann/releases/tag/NFM-19122024
https://github.com/UoY-RoboStar/robotool-ann/releases/tag/NFM-19122024
https://github.com/UoY-RoboStar/robotool-ann/releases/tag/NFM-19122024
https://github.com/UoY-RoboStar/robotool-ann/releases/tag/NFM-19122024
https://github.com/UoY-RoboStar/robotool-ann/releases/tag/NFM-19122024
https://github.com/UoY-RoboStar/robotool-ann/releases/tag/NFM-19122024
https://github.com/UoY-RoboStar/robotool-ann/releases/tag/NFM-19122024
https://github.com/UoY-RoboStar/robotool-ann/releases/tag/NFM-19122024
https://github.com/UoY-RoboStar/robotool-ann/releases/tag/NFM-19122024
https://github.com/UoY-RoboStar/NFM2025/tree/main/RoboChart2IsaCircus
https://github.com/UoY-RoboStar/NFM2025/tree/main/RoboChart2IsaCircus
https://github.com/UoY-RoboStar/NFM2025/tree/main/RoboChart2IsaCircus
https://github.com/UoY-RoboStar/NFM2025/tree/main/RoboChart2IsaCircus
https://github.com/UoY-RoboStar/NFM2025/tree/main/RoboChart2IsaCircus
https://github.com/UoY-RoboStar/NFM2025/tree/main/RoboChart2IsaCircus
https://github.com/UoY-RoboStar/NFM2025/tree/main/RoboChart2IsaCircus
https://github.com/UoY-RoboStar/NFM2025/tree/main/RoboChart2IsaCircus
https://github.com/UoY-RoboStar/NFM2025/tree/main/RoboChart2IsaCircus

Semantics for Verifying Intelligent Robotic Control Software 15

Fig. 2. Metamodel for ANN components in RoboChart: classes in grey are abstract,
attributes in grey are inherited, and attributes in bold are not optional. (Color figure

online)

ANNController, which inherits from another class, GeneralController, omitted in

Fig. 2. A controller in RoboChart is typically used to represent functionality

allocated to a computational unit or a self-contained architectural component.
Our extension allows a controller to be defined by an ANN.

An ANN includes ANNParameters to define the hyperparameters and the

trained parameters of an ANN component, as shown in Fig. 2. The activation

function is given using an enumerated type. Here, we give semantics only to an

ANN that uses ReLU, which is suitable for using Marabou in reasoning. The use

of our semantics in conjunction with other functions is straightforward. More-
over, given the nature of process algebra, explicitly devised to model networks (of
processes), our overall approach is suitable for any ANN structure.

We capture the input layer, including its size, through an inputContext and

the output layer by an outputContext. Such a context can be used to define,
possibly via interfaces, input and output events to connect the ANN to other
RoboChart components. Context is an existing RoboChart concept used to define

the interface of every component. Each Event in an inputContext or outputContext
must be of a new class, OrderedEvent, which adds an integer to an Event definition

to specify an order for the inputs and outputs of an ANN component.
We capture the trained parameters through references weights, a three-dimen-

sional tensor (represented as a triple-nested sequence), and biases, a matrix (a

double-nested sequence). The class SeqExp captures sequence expressions.
The range to which an ANN is normalised is captured through a pair

annRange. (Typically, this range is between −0.5 and 0.5, or 0 and 1.) We capture

the range that each input value can take through inRanges, and the range for
outputs with outRanges: both are sequences of pairs. Normalisation is a common

consideration when defining an ANN; it involves scaling all input ranges in the

training data to a new range with a mean close to 0 [22].

16 Z. Attala et al.

The reference filename supports using ANN parameter files (using formats
such as ONNX, for instance) instead of explicitly defining parameter values.

Our well-formedness conditions for ANN assert that the parameters are

defined either in the model itself or in a linked file. They also ensure that the

trained parameters’ size and shape correspond to the hyperparameters and that
the size of the normalisation sequences matches the number of inputs and outputs
to the component, and, for each element in these sequences representing a range,
the maximum is strictly greater than the minimum. Finally, at the RoboChart
model level, we ensure that connections to and from the ANN component are in

accordance with its definition of input and output events.
Next, we present the semantics of these well-formed ANN components.

4.2 Formal Semantics

This section presents our denotational semantics. We introduce Circusand then

provide an overview of the semantics and present key definitions.

Circus. Circus [27] is a process-algebraic language for specification of concur-
rent systems; it defines data models and control behaviour of independent com-
ponents: processes. State declarations and actions define their behaviour; every

process has one main action that defines its behaviour. Actions are similar to

CSP processes [14] but define stateful behaviour. The definition of a basic Cir-

cus process has the form: process Proc =̂ begin . . . •A end. Here, the process
is named Proc and has main action A. The body of the definition, between

begin and end, contains declarations of state variables and actions that are

local to Proc. We describe selected Circus action operators used in our semantics
in Table 1; further details are provided as needed. A Circus process can also be

defined in terms of other processes, using process operators similar to CSP’s. We

do not use a composition of processes here, but it is via these operators that we

can combine the semantics of an ANN controller, which is a Circus process, with

those for other components of a RoboChart model.
The semantics of Circus [27] is defined using Unifying Theories of Pro-

gramming [15] (UTP). It defines processes and actions as reactive con-
tracts [10]: alphabetised predicates that capture their reactive behaviour. The

UTP-based reactive contracts semantics is ideal for supporting theorem proving.

