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Abstract 
Biological regulation is a highly intricate process and involves many layers of complexity 
even at the RNA level. Alternative splicing is crucial in the regulation of which components of 
a protein-coding gene are spliced into a translatable mRNA. During ageing splicing becomes 
dysregulated and alternative splicing has been shown to be involved in disease and known 
anti-aging treatments such as dietary restriction (DR) and mTOR suppression. In prior work 
we have shown that DR and mTOR suppression modulate the expression of the 
spliceosome in the fly (Drosophila melanogaster). Here, we manipulated the five top genes 
that change in expression in both these treatments. We found that knockdown (using 
conditional in vivo RNAi in adults) of some spliceosome components rapidly induce mortality, 
whereas one, Rbp1, extends lifespan. Treatments that have more instant benefits on 
longevity are more translatable. We therefore subsequently repeated the Rbp1 experiment, 
but initiating Rbp1 at later stages in adult life. We find that irrespective of age of induction, 
knockdown of Rbp1 extends lifespan. Our results posit the spliceosome itself as a hub of 
regulation that when targeted can extend lifespan, rendering it a promising target for 
geroscience.  
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Introduction 
Ageing is characterised by a diverse range of molecular and cellular alterations and is the 
strongest risk factor for all age-related diseases (Guo et al., 2022; López-Otín et al., 2023). 
The geroscience hypothesis therefore states that if we can target and treat ageing we will 
prevent all major debilitating age-related diseases (Kennedy et al., 2014). The two best 
studied treatments which positively impact health and lifespan across species are restriction 
(DR) and suppression of mammalian target of rapamycin (mTOR) (Garratt et al., 2016; 
Green et al., 2022; Papadopoli et al., 2019; Simons et al., 2013). Dietary restriction is 
conserved across evolution, spanning from yeast to mammals (Fontana et al., 2010; Gautrey 
et al., 2025). It remains unclear, however, which precise nutrients enable the beneficial 
effects of DR and what the exact downstream mechanisms of DR are (Gautrey & Simons, 
2022; Green et al., 2022; Selman, 2014). The beneficial lifespan extending effects of 
suppression of mTOR appear to similarly be conserved across species (Garratt et al., 2016), 
but downstream mechanisms again are similar to DR not fully elucidated and distributed 
across many different physiological and molecular pathways. For example, mTOR 
expression has been reported to both increase and decrease with age, depending on, sex, 
tissue, and other specific conditions (Baar et al., 2016; Chen et al., 2009; Papadopoli et al., 
2019). A shared feature of both mTOR suppression and DR is however that they both exert 
widespread effects on alternative splicing irrespective of species (Heintz et al., 2017; 
Rhoads et al., 2018; Simons et al., 2019; Tabrez et al., 2017). Both mTOR suppression and 
DR may therefore orchestrate physiology that promotes healthy ageing through changes in 
genome-wide splicing.  

Alternative splicing is the process regulating which transcribed components of a 
protein-coding gene are spliced into a translatable mRNA determining a large proportion of 
the complexity of the proteome (Marasco & Kornblihtt, 2023; Modrek & Lee, 2002). Splicing 
changes rapidly in response to the environment (Singh & Ahi, 2022) and patterns of splicing 
are heritable (Kwan et al., 2007). Alternative splicing is a major determinant of organismal 
complexity and abnormal splicing events are implicated in disease and ageing (Bhadra et al., 
2020; Marasco & Kornblihtt, 2023). Indeed, a genome wide dysregulation of alternative 
splicing is observed during ageing (Holly et al., 2013; Latorre & Harries, 2017; Li et al., 
2017). The molecular machinery through which splicing is carried out and regulated is known 
as the spliceosome; a large dynamic complex of approximately 100 different proteins as well 
as snRNPs and small nuclear RNA (snRNA). Several other proteins trigger the assembly of 
the spliceosome, even if they are not themselves part of the spliceosome “core” (Kastner et 
al., 2019; Wilkinson et al., 2020).  

