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Abstract 

Effective battery thermal management system (BTMS) is critical for lithium-ion battery (LIB) safety and performance 
in electric vehicles. This study presents a CFD-driven optimisation framework for an immersion cooling BTMS using 
sustainable palm biodiesel as coolant. The Multi-scale Multi-Domain (NTGK) framework is conducted to effectively 
capture the complex interactions among various physicochemical processes. The Electrochemical-thermal Model 
(ECM) is applied using the Newman, Tiedeman, Gu, and Kim (NTGK) model. A conjugate heat transfer model for a 
3S2P pouch cell module (20 Ah LiFePO₄) is developed and validated against experimental data (<2% error). The CFD 
model of a battery module is developed to train an ultra-fast metamodel for battery geometry optimisation. Two key 
parameters are optimised, namely: battery gap spacing (3-10 mm) and inlet/outlet width (5-15 mm), via Optimal Latin 
Hypercube Sampling, Support Vector Regression, and GDE3 algorithm. Palm biodiesel is used as a dielectric coolant 
in the proposed system to preserve LIB temperature within 20-40 ℃, preventing thermal runaway and ensuring a 
lightweight BTMS design. Compared to a conventional 3M-Novec, the palm biodiesel achieved system lightweight 
by 43%. The findings can establish biofuel immersion cooling as an eco-friendly BTMS solution, achieving Pareto-
optimal figures: Tmax < 29.9°C, ΔT < 5°C, and ΔP < 145.275 Pa (at 5C and 0.05 m/s).  

Key words: Battery thermal management, Biodiesel coolant, Hybrid electric vehicles, Immersion cooling, 

Optimisation, Surrogate modelling. 

Article Highlights  
• First biodiesel-based BTMS immersion cooling is developed. 
• The novel experimentally validated computational model offers enhanced cooling over conventional 

coolants.  
• Machine learning via RBF-assisted SVR enables rigorous multi-objective optimisation.  
• Pareto curves show trade-offs between maximum temperature, temperature difference, and pressure drop.  

1. Introduction 

Lithium-Ion Batteries (LIBs) serve as critical enablers for decarbonisation across the automotive, renewable energy, 
and consumer electronics sectors. Their rapid development is driven by global commitments to net-zero emissions, 
exemplified by the UK's 2050 target [1]. However, the key challenges persist in operational safety, temperature 
uniformity, lifespan, and recyclability [2]. Effective Battery Thermal Management Systems (BTMS) are paramount 
to address these issues, as uncontrolled temperature rise (>40°C) that accelerates degradation while thermal runaway 
risks catastrophic failure [3].  

A considerable amount of heat is generated within a LIB battery during the high discharge process, resulting from 
exothermic chemical reactions [4]. To ensure optimal performance, it is crucial to effectively dissipate the heat 
generated, directing it from the LIB surface to the metallic tabs. Consequently, a range of advanced cooling strategies 
for the BTMS have been explored: air cooling [5], indirect liquid cooling [6], and phase change materials [7]. 
Implementing these solutions will significantly enhance the system's efficiency and reliability. Despite their 
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advantages, BTMS-based air, indirect liquid and PCM cooling techniques experience inherent limitations: Air cooling 
provides inadequate heat dissipation for high-density packs [8], Phase-Change Materials (PCMs) suffer from low 
thermal conductivity under high loads [9]. While indirect liquid cooling exhibits superior thermal performance, the 
system design is relatively bulky and complex [10]. Furthermore, it introduces parasitic weight and interfacial thermal 
resistance between battery surface and cold plate which leads to degraded heat transfer rate [11].  

An innovative and powerful alternative cooling strategy to BTMS is direct liquid cooling, known as immersion 
cooling. By eliminating thermal interfaces, this approach achieves superior temperature uniformity (±2°C) and heat 
transfer coefficients (HTCs >500 W/m²·K), significantly outperforming existing methods [12], [13]. Recent studies 
validate its efficacy: Kim et al. demonstrated mineral oil's 40% higher heat removal versus air cooling [14], Haosheng 
et al. illustrated that transformer oil and PAO-4 show superior cooling performance even at extensive conditions [15], 
while Al Qubeissi et al. showed fuel-based immersion reduced peak temperatures by 5.6% at 2C discharge [16, 17]. 
BTMS-based immersion cooling is an effective approach to preserving the operating temperature within the safety 
limit.  

A variety of optimisation approaches have been conducted to improve the BTMS-based immersion cooling. Zhu et al. 
[18] conducted various surrogate models (i.e., Kriging, ANN, and radial basis function) and multi objective 
optimisation using NSGA-‖ to enhance the thermal performance. The results revealed that the maximum temperature 
and temperature difference were reduced by 5.41% and 7.76, respectively, compared to the benchmark results. While 
the pressure drops incremented by 22.98%. Adeniran et al. [19] studied different configuration of BTMS-based 
immersion cooling. They optimised U-type configuration using Kriging surrogate model and Multi objective Genetic 
Algorithm (MOGA). The results confirmed that the temperature difference increased by 39 %, though pressure drop 
and module volume reduced by 28% and 6%, respectively. Another optimisation study conducted by [20], using 
various metamodels (i.e., Gaussian process, radial basis function, and response surface model) and muti objective 
optimisation (NSGA-‖) to find the optimal solutions. The results indicated that the maximum temperature and 
temperature difference remined within the operating conditions.  

As one can see from the previous studies, significant progress has been performed in the BTMS-based immersion 
cooling. However, some research gaps remain unexplored, to address these: (1) Conventional dielectric coolants (e.g., 
hydrofluoroethers, silicone oils) present sustainability trade-offs through high Global Warming Potential (GWP) and 
resource-intensive synthesis [17]. Hence, the current study focuses more on sustainable and environmentally friendly 
coolants. Aiming to synergize these sustainable coolants with computational optimisation to achieve the high thermal 
performance and environmental targets. Biodiesel, particularly palm oil, variants offer an eco-friendly alternative with 
competitive thermophysical properties (k ≈ 0.16-0.18 W/m·K, cp >1900 J/kg·K) and 43% weight reduction versus 
fluorinated fluids [21]. Critically, it maintains cells within the 20–40°C operational window while enhancing 
biodegradability [22]. (2) System-level optimisation of biodiesel-based immersion cooling remains underexplored, 
especially regarding geometric and flow parameter trade-offs. (3) The existing research primarily concentrates on the 
aforementioned surrogate models and multi-objective optimisations, with insufficient consideration of the Support 
Vector Regression (SVR) surrogate model along with the Generalised Differential Evolutionary Algorithm (GDE3).  

Multi-Objective Optimisation (MOO) is conducted using Generalised Differential Evolutionary Algorithm (GDE3) 
to optimise and analyse the metamodels. GDE3 is a robust algorithm that can handle the optimisation framework, 
including multi-model and non-linear functions [23]. Its convergence characteristics are faster than traditional 
algorithms as a result of using advanced strategies that regulate the problem landscape. GDE3 outperforms many 
different (MOO) algorithms in terms of accuracy and convergence speed for optimisation frameworks [24, 25]. In 
addition, it can handle complex problems due to its adaptive strategies and population diversity. Therefore, GDE3 is 
a powerful optimisation tool used to handle the global optimisation with any number of constraints and goals [23].  