Overview. As mentioned earlier, the semantics of an ANN controller is a Circus

process. Figure 3 depicts the structure of the main action of such a process. We

capture every node of the ANN as a Circus action and then define each layer
as the parallel composition of these actions and the whole ANN as the parallel
composition of the layer actions. We treat the input nodes as input for the first
layer. The parallel composition of node actions, represented by the parallel lines
between them in Fig. 3, and the parallel composition of layer actions define the

expected data flow.

Semantics for Verifying Intelligent Robotic Control Software 17

Fig. 3. A diagram showing the structure of our semantics of ANN controllers. Circles
represent actions representing nodes, and labelled edges represent communications. The

parallel lines denote parallel composition between actions. We have parallel composition

at the level of nodes and the level of layers. The ellipses indicate that we allow for an

arbitrary hidden layer structure and support any input and output layer size. On the

top left-hand corner, we also show the internal structure of a node action.

Table 1. Selected Circus action operators. Here, we use A and B as metavariables to

stand for actions, cs for a set of channels, e for an event, i for an index, and T for a

finite type. For the replicated (iterated) operators, A(i) is an action identified i .

Symbol Name Symbol Name

Skip Skip e −→ A Prefix

A [[| cs |]] B Parallel Composition [[cs]]i : T•A(i) Replicated Parallel

A; Q Sequential Composition ; i : T •A(i) Replicated SequentialComposition

c?x −→ A Input c!e −→ A Output

(c)&A Guarded Action A\cs Hiding

A[e := e1] Renaming A△B Interrupt

A ||| B Interleaving

The Exchange of information between nodes, represented by the lines con-
necting node actions in Fig. 3, is captured by CSP events on a channel layerRes.
The event layerRes.l .n is for communication from the nth node of the l -
th layer. A layerRes.0.n event represents the n-th input of the ANN, and

layerRes.layerNo.n, the n-th output; here, layerNo is the number of layers.
Each node action is defined by the parallel composition of actions that

receive communications from the previous layer, passing this information, after
applying the node’s weight, to another action that calculates the node’s overall
output. The intra-node action communications are via a channel nodeOut . A

nodeOut .l .n.i event is for the i -th input of the node n in layer l .

18 Z. Attala et al.

Rule 1. Semantics of ANN Components [[c : ANNController]]ANN : Program =

ANNChannelDecl(c)

ANNConstants(c)

ANNProc(c)

Semantic Rules. We formalise our semantics via a set of rules that together
define a function [[C]]ANN from a RoboChart ANN controller C to a Circus pro-
gram including some channel and constant declarations, and a process. This
semantics fits into the definition of a process formalising a RoboChart model that
includes the ANN component as specified in [1]. Here, we provide an overview

of these rules; the complete set can be found in [6, Chapter 3].
A rule definition provides a number and a brief description, followed by the

declaration of the function defined by the rule and an expression in a meta-
language to specify the function. In that expression, elements of the metalan-
guage are underlined. Our top-level rule (Rule 1), of the top-level Circus syn-
tactic category Program, is defined by three functions: ANNChannelDecl , which

specifies channel declarations (as described above); ANNConstants , which spec-
ifies constants; and ANNProc, which gives the behaviour of the process. We

define ANNProc in Rule 2; the complete definitions of ANNChannelDecl and

ANNConstants are omitted here but can be found in [6].
The rule ANNConstants first records constants corresponding to attributes of

C: weights , biases, annRange, inRanges , outRanges , and layerstructure. Further,
the rule defines constants for the function relu (the activation function), the input
to each layer layerInput (derived from the controller C), and the normalisation

functions norm, normIn, and denormOut . Our semantics defines a normalised

ANN, so we normalise every input using the function normIn, then denormalise

every output using denormOut . These functions are defined as norm, which

scales a value from one range to another.
The constants layerstructure and layerInput give the shape of our Circus

semantics; for our example, these take the values as shown below. We obtain

these constants from the ANN component in RoboChart, AnglePIDANN: we

present a graphical representation of this component in Fig. 5. We use these

constants to illustrate our semantic rules throughout this section.

layerstructure = 〈1, 1〉
layerInput = 〈2, 1, 1〉

The process, an element of the Circus syntactic category ProcDecl, is defined

by the function ANNProc(C) defined in the Rule 2 presented here. That process
is named according to the name attribute of C. Its main action is CircANN(C),
shown after the •. This action uses the local actions ANN and Interpreter , which

Semantics for Verifying Intelligent Robotic Control Software 19

Rule 2. Function ANNProc ANNProc(C) : ProcDecl =

process C.name =̂ begin

Collator=̂l , n, i : N; sum : Value•

(i = 0)&layerRes.l .n !(relu(sum + (biases(l)(n)))) −→ Skip

�

(i > 0)& nodeOut .l .n.(layerInput(l) − i + 1) ?x −→

Collator (l , n, (i − 1), (sum + x))
Edge=̂l , n, i : N•

layerRes.(l − 1).i ?x −→ nodeOut .l .n.i !(x ∗ (weights(l)(n)(i))) −→ Skip

Node=̂l , n, inpSize : N•

((; i : 1 . . inpSize•Edge(l , n, i))
[[| {[nodeOut .l .n]} |]]

Collator (l , n, inpSize, 0))\{[nodeOut .l .n]}

HiddenLayer=̂l , n, inpSize : N•

([[{[layerRes.(l − 1)]}]]i : 1 . . s•Node(l , i , inpSize))
HiddenLayers=̂HiddenLayers(C)

OutputLayer=̂OutputLayers(C)