Each spliceosome component is recruited to the spliceosome as the complex forms around 
a 5’ splice site, and each mediates specific parts of the splicing reaction (Plaschka et al., 
2019; Yan et al., 2019). As each component is recruited (some individually, others as part of 
a complex), the spliceosome changes conformation and progresses through different stages 
of the splicing reaction (Wilkinson et al., 2020). Each component therefore has an important, 
albeit in some cases small, role to play in the splicing of mRNA. Previous studies have 
manipulated the expression of individual spliceosome genes and identified, importantly but 
also perhaps unsurprisingly, wide-reaching splicing and spliceosome regulatory changes 
(Rogalska et al., 2024). Intriguingly, the manipulation of a single individual spliceosome 
component can modulate lifespan; overexpression of one spliceosome component gene in 
C. elegans, sfa-1, extends lifespan, whereas knockdown of sfa-1 negates the pro-longevity 
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phenotypes of mTOR suppression and DR (Heintz et al., 2017). Modulating the spliceosome 
may thus have the potential to mimic the health benefits of both DR and mTOR suppression. 

Here, we manipulated the spliceosome components that show the strongest transcriptomic 
changes in response to the rejuvenating effects of early-life mTOR suppression and DR in 
flies. Three spliceosome components truncated lifespan substantially when knocked down 
(Sf3b1, barc and Prp5), showing they are essential for life. One splicing factor, Rbp1, 
increases lifespan when knocked down, and similarly when this knockdown was induced 
later in life. Modulation of the spliceosome therefore holds promise to achieve pro-longevity 
effects. As such the spliceosome provides a model to distill how pro-longevity effects are 
orchestrated on a whole organism level. 
 

Results 
The expression of spliceosome genes change consistently between DR 
and transient mTOR suppression 
We tested using previously generated transcriptomes in our group whether the spliceosome 
changed concordantly across treatments. Suppression of mTOR in early adult life (using 
RNAi) has long lasting benefits which we have suggested previously are mediated via the 
spliceosome (Simons et al., 2019). We combined this dataset with a transcriptome 
measuring the response to DR within 48 hours. As the fly responds rapidly to DR in terms of 
a reduction in mortality rate (Good & Tatar, 2001; Mair et al., 2003; McCracken et al., 2020; 
Whitaker et al., 2014) changes occurring in the transcriptome during this time are devoid of 
longer term compensation that will not be causal to the extension in lifespan observed. 
Previous work used microarrays (Whitaker et al., 2014), we recently generated next 
generation sequencing (using the setup described in Charles, 2022; Gautrey et al., 2025; 
McCracken et al., 2020). We compared whether the same spliceosome or 
spliceosome-regulatory genes (identified as genes which were in Gene Ontology terms 
featuring the word “spliceosome”; see Table S1) were differentially expressed in both the 
mTOR and DR datasets, and whether they were modulated with concordant directionality. Of 
the 280 total genes in the spliceosome-related Gene Ontology terms, 165 genes were 
significantly differentially expressed upon mTOR suppression and 36 upon DR. 32 of these 
genes were differentially expressed with the same directionality in both DR and transient 
mTOR suppressed conditions (Figure 1 and Table S2). 
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Figure 1 - The spliceosome is modulated in both DR and transient mTOR suppressed 
conditions. Spliceosome genes which respond similarly between DR and transient mTOR 
suppression. 32 spliceosome-annotated genes were significantly differentially expressed (adjusted 
p-values ≤ 0.05) and showed concordant transcriptional change in response to transient mTOR 
suppression and DR in Drosophila melanogaster. The vast majority of these (30 of the 32) were 
upregulated. The five genes from this set we subsequently tested for lifespan phenotypes are 
indicated, and represent the top 5 significant genes in the DR treatment that also responded to mTOR 
suppression.  
 

Individual spliceosome components modulates lifespan 
To test whether the spliceosome components associated with both pro-longevity treatments 
were able to modulate lifespan we knocked them down in adults using in vivo RNAi on rich 
diets (Gautrey et al., 2025). We tested the top 5 significant genes within the DR dataset that 
were also differentially expressed in the mTOR dataset, as the DR dataset overall appeared 
less sensitive or impactful on the spliceosome. We also only included those spliceosome 
components that went up in expression in response to the pro-longevity treatments. We 
further included Sf3b1 as it is a known important spliceosome component and has previously 
been investigated in relation to cancer proliferation and mTOR signalling (Fuentes-Fayos et 
al., 2022; Han et al., 2022). Although knockdown of CG4896 and CG7974 did not affect 
survival, knockdown of barc, Prp5 and Sf3b1 each significantly reduced lifespan, whilst Rbp1 
knockdown significantly extended lifespan (Figure 2 and Table 3). 
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Figure 2 - Knockdown of spliceosome genes modulates lifespan. Driving spliceosome gene RNAi 
with the daughterless-GeneSwitch (daGS) global conditional driver from age 4 days onwards reveals 
that different spliceosome components modulate lifespan in different directions in females (N ≥ 173 
flies per condition). GeneSwitch activity is initiated by supplementation with RU486 (RU). Hazard 
ratios and p-values for the experiment are shown in Table 1. 
 