Following author’s pervious study [21], this study bridges this gap through a CFD-driven optimisation framework for 
a 3S2P LIB module (20 Ah pouch cells) using palm biodiesel coolant. Additionally, we parameterise two key 
variables: battery gap spacing (thermal uniformity), and inlet/outlet width (pressure drop). Support Vector Regression 
(SVR) with a Radial Basis (RBF) surrogate model trained on DOE simulations enables efficient multi-objective 
optimisation via a Generalized Differential Evolutionary Algorithm (GDE3), generating Pareto-optimal solutions that 
can balance: maximum temperature suppression (<40°C), cell-to-cell temperature differential (ΔT <5°C), and 
pumping power minimisation (ΔP reduction). 

Our work advances BTMS design by demonstrating how sustainable coolants synergise with computational 
optimisation to achieve lightweight, high-performance thermal management, helping to address both operational 
safety and environmental goals. In what follows: the mathematical model and the parameters’ setup are demonstrated 
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in section 2, the design optimisation analysis is described in section 3, the results of BTMS and data analysis are 
presented in section 4, and the findings of data analysis are summarised in section 5. 

2. Research Methodology 

2.1 LIB system configuration  
LIBs are rechargeable batteries used in EVs, storage systems, and electronic products. They exhibit several merits 
among other battery types, for instance, lead-acid and nickel-cadmium batteries [22]. LIBs are preferred choices as a 
result of high-power capacity, high energy density, lightweight construction, long life cycle, and less self-discharge 
[26]. Three fundamental formats characterize the manufacturing landscape of LIBs [27]: (i) cylindrical cell, (ii) 
prismatic cell, and (iii) pouch cell. Table 1 provides a contrast of three types of cells in terms of electrical and physical 
parameters. Pouch cell is chosen for the current battery pack study over other types because of low internal resistance 
and high energy density. Furthermore, it was determined that the Lithium Iron Phosphate (LFP) pouch cell is the most 
suitable based on chemistry specification compared to other cells, as shown in Table 2. 

Table 1. Physical and electrical parameters of battery cell [28].  

Cell type  Thermal management  Packing efficiency  Internal resistance  

Pouch  Easy  High  Low  

Cylindrical  Moderate  Low  High  

Prismatic  Difficult  Medium  Medium  

 

Tabel 2. Cell specification riles on chemistry [29, 30].   

  

2.2 Multiphysics modelling framework 

The numerical simulation is considered significant for analysing the BTMS and comparing battery thermal behaviour 

under several operating conditions. The present study primarily focuses on pouch cell 20 Ah with 3S2P module 

configurations to gain crucial results in a reasonable time and save computational effort. Ansys Fluent (2024/R2) was 

employed to carry out numerical simulations, and an integrated Electrochemical-thermal Model (ECM) and battery 

module with the proposed system were investigated.   

Modelling of Li-ion batteries is a challenging and complex problem due to inherent Multi-Scale Multi-Domain 

(MSMD) character along with different length scales involved [31]. Thermal analysis emphasises on temperature 

spreading across the battery's length scale, whereas Li-ion transfer within the active material takes place at the atomic 

length scale. Conducting numerical study computationally is expensive due to involving interplay of multi-process, 

i.e., physiochemical-thermal-electrical. In this study, the MSMD approach is leveraged in the design for several 

physical systems in different solution domains. For represent and simulate the ECM, the Newman, Tiedemann, Gu, 

and Kim (NTGK) model is used, which is semi-empirical electrochemical model proposed by [17], [32]. NTGK is an 

effective model for Li-ion batteries and has several merits, for example, highly efficient of numerical results, match 

experimental data, less computational cost. Particularly, it has extensively used for Pouch/Prismatic cells [33]. 

Therefore, new numerical approach was developed employing the MSMD approach and using NTGK model. 

In the present study, a 3D transient modelling study is conducted to simulate Lithium-ion batteries with their enclosure 
utilising a CFD software. The system is designed using Design modeller in ANSYS V2024/R2 to represent a 20Ah 
(LFP) commercial Li-ion battery pouch cell. To reduce computational effort while obtaining significant results in 
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considerable time and accomplish a 3S2P battery configuration, the battery module consists of six cells as following 
published works [20, 34]. Battery module is arranged as three cells in series and two in parallel (3s2p), as shown in 
Figure 1. Configuration of four cells in series yield incrementing the module voltage, while two cells in parallel 
connection leads to increase in module capacity, which significantly contributed to slow down the discharge time. The 
cells are attached to tabs and busbar to form one module. The model benchmark designs the battery space is set to 5 
mm giving the HTC and fluid flow efficiency to cool down battery cells and fulfil the homogeneity. The Li-ion cell 
thermophysical specifications are listed in Table 3.    

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Schematic of the battery module (in 3S2P configuration) 

Tabel 3. LIB pouch cell specifications used in this study [31]. 

Battery cell specification      Positive and Negative tab    

Nominal Cell Capacity (Ah) 20  Positive Tab & Busbar  

Max Voltage (V) 3.6  Density (kg/m^3) 2719 

Min Voltage (V)  2  Thermal Conductivity (W/m.K) 202 

Nominal Voltage (V) 3.3  Specific Heat (J/kg.K) 871 

Height (mm)  227    

Width (mm) 160  Negative Tab  

Thickness (mm) 7.25  Density (kg/m^3) 8978 

Density (kg/m3) 1868  Thermal Conductivity (W/m.K) 387.6 

Specific Heat (J/kg.K) 1067   Specific Heat (J/kg.K) 381 
Thermal Conductivity 
(W/m.K) 

Anisotropic 
(Kxx,Kyy=28, Kzz=0.8)     

Cathode material  LiFePO4    

Anode material  Graphite    

 

An enclosure was designed to partially immerse the LIBs pouch cells. A rectangular inlet and outlet with flow guides 

Battery Cells  

Tab  

Busbar  



5 

 

were employed to direct coolants around the battery cells for better performance. The outer wall of the fluid domain 
is strategically designed as an adiabatic wall for the numerical analysis of the 3S2P battery module. Also, the enclosure 
is designed as a dielectric fluid domain (DF) which enhances the capability to quickly simulate solutions for CFD and 
accelerates the modelling process and ensures more effective and timely results, as referenced in [31, 35]. This 
approach would ensure coolants coming in direct contact with surface of the cells, thus decreasing the thermal 
resistance and increasing the thermal homogeneity. Figure 2 shows an example of enclosure configuration. Therefore, 
the main objective is to maximise even temperature distribution and minimise any hot spots, hence it would improve 
power capacity and thermal performance of the module.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Example of the battery module enclosure (hb=5mm, Wc=10mm), (a) battery module along with fluid domain, 
(b) represents the flow orientation, (c) and (d) enclosure dimensions.   

