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Abstract. Verification of robotic systems that use neural networks is 
a challenge. In this paper, we present a formal technique supported by 

tools to model and verify control software involving neural networks. Our 
technique enables reasoning about the reactive, communication-based, 
properties of a system through a process-algebraic lens. We support our 
framework with a link to state-of-the-art ANN verification tools, using 

them to prove contextual properties of a neural network. Our approach is 
flexible, platform-independent, and focuses on the logic of neural network 

models, instead of on a training method or specific use case. 

Keywords: verification · Circus · theorem proving · Isabelle · Marabou 

1 Introduction 

The question of how we can, and should, use machine learning in robotics is of 
significant interest to industry, to the public, and to governing bodies. Reliability 

of robotics and autonomous systems (RAS) is a key concern in any context 
where the system interacts with humans or hazardous materials. In general, the 

fact that a robot has a physical presence and has the potential to affect its 
environment directly typically raises safety concerns. 

Here, we present an approach to modelling and verifying control software 

for robotic systems that may include components realised by an artificial neural 
network (ANN). Our approach is based on diagrammatic, behavioural models, 
from which a process-algebraic formal semantics can be automatically generated. 
Verification uses a refinement-based conformance notion, and is automated using 

the theorem prover Isabelle [ 26] and the ANN verification tool Marabou [ 18]. We 

consider the fully-connected feed-forward ANN model, but the nature of process 
algebra means we can extend our semantics to provide a similar model for further 
network types. In addition, our notion of conformance is general. 

For modelling, we consider RoboChart [ 31], a diagrammatic modelling lan-
guage with semantics based on CSP [ 14]. It can capture reactive behaviour, par-
allelism, data flow, and event order and availability. RoboChart enables model-
based engineering, including notions of refinement and composition. 
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In [ 1], we have described an extension of RoboChart that allows the definition 

of behaviour using the hyperparameters of an ANN and state machines. Here, we 

present a metamodel for that extension, well-formedness conditions, and their 
implementation. We have extended RoboTool, a set of Eclipse plug-ins that 
support design and verification using RoboChart, to deal with ANN models. 

The work in [ 1] describes informally a semantics for our RoboChart exten-
sion. Here, we extend that semantics to cover normalisation, formalise it, and 

describe its implementation to generate Circus automatically [ 27] models for use 

in Isabelle. Circus is a combination of CSP and Z [ 34], and with its encoding in 

Isabelle, we can deal with the rich data model of an ANN and of RoboChart. 
Finally, here we generalise and formalise the notion of conformance described 

in [ 1]. We mechanise it in Isabelle, prove key properties characterising it as a 

simulation relation [ 15], and present two theorems that identify verification con-
ditions for (1) use in proofs based on Isabelle; and (2) joint use of Isabelle 

and Marabou. Our notion of conformance can be used to compare arbitrary 

RoboChart components. We pursue, in particular, an approach where a tradi-
tional component, specified using state machines, is compared to a component 
defined by an ANN. As such, this part of our work is focused around ANN 

models used for control, not recognition. 
To summarise, our contributions here are as follows. First, we developed 

a tool for modelling and analyzing software involving ANN components. Sec-
ond, we defined a denotational semantics for these components targeting Circus. 
Third, we have developed a tool for the automated analysis of the Circus seman-
tics. Finally, we have proved theorems that allow for the sound use of ANN-
specific solvers to prove the properties of the system. Although our focus here is 
on semantics and conformance for ANN components, the nature of our semantic 

model and our notation for conformance is key to enabling the modelling and 

analysis of software involving ANN components. 
We discuss related work in Sect. 2. We provide an overview of our approach 

in Sect. 3. We describe our extensions to RoboChart in Sect. 4. Section 5 presents 
our mechanisation of the semantics, and associated lemmas and theorems. We 

conclude and provide future directions for work in Sect. 6. 

2 Related Work 

Many component-level verification approaches and tools exist for ANNs, such 

as [ 13,20,35]. We can leverage them for software system-level reasoning. 
The use of hybrid automata is dominant [ 17,23,30,36] for verifying AI-

enabled systems. In this line of work, the physical properties of a system, includ-
ing the scenarios, the robotic platform, and the software, are captured in a sin-
gle hybrid automaton, with each ANN in a single state. In contrast, we use a 

diagrammatic domain-specific language (DSL), namely RoboChart, to capture 

software models from which we can calculate mathematical models automati-
cally. Moreover, as a platform-independent account of the software, a RoboChart 
model can generate code with a related notation available to capture physical
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Fig. 1. Our toolchain for modelling and verifying neural control software for robotics. 
Black edges are steps automated by tools, and green edges are currently completed 

manually. (Color figure online) 

behavior [ 25]. On the other hand, some hybrid automata work can deal with 

verifying quantitative properties, which is not our focus here. However, there is 
potential to prove quantitative properties on RoboChart models involving ANN 

components using the technique presented in [ 33]. 
The work in [ 28] considers ANN components in the context of Simulink 

diagrams [ 24]. Similar to what we do, the goal is to use ANN components 
to replace Simulink controllers. System-level properties are proved using the 

Simulink Design Verifier [ 29]. The use of Simulink enables automation and links 
to other (industry) tools, including, for example, a C code generator, and the use 

of the CMBC model checker [ 7] to verify its properties. That work, however, does 
not provide a formal semantics for ANNs or a general notion of conformance. 

