
This is a repository copy of Causal Explanations from the Geometric Properties of ReLU 
Neural Networks.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/232693/

Version: Accepted Version

Conference or Workshop Item:
Woods, Hector, Ryan, Philippa Mary orcid.org/0000-0003-1307-5207 and Alexander, Rob 
orcid.org/0000-0003-3818-0310 (2025) Causal Explanations from the Geometric 
Properties of ReLU Neural Networks. In: Yorkshire Innovation in Science and Engineering 
Conference (YISEC), 26-27 Jun 2025, University of York. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, 
modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under 
the Creative Commons CC0 <https://creativecommons.org/publicdomain/zero/1.0/> public domain 
dedication. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/id/eprint/232693/
https://eprints.whiterose.ac.uk/


Causal Explanations from the Geometric Properties

of ReLU Neural Networks

1st Hector Woods

Department of Computer Science

University of York

York, United Kingdom

hjvw500@york.ac.uk

2nd Philippa Ryan

Department of Computer Science

University of York

York, United Kingdom

philippa.ryan@york.ac.uk

3rd Rob Alexander

Department of Computer Science

University of York

York, United Kingdom

rob.alexander@york.ac.uk

AbstractÐNeural networks have proved an effective means
of learning control policies for autonomous systems, but these
learned policies are difficult to understand due to the black-box
nature of neural networks. This lack of interpretability makes
safety assurance for such autonomous systems challenging. The
fields of eXplainable Artificial Intelligence (XAI) and eXplainable
Reinforcement Learning (XRL) aim to interpret the decision-
making processes of neural networks and autonomous agents,
respectively. In particular, work on causal explanations aims to
provide ªwhyº and ªwhy notº explanations for why a model made
a given decision. However, most of the work on explainability
to date utilises a distilled version of the original model. While
this distilled policy is interpretable, it necessarily degrades in
performance significantly when compared to the original model,
and is not guaranteed to be an accurate reflection of the decision-
making processes in the original model and as such cannot be
used to guarantee its safety. Recent work on understanding the
geometry of ReLU neural networks shows that a ReLU network
corresponds to a piecewise linear function divided into regions
defined by an n-dimensional convex polytope. Through this lens,
a neural network can be understood as dividing the input space
into distinct regions which apply a single linear function for
each output neuron. We show that this geometric representation
can be used to generate causal explanations for the network’s
behaviour similar to previous work, but which extracts rules
directly from the geometry of Neural Networks with the ReLU
activation function, and is therefore an accurate reflection of
the network’s behaviour. An implementation of our algorithm is
available at https://github.com/HJWoods/ReLUExplanations

Index TermsÐmachine learning, reinforcement learning, ex-
plainable artificial intelligence, explainable reinforcement learn-
ing, interpretability, mechanistic interpretability

I. BACKGROUND

A. Introduction to Explainability for Deep Learning and Re-

inforcement Learning

eXplainable Artificial Intelligence (XAI) aims to provide

insight into the decision-making processes of AI systems, such

as neural networks. In the context of a control policy learnt

via Reinforcement Learning (RL), the goal of eXplainable

Reinforcement Learning (XRL) is to verify that the system will

not enter an unsafe state regardless of the input and to promote

trust in the system by allowing users to gain meaningful

insights about what decisions the model will make for a given

input and why it makes those decisions. This field is distinct

from, but related to, formal verification of AI/RL systems:

the former aims to provide guarantees that the system will

not produce an unsafe output given certain constraints, while

the latter aims to uncover the decision-making processes of AI

systems and present them to the user succinctly. Explainability

remains useful even for a system that is guaranteed to be safe;

as can be argued without the ability to ask the system why

it made certain decisions, users will not necessarily trust the

system based on guarantees from an external regulator alone

[9].

B. What makes a good explanation?

Given the early stage of explainability research, what ex-

actly generating a ºgoodº explanation entails is not completely

understood, and there is a clear need to verify these expla-

nations against real users. Nevertheless in this section we

will discuss some of the popular paradigms in explainability

research with regard to tailoring explanations to the needs of

end users.