(a) 

(b) 

(c) 

(d) 
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2.3 CFD model    
LIB temperature distribution is computed depend on the energy conservation equation as expressed in equation 1. 
Equation 2 & 3 show the current flux at the positive and negative electrode, respectively. Electrochemical reaction 
heat is computed as written in equation 4. In addition, the current density 𝐽𝐸𝑐ℎ.  and depth of discharge (DOD) of battery 
cell are calculated from equations 5 & 6, respectively.   𝜕𝜌𝐶𝑝𝑇𝜕𝑡  − ∇ ∙  (𝐾 ∇ 𝑇) = 𝜎+|∇𝜑+|2 + 𝜎−|∇𝜑−|2 + 𝑞𝐸𝐶ℎ. ,     (1) ∇ ∙  (𝜎+∇𝜑+) =  − 𝐽𝐸𝑐ℎ. ,                                                                                                                         (2) ∇ ∙  (𝜎−∇𝜑−) =   𝐽𝐸𝑐ℎ. ,                                                                                                                            (3) 

 𝑞𝐸𝐶ℎ. = 𝐽𝐸𝑐ℎ. [(𝑈 − 𝑉) − 𝑇 𝑑𝑈𝑑𝑇],        (4) 𝐽𝐸𝑐ℎ. = 𝑄nominal 𝑄𝑟𝑒𝑓 𝑌[𝑈 − 𝑉],         (5) DOD = 𝑉𝑜𝑙𝑏3600𝑄𝑛𝑜𝑚𝑖𝑛𝑎𝑙 ∫ 𝑗  𝑡0 𝑑𝑡.        (6) 

Where ρ, T, K, Cp and are density, temperature, thermal conductivity, and specific heat capacity of the battery, 
correspondingly. 𝑞.

Ech referred to the electrochemical reaction heat. 𝜎+𝑎𝑛𝑑 𝜎− are electrical conductivity of positive 
and negative electrodes, respectively. 𝜑− 𝑎𝑛𝑑 𝜑−  are phase potential of electrodes. 𝐽𝐸𝑐ℎ.  is the volumetric current 
transfer due to electrochemical reaction.  𝑄nominal is the nominal cell capacity and 𝑄ref is the cell capacity used to obtain the value of Y and U in the experimental 
work, which represents the depth of discharge functions. The battery fitting parameters U and Y are obtained from 
experimental published data by Patil et al. [31]. They investigated an experimental study to calculate the heat 
generation rate of battery cell (20 Ah, LiFePO4) at 3C-dicharge rate and ambient temperature 25 ℃. The correlation 
fitting parameters with DOD functions are therefore expressed as:  𝑈 = 3.462647 − 3.87924 (DOD)1 + 22.9369(DOD)2 − 60.0521(DOD)3 + 70.26211(DOD)4 −30.2737(DOD)5,          (7) 𝑌 = 131.2422 + 28.57686 (DOD)1 − 266.689(DOD)2 + 955.2629(DOD)3 − 1347.92(DOD)4 +573.8234(DOD)5.         (8) 

The thermophysical properties of dielectric immersion cooling, including specific heat, thermal conductivity, and 
viscosity, were assumed constant. In addition, the dielectric immersion flow was assumed incompressible that 
ensuring no depletions or accumulations of mass flow within the control volume. The detailed of system boundary 
conditions are described in the Table 4. For immersion cooling study, fluid flow models are incorporated alongside 
the thermal and electrochemical model. Fluids governing equations for momentum, continuity, and energy can be 
expressed in equations 9, 10, and 11, respectively [36].   𝜕𝜌𝑐𝜕𝑡 𝒱𝑐 +  ∇(𝒱𝑐 . 𝜌𝑐)𝒱𝑐 =  −∇𝑝 + (𝜇𝑐∇𝒱𝑐),                               (9) ∇ .  𝒱𝑐 = 0,                              (10) 𝜌𝑏 𝐶𝑝,𝑏  𝜕𝑇𝑐𝜕𝑡 +  ∇ . (𝜌𝑏 𝐶𝑝,𝑏 𝒱𝑐  𝑇𝑐) =  ∇ . ( 𝐾𝑐  ∇ 𝑇𝑐).      (11)  

Where 𝜇𝑐, 𝑝, 𝐾𝑐, 𝑇𝑐, 𝐶𝑝, 𝒱𝑐, 𝜌𝑐 are dynamic viscosity, static pressure, thermal conductivity, temperature, specific heat 

capacity, velocity, and density, respectively.  

Table 4. Dielectric fluid boundary conditions.  

Specifications   Values  

Coolant    Dielectric fluid (biodiesel) 

Inlet coolant temperature (oC)  25 

Initial Temperature (oC)  25 

Inlet coolant velocity (m/s)  0.01, 0.05, & 0.09  
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Discharge-rate   2C, 3C, & 5C 

Inlet coolant velocity (m/s) for optimisation   0.05 

Discharge-rate for optimisation   5C 

Flow model   Laminar flow  

Inlet condition  Velocity  

Outlet condition  Atmospheric pressure  

Wall boundary condition    No-slip wall 

 

In this study, the thermophysical properties of biodiesel-palm are regarded as constant. The fluid is assumed to be 
incompressible that refers to the density remaining constant throughout the flow. The flow model is laminar based on 
the Reynolds numbers (300 < Re <1000). The inlet and outlet for dielectric fluid are regarded as inlet velocity and 
atmospheric pressure, respectively. LIBs heat generated during the discharging process are regarded as the heat source. 
Battery module free convection with heat transfer coefficients equal to 10 (𝑊/𝑚2. 𝐾). Numerical simulations are 
conducted via ANSYS-fluent V-2024R2 with finite volume method (FVM). The convergence criteria for the 
continuity, momentum, and energy equations' residuals are set to 10-3, 10-3, and 10-6, respectively, to ensure the 
accuracy of the numerical results. A transient thermal model was simulated at 1s time step size and 20 number of 
iterations until the battery module fully discharged. The outer wall of the fluid domain is treated as an adiabatic wall 
for the numerical study of the 3S2P battery module. The enclosure is viewed as a dielectric fluid domain, which 
enhances the capability to quickly simulate solutions for computational fluid dynamics (CFD), which accelerates the 
modelling process and ensures more effective and timely results. Furthermore, the set-ups and pre-processing of the 
CFD simulations are provided in the Table 5.  

 

Table 5. CFD simulation set-ups. 

Physics  1. Time: Transient Initialization  Standard Initialization  

 2. Type: Pressure-Based Transient Set-up 1. Type: Fixed 

 3. Velocity Formation: Absolute  2. Method: User-specified  

Battery Module  1. Solution Method: MSMD  3. Time Step Size (s): 1 

 2. E-Chemistry: NTGK Model  4. Max Iterations/Time Step: 20 

 3. Solution Options: Specified C-Rate  5. Reporting Interval: 1 

 4. Echem Stop Criterion: Voltage Solution Methods  1. Scheme: SIMPLE 

Solutions Equations  1. Flow   2. Gradient: Least Squares cell Based  

 2. Energy   3. Pressure: Second Order 

 3. Potential Ph+  4. Momentum: Second Order Upwind 

 4. Potential Ph-  5. Energy: Second Order Upwind 

Residual Monitors  1. Continuity Equation (10-3)  6. User Scalar 0: First Order Upwind 

 2. Momentum Equation (10-3)  7. User Scalar 1: First Order Upwind 

  3. Energy Equation (10-6)   8. Transient Formulation: Second Order Implicit  

 

The thermal-fluid model integrates fundamental physical domains: Electrochemical-thermal Model (ECM) heat 
generation within cells, convective heat transfer at coolant-cell interfaces, and hydrodynamics behaviour within the 
enclosure. Convective heat transfer in the fluid boundary region can be expressed in equation 12.  