VEHICLE [ 8] is a DSL with support for the specification of properties of 
ANN components using HOL, the base logic of Isabelle. It is based on lambda 

calculus supporting arithmetic, vectors, and logic. The tool can translate VEHI-
CLE specifications to Marabou input and a loss function for training, an activity 

we do not cover. System-level verification, however, is not considered in [ 8], but 
the authors indicate that this can be enabled via a separate prover. 

Isabelle also verifies ANNs in [ 4], where the authors formalise concepts com-
mon to ANNs. The models are platform-independent and can be used to verify 

properties using Isabelle’s theories for real arithmetic. There are two encodings 
of an ANN: the ‘textbook’ style, as graphs, and layer style, capturing Tensor-
flow layers. This work has close links to practical file formats for the specification 

of hyperparameters; it can support the automated interpretation of a network 

trained in TensorFlow in Isabelle and can be used to establish the correctness of 
transformations from one file format to another. That work is well aligned with 

the proof of properties of classification networks. Unlike us, however, they are 

concerned with ANNs in isolation.
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3 Overview  

Figure 1 gives an overview of our work and tools. Our modelling approach is 
mechanised as part of RoboTool [ 31], a set of Eclipse plug-ins that implements 
RoboChart and related notations. In the mechanisation of our extension of 
RoboChart, we leverage the Eclipse Modelling Framework (EMF) [ 5] to imple-
ment its metamodel, and Sirius [ 32] to enable graphical modelling. We enable 

textual editing of models via an Xtext grammar [ 2]. The well-formedness con-
ditions are mechanised through a validation checker written in Xtend [ 2]. A 

pre-release version of this tool is available online 
1. 

We have mechanised our semantics of RoboChart ANNs using a model-to-
text translation from RoboChart to CSP, enabling FDR [ 12] for model checking. 
This requires a severe abstraction for scalability, and because FDR cannot deal 
with real numbers, it is not suitable for our work here. We outlined these seman-
tics in [ 1], but we generated our semantics manually in that work. 

For verification with Isabelle, we translate RoboChart to Circus using a 

model-to-model transformation implemented in Epsilon [ 19]. We then generate 

a textual artefact that defines the semantics in a format that is accepted by our 
encoding of Circus in Isabelle, called IsaCircus 2. 

We require a reachability condition expressed as a predicate on a vector space 

to use ANN-specific tools such as Marabou. To obtain this condition formally, 
we use Hoare and He’s Unifying Theories of Programming [ 15] (UTP) and its 
mechanisation in Isabelle, Isabelle/UTP [ 9]. Using a UTP theory for Circus, 
we can give a predicate semantics for RoboChart, including ANN components, 
and establish verification conditions for conformance in terms of reachability 

conditions. Here, we show how to use Marabou [ 18] to prove such conditions. 
All engineering activities associated with RoboTool, from validation to 

semantics generation, are automated. The automated translation from IsaCircus 
to Isabelle/UTP is in progress, using the semantics in [ 27]. 

The following section presents how we define ANN components in 

RoboChart. 

4 RoboChart with ANN Components 

This section presents our RoboChart extension: metamodel, well-formedness 
conditions (Sect. 4.1), and semantics (Sect. 4.2). A full account is in [ 6]. 

4.1 Metamodel and Well-Formedness 

Our extension of RoboChart adds a few classes to its metamodel, shown in Fig. 2. 
They introduce the concept of an ANN as an abstract class. Instances of ANN 
can be a RoboChart controller—our focus here—or an operation. Figure 2 shows

1 https://github.com/UoY-RoboStar/robotool-ann/releases/tag/NFM-19122024. 
2 https://github.com/UoY-RoboStar/NFM2025/tree/main/RoboChart2IsaCircus. 

https://github.com/UoY-RoboStar/robotool-ann/releases/tag/NFM-19122024
https://github.com/UoY-RoboStar/robotool-ann/releases/tag/NFM-19122024
https://github.com/UoY-RoboStar/robotool-ann/releases/tag/NFM-19122024
https://github.com/UoY-RoboStar/robotool-ann/releases/tag/NFM-19122024
https://github.com/UoY-RoboStar/robotool-ann/releases/tag/NFM-19122024
https://github.com/UoY-RoboStar/robotool-ann/releases/tag/NFM-19122024
https://github.com/UoY-RoboStar/robotool-ann/releases/tag/NFM-19122024
https://github.com/UoY-RoboStar/robotool-ann/releases/tag/NFM-19122024
https://github.com/UoY-RoboStar/robotool-ann/releases/tag/NFM-19122024
https://github.com/UoY-RoboStar/robotool-ann/releases/tag/NFM-19122024
https://github.com/UoY-RoboStar/robotool-ann/releases/tag/NFM-19122024
https://github.com/UoY-RoboStar/NFM2025/tree/main/RoboChart2IsaCircus
https://github.com/UoY-RoboStar/NFM2025/tree/main/RoboChart2IsaCircus
https://github.com/UoY-RoboStar/NFM2025/tree/main/RoboChart2IsaCircus
https://github.com/UoY-RoboStar/NFM2025/tree/main/RoboChart2IsaCircus
https://github.com/UoY-RoboStar/NFM2025/tree/main/RoboChart2IsaCircus
https://github.com/UoY-RoboStar/NFM2025/tree/main/RoboChart2IsaCircus
https://github.com/UoY-RoboStar/NFM2025/tree/main/RoboChart2IsaCircus
https://github.com/UoY-RoboStar/NFM2025/tree/main/RoboChart2IsaCircus
https://github.com/UoY-RoboStar/NFM2025/tree/main/RoboChart2IsaCircus
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Fig. 2. Metamodel for ANN components in RoboChart: classes in grey are abstract, 
attributes in grey are inherited, and attributes in bold are not optional. (Color figure 

online) 

ANNController, which inherits from another class, GeneralController, omitted in 

Fig. 2. A controller in RoboChart is typically used to represent functionality 

allocated to a computational unit or a self-contained architectural component. 
Our extension allows a controller to be defined by an ANN. 