Table 1 - Statistics for knockdown of spliceosome genes. Data was analysed using cox 
proportional hazard mixed effects models using right-censoring where applicable (Therneau et al., 
2003; Therneau, 2015), incorporating cage as a random effect and experimental batch as fixed effect, 
correcting for shared environmental effects from housing and growing conditions. Negative log hazard 
ratios indicate an increase in lifespan. 

Gene RNAi loge(hazard 
ratio) 

Standard error N P-value 

barc 3.90 0.33 340 < 0.0001 

CG4896 -0.14 0.11 375 0.20 

CG7974 0.24 0.23 296 0.30 

Prp5 3.44 0.24 404 < 0.0001 

Rbp1 -0.69 0.13 501 < 0.0001 

Sf3b1 4.35 0.33 388 < 0.0001 
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Knockdown of Rbp1 reduces mortality when initiated later in adult life 
Considering that conditionally driving Rbp1 RNAi from early adult life extended lifespan, we 
wanted to test whether this treatment could also extend lifespan when activated in later life 
(Vaupel et al., 2003). We therefore repeated the Rbp1 knockdown experiment, but with two 
additional conditions; Rbp1 knockdown from 15 days onwards and Rbp1 knockdown from 25 
days onwards. Both of these treatments reduced mortality and thereby improved life 
expectancy (Figure 3 and Table 2). Knockdown of Rbp1 can therefore improve life 
expectancy of flies irrespective of when the knockdown occurs. 

 

 
Figure 3 - Knockdown of Rbp1 reduces mortality risk irrespective of when it is triggered. 
Conditional activation of Rbp1 RNAi reduced mortality irrespective of whether it was induced 4 days 
post-eclosion (as in Figure 2), or at later timepoints; 15 days post-eclosion or 25 days post-eclosion. 
Rbp1 knockdown reduced mortality even when initiated at later timepoints (N ≥ 700 flies per condition, 
coxme interval-based model). The vertical yellow and blue lines signify the timepoints of RU 
supplementation. 
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Table 2 - Statistics for Rbp1 knockdown at different timepoints, or overall. Data was analysed 
using coxme interval-based models, incorporating the cage ID as a random effect and experimental 
batch to capture shared environmental effects. As treatment was initiated later we coded this as a 
time-dependent covariate in the coxme models (McCracken et al., 2020; Therneau & Atkinson, 2016). 
 

Comparison loge(hazard 
ratio) 

Standard 
error 

N P-value 

Overall RU vs Control -0.23 0.06 2800 0.00012 

RU at 15 days vs Control -0.30 0.08 1525 0.00017 

RU at 25 days vs Control -0.23 0.09 1547 0.00590 

 
 

Discussion 
Individual spliceosome components when experimentally reduced negatively affected 
lifespan but surprisingly Rbp1 when knocked down increased lifespan. The direction of this 
effect is surprising as both pro-longevity treatments increase Rbp1 expression. Rbp1 
knockdown alone is able to increase lifespan while in the context of pro-longevity treatments 
its increased expression is correlated with increased lifespan. This contradiction could be 
explained by interactions within the spliceosome or, alternatively, the spliceosome response 
observed is a compensatory response and it is actually the reduction of its downstream 
effects, possibly translation to protein that extends lifespan. We recently observed similar 
compensatory effects for a range of DR-responsive genes where similarly genes that 
increased in expression, when knocked down, increased lifespan (Gautrey et al., 2025). 
 
In vertebrates, inhibition of many spliceosome genes severely affect many essential cellular 
processes and mutations in spliceosome genes are frequently observed in cancers (Olthof et 
al., 2022; Taylor & Lee, 2019). To a certain extent it was therefore unsurprising that we 
observed increased mortality upon conditional knockdown of barc, Prp5 and Sf3b1 in flies. 
However, unexpectedly the conditional knockdown of the SR protein-encoding gene Rbp1 
extended lifespan. In theory, knockdown of Rbp1 should reduce spliceosome assembly at 
Rbp1 binding sites in specific exonic splicing enhancers (ESEs), which therefore should 
negatively impact splicing fidelity of a subset of mRNAs. The mechanistic reason for this 
positive effect of knockdown of Rbp1 on lifespan is at present unclear. However, 
interestingly, the human orthologue of Rbp1, SRSF1 (Kim et al., 1992) has been previously 
suggested to constitute a rejuvenation factor (Plesa et al., 2023). 