           𝑄∙𝐶𝑜𝑛𝑣 = h A (𝑇𝑠 −  𝑇∞)                                                                         (12) 

where h & A are heat transfer cofficients and LIB surface area, resepctively. 𝑇𝑠 & 𝑇∞ are the surface temperature and 
fluid free stream temperature, correspondingly.  

Boundary layer development governs convective efficiency. The Reynolds number characterizes flow regime and 
scaling:  
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Re = 𝜌𝑣𝐷ℎ𝜇                                       (13) 

Analysing heat transfer characteristics of immersion cooling system are assessed relied on battery cell maximum 
temperature, temperature variation, and pressure drop. Temperature variation, pressure drop, and power consumption 
can be calculated using equations 14, 15, and 16 [34, 37, 38], respectively. ∆𝑇(𝑡) = max{𝑇𝑖(𝑡)} − min{𝑇𝑖(𝑡)}, 𝑖 ∈ {1,2,3,4,5,6},      (14) ∆𝑃 = 𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡,          (15) Power = ∆𝑃 × 𝐴 × 𝑣.         (16) 

Thermal conductivity is essential to conduct heat. LIBs are affected by chemical reaction and their layered structures. 
Hence, thermal conductivity presents a highly orthotropic behaviour in real scenarios for batteries [39, 40]. The 
anisotropic thermal conductivity of pouch battery cell is represented by equation 17 [40].  
 

          𝐾𝑏 = [𝐾𝑥𝑥 0 00 𝐾𝑦𝑦 00 0 𝐾𝑧𝑧] = [28 0 00 28 00 0 0.8]                                                                                        (17) 

 

2.4 Mesh independence check  
A CFD simulation necessitates a high-fidelity mesh and convergence criteria to attain accuracy and reliable results. 
Figure 3 depicts 3D-tetrahedral grids that are applied to the computational module. A boundary layer with a 1.2 
inflation rate is introduced between fluid domain and solid wall to anticipate an increase in velocity in this layer. Mesh 
validation was conducted at constant inlet velocity of 0.09 m/s and 3C discharge rate with increasing number of 
elements to establish sufficient model size. Figure 4 shows comparisons among five different grids, with total number 
of elements: 498481, 661990, 1290410, 3557688, and 4931316, respectively. Results show that a grid with 3557688 
cells ensures convergence balance between simulation accuracy and time by comparing maximum battery temperature 
and pressure drop. In addition, orthogonal mesh quality is accounted to ensure the mesh quality. The maximum and 
minimum value were 0.99 and 0.154, respectively, which are acceptable values for the numerical simulations [41]. 
Therefore, with this grid size conducted simulations for all cases.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Example of mesh configuration of 3S2P battery module 
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Fig. 4 Mesh independence study 

2.5 Biodiesel Coolants  
Biodiesels are considered an alternative fuel that are produced from natural resources, for instance plants, oils, and 
animals’ fats [42]. They are less harmful as compared with fossil fuels and environmentally friendly that make them 
an interesting alternative in HEV [42]. In the previous work [21], authors investigated four types of biodiesels for 
BTMS, namely Palm, Jatropha, Mahua, and Karanja, then they were compared with traditional air cooling and 
immersive using 3M-Novec 7100 as fluid. The Novec fluids are a series of hydrofluoroether products developed by 
3M, known for their wide range of thermal properties [1]. Recently, hydrofluoroethers have gained significant 
attention in electronic immersion cooling and have been applied to BTMS [43, 44, 45, 46]. Researchers have utilized 
3M-Novec 7100 in immersion cooling applications for BTMS due to its non-flammable nature, excellent thermal 
controllability, non-corrosive, low global warming potential (GWP), and zero ozone depletion potential (ODP) [47], 
which significantly mitigate thermal runaway and enhance system safety [48, 49]. Therefore, 3M-Novec 7100 was 
chosen for comparison with biodiesel in this study. 

Among the biodiesel tested, palm biodiesel demonstrated the best cooling performance, outperforming both the  
biodiesel alternative and conventional cooling systems. It maintained the LIB within the temperature range 20 – 40 ℃, and effectively preventing thermal-runaway. As a result, this led to a 43% lighter BTMS design compared to the 
conventional 3M-Novec [21]. Therefore, the palm-based biodiesel is used as coolant in this study, thermodynamic 
properties of coolant are shown in the Table 6.  

Table 6. Comparison of thermodynamic properties of palm biodiesel coolant and traditional coolants [21]. 

Coolants properties  
Cooling Fluids  

Palm 3M-7100 Air  

Density (kg/m3) 865 1510 1.225 

Viscosity (Kg/m.s) 0.0039 0.0006 0.0000179 

Thermal Conductivity (W/m.K) 0.172 0.069 0.025 

Specific Heat (J/kg.K) 1687.248 1183 1006.43 

 
To comprehensively assess the cost and environmental impacts aspects of biodiesel and 3M-7100, the key findings 
are summarized in Table 7. The table demonstrates that biodiesel has lower initial cost and simpler structure than 3M-
Novec 7100. In addition, it is regarded as environmentally friendly and offered enhanced safety. Thus, biodiesel is 
considered as promising solution and more suitable for BTMS, which can significantly improve temperature field and 
heat dissipation of battery module. Although higher kinematic viscosity of biodiesel may lead to increase system 
power consumption, its lower cost and maintenance due to simple structure might compensate for this shortage.  
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Table 7. Comparison between biodiesel and 3M-Novec 7100 in terms of environmental and cost aspects [17].  

Factor  3M-Novec 7100 Biodiesel fuel  

Cost per litter  $50 - $100 USA $4 - $7 USA 

Toxicity  Low toxicity and environmental safety  environmentally friendly  

System requirements  
Complex structure and system design (increase 
maintenance cost) 

Simple structure (fatty acid 
methyl esters) 

Weight Consideration  
Relatively high (increase overall weight of 
system) 

Relatively lighter than 
conventional coolants 

Biodegradability Low (low global warming potential) 
More biodegradable 
(minimizes environmental 
impact in case of spills) 

 

3. Design Optimisation of Immersion Cooling 

The main aim of optimisation methodology is to select the design variables which influence BTMS performance. 
Besides, they are minimising power consumption with maintaining the battery operation in a proper range for 
maximum temperature and temperate uniformity. Thus, to fulfil this a surrogate model is employed.  