ANN =̂ (HiddenLayers[[| {[layerRes.(layerNo(C) − 1)]} |]]OutputLayer); ANN

Interpreter=̂Interpreter(C)

•CircANN(C)

end

capture the data flow of the ANN, to define its behaviour within the RoboChart
context: using the input and output events of the RoboChart model, dealing

with normalisation, and handling termination.
For example, we consider the RoboChart module SegwayANN partially shown

in Fig. 5. It has two controller blocks: SegwayController defined by a state

machine, and AnglePIDANN defined by an ANN. We give the complete semantics
of AnglePIDANN in Fig. 4, which was generated using Rule 2. In the semantics of
AnglePIDANN, the action ANN captures the behaviour of the ANN in terms of
its hyperparameters and its trained parameters. The action Interpreter captures
normalising all input communications to the ANN, then denormalising all output
communications from the ANN. Using these actions, we define the main action of
the process for AnglePIDANN in Fig. 4 using parallel composition (A [[| cs |]] B),

hiding (\), and interrupt (△).
The parallel composition of Interpreter and ANN captures the behaviour

of our ANN in terms of the input and output events of the controller. The

definition of the simple Interpreter action is determined by the semantic function

Interpreter(C), which is omitted here. Interpreter takes inputs for the controller
in any order and outputs their normalised values, in any order, via layerRes.0

events to ANN . It also takes outputs from ANN via layerRes.layerNo (where

layerNo is the index of the last layer) events and outputs their denormalised

20 Z. Attala et al.

Fig. 4. Circus semantics for the ANN controller AnglePIDANN , generated via an appli-
cation of Rule 2. The ellipsis (. . .) denotes that the definition of the Collator , Edge,
Node, and HiddenLayer actions are constant in Rule 2, so are omitted here.

values. Figure 4 presents the Interpreter action for our example; here, we have

two inputs (anewError in and adiff in), and one output (angleOutputE out).
Interpreter first behaves as the interleaved composition of two sub-actions, each

of which accepts an input event and then communicates the normalised (with

normIn) value of this event to a layerRes.0 event. Next, Interpreter waits on the

single output event of the ANN action (layerRes.2.1); when received, it outputs
the denormalised (with denormOut) value on the angleOutputE out channel.
Finally, Interpreter repeats and waits for fresh input events.

In Circus, A [[| cs |]] B defines the parallelism of actions A and B , which

can perform any events outside of cs set independently but must engage on

any event in cs. Here, Interpreter and ANN synchronise on the set containing

all layerRes.0 and layerRes.layerNo. We hide all communications on layerRes,
so Proc defines interactions over the inputs and outputs of the controller, as
expected: anewError in, adiff in, angleOutput out .

Finally, the main action of an ANN controller process can be inter-

rupted (operator △) by an event terminate, raised if all the controllers of the

RoboChart terminate, and so the whole software, including the ANN, also ter-
minates (Skip).

ANN is defined by the parallel composition of actions HiddenLayers and

OutputLayer , synchronising on layerRes.(layerNo(C) − 1) events, and sequen-
tially composed with ANN in a tail recursion. HiddenLayers and OutputLayer
are defined by semantic functions (omitted here) that compose in parallel actions
for the hidden layers and the output layer’s nodes. HiddenLayer has parameters
l , n, and inpSize and captures the semantics of the lth layer with n nodes and

inpSize inputs coming from the previous layer or to the ANN as a whole. In our
example, shown in Fig. 4, the ANN component has only a single hidden layer,
so HiddenLayers is simply HiddenLayer(1, 1, 2), denoting the 1st layer with 1

node and 2 inputs. We can derive the number and size of the hidden layers using

Semantics for Verifying Intelligent Robotic Control Software 21

Fig. 5. Part of RoboChart module with an ANN for segway control defined in the

block AnglePIDANN. The first parameter is the activation function, ReLU. The second

parameter is the layer structure: 〈1, 1〉. The third and fourth parameters are the trained

parameters: the weights and biases. The remaining three parameters are associated with

normalisation: the inRanges, the outRanges, and the annRange.

the layerstructure sequence, and we know the input size of each layer through

either that sequence or the number of elements in the input context—the input
size. We define OutputLayer as a layer with no parameters; in our example,
see Fig. 4, OutputLayer is the distributed parallel composition of just 1 Node

action, because our example has one node in its output layer (the last element of
layerstructure denotes the size of the output layer). The definition of this action

is similar to that of HiddenLayer in Rule 2.
The definition of HiddenLayer uses a replicated alphabetised parallelism

[[cs]]i : T • A(i) composing actions A(i) in parallel, with i ranging over T syn-
chronising on all events in the set cs. For HiddenLayer , the index i ranges from

1 to n, composing n processes Node(l , i , inpSize) which capture the semantics
of the ith node of the layer l . Synchronisation is on the layerRes.(l − 1) events
representing the inputs to the layer (see Fig. 3).

Node(l , n, inpSize) is defined by the replicated sequential composition (;) of
inpSize actions Edge(l , n, i), in parallel with a Collator action. Edge actions col-
lect inputs from the layerRes.(l − 1) channels providing those values to Collator
after applying the weights via the nodeOut channel. Collator sums its inputs to

define the node output, communicated via layerRes.l . This output includes the

bias and reflects the output of the activation function relu. This action uses a

one-based index for nodeOut events to match the sequential composition of Edge

actions; we use the sequence layerInput to define this index, where layerInput(l)

22 Z. Attala et al.

is the size of layer l − 1, or the input size for the first layer. The definitions of
HiddenLayer , Node, Edge, and Collator are identical for every ANN.