An ANN includes ANNParameters to define the hyperparameters and the 

trained parameters of an ANN component, as shown in Fig. 2. The activation 

function is given using an enumerated type. Here, we give semantics only to an 

ANN that uses ReLU, which is suitable for using Marabou in reasoning. The use 

of our semantics in conjunction with other functions is straightforward. More-
over, given the nature of process algebra, explicitly devised to model networks (of 
processes), our overall approach is suitable for any ANN structure. 

We capture the input layer, including its size, through an inputContext and 

the output layer by an outputContext. Such a context can be used to define, 
possibly via interfaces, input and output events to connect the ANN to other 
RoboChart components. Context is an existing RoboChart concept used to define 

the interface of every component. Each Event in an inputContext or outputContext 
must be of a new class, OrderedEvent, which adds an integer to an Event definition 

to specify an order for the inputs and outputs of an ANN component. 
We capture the trained parameters through references weights, a three-dimen-

sional tensor (represented as a triple-nested sequence), and biases, a matrix (a 

double-nested sequence). The class SeqExp captures sequence expressions. 
The range to which an ANN is normalised is captured through a pair 

annRange. (Typically, this range is between −0.5 and 0.5, or 0 and 1.) We capture 

the range that each input value can take through inRanges, and the range for 
outputs with outRanges: both are sequences of pairs. Normalisation is a common 

consideration when defining an ANN; it involves scaling all input ranges in the 

training data to a new range with a mean close to 0 [ 22].
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The reference filename supports using ANN parameter files (using formats 
such as ONNX, for instance) instead of explicitly defining parameter values. 

Our well-formedness conditions for ANN assert that the parameters are 

defined either in the model itself or in a linked file. They also ensure that the 

trained parameters’ size and shape correspond to the hyperparameters and that 
the size of the normalisation sequences matches the number of inputs and outputs 
to the component, and, for each element in these sequences representing a range, 
the maximum is strictly greater than the minimum. Finally, at the RoboChart 
model level, we ensure that connections to and from the ANN component are in 

accordance with its definition of input and output events. 
Next, we present the semantics of these well-formed ANN components. 

4.2 Formal Semantics 

This section presents our denotational semantics. We introduce Circusand then 

provide an overview of the semantics and present key definitions. 

Circus. Circus [ 27] is a process-algebraic language for specification of concur-
rent systems; it defines data models and control behaviour of independent com-
ponents: processes. State declarations and actions define their behaviour; every 

process has one main action that defines its behaviour. Actions are similar to 

CSP processes [ 14] but define stateful behaviour. The definition of a basic Cir-

cus process has the form: process Proc =̂ begin . . .  •A end. Here, the process 
is named Proc and has main action A. The body of the definition, between 

begin and end, contains declarations of state variables and actions that are 

local to Proc. We describe selected Circus action operators used in our semantics 
in Table 1; further details are provided as needed. A Circus process can also be 

defined in terms of other processes, using process operators similar to CSP’s. We 

do not use a composition of processes here, but it is via these operators that we 

can combine the semantics of an ANN controller, which is a Circus process, with 

those for other components of a RoboChart model. 
The semantics of Circus [ 27] is defined using Unifying Theories of Pro-

gramming [ 15] (UTP). It defines processes and actions as reactive con-
tracts [ 10]: alphabetised predicates that capture their reactive behaviour. The 

UTP-based reactive contracts semantics is ideal for supporting theorem proving. 

Overview. As mentioned earlier, the semantics of an ANN controller is a Circus 

process. Figure 3 depicts the structure of the main action of such a process. We 

capture every node of the ANN as a Circus action and then define each layer 
as the parallel composition of these actions and the whole ANN as the parallel 
composition of the layer actions. We treat the input nodes as input for the first 
layer. The parallel composition of node actions, represented by the parallel lines 
between them in Fig. 3, and the parallel composition of layer actions define the 

expected data flow.
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Fig. 3. A diagram showing the structure of our semantics of ANN controllers. Circles 
represent actions representing nodes, and labelled edges represent communications. The 

parallel lines denote parallel composition between actions. We have parallel composition 

at the level of nodes and the level of layers. The ellipses indicate that we allow for an 

arbitrary hidden layer structure and support any input and output layer size. On the 

top left-hand corner, we also show the internal structure of a node action. 

Table 1. Selected Circus action operators. Here, we use A and B as metavariables to 

stand for actions, cs for a set of channels, e for an event, i for an index, and T for a 

finite type. For the replicated (iterated) operators, A(i) is an action identified  i . 