3.1 Surrogate Modelling  
Design optimisations use a surrogate model as a significant tool to produce approximations for computationally 
expensive and complex models by using a limited number of parameters from the original model. In the present study, 
a mathematical model was created by using surrogate approach to select design variables and target objectives.  

Optimal Latin Hypercube Sampling (OLHS) was employed to obtain a surrogate model. It is widely utilised among 
other models due to its ability to fill the entire design space [42, 50]. To achieve the filling property, optimal criteria 
namely Enhanced Stochastic Evolutionary Algorithm (ESE) is considered in the present work, which is developed by 
Jin et al., [51]. ESE algorithm is composed of two loops (i.e., the inner and outer loop). The inner loop creates a new 
design through element exchange and evaluates the design based on a specified acceptance criterion. While the outer 
loop regulates the optimisation process by controlling the threshold Th in the acceptance criterion.  

Several parameters influence BTMS performance and selecting all of them leads to an increase in the computational 
cost. Thus, it has been identified that the most significant parameter affecting BTMS efficiency is the battery space 
(ℎ𝑏), and the structure width (𝑊𝑐) as key design variables (DV), as shown in Figure 2. The ranges of the DVs are taken 
as: 3mm ≤  ℎ𝑏  ≤ 10mm and 5mm ≤ 𝑊𝑐  ≤ 15mm. Therefore, OLHS is selected for this study to generate 35 
design of experiments (DOE) points. Figure 5 shows the uniform distribution of design variables (hb, Wc) within the 
design space. Data summarising the 35 CFD simulation results are presented in Table 6 in Appendix A.  
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Fig. 5 DOE points distribution across the battery dimensions’ space vs inlet/outlet width (see Figure 2). 

 

3.2 Support Vector Regression 

Support Vector Regression (SVR) is considered the subset of Support Vector Machine (SVM) applied to regression 
prediction tasks in machine learning. Technique of support vector machine relies on methodology of statistical 
learning. It works by finding the best balance of hyperplane that segregate the dataset into classes, mathematically the 
decision boundary (hyperplane) can be expressed by equation 18 [52]. Application of SVM for regression predication 
and function fitting tasks is known as SVR [53]. SVR can settle non-linear and complex correlations in data between 
input and objectives by utilising a function of Radial Basis Function (RBF). The main aim of SVR is to find the wight 
vector (𝑤) and bias term (𝑏), which minimises the loss functions while preserving a boundary of ϵ-intensive loss 
around the decision boundary [52]. The loss function can be calculated as expressed in equation 19.  𝑓(𝑥) = 𝜔. 𝑥 + 𝑏,                                (18) 

Minimise  〔  12 ‖𝜔‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖∗)𝑁𝑖=1 ,                             (19) 

Where, 𝑓(𝑥), 𝜔, 𝑥, 𝑏 are the regression function, weight vector (uses to define the orientation of hyperplane), input 
feature vector, and bias term (uses to shift the hyperplane), respectively. 𝐶, 𝜉𝑖 , 𝑎𝑛𝑑 𝜉𝑖∗ are regularisation parameter and 

slack variables. N is the DOE site.   

Leave-one-out cross validation (LOOCV) is utilised to identify the optimum kernel functions. Radial Basis Function 
(RBF) is considered as an optimum kernel function due to effectively handling complex input data and helping to 
introduce non-linearity in the model. To evaluate the surrogate model performance, assessment metric is employed: 
root mean square error (RMSE) [54], expressed as follows:  

RMSE = √∑[𝑋 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑− 𝑋]2𝑛 .                                                (20) 

3.3 Multi-Objective Design Optimisation  
Multi-objective optimisation is executed to obtain the optimal design configuration by using Pareto fronts based on 
SVR and Generalized Differential Evolutionary Algorithm (GDE3). GDE3 is characterized by its elitist non-
dominated sorting technique, significantly reducing computational requirements by employing a highly effective 
sorting algorithm [55]. The primary aim of GDE3 is to identify the optimal candidate points from Pareto that reduces 
the target objectives: pressure drop, maximum temperature, and temperature variation. The Pareto front comprises of 
a collection of feasible other solutions that demonstrate distinct trade-offs, where enhancements in one objective 
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necessitate compromising at least one other objective [56]. The corresponding multi-objective optimisation 
formulation is to minimise the functions f1(x), f2(x) and f3(x) defined as: 

             {  𝑓1(𝒙)  = ∆𝑝 (𝑃𝑎) 𝑓2(𝒙)  =     𝑇 max (𝑜𝐶)𝑓3(𝒙)  =    𝑇 𝑑iff (𝑜𝐶)},                                                                                               (21) 

 with 𝒙 = [ℎ𝑏 , 𝑊𝑐] and [ℎ𝑏 , 𝑊𝑐] ∈  [3, 10] × [5, 15].                                      
 

The parameters set for GDE3 are listed in the following Table 8. 

Table 8. GDE3 design parameters. 

Parameter  Value  

Population size  100 

Maximum number of iterations  900 

Crossover parameter (Cr) 0.8 

Mutation parameter factor (F) (0.0, 1.0) 

 
4. Results   

4.1 BTMS Immersion cooling performance at different discharge and flow rates 

To optimize BTMS in Forced Flow Immersion Cooling (FFIC) applications, the study of influence of flow rates and 
discharge rates on cooling performance are conducted. The baseline model for this study was set at 25℃ ambient 
temperature with the battery space module of 5mm and structure width of 10 mm. Palm biodiesel is used as a coolant 
to be investigated. It is circulated through the battery module in a serpentine method as depicted in Figure 8, absorbing 
the heat generated during operating conditions. The objective of this section is to investigate the impact of different 
cases of 3S2P battery module and then use the findings in the design optimisation of BTMS.  

 

 

 

 

 

 

 

 

Fig. 8 Velocity streamlines of 3S2P battery module at 3C discharge rate and coolant flow rate of 0.09 m/s 

Figure 9 illustrates the temperature distribution across the battery cells at 5C-rate and 0.05 m/s. For all cases, the 
highest temperature was observed in the cells 5 and 6 due to a flow stream approach of coolant that would carry heat 
from previous cells, as illustrated in Figure 8. However, it remained within a safe range and was comparable with 
other cells. This result suggests that in case of larger number of cells in a single module, a higher fluid flow rate or 
alternative cooling paths may need to be considered to maintain uniform temperature distribution. 
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Fig. 9 Temperature distribution of 3S2P battery module at 5C discharge rate and 0.05 m/s fluid flow rate 

Fluid flow rate is directly associated with power consumption through coolant pumping loses, depending on the heat 
generation within the cells, this can either increase or decrease. While the discharge current of Li-ion battery does not 
affect the pressure drop, even at high C-rate. Although battery maximum temperature and temperature variation varied 
along with different discharge currents, pressure drop remained the same and only varied because of changing velocity, 
as referred to in Table 9. As inlet velocity increased from 0.01 m/s to 0.09 m/s, the pressure drop increased from 32.676 
Pa to 386.813 Pa, while the battery maximum temperature remained within the operational threshold (<40℃) for all 
cases. In addition, the power consumption would be increased due to the high viscosity of the palm biodiesel coolant. 
Therefore, based on the results in Table 9, the direct fluid inlet velocity of 0.05 m/s and 5C-rate could be selected to 
optimise the BTMS, resulting in preserving the battery maximum temperature and temperature variation below 40℃ 
and 5℃, respectively, and presenting a moderate pressure drop to minimise power consumption.   

