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Abstract

The micro-interface slip damping mechanism is insensitive to temperature, making it
suitable for applications where the operating environment makes viscoelastic polymers
ineffective. Damping material systems that rely on micro-interface slip typically embody
randomly disposed interlocking units leading to complex material behaviors. This work
studies a compressed coir vibration isolator that provides a lightweight, low cost and
environmentally friendly alternative to common polymer devices. Under cyclic loading, it
displays highly nonlinear hysteresis and a gradual change in properties based on the load
history. The nonlinear hysteresis is captured with a Masing model, which has been shown
to provide an adequate phenomenological representation of systems with large numbers of
miniature stick-slip contacts. This study further explores a new way to enrich the Masing
model by encoding time evolution using restoring force or displacement time integral,
directly adopted from mem-models, a new family of models transferred from electrical
engineering. In addition to using the data from the coir isolator, two additional datasets
from clayey soil, another application of micro-interface slip damping, are used to validate
the modeling approach.

Keywords: micro-interface slip damping; displacement ratcheting; cyclic behavior;
time-varying; hysteresis; mem-models; absement; generalized momentum; extended
Masing model

1. Introduction
1.1. Background

Damping materials that are used for suppressing vibrations in machinery are com-
monly made from polymers and rely on their viscoelasticity. They are unsuitable for some
applications because polymer viscoelasticity is effective over relatively narrow ranges of
temperature and frequency [1]. One alternative is micro-interface slip damping which
can be observed in thermally sprayed ceramic coatings [2], tangled metal wire devices [3],
multi-strand cables [4], and granular systems [5]. Here, vibration energy is dissipated via
sliding friction between many interfaces that have length scales ranging from micrometers
to a few millimeters. This study considers a newcomer into this family, compressed coir.

Coir is a fibrous material found between the outer skin of a coconut and the hard
inner shell (e.g., [6]). As a byproduct of the food industry, coir has traditionally found
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use in upholstery, ropes, matting, and compost. Individual coir fibers are light, tough,
and strong, and there is growing interest in their use as the reinforcement in sustainable
composites. The application considered here is different in that it involves a vibration
isolator constructed from dry coir fibers without any binding matrix. It is in some ways a
sustainable analogy to the tangled metal wire devices that have been the focus of significant
research activity over the last decade [7].

1.2. Overview of This Study

A lightweight, low-cost, environmentally friendly vibration isolator is constructed
from coir (dry coconut fiber) that has been pressed in a mold to form a porous solid. While
effective over a broad temperature range (consistent performance seen when tested over
the range 0–70 ◦C), properties vary with load intensity and history, making traditional
modeling approaches cumbersome. This study uses load-deflection information collected
from a long-duration cyclic compression test on a coir isolator. While it is known that there
is considerable sample-to-sample variability, the general trends in the behavior remain the
same, allowing the suitability of the model to be evaluated with this dataset.

The coir dataset does not have the time histories completely measured, which is
typical in engineering reality for lengthy cyclic tests. To overcome this significant technical
challenge, the required time histories are approximated by linear interpolation. A high
sampling rate used for the measured segmented time histories of a cycle test makes this
approximation feasible.

To provide additional support in demonstrating and justifying the proposed modeling
approach, another micro-interface damping application from clayey soil is used. For
the supplementary datasets, complete time histories are measured; thus, no numerical
interpolation is needed [8,9].

The modeling approach seeks to capture the history dependency of the shape and loca-
tion of the hysteresis loops over the duration of the test. The coir isolator test reveals other
subtle features that the proposed model cannot handle, motivating future modeling work.

Two levels of modeling are involved in this inaugural modeling work: The coir isolator
dataset will use restoring force–displacement, while the soil dataset will use stress–strain
relations for constitutive modeling. Engineering stress and engineering strain are used so
that the conversion between these two levels is straightforward.

1.3. Technical Challenge and Solution Strategy

The modeling challenge associated with micro-interface slip damping involves highly
nonlinear load-deformation behavior, and gradual, usage-induced changes to their struc-
ture. A recent review paper of damping models for structures with mechanical joints [10] is
relevant to this study. “Microslip typically occurs near the edges of the joints and is often as-
sociated with wear between the components. Moreover, the presence of the interface leads
to an observed loss of stiffness as the response amplitude increases and the load across the
frictional interfaces increases.” Although reference [10] refers to classical microslip in joints,
where the material is considered nominally homogeneous rather than fragmented, it is
relevant to this work because it reviews both rate-independent models and rate-dependent
models to capture damping “through friction over highly localized microscale regions near
connection points, and are known to exhibit history dependent, or hysteretic behavior”.
In this work we represent hysteretic friction damping using the Masing models under the
rate-independent smooth hysteretic systems, which also include the Duhem models.

As inspired by structures built from rods, wires, or strands, the Masing model [11] is
an insightful choice for macroscopic modeling and simplified analysis (see [12]). Energy
dissipation comes from friction at the interfaces of the rods, wires, or strands, which can
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be individually modeled by a bilinear hysteresis model [13,14]. Random assemblies of
multiple such constituents’ interfaces lead to smooth hysteresis reloading–unloading curves
that could be conceptually captured in a Masing model, where references [15–19] are among
the studies of modeling deteriorating hysteresis using generalized Masing models.

The extended Masing model follows [20–22]. The virgin loading curve starts with one
particular simple form proposed in Equation (5.29) of [20] for the two levels of constitutive
modeling as follows:

rM =

(
1 − e−

KxM
ru

)
ru, at restoring force-displacement level (1)

σM =

(
1 − e−

EεM
σu

)
σu, at stress–strain level (2)

where rM and σM are the restoring force and stress of the Masing model, respectively, while
xM and εM are the displacement and strain of the Masing model, respectively. There are
only two independent parameters, ru and K, or σu and E, for yield strength and initial
stiffness, respectively. There is another power parameter n in [20]; however, we use n = 1
throughout this study for model parsimony.

The Masing Rule 1 (out of a total of three rules) as summarized in [12] reads “the
equation of any hysteretic force deformation curve can be obtained by applying the original
Masing rule to the virgin loading curve using the latest point of load reversal.” By applying
the Masing Rule 1, the expressions for individual minor loops can be obtained by using the
same two parameters ru and K, or σu and E, as in the virgin loading curve. In this study, it is
the minor loops that are directly obtained in a laboratory setting—not their corresponding
virgin loading curves. These two parameters will be identified from minor loops.

To illustrate the motivation for this study, Figure 1 presents both the experimental
and modeled intra-cycle behaviors from one of the two soil datasets. The intra-cycle
hysteresis loops are obtained by using the measured stress time history and the strain time
history associated with intra-cycle behavior. This strain time history is obtained from a
decomposition of the overall strain history into a sum of the intra- and inter-cycle time
histories using the model that is presented in this work.
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Figure 1. For Test 3 of the soil data: (a) The 11th, and (b) 200th intra-cycle hysteresis loops fitted using
the unloading branch in Equation (40) to be presented later.