1) Model Reconciliation: [10] consider explainability as a

problem of model reconciliation; under this model the system

and the user both have distinct models of the environment in

the system in which the system operates and an understanding

of how the system should behave in a given scenario, known as

a ºworld modelº. These models do not necessarily align, and

in fact in the vast majority of cases we should expect that they

will not align [12]. The goal of explainability is to reconcile

the user’s model of how the system should behave with how it

actually behaves. This allows the user to verify that the system

will produce a safe output for a given set of inputs, and if this

is not the case, to flag the issue to the designer of the system

to resolve the issue. Explainability also enables the user to

identify cases where the model made an action which is safe

but nonetheless not the one expected by the user, in which

case the user is able to understand why the decision made by

the system was safe even though it defied their expectations.

2) Human Factors Considerations: Applying ideas from

human factors research, [1] suggest that explainable systems

should aim to maximize the ªlikelinessº and ªlovelinessº of a

given explanation. Likeliness refers to the probability that the

given explanation adequately explains an input X, expressed

in terms of probability: An explanation Ei that maximizes the

posterior probability P (X|Ei) for an event X is said to be

an explanation with good likeliness. Loveliness refers to how



ªsatisfyingº the explanation is to an end user. An agent could

give an explanation for an event with thousands of steps that

gives a comprehensive explanation for its thought process, but

this explanation is of little use to the user as they are unable to

comprehend this much information or in terms of only its own

parameters, which would be inaccessible to someone without

a mathematical background. One of the most important factors

in loveliness then is simplicity - how easily the explanation

can be understood by an end user without intimate knowledge

of AI/ML concepts and often even of the domain in which the

system is applied. While loveliness can refer to a diverse range

of approaches by which an explanation can be made more

satisfying, one of the most important aspects is its conciseness;

an explanation that is too long is inherently unsatisfying and,

if too long, may be completely incomprehensible to a human

reader. A good explanation should therefore be as compre-

hensive as possible while being composed of the minimum

amount of information necessary for comprehension. This is

known as the Minimally Complete Explanation (MCE). While

there are other means by which explanations can be made

more satisfying, particularly tailoring explanations to those

without domain-specific knowledge, finding the MCE is a

good heuristic for generating satisfying explanations given that

it provides exactly enough information to explain why the

system made a given decision without overloading the user

with extraneous information not relevant to that decision.

3) Causal models and counterfactual explanations: Human

factors research has shown that human beings tend to construct

causal models of the world: where each outcome is under-

stood as being caused by some other events/input variables

[8]. According to this model, we can represent a system’s

behaviour in terms of its input variables, and in particular what

conditions over the input variables encouraged that decision,

and why that decision was chosen over any alternative. This

is represented by factual and counterfactual explanations; the

former provides an explanation in terms of the input variables

as to why the model made a given decision, and the latter

explains why the model made a given decision and not a coun-

terfactual decision given the same input. In everyday speech,

we might express this as ªWhyº or ªWhy notº questions on

the model’s behaviour [8]. Previous work has utilized these

factual/counterfactual explanations to allow users to query the

model as to why it made a certain decision for an input/output

pair - a ªwhyº explanation, and query for a given input why

the model did not produce a counterfactual output - a ªwhy

notº explanation. Explanations of this form allow the user

to engage in ªdialogueº with the system; through querying

the system with different input/output pairs and retrieving

factual/counterfactual explanations, the user gains insight into

the model’s behaviour, aligning their understanding of how

the model works and its actual behaviour. However, applying

this approach to a deep-learning based system is challenging

due to the black-box nature of neural networks. To date this

approach has been limited to simpler Reinforcement Learning

algorithms such as Q-learning [8], hand-coded algorithms [11],

decision trees or other naturally interpretable models. While

previous work demonstrates the feasibility of this approach for

distilled versions of deep neural networks, we will demonstrate

how to generate explanations for neural networks consisting of

only linear layers and the ReLU activation function, applying

insights from the geometric properties of such networks.

C. ReLU networks and polytopal decomposition

The geometric properties of ReLU networks have attracted

interest from a formal verification perspective and, in particu-

lar, the desire to find and enumerate the reachable regions of

neural networks. By obtaining the full set of reachable outputs

and the input regions they correspond to, it is possible to per-

form automatic safety verification of the system by confirming

that all input/output pairs satisfy certain conditions [6] [2] [18].