The spliceosome components which rapidly increased mortality risk when knocked down in 
this study are all recruited to the spliceosome at a later stage than the point at which Rbp1 
plays a role; barc, Sf3b1 and Prp5 are all recruited at the pre-spliceosome stage (also known 
as Spliceosomal Complex A). Prp5 is recruited in order to bridge the U1 and U2 snRNPs 
together at the pre-mRNA (Liang & Cheng, 2015; Xu et al., 2004), whilst barc and Sf3b1 are 
recruited as part of the U2 snRNP (Abramczuk et al., 2017; van der Feltz & Hoskins, 2019). 
In contrast, Rbp1 encodes an SR protein, a class of proteins which bind pre-mRNA and 
recruit early spliceosome components to splice sites even before the commitment complex 
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(Spliceosomal Complex E) has formed (Kim et al. 1992; Jeong 2017). Therefore, perhaps a 
reduction (but not complete ablation) of spliceosome assembly, such as that which results 
from Rbp1 suppression, benefits organismal health and longevity. One potential mechanism 
could be improved proteostasis by causing overall reduced protein synthesis (Basisty et al., 
2018; Hipkiss, 2007). Perhaps suppression of components beyond recruitment towards the 
spliceosome causes the spliceosome to stall fully leading to a complete failure to effectively 
translate protein and thus lead to a severely truncated lifespan. 

A second important result from this study is that Rbp1 knockdown extends lifespan also 
when instigated later in adult life. Geroscience-based treatments that do not require lifelong 
treatment will be far easier to translate to the clinic (Kirkland, 2016). So far only mTOR 
suppression may be capable of achieving this across organisms (Bitto et al., 2016; Garratt et 
al., 2016; Simons et al., 2019). Rbp1 is especially interesting as it was also identified 
independently using a cell-based screen on reprogramming with subsequently beneficial 
phenotypes including in mice (Plesa et al., 2023). More generally, individual spliceosome 
components, rather than the spliceosome as a whole, may prove powerful targets for 
healthspan-modifying drugs. 

Methods 
Fly media was composed of the following components, as previously described (Hayman et 
al., 2025): 6% cornmeal, 13% table sugar, 1% agar, 0.225% nipagin and 8% yeast (all w/v), 
with the addition of 0.4% (w/v) propanoic acid (Sigma-Aldrich) for fly growing bottles only. All 
experiments utilised the near globally-expressed daughterless-GeneSwitch (daGS) driver 
(Tricoire et al., 2009) to conditionally drive transgenes in vivo, thereby removing the potential 
effect of background genotype (Hayman et al., 2025). In experimental conditions requiring 
activation of daGS, RU486 (200 μM; Thermo Fisher Scientific) was supplemented, dissolved 
in ethanol and controls treatments received the same amount of ethanol. Media was split 
from a same batch to ensure the exact same food was used for both treatments. Previous 
experiments in our laboratory have found no effect of RU supplementation on lifespan using 
this same driver line (Gautrey et al. 2025; Hayman et al. 2025). All flies were maintained and 
grown at 25°C. The fly lines used are shown in Table S3. For survival experiments, flies were 
kept for mating for 2 days after eclosion, before being sorted under light carbon dioxide 
anesthesia, with females put into cages to assess survival as we described previously 
(Gautrey et al., 2025; Hayman et al., 2025; McCracken et al., 2020; Phillips & Simons, 
2024). 
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Supplementary material 
 
Table S1 - Spliceosome-related Gene Ontology terms used to filter shared genes changing in mTOR 
suppressed and DR conditions. 
 