It can be seen from Figure 1 that the adopted extended Masing model fits the measured
data adequately for each cycle. However, two different sets of parameter values for σu

and E are needed for these two cycles. In Figure 1a, we have σu = −28.62 kPa, and
E = 25.79 MPa, while in Figure 1b, we have σu = −30.53 kPa, and E = 29.94 MPa. This
indicates that the adopted extended Masing model needs to evolve with time due to the
effect of soil compaction.
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Both compressed coir fiber and soil have time-varying properties, the focus of our
modeling. We will build on the extended Masing model, and inject new concepts from mem-
modeling, an emerging framework for hysteresis, to develop an enriched extended Masing
model, which is an autonomous model in appearance but is able to capture time-varying
Masing behaviors. This modeling component is called a “mem-spring”. New concepts
to be applied include the first time integral of strain and stress, called “absement” and
“generalized momentum”, respectively. They enable a more efficient problem formulation
for time-varying intra-cycle behaviors.

Apart from the modeling challenge for intra-cycle behaviors, there are significant and
complex inter-cycle behaviors of strain-ratcheting in both coir isolator and soil data. We
will utilize a “mem-dashpot”, a mem-modeling component proposed in our recent work
of [23]. In short, it is a displacement-dependent damper, characterized in another efficient
problem formulation for inter-cycle behaviors.

As shown in Figure 2, the mem-spring and mem-dashpot are connected in series in
this study to capture the displacement or strain ratcheting, and gradual compaction of the
system, respectively. The complicated systems at hand are treated with two independent
modeling components, the effects of which are decoupled based on force equilibrium and
deformation compatibility and further fine-turned individually following the physical
insights into intra-and inter-cycle behaviors. This model assembly follows [9,23].

force/stress

Masing mem-dashpot

Figure 2. A schematic of the proposed Maxwell-like mechanism with a mem-spring and mem-
dashpot connected in series, where the extended Masing model—enriched by mem-modeling to
produce minor loops—is used as a mem-spring in this study.

Specially, the serial connectivity leads to shared restoring forces or stresses, and
additivity of the displacements or strains:

r = rd = rM, at restoring force-displacement level (3)

x = xd + xM, at restoring force-displacement level (4)

σ = σd = σM, at stress–strain level (5)

ε = εd + εM, at stress–strain level (6)

where the subscript d stands for mem-dashpot, while the subscript M stands for the
extended Masing model.

Identifying a model assembly like the one shown in Figure 2 demands a comprehensive
testing scheme with carefully defined excitation and sampling rate [24,25]. Since the testing
and modeling are not integrated in this study, the identification of the proposed model
assembly has an unidentifiable difficulty [26]. We will highlight this fundamental challenge
and the further assumptions that we will make in Section 4.

1.4. Mem-Models

“Mem-models” referring to a special form of memory, i.e., hysteresis, were introduced
to engineering mechanics in [23,27,28]. Mem-models are based on a suite of new concepts
for the memristor, memcapacitor, and meminductor developed for electrical engineering
in [29,30], catching attention since [31], and being generalized in [32]. The publications on
mem-dashpots, mem-springs, and mem-inerters followed the lead of [33,34].
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The following introduction benefits from the mathematical parallelism between mem-
dashpot and mem-spring; however, it is important to remember that dashpots and springs
are different physically and so are mem-dashpot and mem-spring [27].

First, mem-dashpot and mem-spring can be obtained by generalizing from linear
dashpot and linear spring, respectively, as follows:

rd = cẋd → rd = D(xd)ẋd, for mem-dashpot at restoring force-displacement level (7)

rs = kxs → rs = S(as)xs, for mem-spring at restoring force-displacement level (8)

σd = Cε̇d → σd = D(εd)ε̇d, for mem-dashpot at stress–strain level (9)

σs = Eεs → σs = S(aε
s)εs, for mem-spring at stress–strain level, (10)

where the subscripts d and s stand for mem-dashpot and mem-spring herein, respectively.
D and S are displacement- or strain-dependent damping and absement-dependent stiffness,
respectively. The same notations are used for these two quantities at the two different levels
only to reduce the number of notations in the presentation. a and aε are absements defined
as follows:

a =
∫ t

−∞
x(τ)dτ, at restoring force-displacement level, (11)

aε =
∫ t

−∞
ε(τ)dτ, at stress–strain level, (12)

meaning that absement is a time integral of displacement or strain. Absement has not been
often used in modeling. Most recently, absement has been connected quantitatively to the
damage variable in continuum damage mechanics in [23]. Reference [23] further shows
that a subset of the classical Preisach model can be transformed into an equivalent mem-
spring model. The connection between the generalized Duhem model and mem-models is
discussed there as well.

Integrating Equations (7)–(10) with respect to time leads to the following:

pd = Gd(xd), for mem-dashpot at restoring force-displacement level (13)

ps = Gs(as), for mem-spring at restoring force-displacement level (14)

pσ
d = Gd(εd), for mem-dashpot at stress–strain level (15)

pσ
s = Gs(aε

s), for mem-spring at stress–strain level, (16)

where p and pσ are referred to as generalized momentums (“g-momentum” for shorthand
notation) defined as follows:

p =
∫ t

−∞
r(τ)dτ, at restoring force-displacement level (17)

pσ =
∫ t

−∞
σ(τ)dτ, at stress–strain level, (18)

meaning that generalized momentum is a time integral of restoring force or stress. General-
ized momentum should not be mixed with momentum.

The one-to-one mappings from xd to pd, as to ps, εd to pσ
d , and aε

s to pσ
s as in

Equations (13)–(16) are significant to define mem-dashpot and mem-spring as we shall see
more clearly using the specified data. These one-to-one mappings are nonlinear; other-
wise, the mem-dashpot and mem-spring will degenerate to the linear dashpot and linear
spring, respectively.
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When the one-to-one mappings in Equations (13)–(16) are invertible, we have
the following:

xd = Fd(pd), for mem-dashpot at restoring force-displacement level (19)

as = Fs(ps), for mem-spring at restoring force-displacement level (20)

εd = Fd(pσ
d ), for mem-dashpot at stress–strain level (21)

aε
s = Fs(pσ

s ), for mem-spring at stress–strain level, (22)

where F = G−1. The one-to-one mappings from pd to xd, ps to as, pσ
d to εd, and pσ

s to aε
s as

in Equations (19)–(22) are significant to define mem-dashpot and mem-spring, respectively.
The one-to-one mappings in Equations (13)–(16) are for a displacement- or strain-

controlled setting, while the one-to-one mappings in Equations (19)–(22) are for a force- or
stress-controlled setting. Displacement- or strain-controlled, and force- or stress-controlled
are called flow- and effort-controlled, respectively, using the jargon in bond graph the-
ory [35,36], where the mem-models were originated.

Differentiating Equations (19)–(22) with respect to time leads to the following:

ẋd = Wd(pd)rd for mem-dashpot at restoring force-displacement level (23)

xs = Ws(ps)rs, for mem-spring at restoring force-displacement level (24)

ε̇d = Wd(pσ
d )σd for mem-dashpot at stress–strain level (25)

εs = Ws(pσ
s )σs for mem-spring at stress–strain level. (26)

Complementing the eight one-to-one mappings, Equations (7)–(10) are for the flow-
controlled setting, while Equations (23)–(26) are for the effort-controlled setting. These
eight equations manifest the “zero-crossing property” of mem-models, which is explained
using two examples as follows:

• A mem-dashpot for restoring the force-displacement level can be defined in two differ-
ential forms as in Equations (7) and (23), where the former and latter are for flow- and
effort-controlled settings, respectively. These two forms facilitate connecting the mem-
dasphot with other modeling elements in parallel and series, respectively. These dif-
ferential forms are featured with the “zero-crossing” property meaning that the input
and output, ẋ and r, or r and ẋ, become zero simultaneously. Equations (13) and (19)
are the integral forms for the mem-dashpot under flow- and effort-controlled settings,
respectively. These integral forms are featured with one-to-one mapping from xd to
pd, or pd to xd. The terminologies and usefulness of the differential and integral forms
can be referred to [28].