Our semantics is fully formalised by ten rules in [6]. The automatic generation

of the semantics is also implemented, as described next.

5 Mechanisation in Isabelle

In this section, we describe the mechanisation of our semantics (Sect. 5.1) and

its use for automated verification using Isabelle and Marabou (Sect. 5.2).

5.1 IsaCircus

To verify RoboChart models in Isabelle, we have created IsaCircus, a mecha-
nisation of Circus in Isabelle. This section introduces the IsaCircus syntax and

outlines its foundational types and operators. A key feature of our approach

is the abstraction of actions and processes, providing a modular and flexible

modelling framework while ensuring concise and manageable definitions.
IsaCircus has an abstract type for Circus actions, (’e,’s)action,

parametrised by two types: ’e for events and ’s for state. The event type ’e

identifies the set of all events in scope for the action. This type declaration is
pivotal, as actions are the fundamental building blocks of Circus processes. To

distinguish processes from actions, IsaCircus has a type ’e process, defined as a

special action whose state type is unit, since processes have no externally visible

state. Finally, IsaCircus has a type (’a, ’e)chan for a channel communicating

values of type ’a to define an event of type ’e. Listing 1 sketches the IsaCircus
encoding of the process for the AnglePIDANN controller defined by Rule 2.

In IsaCircus, channels are declared with the chantype keyword, which estab-
lishes the complete set of events for the model. In our example, we declare an

event type ANNChan (line 1 in Listing 1). It includes all channels used in the

semantics. Each channel is explicitly typed; for instance, adiff_in is of type

real, reflecting its role in transmitting real-valued data.
Isabelle definitions can be used directly for channel sets and global defi-

nition (called axiomatic definitions in Z and Circus). In Listing 1, we show the

definition of the activation function relu (line 7).
A process is encoded using a locale, which provides a separate namespace

to introduce the process’s definitions, actions, and main action. In Listing 1, we

show part of the locale for AnglePIDANN (lines 9–23).
Actions are specified using the actions keyword. In Listing 1, we show three

of the nine actions of AnglePIDANN, among which the main action MainAction is
identified as CircANN (line 22) using the cProcess operator.

IsaCircus defines the Circus action operators as Isabelle semantic constants.
There are constants for each operator in Table 1. For example, the constant
shown below defines the generalised parallelism operator cparallel.

cparallel :: "(’e ,’s) action ⇒ ’e set ⇒ (’e ,’s) action ⇒ (’e ,’s) action "

Semantics for Verifying Intelligent Robotic Control Software 23

Listing 1. AnglePIDANN example in IsaCircus

1 chantype ANNchan = terminate :: " unit "

2 layerRes :: "nat × nat × real "

3 nodeOut :: "nat × nat × nat × real "

4 adiff_in :: " real "

5 ...

6
7 definition relu :: "real ⇒ real " where " relu x = max 0 x"

8
9 locale <AnglePIDANN >

10 begin

11 actions is "(ANNchan , unit) action " where

12
13 " Collator (l, n, i :: nat , sum :: real) =

14 (i = 0)&layerRes.l.n ! relu (sum + biases (l)(n)) → Skip �

15 (i > 0)&nodeOut.l.n.(layerInput (l) - i + 1)?x →

Collator (l,n ,(i-1) ,(sum+x))" |

16 ...

17 "ANN = (HiddenLayers [[| {|layerRes.1.1|} |]] OutputLayer);; ANN" |

18
19 " CircANN = ((Interpreter [[| {|layerRes.0, layerRes.2|} |]] ANN) \ {|layerRes|})
20 △ (terminate → Skip)"

21
22 definition " MainAction = cProcess CircANN "

23 end

The function cparallel takes two actions and a set of events (’e set) on which

the actions synchronise, and returns an action as their parallel composition.
Syntactic constants are defined for each of the semantic constants. For exam-

ple, instead of using cparallel, we can use the infix brackets of the Circus nota-
tion when defining a parallelism. As illustrated in Listing 1, the notation of the

IsaCircus definition of AnglePIDANN is very similar to that indicated in Rule 2.
The complete syntax definition is available online

3.

5.2 Verification

Verification is facilitated through reactive contracts [10,11], which describe how

a Circus process evolves regarding state updates, event traces, and refused events.
A reactive contract is a triple consisting of a precondition (P1), a pericondition

(P2), and a postcondition (P3), as shown below:

[P1(tt , s) −| P2(tt , s, ref
′) | P3(tt , s, s

′)]

The precondition is a predicate over the trace variable (tt) and the initial state

variable (s), which characterises the non-divergent behaviours. The pericondition

ranges over tt , s and the refusal set (ref ′), characterising behaviours where the

process awaits interaction. Finally, the postcondition ranges over tt , s, and the

final state (s ′), characterising terminating behaviours.
Reasoning with the UTP and reactive contracts is based on refinement. Reac-

tive contracts can be used for both specifications of reactive behaviour and also

3 https://github.com/UoY-RoboStar/NFM2025/tree/main/IsaCircus syntax.

https://github.com/UoY-RoboStar/NFM2025/tree/main/IsaCircus_syntax
https://github.com/UoY-RoboStar/NFM2025/tree/main/IsaCircus_syntax
https://github.com/UoY-RoboStar/NFM2025/tree/main/IsaCircus_syntax
https://github.com/UoY-RoboStar/NFM2025/tree/main/IsaCircus_syntax
https://github.com/UoY-RoboStar/NFM2025/tree/main/IsaCircus_syntax
https://github.com/UoY-RoboStar/NFM2025/tree/main/IsaCircus_syntax
https://github.com/UoY-RoboStar/NFM2025/tree/main/IsaCircus_syntax
https://github.com/UoY-RoboStar/NFM2025/tree/main/IsaCircus_syntax
https://github.com/UoY-RoboStar/NFM2025/tree/main/IsaCircus_syntax