Table 9. Maximum battery temperature, temperature variation, and pressure drop at different C-rates 

C-rate  
Fluid Velocity 

(m/s)  
Maximum 

Temperature ℃  
Temperature 
difference ℃ 

Pressure drops 
(Pa) 

2C 

0.01 27.454 1.91 32.676 

0.05 26.074 0.871 185.61 

0.09 25.844 0.702 386.79 

3C 

0.01 29.835 3.664 32.676 

0.05 27.2 1.769 185.61 

0.09 26.742 1.442 386.61 

5C 

0.01 35.55 7.74 32.676 

0.05 30.1 4 185.61 

0.09 29.08 3.35 386.813 

4.2 Comparative analysis and validation 

Validation of the computational model with experimental work is essential to ensure the reliability of the numerical 
work. The validation of the single battery heat generation is performed well against the experimental work. And the 
qualitative validation of BTMS-based immersion cooling using biodiesel as coolant is carried out, by comparing the 
thermal performance against well-established findings from the literature, to evaluate the cooling effectiveness of the 
designed direct cooling (biodiesel-Palm) along with another immersion cooling and indirect liquid cooling.  
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4.2.1 Single cell  
To validate thermal behaviour numerical model without BTMS, transient single battery cell is compared with 
experimental results obtained by Patil et al., [31]. Figure 6 shows maximum temperature profile of pouch battery 
single cell (20 Ah LiFeO4) at 3C discharge rate, alongside with thermal imaging captured upon completion of the 
discharge process. Comparison results illustrated that developed numerical model has a good accuracy and agreement. 
Although, due to its complexity, not all physical phenomena occurring in the battery call has been captured however, 
the numerical model is accurate enough to conduct this study with confidence. It is worth to note that the maximum 
temperature exceeded 40 ℃ above ambient temperature, which might lead to a significant risk. Therefore, an effective 
BTMS is necessary to minimise such thermal conditions and ensure safe operation of battery modules and packs based 
on such cells. 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Numerical validation: Comparison with experimental results for 20 Ah at 3C-rate [31] 

Furthermore, another validation of battery heat generation is conducted based on a high discharge C-rate at 5C. The 
C-rate refers to charging/discharge battery current relative to its nominal cell capacity. Sheng et al. [57] investigated 
an experimental study to evaluate the heat generation rate of battery cell (8 Ah, LiFePO4) at 5C-dicharge rate and 
ambient temperature of 30 ℃. 

Consequently, a single battery cell without BTMS is compared with experimental results obtained by Sheng et al., 
[57] to validate the numerical model. Figure 7 depicts the temperature difference of a battery cell at 5C-discharge rate 
(8 Ah, LiFePO4). The simulation result demonstrates good agreement with experimental results and illustrates 
accuracy of developed numerical model in this work at high discharge rate. Here also it is significant to note that the 
maximum temperature exceeded the temperature limit (40℃), which can highlight a significant risk. This observation 
emphasises need for an effective BTMS to minimise the thermal challenges.  
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Fig. 7 Numerical validation: Comparison with experimental results for 8 Ah at 5C-rate [57]. 

4.2.2 Battery module  
Palm biodiesel coolant shows superior cooling performance to mineral oil and water-glycol, particularly at low inlet 
flow rate. The effectiveness of its thermophysical properties, including high thermal conductivity and lower density, 
makes it well-suited for BTMS applications. To understand and evaluate our analysis, the present numerical study was 
compared with two different BTMS design. The first one used a mini-channel cold plate using water-glycol as a 
coolant and a prismatic cell (20Ah) at (3C & 5C-rate) discharge rate and 0.05 m/s, obtained by [58]. The second study 
used immersion cooling with tab cooling and the battery cell was a pouch (20 Ah) at (3C & 5C) discharge rate and 
0.077 kg/s mass flow rate, obtained by [31]. 3S2P battery module using palm biodiesel as a coolant reduces the 
maximum temperature at 3C-rate by approximately 11.6 % and 8.4 %, compared to Li et al. [58] and Patil et al. [31], 
respectively, as shown in Figure 10-(a). While at 5C-rate it is minimized by 24.88 % and 17.89 % compared to the 
obtained results, correspondingly, as depicted in Figure 10-(b). Therefore, biodiesel coolants, particularly palm oil, 
offer enhance cooling efficiency at low inlet velocities and fulfil lower temperatures compared to mineral oil and mini-
channel cold plate. Also, it achieved lower temperatures variation compared to air and 3M-Novec 7100 as stated in 
our previous study [21].  

Fig. 10 3S2P battery module maximum temperature comparison with mini-channel cold plate [58] and immersion 
cooling [31] (a) at 3C-rate, and (b) at 5C-rate 

(b) (a) LIB module at 0.05 m/s, Tin=25oC at 3oC-rate LIB module at 0.05 m/s, Tin=25oC at 5oC-rate 



16 

 

As stated earlier in Section 2.2, the discharge time is slower compared to the obtained results due to the configuration 
of the battery module four cells in series and two cells in parallel connection, leading to an increase in the capacity of 
a module, which significantly contributed to slowing down the discharge time. The battery heat generation rate at the 
beginning of discharge generally increases. Hence, from 0% DOD to around 10% DOD, heat generation increased 
sharply, then there was a stability in heat generation until it reached 85% of DOD the heat generation increased towards 
the end of discharge. This behaviour of battery heat generation is aligned with results from existing literature [59, 60, 
61]. 

4.3 Sensitivity analysis  
The optimisation study initiates with a robust single-factor analysis, systematically adjusting each input variable based 
on the baseline solution. This method enables a comprehensive exploration of how design variable parameters 
significantly impact optimisation objectives. The design variables and their corresponding value ranges are detailed 
in Table 10, while the calculation results are depicted in Figure 11. 

Table 10. Cases of design variables 

Name  Description  Wc (mm) hb (mm) C-rate  Flow velocity (m/s) 

Single factor analysis  
Varying structural width  5 to 15 5 5 0.05 

Varying battery spacing  3 to 10 10 5 0.05 

Optimisation  Multi-objective optimisation  5 to 15 3 to 10  5 0.05 

 

  

 

 

 

 

 

 

 

 

Fig. 11 Single factor analysis for Tmax, Tdiff, and ΔP at 5C-rate and 0.05m/s: (a) Wc, (b) hb 

Figure 11 (a) illustrates the impact of structural inlet/outlet width (Wc) on the thermal performance and power 
consumption. As the Wc increases, the maximum temperature of battery module decreases, along with a slight 
reduction in the temperature difference. However, this benefit comes at a cost; the pressure drop escalates significantly 
with a wider structural design, adversely affecting energy efficiency. This clearly demonstrates that structural width 
plays a vital role in determining the temperature dynamics of the battery module and the associated pressure drop. 