• A mem-spring for restoring the force-displacement level can be defined in two differ-
ential forms as in Equations (8) and (24) under flow- and effort-controlled settings,
respectively. These differential forms are featured with the “zero-crossing” property
meaning that the input and output, x and r, or r and x, become zero simultane-
ously. Equations (14) and (20) are the integral forms for the mem-spring under flow-
and effort-controlled settings, respectively. These integral forms are featured with
one-to-one mapping from as to ps, or ps to as.

Equations (7)–(26) complete the mathematical expressions for mem-dashpot and mem-
spring in this study. These definitions are under mechanical memristor and mechanical
memcapacitor, the simplest forms of the most comprehensive definitions for mem-dashpot
and mem-spring, respectively, as elaborated in [27].

Mem-springs in this study do not have their input and output become zero simulta-
neously, i.e., at the origin. Rather, each of their input and output becomes a fixed value,
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simultaneously, i.e., these mem-springs cross at a minor loop closure point of the extended
Masing model. This follows the conceptual discussion given in [23]. This will be further
justified later under Section 3.

With the definitions in place, the serial connectivity illustrated in Figure 2 further leads
to shared generalized momentums and additivity of the absements:

p = pd = pM, for restoring force-displacement level (27)

a = ad + aM, for restoring force-displacement level (28)

pσ = pσ
d = pσ

M, for stress–strain level (29)

aε = aε
d + aε

M, for stress–strain level. (30)

1.5. Intended Contribution and Structure of This Paper

The manufacture and testing of the novel coir isolator are the first intended contribu-
tion. The coir isolator data reveals the complicated ground truth that has motivated the
modeling work in this paper, and will motivate continued modeling work.

To capture time-varying Masing behaviors, the expressions for the virgin loading
curve as in Equations (1) and (2) are used as a baseline before taking into account the time-
varying system properties using mem-modeling concepts. The following virgin loading
curves for time-varying Masing models are proposed:

At restoring force-displacement level, we have

rM =

(
1 − e

− g2(aM)xM
g1(aM)

)
g1(aM), (31)

where ru and K, the two parameters with fixed values in Equation (1) are replaced with two
functions of absement. The first function g1(aM) is about how the yield strength is affected
by absement, while the second function g2(aM) is about how the initial stiffness is affected
by absement.

At the stress–strain level, we have

σM =

1 − e
−

f2(pσ
M)εM

f1(pσ
M)

 f1(pσ
M), (32)

where σu and E, the two parameters with fixed values in Equation (2) are replaced with
two functions of generalized momentum. The first function f1

(
pσ

M
)

is about how the yield
strength is affected by generalized momentum, while the second function f2

(
pσ

M
)

is about
how the initial stiffness is affected by generalized momentum.

These proposed models involve enriched Masing models, which are the next intended
contribution.

The applicability of the Masing Rule 1 to the proposed coir isolator will be explored in
this study. Limitations with applying Masing models to soil modeling were noted as early
as in [37] and later in [38]. The inapplicability of the Masing Rule 1 as realized in this study
is not a surprise.

As a result, two slightly different enrichment treatments will be adopted for the coir
isolator and soil data. In the end, Equation (31) works well for the coir isolator data, even
though the minor loops are not as accurate due to the slightly asymmetric unloading and
reloading branches. Equation (32) does not work well for the virgin loading curves for the
two soil datasets. We would enrich the minor loops of the extended Masing model, using
them only for the two soil datasets.



Materials 2025, 18, 4521 8 of 35

While [23] details the insight into using a mechanical memristor to capture strain ratch-
eting in fatigue testing, joining [9], this paper numerically validates this modeling approach
especially when the coir dataset only includes a small collection of typical hysteresis loops
from a prolonged reload-unloading time history. This is the last intended contribution of
this study, especially to motivate further studies.

Section 2 offers the design and testing details of the coir isolator. The soil specimens
are also briefly introduced. Section 3 details the proposed enriched Masing model, es-
pecially those concerning the minor loops. Section 4 presents the modeling challenges,
solution strategies and results of the coir isolator. Section 5 analyzes the supplementary soil
specimens to further explain the proposed method. While Section 6 provides discussions,
Section 7 offers concluding remarks. Appendix A supplements figures with a second soil
specimen, as the main text contains the figures of just one soil specimen.

Throughout this study, numerical integration with respect to time is carried out by
using the trapezoidal rule to obtain the integral counterpart for a specified input or output.
Numerical differentiation with respect to time is carried out by using the central difference
method. The MATLAB [39] code adopted here is central_diff.m [40] to ensure forward and
backward differences at the left and right ends, respectively, and with the same second-
order of accuracy as the central difference for the mid-portion.

2. Manufacturing and Testing
2.1. Coir Isolators

The coir fibers used in this work are typically more than 25 mm in length and approxi-
mately 200 micrometers in diameter. Fiber mechanical properties are set by the materials
involved, primarily cellulose and lignin, and the cell structure. Figure 3 shows that a fiber
resembles a bundle of tubes that have been fused together to form a relatively smooth rod
with internal pores aligned with its length. The resulting fibers typically have the following
properties [41]: Young’s modulus, 4–5 GPa; strain at failure 20–40%; and density 900 kg/m3.
As glass transition for both cellulose and lignin occurs above 100 ◦C, the fiber modulus
does not change dramatically below this temperature.

Figure 3. Microscope image of the broken end of a coir fiber showing the tube-like channels running
along its length and the rough surface of the fiber.

The compressed coir isolators studied in this work were constructed from dry,
upholstery-grade fibers. These were soaked in water for one hour and then compressed in
a vented mold at 125 ◦C for 90 min. They were subsequently allowed to cool in the mold
and then left to dry out of the mold at room temperature for 24 h. Then 2 g of fiber was
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compressed in a cylindrical cavity 25.4 mm in diameter and 15 mm in length, resulting in a
dry fibrous solid with a relative density of approximately 0.2. A typical specimen can be
seen in Figure 4, whereas the fiber packing visible on the surface can be seen more clearly
in Figure 5.

Figure 4. Compressed coir fiber specimen.

Figure 5. Close-up view of compressed coir fiber specimen showing typical packing and variation in
fiber diameter.

For a vibration isolator application, the dynamic stiffness is of primary interest. Testing
was conducted in compression, avoiding tensile loads. The stiffness was found to be
insensitive to frequency over the range 1 to 100 Hz, so subsequent testing was conducted
at 2.5 Hz. This initial testing suggested that the effective Young’s modulus was in the range
0.5 to 4 MPa with a loss factor between 0.1 and 0.2. The exact values depended somewhat
on the particular specimen considered (due to variations in fiber size and location) and the
magnitude of the loading applied. Additionally, changes in some properties were noted as
testing progressed.