In the case of ReLU neural networks, we can achieve this by

exploiting the piecewise linear nature of the function; within

each linear region each layer is highly interpretable, given that

it corresponds to a single linear transformation on the input

space [1]. Consider a neural network consisting of only linear

layers and the ReLU activation function between each layer

of arbitrary depth l. The ReLU activation is a piecewise linear

function defined as:

max(x, 0)

The output of the ith linear/relu pair in a layer with the weights

matrix W and bias vector b is therefore given by

max(Wix+ bi, 0)

Where W is an n × m matrix holding the weights for that

layer and b is the bias vector with m elements. We can define

the max function as

max(x, y) =

{

x if x > y

y otherwise

The output for each neuron in layer i of a network N is

therefore given by:

ReLU(Ni(x)) =

{

wix+ bi if wix+ bi > 0

0 otherwise
(1)

It is possible to express the output of each neuron as a single

linear inequality and therefore each neuron divides the input

space by a hyperplane, creating two half-spaces for each

neuron; one where it outputs 0 and one where it performs

the linear transformation wix + bi over the input. Given that

the output as a whole is simply a vector which contains the

outputs of each individual neuron, we can represent each layer

as a system of linear inequalities that describe the activation

patterns of each neuron following the ReLU function. Each

unique combination of zero/non-zero activations is described

by a unique system of linear inequalities H in the standard

form Ax <= b, where each row of A and b is of the form:

−wix <= bi

when the activation wix + bi is greater than 0, and

wix <= −bi



when the activation wix + bi is less than or equal to 0, and

hence exactly 0 following the ReLU function.

The standard form of a system of linear inequalities corre-

sponds exactly to the H-representation of a convex polytope

in D-dimensional space. This polytope P describes the exact

region in the input space where the activations of layer i

will correspond to H . Each possible combination of zero/non-

zero activations, and therefore each polytope P for layer i is

therefore represented by a unique system of linear inequalities.

Intuitively, the upper bound on the number of possible output

polytopes for a layer with n neurons is 2n, though in practice

many of these inequalities are infeasible. Given this fact, as

suggested in [1] we can represent each polytope as a collection

of bit vectors for each layer, where the bit vector of an input

x for the layer i with n neurons is given by:

si(x) = [bitwi1,bi1(x), bitwi2,bi2(x), bitwin,bin(x)]

where

bitwi,j ,bi,j (x)

{

1 if wijx+ bij > 0

0 otherwise

[1]

We can further stack each bit vector si to obtain a single

bit vector s which represents the zero/non-zero activations of

the network as a whole. Each bit vector s represents a single

polytopal region in terms of the input space that produces

the activation pattern given by s. Within the confines of a

polytope, each neuron in the output layer is given by a single

linear transformation on the input x. The network is therefore

highly interpretable within the bounds of each polytope, as

the network is reduced to a single linear transformation for

each output neuron. We can obtain the output of each neuron

with respect to an activation pattern by expanding the bit

vector sL for a layer L such that when multiplied by w the

vector is applied as a mask to the output of each neuron. The

output for an input x is given by:

G(x) = wL+1diag(sL)ŵL(x) + wL+1diag(sL)b̂L + bL+1

where diag(sL) is a diagonal matrix of sL. [1]

In the context of a control policy learnt by a neural network,

such as a Deep-Q network, each decision the network can

make at a time point t is typically given by the highest

value of the output class following some activation function

σ where σ ̸= ReLU . σ is most commonly the softmax()
function. The decision made by the network for an input x

within the confines of a polytope P is therefore given by

argmax(σ(G(x)).
[6] [3] [4] demonstrate how to utilise this geometric

property of ReLU networks to identify all of the reachable

outputs for all possible inputs to the neural network. This can

then be used to verify the network’s safety by ensuring that all

input ⇒ output mappings do not violate any constraints that

imply the action the system took was unsafe.

The main issue with this approach is the exponential

complexity associated with enumerating all of the output

polytopes. Given the bit vector representation, where each

neuron is represented by a either 0 or 1, there are 2n possible

bit vectors and this forms the theoretical bound for the number

of polytopes that describe the network’s behaviour. While [6]

implement a parallelised algorithm that can feasibly find all of

the polytopes for networks with thousands of neurons, most

modern neural networks will have an order of magnitude more

neurons than this.