24 Z. Attala et al.

to provide a denotational semantics for Circus actions and processes. Then, refin-
ing one contract by another requires we weaken the precondition and strengthen

the peri- and postconditions [10]. However, refinement in and of itself is inad-
equate to reason about an ANN since outputs can have an error. We define a

notion of conformance based on refinement that can be used to compare an ANN

controller to other controllers, taking into account a precision parameter ǫ. We

identify verification conditions sufficient to establish conformance that can be

discharged using Isabelle or SMT-based tools, such as Marabou, in conjunction

with Isabelle.
As specifications for ANNs, we consider cyclic memoryless RoboChart con-

trollers, which perform all inputs before any outputs and then repeat, with no

memory between cycles. We denote these controllers with StandardController .
The semantics of such a controller as a reactive contract follows a pattern that
captures the relationship between the input and output communications using

a predicate p that ranges over the trace. Equally, our semantics for an ANN

defined by Rule 2 can be captured as a reactive contract of a particular pattern.
We describe the patterns and how we obtain contracts instantiating them in [1].

Both the specification and ANN patterns follow tail recursions. So, the com-
positionality of conformance allows us to focus on the verification that a single

iteration of the ANN conforms to a single interaction of the cyclic controller.
Definition 1 captures the pattern for a single iteration of an ANN.

Definition 1 (ANN Reactive Contract Pattern).

[true
⊢ #in < insize ∧ tt = in ∧ {[layerRes.0.(#in + 1)]} �⊆ ref ′

∨

#in = insize ∧

∃ l : 1 . . layerNo • ∃ n : 1 . . layerSize(l) •

tt = front(layeroutput(l , n, in)) ∧

last(layeroutput(l , n, in)) /∈ ref ′

| #in = insize ∧ tt = layeroutput(layerNo, layerSize(layerNo), in)]

An instance of this pattern above for the parallelism between HiddenLayers and

OutputLayer (see Rule 2) is a reactive contract L that has a true precondition,
indicating that the ANN cannot diverge. The pericondition of L is a predicate

specifying that, in an intermediate state, the trace of events observed so far
includes only layerRes.0.n events (denoted by in here), without repeated values
for n, and that layerRes.0.m events that have not been observed are not refused.
Alternatively, the trace can include layerRes.0.n events, for all values of n, fol-
lowed by layerRes.m.n events, for unique values of m and n, but covering all
but one layerRes.layerNo event. The postcondition states that the last output is
added to the trace, and the action terminates. We use an instance of this pattern

to define ANNController : the semantics of our ANN components.

Semantics for Verifying Intelligent Robotic Control Software 25

We specify the traces that include events other than inputs (layerRes.0

events) using a function layeroutput . With layeroutput(l , n, in), we get the trace

up to the point where the n-th node of the layer l has produced its output, with

input in. Here, in is a trace of input events, and l and n are natural numbers.
The definition of layeroutput(l , n, in) uses a function annout(l , n, inv), which

specifies the value communicated by the n-th node of the layer; here, inv is the

sequence of values of the inputs defined in the trace in. We can automatically

extract the definition of this function from our process-algebraic semantics.
Next, we describe our notion of conformance and our verification approach,

which we apply to the patterns for the semantics of controllers.
The relation Q conf (ǫ, tc) P defined below allows for a tolerance of ǫ on the

values communicated by the process Q via channels in the set tc when compar-
ing it to a process P . We accommodate this tolerance to capture the numerical
instability present in the predictions of a machine learning model: all other com-
munications of the system should remain precise.

Definition 2. P conf (ǫ, tc) Q ⇔ (Approx ǫ tc Q) ⊑ P

Ultimately, conformance requires refinement (⊑), but the specification Q is mod-
ified using the function Approx ǫ tc. For every possible communication that Q

can engage in through tc, we have that Approx ǫ tc Q can engage in any com-
munication where the value carried varies by up to ǫ.

Next, we present a theorem that establishes verification conditions that can

be discharged to prove conformance and avoid proof from first principles.

Theorem 1 (Verification condition for conformance)

(∀ x1, . ., xinsize : Value • ∀ y1, . ., youtsize : Value | p • ∀ i : 1 . . outsize •

| denormO(i , annout(layerNo, i , inpv)) − yi | ≤ ǫ)
⇒ ANNController conf (ǫ, {[out]}) StandardController

where ANNController and StandardController are instances of the patterns for
reactive contracts for ANN controllers and for cyclic memoryless controllers;
out denotes the output channels of these patterns; the predicate p is the part
of the pericondition and postcondition of the instance StandardController that
relates its inputs to its outputs; and the sequence of input values inpv is given

by 〈normI (1, x1), . ., normI (insize, xinsize)〉.

The verification condition identified by Theorem 1 requires that for all
sequences of inputs and all sequences of outputs, whose values xj and yi are

related by a predicate p arising from the StandardController specification, the

outputs of the ANN must be acceptable. For example, p for the RoboChart
Controller AnglePID is a function y1 = P(x1) ∗ D(x2). Precisely, acceptability

requires that for each i indexing an output yi , the output of the ANN does
not differ from yi by more than ǫ. The i -th output of the ANN is defined

by denormO(i , annout(layerNo, i , inpv)), in terms of annout . Here, inpv is the

sequence of input values obtained by the normalisation of each input xi , that is,
〈normI (1, x1), . ., normI (insize, xinsize)〉.