Symbol Name Symbol Name 

Skip Skip e −→ A Prefix 

A [[| cs |]] B Parallel Composition [[ cs]]i : T•A(i) Replicated Parallel 

A; Q Sequential Composition ; i : T •A(i) Replicated SequentialComposition 

c?x −→ A Input c!e −→ A Output 

(c)&A Guarded Action A\cs Hiding 

A[e := e1] Renaming A△B Interrupt 

A ||| B Interleaving 

The Exchange of information between nodes, represented by the lines con-
necting node actions in Fig. 3, is captured by CSP events on a channel layerRes. 
The event layerRes.l .n is for communication from the nth node of the l -
th layer. A layerRes.0.n event represents the n-th input of the ANN, and 

layerRes.layerNo.n, the  n-th output; here, layerNo is the number of layers. 
Each node action is defined by the parallel composition of actions that 

receive communications from the previous layer, passing this information, after 
applying the node’s weight, to another action that calculates the node’s overall 
output. The intra-node action communications are via a channel nodeOut . A  

nodeOut .l .n.i event is for the i -th input of the node n in layer l . 
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Rule 1. Semantics of ANN Components [[c : ANNController]]ANN : Program = 

ANNChannelDecl(c) 

ANNConstants(c) 

ANNProc(c) 

Semantic Rules. We formalise our semantics via a set of rules that together 
define a function [[C]]ANN from a RoboChart ANN controller C to a Circus pro-
gram including some channel and constant declarations, and a process. This 
semantics fits into the definition of a process formalising a RoboChart model that 
includes the ANN component as specified in [ 1]. Here, we provide an overview 

of these rules; the complete set can be found in [ 6, Chapter 3]. 
A rule definition provides a number and a brief description, followed by the 

declaration of the function defined by the rule and an expression in a meta-
language to specify the function. In that expression, elements of the metalan-
guage are underlined. Our top-level rule (Rule 1), of the top-level Circus syn-
tactic category Program, is defined by three functions: ANNChannelDecl , which  

specifies channel declarations (as described above); ANNConstants , which spec-
ifies constants; and ANNProc, which gives the behaviour of the process. We 

define ANNProc in Rule 2; the complete definitions of ANNChannelDecl and 

ANNConstants are omitted here but can be found in [ 6]. 
The rule ANNConstants first records constants corresponding to attributes of 

C: weights , biases, annRange, inRanges , outRanges , and  layerstructure. Further, 
the rule defines constants for the function relu (the activation function), the input 
to each layer layerInput (derived from the controller C), and the normalisation 

functions norm, normIn, and  denormOut . Our semantics defines a normalised 

ANN, so we normalise every input using the function normIn, then denormalise 

every output using denormOut . These functions are defined as norm, which  

scales a value from one range to another. 
The constants layerstructure and layerInput give the shape of our Circus 

semantics; for our example, these take the values as shown below. We obtain 

these constants from the ANN component in RoboChart, AnglePIDANN: we  

present a graphical representation of this component in Fig. 5. We use these 

constants to illustrate our semantic rules throughout this section. 

layerstructure = 〈1, 1〉
layerInput = 〈2, 1, 1〉

The process, an element of the Circus syntactic category ProcDecl, is defined 

by the function ANNProc(C) defined in the Rule 2 presented here. That process 
is named according to the name attribute of C. Its main action is CircANN(C), 
shown after the •. This action uses the local actions ANN and Interpreter , which  
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Rule 2. Function ANNProc ANNProc(C) : ProcDecl = 

process C.name =̂ begin 

Collator=̂l , n, i : N; sum : Value• 

(i = 0)&layerRes.l .n !(relu(sum + (biases(l)(n)))) −→ Skip

�

(i > 0)& nodeOut .l .n.(layerInput(l) − i + 1)  ?x −→ 

Collator (l , n, (i − 1), (sum + x )) 
Edge=̂l , n, i : N• 

layerRes.(l − 1).i ?x −→ nodeOut .l .n.i !(x ∗ (weights(l)(n)(i))) −→ Skip 

Node=̂l , n, inpSize : N• 

((; i : 1  . .  inpSize•Edge(l , n, i)) 
[[| {[ nodeOut .l .n]} |]] 

Collator (l , n, inpSize, 0))\{[ nodeOut .l .n]} 

HiddenLayer=̂l , n, inpSize : N• 

([[{[ layerRes.(l − 1)]}]]i : 1  . .  s•Node(l , i , inpSize)) 
HiddenLayers=̂HiddenLayers(C) 

OutputLayer=̂OutputLayers(C) 

ANN =̂ (HiddenLayers[[| {[ layerRes.(layerNo(C) − 1)]} |]]OutputLayer ); ANN 

Interpreter=̂Interpreter(C) 

•CircANN(C) 

end 

capture the data flow of the ANN, to define its behaviour within the RoboChart 
context: using the input and output events of the RoboChart model, dealing 

with normalisation, and handling termination. 
For example, we consider the RoboChart module SegwayANN partially shown 

in Fig. 5. It has two controller blocks: SegwayController defined by a state 

machine, and AnglePIDANN defined by an ANN. We give the complete semantics 
of AnglePIDANN in Fig. 4, which was generated using Rule 2. In the semantics of 
AnglePIDANN, the action ANN captures the behaviour of the ANN in terms of 
its hyperparameters and its trained parameters. The action Interpreter captures 
normalising all input communications to the ANN, then denormalising all output 
communications from the ANN. Using these actions, we define the main action of 
the process for AnglePIDANN in Fig. 4 using parallel composition (A [[| cs |]] B), 

hiding (\), and interrupt (△). 
The parallel composition of Interpreter and ANN captures the behaviour 

of our ANN in terms of the input and output events of the controller. The 

definition of the simple Interpreter action is determined by the semantic function 