D. Adjacent Polytope Marching

Given the bit-vector representation of each polytope as

described in [1], adjacent polytopes can be identified by

flipping any of the bits in the bit vector. This identifies a

polytope which lies on the other side of a linear inequality.

This means that the distance between polytopes in terms of

satisfied linear inequalities is simply the Hamming distance

of their bit vectors, and adjacent bit vectors have a Hamming

distance of 1. [5] [7] demonstrate the feasibility of utilising

this property to explore adjacent regions to a given input. This

can be used to identify connected regions of the input space

and identify partial geometric representations of the network.

While the theoretical number of polytopes for a ReLU network

is 2n, many of these polytopes will be exceedingly rare or only

activate for input regions which are theoretically possible but

far outside the real operating range of the system. Polytope

marching can therefore be used to find the practically reach-

able regions of a neural network and avoid the exponential

complexity associated with enumerating all possible polytopes.

E. Polytope Decomposition for Explainability

Villani et. al [14] present Polyhedral Complex Informed

Counterfactual Explanations (PICE): a method for generating

provably minimally complete counterfactual explanations for

ReLU networks, based on an approach which generates the full

polytopal decomposition for a neural network. By obtaining

the full decomposition, they are able to generate explanations

which are exact, i.e. a 100% accurate representation of the

network’s behaviour on any given input. The main limitation

with this approach is the process of decomposing the network

itself; as previously discussed, for a network with n neurons

can produce an upper bound of 2n unique regions, in the case

that all hyperplanes created by the neurons intersect. While

numerous works have observed that the number of feasible

regions is much lower in practice [15] [1], (a result which

is consistent with expectations from hyperplane arrangement

theory [16]) the number of regions for even a very small

network remains very high, and the process of uncovering

them is computationally expensive. The best known method

for enumerating all polytopes of a ReLU neural network to

date is given by Balestriero & LeCun [17] who demonstrate a

method for generating a full decomposition which has linear

time complexity with respect to the number of feasible linear

regions, but requires solving many linear programs. As such,

generating full decompositions for even small networks is

generally speaking infeasible. Given this limitation, Villani

et. al also provide a method for generating approximate



explanations based on the PICE approach, PICE-Fast, which is

non-exact but able to provide a lower bound on the probability

of the explanation being accurate.

II. METHOD

In this section we will demonstrate how the intuition behind

polytopal decomposition of ReLU networks can be used to

generate why/why not explanations for a neural-network based

control policy learnt via Reinforcement Learning. In a similar

vein to PICE, our method is also capable of generating exact

explanations, but by contrast rather than aiming to find the

full decomposition we instead utilize a polyhedral marching

approach, starting at the polytope containing a point x until

we encounter a polytope containing the counterfactual class,

i.e. enumerating only the polytopes which are immediately

relevant to the explanation.

A. ªWhyº explanations

Algorithm 1 Generate a ªWhyº Explanation for an input x

1: Input: Neural network N with l layers, input x ∈ R
n,

where the output layer uses the activation σ and all other

layers use ReLU

2: Output: Minimally complete explanation for output N(x)
3: Forward pass: x→ N and obtain output N(x)
4: for each layer i from 1 to l do

5: Collect activation vector Ai

6: Create binary pattern sLi where sLij = 1 if neuron j

is active, 0 otherwise

7: end for

8: Combine all patterns to form activation signature s =
[sL1, sL2, . . . , sLl]

9: Construct H-representation of polytope P corresponding

to signature s as system of linear inequalities

10: Identify output class c = argmax(σ(Nl(x)))
11: Form subset polytope POutput ⊂ P that produces output

class c

12: Formulate linear program to eliminate redundant con-

straints using the approach in [1]:

13: For each constraint i in the system Ax ≤ c, solve:

14: maximize aTi x

15: subject to: Ãx ≤ c̃ (where Ã and c̃ exclude row i)

16: If the optimal value ≤ ci, constraint i is redundant and

can be removed

17: Extract simplified constraint set H ′ after removing all

redundant constraints

18: return H ′ as the minimally complete explanation

Consider an input x ∈ R
n to a neural network N consisting

of l linear layers followed by the ReLU activation function.