The response in the properties to loading intensity and history resemble, in some
ways, those for tangled metal wire materials. For these, the dominant energy dissipation
mechanism is sliding friction between the contacting wires [3]. In the same way, the dissi-
pation in the compressed coir fiber is likely to be dominated by sliding at the contact fibers,
although hysteretic loss within the fiber itself may provide a secondary loss mechanism. To
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date, there is no consensus on a compact way to model the behavior observed. The work in
this paper demonstrates one way in which this can be performed.

Figure 6a,b present the measured displacement x and restoring force r time histories
of the coir isolator in segments. Only 11 segments are measured. The sequential numbers
for the measured cycles are 1, 102, 204, 300, 402, 501, 600, 702, 801, 900, and 1000. Each
measured segment is of one complete cycle of 0.4 s so that the loading frequency is 2.5 Hz.
The time reading is nominal because the time is reset to zero at the beginning of each
segment. Figure 6c combines the time histories in Figure 6a,b for 11 isolated hysteresis
loops in compression only. The sampling rate is 20 kHz. Each segment or cycle is of
8001 points. Figure 6 is plotted using only the data points; adjacent data points are not
connected with a line.
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−
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− 

− 
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−

−
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Figure 6. For the coir isolator: The raw data with four particular points marked in each measured
cycle, which are the beginning point, maximum displacement point, the mid-point, and the minimum
displacement point. The measured 11 cycles are 1, 102, 204, 300, 402, 501, 600, 702, 801, 900 and
1000. (a) Segmented x time histories, (b) segmented r time histories, and (c) the corresponding
hysteresis loops.

It can be seen from Figure 6a,b that all displacement segments resemble a sine wave,
while all restoring force segments do not. This is due to displacement-controlled testing.
Four particular points of each cycle are marked so that the beginning and end points of
the test as well as the loading path can be tracked visually. This is to facilitate studying
hysteresis, i.e., path dependency. Each measured cycle progresses in the following manner:

(i) Starts the first point with a circle marker, where there is an approximately maximum
positive velocity on an unloading branch.

(ii) Goes over the maximum displacement point, a velocity turning point to start a reload-
ing branch. This point is not exactly the 2001st point but will be approximated using
it later.

(iii) Passes the 4001st point, an approximately maximum negative velocity point marked
with a square.

(iv) Reaches the minimum displacement point, the other velocity turning point to start a
unloading branch. This point is not exactly the 6001st point but will be approximated
using it later.
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(v) Completes the cycle at the 8001st point, just before the circle marker for the next cycle
(which is not measured).

It can be seen from Figure 6a,b that all maximum displacement points are approxi-
mately maximum restoring force points, and all minimum displacement points are approx-
imately minimum restoring force points. This consistency indicates that the data satisfies
the monotonicity of hysteresis, described as “vibro-correctness” in [42].

In Figure 6c, it can be seen that the cyclic test starts with negative displacement and
restoring force readings, meaning that the coir isolator is in compression at the beginning
of the data acquisition. This means that the virgin loading is not measured, which is good
and bad news. It is good news because we have a chance to infer a virgin loading curve. It
is bad news because there is no means to validate the inferred virgin loading curve.

In Figure 6c, for the unloading branches, the first cycle is not smooth in the last quarter,
but all other cycles are smooth. For the reloading branches, the first cycle is smooth and
curved, but all other cycles are smooth and nearly of a straight line. This observation is
about the asymmetric unloading and reloading branches: the former are more curved, while
the latter are straighter. This asymmetry has also been observed for tangled metal wire
specimens [3]. Only the unloading branches will be used as the minor loops in this work.

Last but not least, when the excitation of x(t) is smooth, the corresponding hysteresis
loop is not smooth over the velocity turning point. This indicates the hysteresis as being
loading-rate independent [43]. The extended Masing model is rate independent; however,
the proposed enriched Masing models in Equations (31) and (32) are not because of the use
of time integrals. This is another topic for future improvement of the proposed model.

2.2. Clayey Soil Specimens

Two additional datasets come from the geotechnical engineering community to over-
come the limitation in the coir isolator dataset. An earlier laboratory study [8] was con-
ducted to investigate the behavior of a soft compacted clayey soil subject to cyclic loading,
which was part of a comprehensive investigation of the Low Track Modulus (LTM) section.
It was from the Facility for Accelerated Service Testing (FAST). Only Tests 2 and 3 datasets
are studied here, and up to 200 cycles, following [9]. The measured strains of Tests 2 and 3
differ in an order of magnitude caused by the different initial degree of saturation among
other factors [8]. Studying both Tests 2 and 3 data will thus validate the robustness of the
proposed modeling approach. For the efficiency of presentation, the data and analysis
associated with Test 3 are given in the main text, while those associated with Test 2 are
shared in Appendix A.

Figure 7a,b present the measured time histories for Test 3. Note that the underlying
cycle-to-cycle drift in strain is significant compared with the cycle amplitude. Figure 8a
shows the measured hysteresis loops in compression only for Test 3. Given the supporting
role of the two soil datasets to the coir isolator dataset, Figure 8 follows Figure 6 to present
compressive stress and strain in the third quadrant. Unlike the coir isolator, the measure-
ment starts with zero strain and zero stress. If using the extended Masing model alone, we
can say that the virgin loading curve is measured, and there are 200 minor loops. All these
minor loops, however, do not close on the virgin loading curve. This is why the model
assembly illustrated in Figure 2 will be used instead.
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Figure 7. For Test 3 of the soil data: (a) the measured stress time history; (b) the measured strain
time history; the decomposed strain time history for (c) the inter-cycle drift to be modeled by a
mem-dashpot; and (d) the intra-cycle responses to be modeled by the enriched Masing model that is
a mem-spring.
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(c) the enriched Masing model for the intra-cycle responses resulted from decomposing the measured
strain time history. The virgin loading curve, 1st, 11th, and 200th cycles are highlighted in baby blue,
cyan, blue, and dark blue, respectively.

3. Proposed Models
We will show first how minor loops can be recovered from the virgin loading curve in

Section 3.1. Our real intention is often to estimate the virgin loading curve from the minor
loops that are measured from the real world. This is because of the two shared parameters
of the extended Masing model introduced after Equations (1) and (2). We will then capture
how these two parameters evolve with time by enriching the extended Masing model in
Section 3.2.

3.1. More Review of Original Extended Masing Models

As reviewed in [12], we have the following set of equivalent expressions for minor
loops of the extended Masing model whose virgin loading curve is given in Equation (1):

drM
dxM

= K
(

1 − rM−r∗
2ru

)
, unloading

drM
dxM

= K
(

1 − r∗−rM
2ru

)
, reloading

(33)

 ṙM = K
(

1 − rM−r∗
2ru

)
ẋM, unloading

ṙM = K
(

1 − r∗−rM
2ru

)
ẋM, reloading

(34)


rM = 2ru

(
1 − e−

xM−x∗
2xu

)
+ r∗, unloading

rM = r∗ − 2ru

(
1 − e−

x∗−xM
2xu

)
, reloading

(35)

 xM = −2xu ln
(

1 − rM−r∗
2ru

)
+ x∗, unloading

xM = x∗ + 2xu ln
(

1 − r∗−rM
2ru

)
, reloading

(36)

where K = ru
xu

, and x∗ and r∗ are the displacement and restoring force, respectively, at the
velocity turning point where ẋM = 0 and ṙM = 0 simultaneously. Reloading and unloading
are defined here in a physical sense, in conjunction with the fact that the responses are
compressive only (so that ru < 0 and σu < 0).