Interpreter(C), which is omitted here. Interpreter takes inputs for the controller 
in any order and outputs their normalised values, in any order, via layerRes.0 

events to ANN . It also takes outputs from ANN via layerRes.layerNo (where 

layerNo is the index of the last layer) events and outputs their denormalised 
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Fig. 4. Circus semantics for the ANN controller AnglePIDANN , generated via an appli-
cation of Rule 2. The ellipsis (. . .) denotes that the definition of the Collator , Edge, 
Node, and  HiddenLayer actions are constant in Rule 2, so are omitted here. 

values. Figure 4 presents the Interpreter action for our example; here, we have 

two inputs (anewError in and adiff in), and one output (angleOutputE out). 
Interpreter first behaves as the interleaved composition of two sub-actions, each 

of which accepts an input event and then communicates the normalised (with 

normIn) value of this event to a layerRes.0 event. Next,  Interpreter waits on the 

single output event of the ANN action (layerRes.2.1); when received, it outputs 
the denormalised (with denormOut) value on the angleOutputE out channel. 
Finally, Interpreter repeats and waits for fresh input events. 

In Circus, A [[| cs |]] B defines the parallelism of actions A and B , which  

can perform any events outside of cs set independently but must engage on 

any event in cs. Here, Interpreter and ANN synchronise on the set containing 

all layerRes.0 and  layerRes.layerNo. We hide all communications on layerRes, 
so Proc defines interactions over the inputs and outputs of the controller, as 
expected: anewError in, adiff in, angleOutput out . 

Finally, the main action of an ANN controller process can be inter-

rupted (operator △) by an event  terminate, raised if all the controllers of the 

RoboChart terminate, and so the whole software, including the ANN, also ter-
minates (Skip). 

ANN is defined by the parallel composition of actions HiddenLayers and 

OutputLayer , synchronising on layerRes.(layerNo(C) − 1) events, and sequen-
tially composed with ANN in a tail recursion. HiddenLayers and OutputLayer 
are defined by semantic functions (omitted here) that compose in parallel actions 
for the hidden layers and the output layer’s nodes. HiddenLayer has parameters 
l , n, and  inpSize and captures the semantics of the lth layer with n nodes and 

inpSize inputs coming from the previous layer or to the ANN as a whole. In our 
example, shown in Fig. 4, the ANN component has only a single hidden layer, 
so HiddenLayers is simply HiddenLayer(1, 1, 2), denoting the 1st layer with 1 

node and 2 inputs. We can derive the number and size of the hidden layers using 
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Fig. 5. Part of RoboChart module with an ANN for segway control defined in the 

block AnglePIDANN. The first parameter is the activation function, ReLU. The second 

parameter is the layer structure: 〈1, 1〉. The third and fourth parameters are the trained 

parameters: the weights and biases. The remaining three parameters are associated with 

normalisation: the inRanges, the  outRanges, and  the  annRange. 

the layerstructure sequence, and we know the input size of each layer through 

either that sequence or the number of elements in the input context—the input 
size. We define OutputLayer as a layer with no parameters; in our example, 
see Fig. 4, OutputLayer is the distributed parallel composition of just 1 Node 

action, because our example has one node in its output layer (the last element of 
layerstructure denotes the size of the output layer). The definition of this action 

is similar to that of HiddenLayer in Rule 2. 
The definition of HiddenLayer uses a replicated alphabetised parallelism 

[[cs]]i : T • A(i) composing actions A(i) in parallel, with i ranging over T syn-
chronising on all events in the set cs. For  HiddenLayer , the index i ranges from 

1 to  n, composing n processes Node(l , i , inpSize) which capture the semantics 
of the ith node of the layer l . Synchronisation is on the layerRes.(l − 1) events 
representing the inputs to the layer (see Fig. 3). 

Node(l , n, inpSize) is defined by the replicated sequential composition (; ) of 
inpSize actions Edge(l , n, i), in parallel with a Collator action. Edge actions col-
lect inputs from the layerRes.(l − 1) channels providing those values to Collator 
after applying the weights via the nodeOut channel. Collator sums its inputs to 

define the node output, communicated via layerRes.l . This output includes the 

bias and reflects the output of the activation function relu. This action uses a 

one-based index for nodeOut events to match the sequential composition of Edge 

actions; we use the sequence layerInput to define this index, where layerInput(l) 
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is the size of layer l − 1, or the input size for the first layer. The definitions of 
HiddenLayer , Node, Edge, and  Collator are identical for every ANN. 

Our semantics is fully formalised by ten rules in [ 6]. The automatic generation 

of the semantics is also implemented, as described next. 

5 Mechanisation in Isabelle 

In this section, we describe the mechanisation of our semantics (Sect. 5.1) and  

its use for automated verification using Isabelle and Marabou (Sect. 5.2). 