We pass the input x to N and collect the activations for each

layer i. This will be a sparse vector Ai where each element

Aij is either a positive real number or 0. From this we can

construct the bit vector sLi. We can stack each sLi to obtain

a single vector s which describes the activations of N for the

input x.

As explained in [1], each neuron in the final layer of the

network (and therefore each output class) corresponds to a

single linear transformation given by G(x). The input x is a

subset of the convex polytopal region P , where P is given

by the system of linear inequalities H . For a classification

problem, the output class is given by c = argmax(σ(Nl(x)))
where σ is an arbitrary activation function.

To explain the output class within this polytopal region, we

define a subset polytope POutput ⊂ P that represents all points

within P where class c has a higher activation than all other

classes. We do this by appending the following inequalities to

the system defining P :

σ(Nlc(x)) > σ(Nlj(x)) for all j ̸= c

This derives a second polytope POutput which is a subset of

P where the chosen class c has a higher activation than all

other classes.

The linear system that describes POutput may contain re-

dundant constraints (and is likely to do so in lower input

dimensions). Following the approach of Liu et. al [1], we

can remove these redundant constraints by solving a series

of linear programs.

Let the system of linear inequalities be represented as Ax ≤
c, where A = [a1, a2, . . . , ah]

T and c = [c1, c2, . . . , ch]
T with

ai ∈ R
n and ci ∈ R. To determine if the i-th constraint aTi x ≤

ci is redundant, we first define:

Ã = [a1, a2, . . . , ai−1, ai+1, . . . , ah]
T

c̃ = [c1, c2, . . . , ci−1, ci+1, . . . , ch]
T

Then we solve the linear program:

maximize aTi x

subject to Ãx ≤ c̃

If the optimal objective value is less than or equal to ci, then

the i-th constraint is redundant and can be removed. This is

because the remaining constraints already ensure that aTi x ≤
ci will be satisfied.

We determine the minimal set of constraints H ′ by iter-

atively applying this process to remove all redundant con-

straints. The simplified system of linear inequalities H ′ can be

considered a minimally complete explanation for N(x) in that

it contains only the constraints which are relevant to defining

the regions P and POutput.

B. Why not explanations

Consider a known input-output pair x, N(x) and a coun-

terfactual output N(x)′. The goal in explaining why N(x)
and not N(x)′ is to find the minimum set of constraints that

differentiate the two output classes in the context of the input

x. As in the ªWhyº explanation, we first pass x to the model,

collect its activations and construct the bit vector and system

of linear inequalities for the polytope P .



Algorithm 2 Generate a ªWhy Notº Explanation for an input

x and a counterfactual output O’

1: Input: Neural network N with l layers, input x ∈ R
n,

counterfactual output class c′, where the output layer uses

the activation σ and all other layers use ReLU

2: Output: Minimally complete explanation for why

N(x) ̸= c′

3: Identify actual output class c = argmax(σ(Nl(x)))
4: Follow steps 3-11 from Algorithm 1 to obtain activation

signature s, polytope P and subset polytope PFactual ⊂ P

5: Form subset polytope PCounterfactual ⊂ P with additional

constraints:

6: σ(Nlc′(x)) > σ(Nlj(x)) for all j ̸= c′

7: Check feasibility of PCounterfactual by solving the linear

program:

8: Maximize x subject to Ax ≤ b, where A and b define

PCounterfactual

9: if PCounterfactual is feasible then

10: Extract weight vectors wc and wc′ for output classes c

and c′

11: return ªOutput c was chosen over c′ because (wc −
wc′)

T diag(s)x+ (bc − bc′) > 0º

12: else

13: Initialize distance d = 1
14: while true do

15: Find all bit vectors s′ with Hamming distance d from

s

16: for each bit vector s′ do

17: Construct polytope P ′ corresponding to s′

18: Form subset polytope P ′

Counterfactual ⊂ P ′ with

constraints for class c′

19: Check feasibility of P ′

Counterfactual

20: if P ′

Counterfactual is feasible then

21: Identify the positions where s and s′ differ

22: Extract the corresponding constraints from P

and P ′

23: return These constraints as the explanation for

ªWhy not c′º

24: end if

25: end for

26: d← d+ 1
27: end while

28: end if

We then find two subset polytopes of P : PFactual and

PCounterfactual that represent the constraints for the real and

counterfactual output respectively. PFactual is defined by all

points in P where:

σ(Nlc(x)) > σ(Nlj(x)) for all j ̸= c

And PCounterfactual is defined by all points in P where:

σ(Nlc′(x)) > σ(Nlj(x)) for all j ̸= c′

Where c is the actual output class and c′ is the counterfactual

class.