Figure 11 (b) further examines the effect of battery spacing (hb) on the three key objectives. As the hb increases, the 
thermal performance of the battery module declines, although both Tmax, and Tdiff remain within the operating 
temperature limits. Notably, a smaller battery spacing markedly improves thermal performance, but this advantage is 
offset by a heightened pressure drop, which can significantly compromise overall power consumption. 

Consequently, to optimize the balance among the three objectives—Tmax, Tdiff, and ΔP—strategic trade-offs are 
essential. Employing Multi-Objective Optimization (MOO) becomes imperative for achieving superior thermal 
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performance of the battery module while simultaneously minimizing power consumption. This balanced approach is 
key to maximizing efficiency and sustainability in battery systems. 

4.4 Multi-Objective Optimisation  
Generalised differential evolutionary algorithm (GDE3) is used to generate Pareto fronts by using SVR metamodeling, 
which is available in the pymoo Python package. GDE3 outperformed several optimisation algorithms in terms of 
accuracy, leading for the optimisation study [24]. An RBF is implemented to generate metamodels for Tmax, Tdiff, and 
ΔP using LOOCV approach. The coefficient of determination (R2) is a pivotal metric for evaluating the predictive 
ability of a support vector regression surrogate model. It effectively quantifies the alignment between the model’s 
predictions and the actual values, with a range stretching from 0 to 1. A higher R2 significantly indicates superior 
model performance. Remarkably, all R2 values in this analysis exceed 0.9, highlighting a strong correlation between 
the actual and predicted results, and demonstrating the robustness of the metamodel.  

While the surrogate models developed using Support Vector Regression (SVR) and Radial Basis Function (RBF) 
kernels demonstrated excellent agreement with CFD results within the defined design space (R² > 0.99 and <3% error), 
it is important to acknowledge potential limitations in extrapolation beyond the sampled domain. The 35 DOE points 
generated via Optimal Latin Hypercube Sampling (OLHS) provide a well-distributed representation of the design 
space, e.g. Figure 5 in Section 3.1; however, regions with steep gradients or nonlinear interactions may require denser 
sampling to maintain predictive accuracy. Future work could incorporate adaptive sampling strategies or active 
learning techniques to refine the surrogate model in high-sensitivity regions. This would enhance the model’s 
robustness and generalisability, particularly for applications involving dynamic operating conditions or extended 
geometric configurations. 

Figure 12 demonstrates the metamodeling process validity of the predicated models, which are used to evaluate the 
predication performance. This indicates that SVR metamodels accurately predict Tmax, Tdiff, and ΔP. 

 

 

 

 

 

 

 

 

Fig. 12 Metamodeling validation: comparison of the metamodel predictions with the CFD numerical solutions  
for (a) Tmax, (b) Tdiff, and (c) ΔP 

Figure 13 displays  the Pareto front representing the compromise between the battery maximum temperature and 
pressure drop. The data reveal that any decrease of Tmax is followed by an increase of ΔP.  
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Fig. 13 Pareto fronts curve of Tmax vs. ΔP using the SVR approach together with the DOE points 

Table 11 lists three points on the Pareto front together with of the metamodel validation with CFD results, 
demonstrating the accuracy of the surrogate modelling framework developed. An excellent agreement is observed 
between the surrogate models and the numerical simulations, with a percentage error being <3.5% for all cases.  

Table 11. Design performance of BMTS at three operating condition points located on the Pareto front together with 
CFD validation.  

Points  
Design Variables  Tmax   Pressure  % Error 

hb (mm) Wc (mm) Metamodel CFD Metamodel CFD Tmax Pressure 

P1 3 14.999 29.215 29.215 1177.14 1177.14 0 0 

P2 6.005 14.954 29.67 29.668 181.459 180.216 0.0067 0.685 

P3 9.613 9.939 31.137 31.134 42.546 41.042 0.009 3.535 
 

Figure 14 demonstrates the Pareto front of maximum temperature and temperature variation. The differences in the 
battery temperature are minimal as shown, attributed to the high linearity observed between two objectives: Tmax and 
Tdiff.  

Fig. 14 Pareto front curve of Tmax vs. Tdiff using the SVR approach together with the DOE points 
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Figure 15 presents the Pareto front between Tdiff against ΔP. Here again, a pressure drop increase yields a decrease in 
the temperature variation of the battery module. The optimisation results revealed that BTMS designers can judge the 
balance between competing targets. For example, to minimize the battery maximum temperature from 31.6 oC to 29.2 
oC would require more power and a ensuing pressure drop increase from 35.58 Pa to 1177 Pa, as shown in Figure 12.  

 

 

 

 

 

 

 

 

 

 

Fig. 15 Pareto fronts curve of Tdiff vs. ΔP using the SVR approach together with the DOE points 

Finally, Figure 16 displays a 3D Pareto surface representation  emphasising the compromise that can be met between  

the three objectives Tmax, Tdiff, and ΔP.  

 

Fig. 16 3D Pareto surface together with metamodel predictions and corresponding CFD validations at five design 
points as defined in Table 10. 

The Pareto fronts generated in this study reveal critical trade-offs between maximum temperature, temperature 
uniformity, and pressure drop — each of which carries distinct engineering implications depending on the application 
context. For instance, in electric vehicle (EV) applications where energy efficiency and range are paramount, designers 
may prioritise lower pressure drop to minimise pumping power and extend battery life. Conversely, in stationary 
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energy storage systems, where thermal stability and safety are more critical than energy efficiency, temperature 
uniformity may take precedence to prevent localised overheating and extend module lifespan. The flexibility of the 
GDE3 optimisation framework allows engineers to select design points that best align with their operational priorities, 
whether that be minimising energy consumption, enhancing safety, or balancing both. This adaptability makes the 
proposed framework highly applicable across diverse BTMS deployment scenarios. 

The accuracy of the optimisation framework developed is evidenced through five design points, P1,.., P5 on the Pareto 
where metamodel and CFD results are displayed, and compare very well. This is further demonstrated in Table 12, 
where the percentage error between the metamodel predictions and CFD calculations is less than 3% overall.  

 

Table 12. Design performance of BMTS at four design points located on the Pareto together with CFD validations. 

Desing Points # 
Design variables  Tmax (oC) Tdiff (oC) ΔP (Pa)  % Error 

hb 

(mm) 
Wc 

(mm) 
Metamodel  CFD Metamodel  CFD  Metamodel  CFD  Tmax  Tdiff   Pressure  

P1 3 14.987 29.215 29.3 2.74 2.768 1176.355 1178.072 0.29 1.02 0.146 

P2 6.523 14.993 29.742 29.758 3.799 3.81 145.275 146.166 0.0538 0.289 0.613 

P3 9.891 8.865 31.371 31.406 4.711 4.767 37.054 37.18 0.11 0.11 0.34 

P4 9.993 9.503 31.256 31.302 4.639 4.683 39.483 38.349 0.147 0.948 2.871 

P5 9.433 9.857 31.129 31.131  4.598  4.553 42.902  42.181 0.0064   0.979  1.68 
 

Compromise design point is selected among other non-dominated solutions and is placed in the left corner of the 

Pareto surface, e.g. design point P2 in Table 12. The compromise design point shows superior upgrades compared to 

benchmark results. There is a minimisation in three target objectives (i.e., Tmax, Tdiff, and ΔP) by 1.19 %, 5.8 %, and 

21.73 %, respectively. The maximum temperature reduced from 30.1 oC to 29.74 oC, while the temperature variation 

and pressure drop decreased from 4 oC to 3.768 oC and 185.61 Pa to 145.275 Pa, correspondingly, as shown Table 13.  