5.1 IsaCircus 

To verify RoboChart models in Isabelle, we have created IsaCircus, a mecha-
nisation of Circus in Isabelle. This section introduces the IsaCircus syntax and 

outlines its foundational types and operators. A key feature of our approach 

is the abstraction of actions and processes, providing a modular and flexible 

modelling framework while ensuring concise and manageable definitions. 
IsaCircus has an abstract type for Circus actions, (’e,’s)action, 

parametrised by two types: ’e for events and ’s for state. The event type ’e 

identifies the set of all events in scope for the action. This type declaration is 
pivotal, as actions are the fundamental building blocks of Circus processes. To 

distinguish processes from actions, IsaCircus has a type ’e process, defined as a 

special action whose state type is unit, since processes have no externally visible 

state. Finally, IsaCircus has a type (’a, ’e)chan for a channel communicating 

values of type ’a to define an event of type ’e. Listing 1 sketches the IsaCircus 
encoding of the process for the AnglePIDANN controller defined by Rule 2. 

In IsaCircus, channels are declared with the chantype keyword, which estab-
lishes the complete set of events for the model. In our example, we declare an 

event type ANNChan (line 1 in Listing 1). It includes all channels used in the 

semantics. Each channel is explicitly typed; for instance, adiff_in is of type 

real, reflecting its role in transmitting real-valued data. 
Isabelle definitions can be used directly for channel sets and global defi-

nition (called axiomatic definitions in Z and Circus). In Listing 1, we show the  

definition of the activation function relu (line 7). 
A process is encoded using a locale, which provides a separate namespace 

to introduce the process’s definitions, actions, and main action. In Listing 1, we  

show part of the locale for AnglePIDANN (lines 9–23). 
Actions are specified using the actions keyword. In Listing 1, we show three 

of the nine actions of AnglePIDANN, among which the main action MainAction is 
identified as CircANN (line 22) using the cProcess operator. 

IsaCircus defines the Circus action operators as Isabelle semantic constants. 
There are constants for each operator in Table 1. For example, the constant 
shown below defines the generalised parallelism operator cparallel. 

cparallel :: "(’e ,’s) action ⇒ ’e set ⇒ (’e ,’s) action ⇒ (’e ,’s) action "  
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Listing 1. AnglePIDANN example in IsaCircus 

1 chantype ANNchan =  terminate :: "  unit "  

2 layerRes :: "nat × nat × real "  

3 nodeOut :: "nat × nat × nat × real "  

4 adiff_in :: "  real "  

5 ... 

6 
7 definition relu :: "real ⇒ real "  where " relu x  =  max 0  x" 

8 
9 locale <AnglePIDANN >  

10 begin 

11 actions is "(ANNchan , unit )  action "  where 

12 
13 " Collator (l, n, i  ::  nat ,  sum :: real )  =  

14 (i =  0)&layerRes.l.n ! relu (sum +  biases (l)(n)) → Skip �

15 (i >  0)&nodeOut.l.n.( layerInput (l) - i +  1)?x → 

Collator (l,n ,(i-1) ,(sum+x))" | 

16 ... 

17 "ANN =  (  HiddenLayers [[ | {|layerRes.1.1|} | ]] OutputLayer );; ANN" |  

18 
19 " CircANN =  ((  Interpreter [[ | {|layerRes.0, layerRes.2|} | ]] ANN) \ {|layerRes|}) 
20 △ ( terminate → Skip )" 

21 
22 definition " MainAction =  cProcess CircANN "  

23 end 

The function cparallel takes two actions and a set of events (’e set) on which  

the actions synchronise, and returns an action as their parallel composition. 
Syntactic constants are defined for each of the semantic constants. For exam-

ple, instead of using cparallel, we can use the infix brackets of the Circus nota-
tion when defining a parallelism. As illustrated in Listing 1, the notation of the 

IsaCircus definition of AnglePIDANN is very similar to that indicated in Rule 2. 
The complete syntax definition is available online 

3. 

5.2 Verification 

Verification is facilitated through reactive contracts [ 10,11], which describe how 

a Circus process evolves regarding state updates, event traces, and refused events. 
A reactive contract is a triple consisting of a precondition (P1), a pericondition 

(P2), and a postcondition (P3), as shown below: 

[ P1(tt , s) −| P2(tt , s, ref
′) | P3(tt , s, s

′) ]  

The precondition is a predicate over the trace variable (tt) and the initial state 

variable (s), which characterises the non-divergent behaviours. The pericondition 

ranges over tt , s and the refusal set (ref ′), characterising behaviours where the 

process awaits interaction. Finally, the postcondition ranges over tt , s, and the 

final state (s ′), characterising terminating behaviours. 
Reasoning with the UTP and reactive contracts is based on refinement. Reac-

tive contracts can be used for both specifications of reactive behaviour and also 

3 https://github.com/UoY-RoboStar/NFM2025/tree/main/IsaCircus syntax. 