In some cases, PCounterfactual may not be a feasible region; i.e.

there are no points that satisfy the system of linear inequalities

for PCounterfactual and the output N(x)’ is not possible for inputs

in this polytope. To verify whether this is the case, we solve

the linear program:

maximize x

subject to Ax ≤ c

where A,c are the constraints that define the polytope

PCounterfactual.

If PCounterfactual is feasible, then the explanation is simply that

the output class N(x) > N(x)′, or in terms of the weights of

the model:

σ(Gi(x)) > σ(Gi′(x))

If this is not the case, then our goal is to find the nearest

polytope to P that has feasible inputs for the output class

N(x)′. We can achieve this by utilizing the Adjacent Polytope

Marching algorithm described in [5]. Starting with the bit

vector that describes P , we flip the bit vector to find a

polytope PAdjacent which satisfies all but one of the same

inequalities as P . P is adjacent to PAdjacent in that they have

a distance of one and lie on alternate sides of exactly one

of the hyperplanes of H . For the adjacent polytope we once

again generate the subset PCounterfactual and verify whether it is

feasible. We continue this process, enumerating all adjacent

polytopes to P , increasing the allowable Hamming distance if

the directly adjacent polytopes don’t contain N(x)′. Once we

find the polytope P ′ which contains N(x)′, we can present

the explanation ªWhy not N(x)′º as the constraints which

distinguish P from P ′. This is given by the difference in the

Hamming distance of the two polytopes. An explanation of this

form is minimally complete in that it consists of the minimum

set of constraints that distinguish N(x) from N(x)′.

C. Polytope Explanations in V-Representation

Given the dual representations of convex polytopes, we

can provide explanations as either the series of half-space

intersections that define each polytope (H-Representation)

or the polytope’s extreme points (V-Representation). The V-

Representation provides the minimum/maximum values for the

input in each dimension, or in other words the range of inputs

that satisfy the polytope. This representation offers greater

brevity than the H-Representation, which scales in size both

with respect to the dimensionality of the input space and the

size of the network.

In the context of a ªWhyº explanation, we can find the

extreme points of the input’s P , and the subset of that polytope

POutput) which contains all inputs that result in the output class

N(x). This provides two input ranges; one which defines the

local region around the point x, and one which defines the

range of inputs within that region which are classified as N(x).
In the context of ªWhy notº explanations, we are given two

local regions, P , which contains x, and P ′ which is the closest



region to P that can produce the output class N(x)′, where P

may equal P’.

III. DISCUSSION AND LIMITATIONS

A. H-Representation versus V-Representation for Polytope Ex-

planations

The V-Representation is arguably more interpretable given

that it provides the lower and upper bounds for each polytope

and the bounds in which it will make a given decision for

inputs within that polytope. However, it doesn’t explain how

the model arrived at this polytope, or in other words the

decision making processes of earlier layers, while the H-

Representation is superior in this respect. Determining the

V-representation also introduces exponential space/time com-

plexity to the algorithm in that a D-dimensional hypercube has

2D vertices, and this forms the upper bound for the number

of vertices in a D-dimensional convex polytope. Nevertheless

determining the V-Representation for low dimensional input

spaces is entirely feasible and can be used to supplement the

H-representation explanation. Control policies tend to operate

on few dimensions, while data-driven AI such as images or text

has many tens or hundreds of dimensions. It could be argued

that the H-Representation exhibits poor scaling with respect

to the size of the model, as each neuron adds an additional

constraint to the definition of each polytope, and as such the

length of explanations scales linearly with the size of the

model. The V-Representation has a constant size and doesn’t

scale with the size of the network, but exhibits exponential

scaling with respect to the number of input dimensions. The

V-Representation, when it is feasible, offers a much clearer and

more concise explanation for the network’s behaviour, but is

only feasible for very small input dimensions.

B. Time/Space Complexity for generating explanations

The computational complexity using our method varies

between ªWhyº and ªWhy notº explanations.