Generation of catalytic spliceosome for first transesterification step 

Generation of catalytic spliceosome for second transesterification step 

Trans assembly of SL-containing precatalytic spliceosome 

Cis assembly of pre-catalytic spliceosome 

mRNA trans splicing, via spliceosome 

Alternative mRNA splicing, via spliceosome 

Regulation of alternative mRNA splicing, via spliceosome 

Spliceosome conformational change to release U4 (or U4atac) and U1 (or U11) 

mRNA splicing, via spliceosome 

mRNA cis splicing, via spliceosome 

Regulation of mRNA splicing, via spliceosome 

Negative regulation of mRNA splicing, via spliceosome 

Positive regulation of mRNA splicing, via spliceosome 

U2-type prespliceosome 

U2-type precatalytic spliceosome 

U2-type catalytic step 1 spliceosome 

U2-type catalytic step 2 spliceosome 

Prespliceosome 

Precatalytic spliceosome 

Catalytic step 1 spliceosome 

Catalytic step 2 spliceosome 

U12-type prespliceosome 

U12-type precatalytic spliceosome 

U12-type catalytic step 1 spliceosome 

U12-type catalytic step 2 spliceosome 

Spliceosome-depend formation of circular RNA 

U2-type prespliceosome assembly 

Regulation of mRNA cis splicing, via spliceosome 

Negative regulation of mRNA cis splicing, via spliceosome 

Positive regulation of mRNA cis splicing, via spliceosome 
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Table S2 - Shared dysregulated spliceosome genes between mTOR suppression and DR. 30 
spliceosome-annotated genes are upregulated upon both transient mTOR suppression and DR, whilst 
2 spliceosome-annotated genes are downregulated in both treatments. 
Gene symbol logFC (DR) Adjusted p-value 

(DR) 
logFC (mTOR 
suppression) 

Adjusted p-value 
(mTOR) 

barc 0.283 0.002 0.183 0.017 
ps -0.868 0.011 -1.771 0.000 
Prp5 0.248 0.016 0.156 0.006 
CG7974 0.382 0.017 0.348 0.000 
Rbp1 0.834 0.020 0.161 0.035 
CG6227 0.379 0.021 0.408 0.000 
pea 0.406 0.023 0.494 0.001 
Rnp4F 0.245 0.024 0.225 0.001 
fand 0.263 0.025 0.386 0.000 
CG4119 0.274 0.025 0.384 0.000 
B52 0.602 0.025 0.255 0.000 
Cbp80 0.310 0.026 0.444 0.000 
CG6179 0.334 0.027 0.487 0.000 
Mtr4 0.188 0.028 0.202 0.006 
crn 0.294 0.030 0.254 0.001 
bru2 -0.553 0.031 -1.136 0.000 
Prp6 0.506 0.031 0.324 0.002 
mod 0.429 0.032 0.190 0.023 
CG10418 0.740 0.033 0.221 0.010 
l(2)37Cb 0.251 0.033 0.277 0.000 
vir 0.262 0.034 0.292 0.000 
Smn 0.743 0.035 0.433 0.002 
Mfap1 0.337 0.035 0.267 0.000 
abs 0.206 0.036 0.311 0.000 
x16 0.578 0.036 0.407 0.000 
Prp40 0.398 0.037 0.416 0.000 
CG30122 0.274 0.039 0.189 0.006 
ncm 0.235 0.039 0.344 0.001 
snRNP-U1-70K 0.390 0.040 0.551 0.000 
CG17187 0.443 0.040 0.371 0.001 
kin17 0.289 0.045 0.353 0.001 
CG7741 0.335 0.048 0.327 0.001 
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Table S3 - Fly lines used in this manuscript, with source stock and/or publication. 
Line Full genotype Source or Bloomington 

Drosophila Stock 
Center number 

Reference 

daughterless-Ge
neSwitch 
(daGS) 

y[1] w[*]; daGS Gift from Marc Tatar (Tricoire et al., 2009) 

UAS-barc RNAi y[1] v[1]; P{y[+t7.7] 
v[+t1.8]=TRiP.HMJ02069
}attP40 

42504  (Ni et al., 2011) 

UAS-CG4896 
RNAi 

y[1] v[1]; P{y[+t7.7] 
v[+t1.8]=TRiP.HMJ24125
}attP40 

62885  

UAS-CG7974 
RNAi 

y[1] v[1]; P{y[+t7.7] 
v[+t1.8]=TRiP.GLC01718
}attP2 

50596  

UAS-Rbp1 RNAi y[1] sc[*] v[1] sev[21]; 
P{y[+t7.7] 
v[+t1.8]=TRiP.HMC0390
2}attP40 

55688 

UAS-Prp5 RNAi y[1] v[1]; P{y[+t7.7] 
v[+t1.8]=TRiP.HMJ24050
}attP40 

62507 
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