https://github.com/UoY-RoboStar/NFM2025/tree/main/IsaCircus_syntax
https://github.com/UoY-RoboStar/NFM2025/tree/main/IsaCircus_syntax
https://github.com/UoY-RoboStar/NFM2025/tree/main/IsaCircus_syntax
https://github.com/UoY-RoboStar/NFM2025/tree/main/IsaCircus_syntax
https://github.com/UoY-RoboStar/NFM2025/tree/main/IsaCircus_syntax
https://github.com/UoY-RoboStar/NFM2025/tree/main/IsaCircus_syntax
https://github.com/UoY-RoboStar/NFM2025/tree/main/IsaCircus_syntax
https://github.com/UoY-RoboStar/NFM2025/tree/main/IsaCircus_syntax
https://github.com/UoY-RoboStar/NFM2025/tree/main/IsaCircus_syntax
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to provide a denotational semantics for Circus actions and processes. Then, refin-
ing one contract by another requires we weaken the precondition and strengthen 

the peri- and postconditions [ 10]. However, refinement in and of itself is inad-
equate to reason about an ANN since outputs can have an error. We define a 

notion of conformance based on refinement that can be used to compare an ANN 

controller to other controllers, taking into account a precision parameter ǫ. We  

identify verification conditions sufficient to establish conformance that can be 

discharged using Isabelle or SMT-based tools, such as Marabou, in conjunction 

with Isabelle. 
As specifications for ANNs, we consider cyclic memoryless RoboChart con-

trollers, which perform all inputs before any outputs and then repeat, with no 

memory between cycles. We denote these controllers with StandardController . 
The semantics of such a controller as a reactive contract follows a pattern that 
captures the relationship between the input and output communications using 

a predicate p that ranges over the trace. Equally, our semantics for an ANN 

defined by Rule 2 can be captured as a reactive contract of a particular pattern. 
We describe the patterns and how we obtain contracts instantiating them in [ 1]. 

Both the specification and ANN patterns follow tail recursions. So, the com-
positionality of conformance allows us to focus on the verification that a single 

iteration of the ANN conforms to a single interaction of the cyclic controller. 
Definition 1 captures the pattern for a single iteration of an ANN. 

Definition 1 (ANN Reactive Contract Pattern). 

[ true
⊢ #in < insize ∧ tt = in ∧ {[ layerRes.0.(#in + 1)]} �⊆ ref ′

∨ 

#in = insize ∧ 

∃ l : 1  . .  layerNo • ∃  n : 1  . .  layerSize(l) • 

tt = front(layeroutput(l , n, in)) ∧ 

last(layeroutput(l , n, in)) /∈ ref ′

| #in = insize ∧ tt = layeroutput(layerNo, layerSize(layerNo), in) ]  

An instance of this pattern above for the parallelism between HiddenLayers and 

OutputLayer (see Rule 2) is a reactive contract L that has a true precondition, 
indicating that the ANN cannot diverge. The pericondition of L is a predicate 

specifying that, in an intermediate state, the trace of events observed so far 
includes only layerRes.0.n events (denoted by in here), without repeated values 
for n, and that layerRes.0.m events that have not been observed are not refused. 
Alternatively, the trace can include layerRes.0.n events, for all values of n, fol-
lowed by layerRes.m.n events, for unique values of m and n, but covering all 
but one layerRes.layerNo event. The postcondition states that the last output is 
added to the trace, and the action terminates. We use an instance of this pattern 

to define ANNController : the semantics of our ANN components. 
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We specify the traces that include events other than inputs (layerRes.0 

events) using a function layeroutput . With layeroutput(l , n, in), we get the trace 

up to the point where the n-th node of the layer l has produced its output, with 

input in. Here, in is a trace of input events, and l and n are natural numbers. 
The definition of layeroutput(l , n, in) uses a function annout(l , n, inv), which 

specifies the value communicated by the n-th node of the layer; here, inv is the 

sequence of values of the inputs defined in the trace in. We can automatically 

extract the definition of this function from our process-algebraic semantics. 
Next, we describe our notion of conformance and our verification approach, 

which we apply to the patterns for the semantics of controllers. 
The relation Q conf  (ǫ, tc) P defined below allows for a tolerance of ǫ on the 

values communicated by the process Q via channels in the set tc when compar-
ing it to a process P . We accommodate this tolerance to capture the numerical 
instability present in the predictions of a machine learning model: all other com-
munications of the system should remain precise. 

Definition 2. P conf  (ǫ, tc) Q ⇔ (Approx ǫ tc Q) ⊑ P 

Ultimately, conformance requires refinement (⊑), but the specification Q is mod-
ified using the function Approx ǫ tc. For every possible communication that Q 

can engage in through tc, we have that Approx ǫ tc Q can engage in any com-
munication where the value carried varies by up to ǫ. 

Next, we present a theorem that establishes verification conditions that can 

be discharged to prove conformance and avoid proof from first principles. 

Theorem 1 (Verification condition for conformance) 

(∀ x1, . .,  xinsize : Value • ∀  y1, . .,  youtsize : Value | p • ∀ i : 1  . .  outsize • 

| denormO(i , annout(layerNo, i , inpv)) − yi | ≤ ǫ) 
⇒ ANNController conf (ǫ, {[ out]}) StandardController 

where ANNController and StandardController are instances of the patterns for 
reactive contracts for ANN controllers and for cyclic memoryless controllers; 
out denotes the output channels of these patterns; the predicate p is the part 
of the pericondition and postcondition of the instance StandardController that 
relates its inputs to its outputs; and the sequence of input values inpv is given 

by 〈normI (1, x1), . .,  normI (insize, xinsize)〉. 