For ªWhyº explanations, the output polytope can be found

in O(1) time, given that this is equivalent to simply passing the

input through the network. To simplify the output polytope,

the algorithm then needs to solve n linear programs to identify

the redundant constraints. The time complexity for generating

a ªWhyº explanation for a given input is therefore O(n) in

both the best and worst case.

ªWhy notº explanations are also generated in O(n) time in

the best case, in the scenario where the first polytope contains

a feasible region for the counterfactual output. However, in

the worst case the time complexity for the adjacent poly-

tope marching algorithm is O(2n), where n is the number

of neurons in the network. In the case of worst-case time

complexity, the task of generating the explanation is equivalent

to finding the full polytopal decomposition of the original

network. However in practice, this upper bound is extremely

unlikely, and in practice the algorithm is likely to terminate

quickly, given that only a single polytope need contain a

feasible point for the algorithm to halt.

Given that each linear program is independent, both algo-

rithms are highly parallelizable, and this somewhat overcomes

the exponential complexity associated with generating ªwhy

notº explanations.

Both algorithms have constant space complexity, given that

ªWhyº explanations store only the output polytope, and ªWhy

notº explanations store only the factual polytope, and the

current counterfactual bit vector/polytope.

C. H-Representation and Sparsity

While the H-Representation explanations are minimally

complete, their complexity scales with both the number of neu-

rons in the network and the dimensionality of the input space.

The latter is particularly unfortunate given that increasing the

input dimensions increases the dimensions of each constraint

by the same amount.

This means that high-dimensional inputs are less inter-

pretable, given that each constraint is expressed in terms of

all input variables in the form w1x1 + w2x2...wnxn.

This limitation could be overcome by introducing sparsity

to the network, that is to say increasing the number of zeroes

in the weight matrix w of each layer. Constraints of this form

are more interpretable given that they show more meaningful

relationships between individual input variables, rather than

all inputs.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we demonstrated the feasibility of generating

exact causal explanations for ReLU neural networks with

linear layers, and identified two alternative representations in

terms of the H and V Representations. While these expla-

nations are minimally complete with respect to the network’s

geometry, they are arguably not very satisfying due to the com-

plexity and number of the constraints. The V-Representation

offers an alternative which has a constant size with respect to

the size of the input, but generating these explanations from

the H-Representation introduces exponential complexity with

respect to the number of input dimensions. While generating

ªWhyº explanations is computationally feasible even in the

worst case, ªWhy notº explanations have exponential com-

plexity in the worst case which may make generating expla-

nations infeasible on certain inputs. This could be overcome by

developing polytope marching algorithms which are capable of

reducing the search space, such as by identifying super-regions

of many polytopes which are known not to contain N(x)′.
We have discussed explanations from a purely theoretical

basis, while the loveliness of explanations is at least partially

subjective. In particular, there is a need to gain feedback from

real users and regulators, such as in the maritime domain, so as

to assess the appropriateness of the explanations to this, or any

other domain. We have identified the sparsity of the network

and the dimensionality of the input space as the two primary

constraints to the ªlovelinessº of explanations. The method in

this paper could be combined with dimensionality reduction

techniques such as Principal Component Analysis (PCA), or

techniques that introduce sparsity to the model’s weights, such



as network pruning, L1 Regression or dropout. While we

have demonstrated how to generate explanations for networks

consisting of only linear layers, there is a need to expand this

to other network architectures such as Convolutional Neural

Networks (CNNs). This is a limitation shared with other work

on neural network geometry. Depending on the architecture,

geometric explanations may in fact be more feasible, given

that many introduce sparsity as a design choice. There is also

the potential to expand this method to other piecewise linear

activation functions, such as Leaky ReLU.

ACKNOWLEDGMENT

This work was supported by the UK Hydrographic Office,

and the Centre for Assuring Autonomy, a partnership between

Lloyd’s Register Foundation and the University of York. We

would also like to thank the Maritime and Coastguard Agency

for their help and support.

REFERENCES

[1] Y. Liu, C. Cole, C. Peterson, and M. Kirby, ‘ReLU Neural Networks,
Polyhedral Decompositions, and Persistent Homology’, 2023.