At the stress–strain level following the virgin loading curve given in Equation (2), we
have the following equivalent expressions:

dσM
dεM

= E
(

1 − σM−σ∗

2σu

)
, unloading

dσM
dεM

= E
(

1 − σ∗−σM
2σu

)
, reloading

(37)

 σ̇M = E
(

1 − σM−σ∗

2σu

)
ε̇M, unloading

σ̇M = E
(

1 − σ∗−σM
2σu

)
ε̇M, reloading

(38)


σM = 2σu

(
1 − e−

εM−ε∗
2εu

)
+ σ∗, unloading

σM = σ∗ − 2σu

(
1 − e−

ε∗−εM
2εu

)
, reloading

(39)

 εM = −2εu ln
(

1 − σM−σ∗

2σu

)
+ ε∗, unloading

εM = ε∗ + 2εu ln
(

1 − σ∗−σM
2σu

)
, reloading

(40)
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where E = σu
ϵu

, and ε∗ and σ∗ are the displacement and restoring force, respectively, at the
velocity turning point where ε̇M = 0 and σ̇M = 0 simultaneously.

A strain decomposition method for the soil dataset following the model assembly in
Figure 2 to reveal a full Masing model is presented in Section 5. The decomposed strain
time histories are presented in Figure 7c,d. The strain decomposition leads to two separate
hysteresis loops, one in Figure 8b for the mem-dashpot and the other in Figure 8c for
the enriched Masing model. Using the first 11 intra-cycle hysteresis loops for the soil
dataset as an example, Figure 9 expands Figure 8c by highlighting one loop at a time. The
virgin loading curve is in Figure 9a, while the minor loop closure points marked with red
diamonds are in Figure 9a–k.
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Figure 9. For Test 3 of the soil data: The first 11 intra-cycle hysteresis loops with one loop highlighted
at a time following (a–k) to reveal the virgin loading curve and minor loop closures using Masing
model concepts. The virgin loading curve, 1st and 11th intra-cycles, and other intra-cycles in between
are colored in baby blue, cyan, blue, and red, respectively. The identified minor loop closure points
are marked with red diamonds.

The adopted extended Masing model does not fit the first intra-cycle as well as the
fitting of the 11th and 200th cycle as shown in Figure 1. The numerical results of σu and
E and those from the minor loops are not consistent indicating that the Masing Rule 1
in [12] does not apply well. Nonetheless, Figure 9a–k shows a consistent minor loop closure
point. The same minor loop closure point is thus assumed for up to the 200th intra-cycle
hysteresis loops. This minor loop closure point of the Masing model could be used as the
zero-crossing point of the mem-spring.

3.2. Proposed Enriched Extended Masing Models

Equations (33)–(40) can all be enriched using either absement or generalized mo-
mentum following Equations (31) and (32), which serve as an example for creating a
time-varying Masing model. Enriching means to replace the yield strength and initial
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stiffness in the extended Masing model with a pair of functions of generalized momentum,
or a pair of functions of absement. For the soil datasets, the former is f1

(
pσ

M
)

and f2
(

pσ
M
)

as in Equation (32) for a virgin loading curve. This pair of functions, f1
(

pσ
M
)

and f2
(

pσ
M
)
,

can be used to replace σu and E in Equations (37)–(40) for minor loops.
All 200 individual intra-cycles are modeled using the unloading branch in Equation (40)

to obtain the values of σu and E for each intra-cycle, following the illustrations in Figure 1
for the 11th and 200th intra-cycles. For each unloading branch of an intra-cycle, the value of
pσ (which is equal to pσ

M following Equation (29)) at the beginning of the unloading branch
is collected. This is the minor loop closure point, which is a salient detail. The top row
of Figure 10 presents how σu and E are affected by pσ

M for the first 200 cycles. Fitting the
200 discrete data points in each panel would lead to f1

(
pσ

M
)

and f2
(

pσ
M
)

in Equation (32)
for an effort-controlled setting. Holding the values for f1

(
pσ

M
)

and f2
(

pσ
M
)

constant for the
entire branch was discussed in the context of the differential algebraic equation (DAE) for a
full-system dynamic simulation in [9].
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Figure 10. For Test 3 of the soil data: The two parameters, yield strength σu (a,c) and initial stiffness E
(b,d), as affected by generalized momentum pσ (a,b) and absement aε

M (c,d) for the first 200 intra-
cycles. These intra-cycles are to be modeled by a mem-spring, the enriched Masing model. The 1st,
11th, and 200th intra-cycles are colored in cyan, blue, and dark blue, respectively.

For each unloading branch of an intra-cycle, the value of aε
M at the beginning of the

unloading branch is collected too. This is the minor loop closure point. The bottom row
of Figure 10 presents how σu and E are affected and aε

M for the first 200 cycles. Fitting
the 200 discrete data points in each panel would lead to a variation of Equation (32) for a
flow-controlled setting.

The flexibility of treating each of σu and E as a function of either absement or general-
ized momentum is enabled by the one-to-one mappings between absement and generalized
momentum for a mem-spring as in Equations (16) and (22). This minor loop closure point
of the Masing model will be used as the zero-crossing point of the mem-spring.

Again, enriching means to replace the yield strength and initial stiffness in the ex-
tended Masing model with a pair of functions of absement, or a pair of functions of
generalized momentum. For the coir isolator datasets, the former is g1(aM) and g2(aM)

as in Equation (31) for a virgin loading curve. This pair of functions, g1(aM) and g2(aM),
can be used to replace ru and K in Equations (33) and (36) for minor loops. The virgin
loading curve is not measured. The time histories of many minor loops are not available.
Nonetheless, we will perform a data analysis for modeling and identification strategies
and utilize available data measurements to construct plots as in Figure 10 but for ru versus
aM and K versus aM, which are g1(aM) and g2(aM), respectively. For g1(aM), we will use a
major assumption to be given in Section 4.1. For g2(aM), when rM → r∗, we have drM

dxM
→ K

based on Equation (33).
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4. Data Analysis and Modeling of Coir Isolator
Figure 6 demonstrates the challenges with processing the coir isolator data. The overall

strategy to fit into the proposed model assembly in Figure 2 is outlined in Section 4.1. The
need and remedy to recover the large amount of unmeasured cycles are presented in
Section 4.2. The identification procedure is given in Section 4.3. Eventually, the identified
model assembly is given in Section 4.4.

4.1. Analysis

All missing loops are ignored for the time being so that we can focus on the overall
picture. The trio of Figures 11–13 is designed to illuminate the modeling idea using the
model assembly in Figure 2. all raw data: the big picture view
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Figure 11. For the coir isolator: The raw data considering the entire loading history with the origin
included. The measured cycles are 1 (red), 102 (green), 204, 300, 402, 501, 600, 702, 801, 900, and
1000 (blue).

Figure 11 presents the measured hysteresis loops in compression only. We do not
know how we got there, as the process was not being completely recorded, but we assume
that the experiment starts with zero displacement and zero force. Highlighted in thickened
lines are the first, second, and last recorded loops in red, green, and blue, which are the 1st,
102nd, and 1000th cycle, respectively. These cycles are minor loops of the Masing model
that we are building.