The verification condition identified by Theorem 1 requires that for all 
sequences of inputs and all sequences of outputs, whose values xj and yi are 

related by a predicate p arising from the StandardController specification, the 

outputs of the ANN must be acceptable. For example, p for the RoboChart 
Controller AnglePID is a function y1 = P(x1) ∗ D(x2). Precisely, acceptability 

requires that for each i indexing an output yi , the output of the ANN does 
not differ from yi by more than ǫ. The  i -th output of the ANN is defined 

by denormO(i , annout(layerNo, i , inpv)), in terms of annout . Here, inpv is the 

sequence of input values obtained by the normalisation of each input xi , that is,
〈normI (1, x1), . .,  normI (insize, xinsize)〉. 
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For improved automation of verification of RoboChart models, we provide a 

further result that can justify the combined use of IsaCircus and Marabou. This 
is possible when the domain of each input is already bounded, and the predicate 

p from Theorem 1 defines a monotonic function F on sequences of input and 

output communications. In this situation, we can use the verification condition 

shown in Theorem 2. 
The input to Marabou needs to define a split of the domain containing all 

possible input values. A split is characterised by a constant noInt , representing 

the number of closed intervals into which the range of every input value xi is 
divided. The smaller the value of ǫ, the larger the value of noInt that is required. 
For each of the noInt intervals inti in a split, we need to provide to Marabou its 
lower bound inti .min and its upper bound inti .max . A valid split for an ANN 

needs to satisfy the restriction that, for every value v of every input xj , there is 
an interval inti such that inti .min ≤ v ≤ inti .max . 

For Marabou, given the value of ǫ, we need to give a precision value δ. We  

need to provide this to account for the fact that Marabou does not support an 

open interval as a specification for its properties due to its SMT solver backend. 
We use a closed interval in conformance, so encoding the negated condition would 

require an open interval. Given that the ANN is already normalised to the range 

of our RoboChart controller StandardController , we can prove conformance in 

Marabou with the verification condition as shown below. 

Theorem 2 (Verification conditions for Marabou) 

¬ ∃  x1, . .xinsize : Value • ∃  y1, . .youtsize : Value •
〈int1.min, ..., int(noInt).min〉 F 〈y1, . .youtsize〉 ∧  

∃ y ′
1, . .y

′
outsize : Value •

〈int1.max , ..., int(noInt).max 〉 F 〈y ′
1, . .y

′
outsize〉 ∧  

∃ i : 1  . .  outsize • 

annout(layerNo, i , 〈x1, . .xinsize〉) ≤ y ′
i − ǫ − δ ∨ 

annout(layerNo, i , 〈x1, . .xinsize〉) ≥ yi + ǫ + δ 

⇒ ANNController conf (ǫ, {[ out]}) StandardController 

Theorem 2 states that, given that all intervals are valid, there does not exist 
an input valuation (xi) such that either of the following conditions holds. First, 
annout is less than or equal to F evaluated at the maximum point of the interval 
(y ′

i) under ǫ. Second, annout is greater than F evaluated at the minimum point of 
the interval (yi) with ǫ applied. If no such input valuation exists, then annoutput 
must be within F under all possible values of x . 

One query in Marabou encodes this verification condition for every interval 
inti . If Marabou returns UNSAT for every condition, we can use the value of ǫ
in Isabelle soundly for conformance via a certificate that can automatically be 

obtained through Marabou [ 16]. Such certificates can be reconstructed using 

CVC4 and CVC5 in Isabelle [ 21]; this would constitute progress towards inte-
grating Marabou with Isabelle via Sledgehammer [ 3]. 
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By applying Theorem 2 to our example with AnglePID and AnglePIDANN, 
we obtain a condition of the form below. 

¬ ∃ x1, x2 : Value • 

∀ i : 1  . .  2 • 

inti .min ≤ xi ≤ inti .max ∧ 

y1 ≥ (P(inti .min) +  D(inti .min) + ǫ + δ) ∨ 

y1 ≤ (P(inti .max ) +  D(inti .max ) − ǫ − δ) 

When we instantiate the constants in the conditions above, we obtain an ǫ error 
value of 0.085. We use the range {0..1} as Value, given our normalisation assump-
tion. We have also instantiated F as a function capturing the behaviour of the 

RoboChart controller AnglePID in terms of the constants P and D . Finally, noInt 
is set to 100, and we instantiate δ as 1e − 6. Thus, we have used Marabou and 

Isabelle to verify the ANN component AnglePIDANN. 

6 Final Considerations 

This paper presents an approach that enables process-algebraic verification of 
intelligent software. As far as we know, this is the first line of work enabling this 
style of verification for software involving ANNs. 

Our approach focuses on the fundamental concepts of ANN models: the 

underlying logic of ANN models, irrespective of either the context of use, or the 

size and shape of the specific ANN. Due to its abstraction level, this perspective 

of modelling and verification accommodates any current and future approaches 
for training, fine-tuning, or fixing ANN models. Our perspective enables reason-
ing about the logic and the system context of an ANN controller, and enables 
us to soundly use component-level reasoning techniques to prove properties of 
this surrounding context. Our approach also allows us to accommodate future 

advances in component-level reasoning techniques for ANNs. 
Our work suggests several possible future research directions. First, our 

semantic style naturally allows for a clean definition of multiple types of acti-
vation functions. Further, extending our ANN components to support various 
types of ANN will support work on image and sound recognition, for instance. 
Integration with other ANN tools is a promising line of work to explore the inter-
play between theorem proving and ANN solvers. Finally, using process algebraic 

reasoning, we can extract properties about the propagation of imprecision. 
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