[2] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer, ‘Reluplex:
An Efficient SMT Solver for Verifying Deep Neural Networks’, May
19, 2017, arXiv: arXiv:1702.01135. doi: 10.48550/arXiv.1702.01135.

[3] P. Pukowski, J. Spoerhase, and H. Lu, ‘SkelEx and BoundEx - Geo-
metrical Framework for Interpretable ReLU Neural Networks’, in 2024
International Joint Conference on Neural Networks (IJCNN), Jun. 2024,
pp. 1±8. doi: 10.1109/IJCNN60899.2024.10650882.

[4] J. Zago, E. Camponogara, and E. Antonelo, ‘Vertex-based reachabil-
ity analysis for verifying ReLU deep neural networks’, 2023, doi:
10.48550/ARXIV.2301.12001.

[5] J. A. Vincent and M. Schwager, ‘Reachable Polyhedral Marching
(RPM): An Exact Analysis Tool for Deep-Learned Control Systems’,
2022, doi: 10.48550/ARXIV.2210.08339.

[6] X. Yang, T. T. Johnson, H.-D. Tran, T. Yamaguchi, B. Hoxha, and
D. Prokhorov, ‘Reachability analysis of deep ReLU neural networks
using facet-vertex incidence’, in Proceedings of the 24th International
Conference on Hybrid Systems: Computation and Control, Nashville
Tennessee: ACM, May 2021, pp. 1±7. doi: 10.1145/3447928.3456650.

[7] S. Xu, J. Vaughan, J. Chen, A. Zhang, and A. Sudjianto, ‘Traversing
the Local polytopes of ReLU Neural Networks: A Unified Approach for
Network Verification’, ArXiv, Nov. 2021,

[8] P. Madumal, T. Miller, L. Sonenberg, and F. Vetere, ‘Explainable
Reinforcement Learning Through a Causal Lens’, Nov. 20, 2019, arXiv:
arXiv:1905.10958.

[9] E. Puiutta and E. M. Veith, ‘Explainable Reinforcement Learning: A
Survey’, May 13, 2020, arXiv: arXiv:2005.06247.

[10] T. Chakraborti, S. Sreedharan, Y. Zhang, and S. Kambhampati, ‘Plan
Explanations as Model Reconciliation: Moving Beyond Explanation as
Soliloquy’, in Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, Melbourne, Australia: International
Joint Conferences on Artificial Intelligence Organization, Aug. 2017,
pp. 156±163. doi: 10.24963/ijcai.2017/23.

[11] T. Sakai, K. Miyazawa, T. Horii, and T. Nagai, ‘A Framework of
Explanation Generation toward Reliable Autonomous Robots’, May 06,
2021, arXiv: arXiv:2105.02670.

[12] A. Bobu, A. Peng, P. Agrawal, J. Shah, and A. D. Dragan,
‘Aligning Robot and Human Representations’, Jan. 28, 2024, arXiv:
arXiv:2302.01928.

[13] International Maritime Organisation, ‘Development of a Goal-Based
Instrument for Maritime Autonomous Surface Ships (MASS)’, MSC
108/4, 13 February 2024.

[14] M. J. Villani et al., ‘PICE: Polyhedral Complex Informed Counter-
factual Explanations’, Proceedings of the AAAI/ACM Conference on
AI, Ethics, and Society, vol. 7, no. 1, Art. no. 1, Oct. 2024, doi:
10.1609/aies.v7i1.31742.

[15] B. Hanin and D. Rolnick, ‘Deep ReLU Networks Have Surprisingly
Few Activation Patterns’, Oct. 20, 2019, arXiv: arXiv:1906.00904. doi:
10.48550/arXiv.1906.00904.

[16] R. P. Stanley, ‘An Introduction to Hyperplane Arrangements’.
[17] R. Balestriero and Y. LeCun, ‘Fast and Exact Enumeration of Deep

Networks Partitions Regions’, Jan. 20, 2024, arXiv: arXiv:2401.11188.
doi: 10.48550/arXiv.2401.11188.

[18] G. Singh, T. Gehr, M. PÈuschel, and M. Vechev, ªAn abstract domain for
certifying neural networks,º vol. 3, no. POPL, pp. 1±30, Jan. 2019, doi:
https://doi.org/10.1145/3290354.