The first recorded loop in red is the first minor loop of the time-varying Masing model
at that time. Since the minor loop is measured, we can reconstruct the corresponding virgin
loading curve based on the Masing Rule 1 as reviewed in Section 1.3 and by following the
four steps below. The reconstructed virgin loading curve is colored in red in Figure 12.

1. The virgin loading curve goes through zero displacement and zero force.
2. Referring to Figure 6a,c, the minimum displacement point (to be approximated with

the 6001st point later) in a segmented measurement is where the minor loop closes on
the virgin loading curve because it is a velocity turning point.

3. The initial tangent stiffness of the unloading branch of the minor loop is equal to K,
the initial tangent stiffness of the virgin loading curve.
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4. We assume that the yield plateau is equal to the r value at the minimum displacement
point (to be approximated with the 6001st point later). That is, the Masing model
is yielded when the minor loop starts to take place. This is one of the assumptions
made to overcome the unidentifiable difficulty stated in Section 1.3. This is the major
assumption made for g2(aM) mentioned at the end of Section 3.2.all raw data: imaginary Masing component only
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Figure 12. For the coir isolator: The measured first cycle (red) and proposed intermediate responses
for the cycles 102 (green), 204, 300, 402, 501, 600, 702, 801, 900 and 1000 (blue) of the underlying
Masing model that evolves with time.
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Figure 13. For the coir isolator: The measured first cycle (red) and proposed intermediate responses
for the cycles of 102 (green), 204, 300, 402, 501, 600, 702, 801, 900 and 1000 (blue) of the underlying
Masing model that evolves with time as in Figure 12, and the further ratcheted cycles of 102, 204, 300,
402, 501, 600, 702, 801, 900 and 1000 to recover their measured counterparts as in Figure 11.
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If the coir isolator’s cyclic response followed Equation (1), i.e., being the original
time-invariant extended Masing model from [20], then the cyclic loading with quite well-
controlled displacement amplitude as shown in Figure 6 would lead to repetitive minor
loops just like the first minor loop. That is, the remaining minor loops would stay at the
position of the first minor loop, colored in red. This prediction is in stark contrast to the
measured loops, hinting at the inadequacy of the extended Masing model.

The second recorded loop in green is the 102nd minor loop of the time-varying Masing
model at that time. Since the minor loop is measured, we can reconstruct the corresponding
virgin loading curve by repeating the above four steps. The reconstructed virgin loading
curve is colored in green in Figure 12.

We continue like this until reaching the last recorded loop in blue, which is the 1000th
minor loop of the time-varying Masing model at that time. Since the minor loop is measured,
we can reconstruct the corresponding virgin loading curve by repeating the above four
steps. The reconstructed virgin loading curve is colored in blue in Figure 12.

This explains Figure 12, which justifies why a time-varying Masing model is needed
for the coir isolator’s cyclic response, one of the modeling components in Figure 2.

Contrasting Figure 12 with Figure 11, we have Figure 13, which shows that the
second recorded loop in green drifts to the left horizontally, i.e., having more compressive
deformation. Other recorded loops keep drifting to the left horizontally until the last
recorded loop in blue is drifting the most. These drifts are displacement ratcheting to be
modeled by a mem-dashpot, the other modeling component in Figure 2. We assume that the
displacement ratcheting starts at the closure of the first minor loop. This assumption may
not be accurate; however, it is another assumption made to overcome the unidentifiable
difficulty stated in Section 1.3.

To summarize this overall analysis, there are two simultaneous processes going on.
First, a flow-controlled input leads to minor loops that are drifted and stretched

vertically because the Masing model is strengthened from cycle to cycle due to compaction.
It can be seen that the Masing model evolves with time, which explains why Equation (31)
is devised to capture this time evolution using absement-based g1(aM) and g2(aM), the
two nonlinear functions to be identified for this flow-controlled setting.

Next, within every minor loop, displacement ratcheting comes into play, showing
up in the horizontal drift of the minor loops. This explains where to apply Equation (4).
The displacement ratcheting is a nonlinear function of the generalized momentum as
introduced in Equations (13) and (19).

In summary, the trio of Figures 11–13 is designed to show how all 1000 minor loops of
the extended Masing model, which are of the same shape and share the same closure point,
(x∗, r∗), have become 1000 individual loops with the same width but increasing height, and
at different latitude and longitude.

4.2. Approximating Unmeasured Cycles

Not all cycles are measured, which prompts the need of approximating the missing
cycles so that the integrated time histories can be obtained to use mem-models. For the
measured cycles, the sampling rate is 20 kHz. For a period of 0.4 s, there are 8001 points
per recorded cycle, or segmented time history. Each cycle repeats the same time, which is
nominal. The actual continuous time vector can be recovered only after all missing cycles
are recovered and in the correct order. Linear interpolation is carried out to approximate
those missing cycles, which are named interpolated segmented time histories. This means
that for every point of the 8001 points, we insert uniformly those missing points. See
Figure 14 to explain and validate the adopted linear interpolation using a hypocritically
assumed (very small) number of missing cycles so that the added loops can be visualized.
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Figure 14. For the coir isolator: A numerical example to illustrate and validate the linear interpolation
code in this study to approximate the missing cycles. Three cycles each, using thin lines, are added
uniformly between the measured second and third, and the third and fourth cycles, which are in
thick lines. (a) Segmented x time histories, (b) segmented r time histories, and (c) the corresponding
hysteresis loops, where the darkened segmented time histories and hysteresis loops are measured.

We continue with Figure 15 to illustrate how to recover the full time histories of
displacement and restoring force. Once all missing cycles are interpolated to both x versus
nominal t and r versus nominal t as in Figure 14 to form the interpolated segmented time
histories, they are stitched together to form reconstructed t and the corresponding x and r
so that the full time histories of x(t) and r(t) are approximated. Figure 15a,b present these
approximated time histories, which do not appear continuous due to the three cycles added
for illustration purpose. The actual numbers of the missing cycles are 102 and 96 between
the measured second and third, and the third and fourth cycles, respectively.
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Figure 15. For the coir isolator: The numerical example to illustrate and validate the linear interpola-
tion code in this study to approximate the missing cycles to continue with that in Figure 14. Three
cycles each are added uniformly between the measured second and third, and the third and fourth
cycles. The interpolated segmented time histories shown in Figure 14 are stitched together to form
the approximated (a) x(t), and (b) r(t), which are further numerically integrated for (c) a(t), and
(d) p(t), respectively. Crosses mark the 6001st point of every cycle, which is an approximation of the
velocity turning point for minor loop closure. The red and green are for a measured and interpolated
cycle, respectively.

It is of paramount importance to identify the velocity turning point for minor loop
closure for every cycle. For the measured 11 cycles, the monotonicity is confirmed so that the
minimum displacement point is used as the velocity turning point as reported in Section 2.1.
For the interpolated cycles, the accuracy of using the minimum displacement point is
questionable due to the error caused by the adopted linear interpolation. Given this concern
and for overall efficiency, the 6001st point of every cycle (measured and interpolated) is
used as an approximation of the velocity turning point for minor loop closure.