26 Z. Attala et al.

For improved automation of verification of RoboChart models, we provide a

further result that can justify the combined use of IsaCircus and Marabou. This
is possible when the domain of each input is already bounded, and the predicate

p from Theorem 1 defines a monotonic function F on sequences of input and

output communications. In this situation, we can use the verification condition

shown in Theorem 2.
The input to Marabou needs to define a split of the domain containing all

possible input values. A split is characterised by a constant noInt , representing

the number of closed intervals into which the range of every input value xi is
divided. The smaller the value of ǫ, the larger the value of noInt that is required.
For each of the noInt intervals inti in a split, we need to provide to Marabou its
lower bound inti .min and its upper bound inti .max . A valid split for an ANN

needs to satisfy the restriction that, for every value v of every input xj , there is
an interval inti such that inti .min ≤ v ≤ inti .max .

For Marabou, given the value of ǫ, we need to give a precision value δ. We

need to provide this to account for the fact that Marabou does not support an

open interval as a specification for its properties due to its SMT solver backend.
We use a closed interval in conformance, so encoding the negated condition would

require an open interval. Given that the ANN is already normalised to the range

of our RoboChart controller StandardController , we can prove conformance in

Marabou with the verification condition as shown below.

Theorem 2 (Verification conditions for Marabou)

¬ ∃ x1, . .xinsize : Value • ∃ y1, . .youtsize : Value •
〈int1.min, ..., int(noInt).min〉 F 〈y1, . .youtsize〉 ∧

∃ y ′
1, . .y

′
outsize : Value •

〈int1.max , ..., int(noInt).max 〉 F 〈y ′
1, . .y

′
outsize〉 ∧

∃ i : 1 . . outsize •

annout(layerNo, i , 〈x1, . .xinsize〉) ≤ y ′
i − ǫ − δ ∨

annout(layerNo, i , 〈x1, . .xinsize〉) ≥ yi + ǫ + δ

⇒ ANNController conf (ǫ, {[out]}) StandardController

Theorem 2 states that, given that all intervals are valid, there does not exist
an input valuation (xi) such that either of the following conditions holds. First,
annout is less than or equal to F evaluated at the maximum point of the interval
(y ′

i) under ǫ. Second, annout is greater than F evaluated at the minimum point of
the interval (yi) with ǫ applied. If no such input valuation exists, then annoutput
must be within F under all possible values of x .

One query in Marabou encodes this verification condition for every interval
inti . If Marabou returns UNSAT for every condition, we can use the value of ǫ
in Isabelle soundly for conformance via a certificate that can automatically be

obtained through Marabou [16]. Such certificates can be reconstructed using

CVC4 and CVC5 in Isabelle [21]; this would constitute progress towards inte-
grating Marabou with Isabelle via Sledgehammer [3].

Semantics for Verifying Intelligent Robotic Control Software 27

By applying Theorem 2 to our example with AnglePID and AnglePIDANN,
we obtain a condition of the form below.

¬ ∃ x1, x2 : Value •

∀ i : 1 . . 2 •

inti .min ≤ xi ≤ inti .max ∧

y1 ≥ (P(inti .min) + D(inti .min) + ǫ + δ) ∨

y1 ≤ (P(inti .max) + D(inti .max) − ǫ − δ)

When we instantiate the constants in the conditions above, we obtain an ǫ error
value of 0.085. We use the range {0..1} as Value, given our normalisation assump-
tion. We have also instantiated F as a function capturing the behaviour of the

RoboChart controller AnglePID in terms of the constants P and D . Finally, noInt
is set to 100, and we instantiate δ as 1e − 6. Thus, we have used Marabou and

Isabelle to verify the ANN component AnglePIDANN.

6 Final Considerations

This paper presents an approach that enables process-algebraic verification of
intelligent software. As far as we know, this is the first line of work enabling this
style of verification for software involving ANNs.

Our approach focuses on the fundamental concepts of ANN models: the

underlying logic of ANN models, irrespective of either the context of use, or the

size and shape of the specific ANN. Due to its abstraction level, this perspective

of modelling and verification accommodates any current and future approaches
for training, fine-tuning, or fixing ANN models. Our perspective enables reason-
ing about the logic and the system context of an ANN controller, and enables
us to soundly use component-level reasoning techniques to prove properties of
this surrounding context. Our approach also allows us to accommodate future

advances in component-level reasoning techniques for ANNs.
Our work suggests several possible future research directions. First, our

semantic style naturally allows for a clean definition of multiple types of acti-
vation functions. Further, extending our ANN components to support various
types of ANN will support work on image and sound recognition, for instance.
Integration with other ANN tools is a promising line of work to explore the inter-
play between theorem proving and ANN solvers. Finally, using process algebraic

reasoning, we can extract properties about the propagation of imprecision.

Acknowledgements. The work is partially funded by the UK EPSRC Grants
EP/R025479/1 and EP/V026801/2, by the Royal Academy of Engineering Grants No

CiET1719/45 and IF2122\183. This work is partially supported by the RoboSAPIENS

project funded by the European Commission’s Horizon Europe programme under grant
agreement number 101133807. Jim Woodcock acknowledges the support of Southwest
University and Aarhus University.