In addition, the design point indicates that the maximum temperature is reduced by 25.789 % compared to the mini-

channel cold plate and by 18.876 % compared to mineral oil immersion cooling. Therefore, the optimisation 

framework improves the percentage reduction of the battery’s maximum temperature, increasing it from 24.789 % to 

25.789 % and from 17.89 % to 18.876 %, respectively. Eventually, decision making on which design is best 

appropriate will depend on various factors such as manufacturing capability, applications and other engineering 

constraints.    

Table 13:  Candidate design point compared to benchmark results.  

  Acronym  Benchmark Design  
Optimum 

Candidate Design  

Design Variables  
hb (mm) 5 6.523 

Wc (mm) 10 14.993 

Objectives Functions  

Tmax (oC) 30.1 29.742 

Tdiff (oC) 4 3.799 

ΔP (Pa) 185.61 145.275 

5. Conclusion 

In this study, a new numerical model of heat generation during a discharge process was developed for LiFePO₄ battery 
pouch cell. It was validated against published experimental data for up to 5C discharge rate. For the first time, an 

optimisation methodology for battery thermal management systems (BTMSs) immersion cooling is laid out which 

combines Support Vector Regression (SVR) and Generalized Differential Evolutionary Algorithm (GDE3). A robust 

functional relationship between critical design parameter (i.e, battery space and inlet/outlet width) is established, and 

allowing appropriate key operating conditions, including maximum temperature, temperature differential, and 

pressure drop. With introduction of GDE3 algorithm within the framework, a comprehensive three-dimensional Pareto 
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surface was generated, enabling a detailed analysis of compromises among three key objectives and facilitating the 

identification of optimal design points. This thorough evaluation ultimately enhances the cooling performance of 

BTMS, paving the way for more efficient and effective solutions in battery management. The key findings are 

concluded as follows:    

• Through CFD-driven optimisation of a 3S2P pouch cell module (20 Ah LiFePO₄), biodiesel demonstrated 
exceptional thermal regulation - maintaining maximum temperatures below 29.9°C at 5C discharge rates and 

limiting cell-to-cell variations to ΔT < 5°C. 

• The integrated framework, combining Newman, Tiedemann, Gu, and Kim (NTGK) electrochemical modelling, 

conjugate heat transfer simulation, and surrogate-assisted multi-objective optimisation, provides a replicable 

template for BTMS design. Optimal Latin Hypercube Sampling (OLHS) efficiently navigated complex parameter 

interactions, while SVR with RBF kernels achieved high prediction accuracy. This approach demonstrates how 

computational methods can accelerate sustainable thermal solutions development and design. 

• The optimised system geometry (5 mm battery gap, 10 mm inlet width) at 0.05 m/s and 5C-rate and selected the 

candidate point 1 achieved an optimal balance between thermal homogeneity and hydraulic efficiency, which 

reduced the maximum temperature by 1.19 % (30.1 oC to 29.742 oC), the temperature difference by 5.8 % (4 oC 

to 3.799 oC), and the pressure drop 21.73 % (185.61 Pa to 145.275 Pa). In addition, it represents 25.789 % 

improvements over the conventional mini-channel cold plate and a 18.876 % enhancement versus mineral oil 

immersion cooling.  

• Beyond thermal performance, palm biodiesel offers critical sustainability advantages: a 43% reduction in system 

weight versus systems that use fluorinated coolants, and >80% cost savings ($4–7/L vs. $50–100/L for 3M-Novec 

7100). Its biodegradability and non-toxic profile further address lifecycle environmental concerns absent in 

synthetic alternatives. The GDE3 optimized design eliminates thermal runaway risks while enabling lighter, more 

energy-dense battery packs—directly supporting electric vehicle range extension. 

In summary, the work presents a novel palm biodiesel optimisation of BTMS immersion cooling, and SVR machine 

learning approach within multi-objective optimisation using GDE3.  By using biodiesel as a viable coolant, the cooling 

performance of the BTMS was thoroughly evaluated. In addition, it significantly contributes to achieving weight 

reduction of the filled enclosure, which would improve the system performance. In the future work, battery module 

could be conducted to validate BTMS-based optimised performance in real world scenario. In addition, driving cycle 

and battery under thermal runway might also be considered within an optimisation framework.  
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Appendix A.  
Table 6. Thirty-five DOE points with CFD results for three objectives.  

Design 
Point #  

Design parameter   Response  

hb (mm) Wc (mm)   Tmax (oC) Tdiff (oC)  ΔP (Pa) 
1 8.264 14.01  30.09 3.98 76.565 

2 9.343 12.8  30.51 4.245 53.383 

3 3.391 8.271  30.05 4.125 447.12 

4 3.487 10.84  29.538 2.925 538.89 

5 4.622 7.75  30.466 4.368 178.23 

6 4.039 14.46  31.57 5.87 517.292 

7 7.445 9.894  30.675 4.362 67.884 

8 5.396 11.61  29.942 3.974 178.424 

9 4.134 12.31  29.647 3.868 399.499 

10 8.864 7.004  31.682 4.91 42.514 

11 4.875 5.695  31.149 4.73 125.523 

12 8.026 7.997  31.24 4.673 51.25 

13 4.543 10.47  29.946 4.01 253.21 

14 7.133 14.1  29.913 3.875 108.459 

15 9.559 9.124  31.293 4.745 39.674 

16 6.524 10.74  30.284 4.132 100.167 

17 5.55 9.359  30.331 4.189 132.066 

18 8.543 9.531  31.037 4.572 49.611 

19 9.083 11.27  30.762 4.4 49.837 

20 7.75 12.07  30.324 4.16 74.716 

21 5.13 13.68  29.663 3.768 247.845 

22 5.981 14.76  29.666 3.752 179.786 

23 7.544 5.307  31.935 5.015 56.775 

24 9.862 7.317  31.774 4.955 36.898 

25 6.295 12.59  29.948 3.915 130.059 

26 3.085 13.31  29.326 2.92 945.47 

27 5.813 6.519  31.128 4.646 90.435 

28 6.628 8.667  30.77 4.469 79.874 

29 3.691 6.247  30.654 4.495 265.659 

30 7.057 6.926  31.3 4.699 62.204 

31 9.232 5.516  32.37 5.328 44.642 

32 3 5  30.886 4.738 377.697 

33 10 5  32.822 5.764 45.431 

34 3 15  29.205 2.74 1177.3783 

35 10 15   30.18 4 56.69 

 