The corresponding time integrals of x(t) and r(t) are produced subsequently, see
the integrated a(t) and p(t) in Figure 15c,d, respectively. It can be seen that a and p are
monotonic functions of time. This is why we use a and p for time parameterization.

The first limitation with this example is that it starts with the measured second cycle,
which is the 102nd minor loop. The reconstructed t should not start with zero. The time
integrals in Figure 15c,d both use zero initial value, which should be some negative values
from the minor loops before. The next limitation with this example is that it does not add
all missing cycles so that the duration of the reconstructed t is much shorter than the actual
situation. The ranges for both the time integrals in Figure 15c,d are much shorter than the
actual situation too.

4.3. Identification Procedure

Bearing these limitations of Figure 15 in mind and using the trio of Figures 11–13, we
can think about the flow-controlled coir test with an intention to iterate 1000 minor loops
at the same minor loop closure point, (x∗, r∗), with the same amplitude of displacement,
after traveling through the virgin loading curve that is not measured. The reality is more
complicated: First, because the Masing model is hardened with increased ru and K cycle
after cycle, the latitude of the minor loop closure point shifts and the required amplitude of
restoring force increases from cycle to cycle. Next, because the dashpot starts to contribute
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after the closure of the first minor loop as assumed, the longitude of the minor loops shifts
cycle after cycle. This is a recap of the analysis of the trio of Figures 11–13.

All these increments and shifts are smooth functions of time. The time integrals of
displacement and restoring force, called absement and generalized momentum, respec-
tively, are monotonic functions as demonstrated in Figure 15c,d. We will thus quantify
these increments and shifts as functions of absement or generalized momentum, which is
the identification.

The overall identification procedure is to reverse the analysis procedure of the trio of
Figures 11–13:

I. Collect all minor loop closure points, the 6001st point of every cycle (including
both segmented measurements and interpolated), marked with a cross +. Since the
Masing minor loops close at these points, we only observe the displacement ratcheting.
Because we assume that the displacement ratcheting starts at the closure point of
the first minor loop, the coordinates of the closure point of the first minor loop are
x∗ and r∗. The x values of these 1000 points will be minus the x value of the first
point throughout to obtain the xd values of these 1000 points. The p values of these
1000 points are ready. The nonlinear one-to-one mapping of Fd(p) as in Equation (19)
will be ready to be identified by curve fitting.

II. Use the approximated full time history of p(t) to interpolate the pair of p and xd of
the 1000 points to obtain a full time history of xd(t).

III. Use the approximated full time histories of x and xd to compute a full time history of
xM = x − xd, which is called the approximated full time history of xM.

IV. Integrate the approximated full time history of xM(t) for aM(t), which is called the
approximated full time history of aM.

V. Estimate g1(aM) using the 6001st point of every cycle (including both segmented
measurements and interpolated). Because we assume that the yield plateau is equal
to the r value at such a point, collect all these 1000 r values. The aM values of these
1000 points are ready. The nonlinear one-to-one mapping of g1(aM) will be ready to
be identified by curve fitting.

VI. Estimate g2(aM) using the 6001st point of every cycle (including both segmented

measurements and interpolated). Because when rM → r∗, we have drM
dxM

→ K based

on Equation (33), compute all these 1000 dr
dxM

values when r → r∗, or equivalently,
xM → x∗. The aM values of these 1000 points are ready. The nonlinear one-to-one
mapping of g2(aM) will be ready to be identified by curve fitting.

4.4. Results

The measured and linearly interpolated segmented time histories of x(t) and r(t)
and their corresponding hysteresis loops are presented in Figure 16a–c, respectively. The
approximated full time histories of x(t), r(t), and the integrated p(t) are presented in
Figure 17a–c, respectively.

Figure 18 presents the results of the identification Step I. The coordinates of the closure
point of the first minor loop are xd = 0 and p < 0, which may be hard to see. The nonzero p
value is resulted from the time integral of r from the first to the 6001st point of the measured
first cycle. This p value is not accurate due to the unmeasured virgin loading curve.
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Figure 16. For the coir isolator: The measured and linearly interpolated segmented time histories of
(a) x(t), and (b) r(t), and (c) the reconstructed hysteresis loops. The darkened cycles are the measured
11 cycles.

Figure 17. For the coir isolator: The interpolated segmented time histories shown in Figure 16
are stitched together to form the approximated (a) x(t), and (b) r(t). r(t) is further numerically
integrated for (c) p(t). Crosses mark the 6001st point of every cycle, which is an approximation of the
velocity turning point for minor loop closure. The red and green are for a measured and interpolated
cycle, respectively.
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constitutive relation following figure(8100)
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Figure 18. For the coir isolator: The approximated one-to-one mapping Fd(p). Crosses mark the
6001st point of every cycle, which is an approximation of the velocity turning point for minor loop
closure. The red and green are for a measured and interpolated cycle, respectively.

The identification Step II is carried out differently considering the error caused by
the adopted linear interpolation. As a matter of fact, the unmeasured loops happens for
a reason: the cycle-to-cycle drift is small compared with the displacement amplitude of
each cycle. This means that, in x = xM + xd within a cycle, xM ≫ xd, which can be seen in
Figure 16c. With this realization, xd in each cycle follows the xd value of the 6001st point of
that cycle.

Figures 19 and 20 present the results of the identification Steps III and IV, respectively.

Figure 19. For the coir isolator: The measured and linearly interpolated segmented time histories
of (a) xM, (b) r, and (c) the reconstructed hysteresis loops for the Masing model component of the
model. The darkened cycles are the measured 11 cycles.
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Figure 20. For the coir isolator: The interpolated segmented time histories shown in Figure 19a are
stitched together to form the approximated (a) xM(t), which is further numerically integrated for
(b) aM(t). The interpolated segmented time histories shown in Figure 19b are stitched together to
form the approximated r(t), which is further numerically integrated for p(t), which are the same
as those in Figure 17b,c, respectively. Crosses mark the 6001st point of every cycle, which is an
approximation of the velocity turning point for minor loop closure. The red and green are for a
measured and interpolated cycle, respectively.

The identification Step V is straightforward; the result is presented in Figure 21a. The
identification Step VI has a practical limitation so that it is carried out differently. The result
is presented in Figure 21b, and the details are given in Figure 22 and explained as follows:
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Figure 21. For the coir isolator: (a) The approximated g1(aM). Crosses mark the 6001st point of every
cycle, which is an approximation of the velocity turning point for minor loop closure. The red and
green are for a measured and interpolated cycle, respectively, and (b) the approximated g2(aM). The
11 points have the aM values of the 6001st point of each measured cycle and the maximum dr

dxM
value

of the same cycle from Figure 22 with a 200-point moving average.
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Figure 22. For the coir isolator: A parametric study to smooth dr
dxM

using moving average using the
measured 11 cycles.

Recall that the 6001st point of every cycle (measured and interpolated) is used as an
approximation of the velocity turning point for minor loop closure. Unfortunately, the
6001st point does not appear to be a good choice to approximate dr

dxM
values when r → r∗.