28 Z. Attala et al.

References

1. Attala, Z., Cavalcanti, A.L.C., Woodcock, J.C.P.: Modelling and verifying robotic

software that uses neural networks. In: Ábrahám, E., Dubslaff, C., Tarifa, S.L.T.
(eds.) Theoretical Aspects of Computing, pp. 15–35. Springer, Heidelberg (2023)

2. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend. Packt
Publishing (2016)

3. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED.
J. Formalized Reason. 9(1), 101–148 (2016)

4. Brucker, A.D., Stell, A.: Verifying feedforward neural networks for classification in

Isabelle/HOL. In: Chechik, M., Katoen, J.P., Leucker, M. (eds.) Formal Methods,
pp. 427–444. Springer, Cham (2023)

5. Budinsky, F., Brodsky, S.A., Merks, E.: Eclipse Modeling Framework. Pearson

Education, Boston (2003)
6. Cavalcanti, A., et al.: RoboSapiens WP1 D1.1 Report (Draft). https://robostar.

cs.york.ac.uk/publications/reports/Draft RoboSapiensD1 1.pdf’
7. CBMC - Bounded Model Checker for C and C++ programs (2024). http://www.

cprover.org/cprover-manual/

8. Daggitt, M.L., Kokke, W., Atkey, R., Slusarz, N., Arnaboldi, L., Komendantskaya,
E.: Vehicle: bridging the embedding gap in the verification of neuro-symbolic pro-
grams (2024)

9. Foster, S., Baxter, J., Cavalcanti, A., Woodcock, J., Zeyda, F.: Unifying semantic

foundations for automated verification tools in Isabelle/UTP. Sci. Comput. Pro-
gram. 197, 102510 (2020)

10. Foster, S., Cavalcanti, A., Canham, S., Woodcock, J., Zeyda, F.: Unifying theories
of reactive design contracts. Theor. Comput. Sci. 802, 105–140 (2020)

11. Foster, S., Ye, K., Cavalcanti, A., Woodcock, J.: Automated verification of reactive

and concurrent programs by calculation. J. Logical Algebraic Methods Program.
121, 100681 (2021)

12. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 - a

modern refinement checker for CSP. In: Tools and Algorithms for the Construction

and Analysis of Systems, pp. 187–201 (2014)
13. Henriksen, P., Lomuscio, A.: Efficient neural network verification via adaptive

refinement and adversarial search. In: European Conference on Artificial Intelli-
gence (2020)

14. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall International
(1985)

15. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall, Upper
Saddle river (1998)

16. Isac, O., Barrett, C.W., Zhang, M., Katz, G.: Neural network verification with proof
production. In: 2022 Formal Methods in Computer-Aided Design (FMCAD), pp.
38–48 (2022)

17. Ivanov, R., Jothimurugan, K., Hsu, S., Vaidya, S., Alur, R., Bastani, O.: Composi-
tional learning and verification of neural network controllers. ACM Trans. Embed-
ded Comput. Syst. (TECS) 20(5s), 1–26 (2021)

18. Katz, G., et al.: The marabou framework for verification and analysis of deep

neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

19. Kolovos, D.S., Paige, R.F., Polack, F.: The epsilon object language (EOL). In:
Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142.
Springer, Heidelberg (2006). https://doi.org/10.1007/11787044 11

https://robostar.cs.york.ac.uk/publications/reports/Draft_RoboSapiensD1_1.pdf'
https://robostar.cs.york.ac.uk/publications/reports/Draft_RoboSapiensD1_1.pdf'
https://robostar.cs.york.ac.uk/publications/reports/Draft_RoboSapiensD1_1.pdf'
https://robostar.cs.york.ac.uk/publications/reports/Draft_RoboSapiensD1_1.pdf'
https://robostar.cs.york.ac.uk/publications/reports/Draft_RoboSapiensD1_1.pdf'
https://robostar.cs.york.ac.uk/publications/reports/Draft_RoboSapiensD1_1.pdf'
https://robostar.cs.york.ac.uk/publications/reports/Draft_RoboSapiensD1_1.pdf'
https://robostar.cs.york.ac.uk/publications/reports/Draft_RoboSapiensD1_1.pdf'
https://robostar.cs.york.ac.uk/publications/reports/Draft_RoboSapiensD1_1.pdf'
https://robostar.cs.york.ac.uk/publications/reports/Draft_RoboSapiensD1_1.pdf'
https://robostar.cs.york.ac.uk/publications/reports/Draft_RoboSapiensD1_1.pdf'
https://robostar.cs.york.ac.uk/publications/reports/Draft_RoboSapiensD1_1.pdf'
http://www.cprover.org/cprover-manual/
http://www.cprover.org/cprover-manual/
http://www.cprover.org/cprover-manual/
http://www.cprover.org/cprover-manual/
http://www.cprover.org/cprover-manual/
http://www.cprover.org/cprover-manual/
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/11787044_11
https://doi.org/10.1007/11787044_11
https://doi.org/10.1007/11787044_11
https://doi.org/10.1007/11787044_11
https://doi.org/10.1007/11787044_11
https://doi.org/10.1007/11787044_11

Semantics for Verifying Intelligent Robotic Control Software 29

20. Kotha, S., Brix, C., Kolter, Z., Dvijotham, K., Zhang, H.: Provably bounding

neural network preimages. In: Proceedings of the 37th International Conference

on Neural Information Processing Systems, NIPS ’23. Curran Associates Inc., Red

Hook (2024)
21. Lachnitt, H., et al.: IsaRare: automatic verification of SMT rewrites in

isabelle/HOL. In: Tools and Algorithms for the Construction and Analysis of Sys-
tems: 30th International Conference, TACAS 2024, Held as Part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg

City, Luxembourg, April 6-11, 2024, Proceedings, Part I, pp. 311–330. Springer-
Verlag, Heidelberg (2024)

22. LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient BackProp. In: Mon-
tavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade.
LNCS, vol. 7700, pp. 9–48. Springer, Heidelberg (2012). https://doi.org/10.1007/

978-3-642-35289-8 3

23. Lopez, D.M., Choi, S.W., Tran, H.D., Johnson, T.T.: Nnv 2.0: the neural network

verification tool. In: Enea, C., Lal, A. (eds.) Computer Aided Verification, pp.
397–412. Springer, Cham (2023)

24. The MathWorks, Inc. Simulink. www.mathworks.com/products/simulink

25. Miyazawa, A., et al.: Diagrammatic physical robot models. Accepted for publica-
tion in Softw. Syst. Model (2024)

26. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, vol. 2283. Springer, Heidelberg (2002)

27. Oliveira, M.V.M.: Formal Derivation of State-Rich Reactive Programs Using Cir-
cus. PhD thesis, University of York (2006)

28. Raman, R., Gupta, N., Jeppu, Y.: Framework for formal verification of machine

learning based complex system-of-systems. Insight 26(1), 91–102 (2023)
29. Simulink Design Verifier (2024). https://www.mathworks.com/products/simulink-

design-verifier.html
30. Sun, X., Khedr, H., Shoukry, Y.: Formal verification of neural network controlled

autonomous systems. In: Proceedings of the 22nd ACM International Conference

on Hybrid Systems: Computation and Control, HSCC ’19, pp. 147–156. Association

for Computing Machinery, New York (2019)
31. University of York. RoboChart Reference Manual. www.cs.york.ac.uk/circus/

RoboCalc/robotool/

32. Viyović, V., Maksimović, M., Perisić, B.: Sirius: a rapid development of DSM

graphical editor. In: IEEE 18th International Conference on Intelligent Engineering

Systems INES 2014, pp. 233–238 (2014)
33. Woodcock, J., Cavalcanti, A., Foster, S., Mota, A., Ye, K.: Probabilistic semantics

for RoboChart. In: Ribeiro, P., Sampaio, A. (eds.) UTP 2019. LNCS, vol. 11885,
pp. 80–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31038-7 5

34. Woodcock, J.C.P., Davies, J.: Using Z - Specification, Refinement, and Proof.
Prentice-Hall (1996)

https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
www.mathworks.com/products/simulink
www.mathworks.com/products/simulink
www.mathworks.com/products/simulink
www.mathworks.com/products/simulink
www.mathworks.com/products/simulink
https://www.mathworks.com/products/simulink-design-verifier.html
https://www.mathworks.com/products/simulink-design-verifier.html
https://www.mathworks.com/products/simulink-design-verifier.html
https://www.mathworks.com/products/simulink-design-verifier.html
https://www.mathworks.com/products/simulink-design-verifier.html
https://www.mathworks.com/products/simulink-design-verifier.html
https://www.mathworks.com/products/simulink-design-verifier.html
https://www.mathworks.com/products/simulink-design-verifier.html
https://www.mathworks.com/products/simulink-design-verifier.html
www.cs.york.ac.uk/circus/RoboCalc/robotool/
www.cs.york.ac.uk/circus/RoboCalc/robotool/
www.cs.york.ac.uk/circus/RoboCalc/robotool/
www.cs.york.ac.uk/circus/RoboCalc/robotool/
www.cs.york.ac.uk/circus/RoboCalc/robotool/
www.cs.york.ac.uk/circus/RoboCalc/robotool/
www.cs.york.ac.uk/circus/RoboCalc/robotool/
www.cs.york.ac.uk/circus/RoboCalc/robotool/
https://doi.org/10.1007/978-3-030-31038-7_5
https://doi.org/10.1007/978-3-030-31038-7_5
https://doi.org/10.1007/978-3-030-31038-7_5
https://doi.org/10.1007/978-3-030-31038-7_5
https://doi.org/10.1007/978-3-030-31038-7_5
https://doi.org/10.1007/978-3-030-31038-7_5
https://doi.org/10.1007/978-3-030-31038-7_5
https://doi.org/10.1007/978-3-030-31038-7_5
https://doi.org/10.1007/978-3-030-31038-7_5
https://doi.org/10.1007/978-3-030-31038-7_5

30 Z. Attala et al.

35. Zhang, Z., Wu, Y., Liu, S., Liu, J., Zhang, M.: Provably tightest linear approxima-
tion for robustness verification of sigmoid-like neural networks. In: Proceedings of
the 37th IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE ’22. Association for Computing Machinery, New York (2023)

36. Zhi, D., Wang, P., Liu, S., Luke Ong, C.-H., Zhang, M.: Unifying qualitative

and quantitative safety verification of DNN-controlled systems. In: Gurfinkel, A.,
Ganesh, V. (eds.) Computer Aided Verification, pp. 401–426. Springer, Cham

(2024)

	Process-Algebraic Semantics for Verifying Intelligent Robotic Control Software
	1 Introduction
	2 Related Work
	3 Overview
	4 RoboChart with ANN Components
	4.1 Metamodel and Well-Formedness
	4.2 Formal Semantics

	5 Mechanisation in Isabelle
	5.1 IsaCircus
	5.2 Verification

	6 Final Considerations
	References