Numerically, dr
dxM

is computed as ṙ divided by ẋM. Figure 22 presents the time histories

of dr
dxM

of the measured 11 cycles with an intention to locate the maximum dr
dxM

value per
cycle. The moving average is used to smooth the time histories. Figure 22 indicates that the
choice of 200-point moving average may be the most proper. Figure 21b uses the aM value
of the 6001st point of every measured cycle and the maximum dr

dxM
value of the same cycle

(but not necessary at the 6001st point).
The non-smooth nature of the curves in Figures 17, 18, 20 and 21 is because only a

small selection of the cycles undergone by the specimen were recorded. In this work, linear
interpolation was used between measurement points, which therefore appear as straight
lines between the actual measurement points.
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5. Modeling of Soil Specimens
To illustrate the strain decomposition details leading to Figures 1 and 7–10. Figure 23a

presents the measured first 11 cycles of Test 3 of the soil data. All minor loop closure points
need to be identified, which follows the algorithm introduced in [9]. The local peaks of σ̇(t)
are found first, and an empirically determined offset value for all these time instants is then
applied to finalize the time instants for minor loop closure. The same offset values for the
two tests are used as in [9]. These identified minor loop closure points are marked with red
diamonds in Figure 23.

We continue to assume that the displacement ratcheting starts at the closure of the
first minor loop as shown in Figure 23b. Step I of the procedure in Section 4.3 leads to the
identified mem-dashpot. Step II of the procedure in Section 4.3 is further followed, leading
to a full time history of εd(t). Figure 24a,b present the full time histories of pσ(t) and εd(t),
respectively. Figure 24c is the approximated one-to-one mapping Fd(pσ) for Test 3 of the soil
data, the counterpart of the approximated one-to-one-mapping Fd(p) for the coir isolator in
Figure 18. Steps III and IV of the procedure in Section 4.3 are followed next, leading to the
full time histories of εM(t) and aε

M(t). With the identified minor loop closure points, Steps
V and VI of the procedure in Section 4.3 are further followed, using either aε

M(t) or pσ
M(t)

(which is equal to pσ(t) based on Equation (29)). Figure 10a,b are the approximated f1
(

pσ
M
)

and f2
(

pσ
M
)
, respectively for Test 3 of the soil data. Their counterparts of the approximated

g1(aM) and g2(aM) for the coir isolator are in Figure 21a,b, respectively.
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Figure 23. For Test 3 of the soil data: the strain decomposition scheme leading to Figures 1, 7–10 and 24
using the first 11 cycles for illustration. (a) The measured hysteresis loops, and the corresponding
hysteresis loops to be modeled by (b) the mem-dashpot for the inter-cycle, and (c) the enriched
Masing model for the intra-cycle responses resulted from the strain decomposition. The virgin
loading curve, and the 1st and 11th intra-cycles are colored in baby blue, cyan, and blue, respectively.
The identified minor loop closure points are marked with red diamonds.
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Figure 24. For Test 3 of the soil data: (a) the integrated full time history of pσ, (b) the approximated
full time history of xd, and (c) the approximated one-to-one mapping Fd(pσ).

The Masing Rule 1 in [12] does not apply the soil datasets well. An alternative
treatment is to use the minor loops of a Masing model only. The strain decomposition to
fulfill this treatment is illustrated in Figure 25, in contrast to Figure 23. Using the positive
sign for compression, the resulted one-to-one mapping Fd(pσ), approximated as f1

(
pσ

M
)

and f2
(

pσ
M
)

of this alternative modeling treatment is reported in [9]. Ref. [9] continues
to plug these identified characteristics back into the model assembly as in Figure 2 for a
full-system dynamic simulation.
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Figure 25. For Test 3 of the soil data: An alternative strain decomposition scheme leading to the
results in [9] using the first 11 cycles for illustration. (a) The measured hysteresis loops, and the
corresponding hysteresis loops to be modeled by (b) the mem-dashpot for the inter-cycle, and (c) the
enriched Masing model for the intra-cycle responses resulted from the strain decomposition. The 1st
and 11th intra-cycles are colored in cyan and blue, respectively. The identified minor loop closure
points are marked with red diamonds.
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6. Discussions
The results considered in Sections 4 and 5 show that the modeling approach works

effectively in representing the behavior of two material types which are physically very
different but which both display micro-interface slip damping. The enriched Masing model
captures changes to the hysteresis loop, while the mem-dashpot accounts for the drift
between cycles. This section considers the significance of the findings and improvements
that we intend to make in the future.

The data from the compressed coir fiber testing provided challenges, in that mea-
surements were only recorded for various distinct cycles. Testing was carried out using
equipment that provided amplitude control rather than waveform control, and the virgin
loading curve was not available. The linear interpolation between measurement times
was acceptable because the properties of the specimen changed only gradually—there
were no sudden changes in behavior. In future work, the testing will be conducted using
full waveform control and measurements will be retained for consecutive cycles to avoid
the need for interpolation when fitting the enriched Masing model. Following the iden-
tification procedure listed under Section 4.3, we will have a more accurately identified
minor loop closure points using the measured consecutive loops for the identification Step
I. We will then be able to reconstruct a complete time history of xd(t) for those measured
consecutive loops as in Step II. The approximation accuracy for g2(aM) as in Figure 21b
will be improved under Step VI. We will then be able to examine whether the asymmetric
individual loops can be better explained and modeled using the proposed model assembly
as in Figure 2.

In [12], the generalized Masing has been investigated under various amplitude–
modulate sine waves (in Figure 3 there) and an El Centro ground motion time history
(in Figure 24 there). We thus anticipate the same capability of the proposed enriched gener-
alized Masing model. However, specific test data undertaken using complex loading history
would be needed to validate this. This requires a new experimental campaign—something
we intend to do in the future.

The proposed models describe behavior using a small number of fitting parameters
that capture the basic physics of the processes involved. As a result, it should be possible
to identify the sensitivity of these parameters to manufacturing and test conditions. As the
compressed coir fiber isolator has not been reported in the literature before, understanding
the sensitivity to important parameters will be critical for designers to be able to work
with this medium. Important factors relating to manufacture include fiber variability;
manufacturing conditions including temperature, pressure, moisture and lay-up; and envi-
ronmental conditions such as the water content of the fibers and presence of contaminants.
Similarly, test conditions for further investigation include the loading regime (shear or
compression); the vibration time history including cyclic frequency and amplitude; and any
steady or long-term load. Understanding sensitivity to such factors will allow the model to
incorporate statistic variability, making the prediction of behavior more reliable.
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7. Summary
This paper has shown how to model a damper employing micro-interface friction

where properties change according to usage. The device studied is a novel vibration isolator
constructed from coconut fibers (coir). We seek simple and physically insightful models
facing the complex behaviors to be modeled. The solution strategy is to tap from mem-
models an emerging family of hysteresis models to enrich the extended Masing model.
Such a model has been applied to two different micro-interface damping systems, one
coconut fiber isolator and two soil samples. Future work has been identified.
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Appendix A. Additional Figures for Test 2 of Soil Data
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Figure A1. For Test 2 of the soil data: (a) The 11th, and (b) 200th intra-cycle hysteresis loops fitted
using the unloading branch in Equation (40) to be presented later.
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Figure A2. For Test 2 of the soil data: (a) the measured stress time history; (b) the measured strain
time history; and the decomposed strain time history for (c) the mem-dashpot for the inter-cycle, and
(d) the enriched Masing model for the intra-cycle responses.
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0Figure A3. For Test 2 of the soil data: (a) the measured hysteresis loops of up to the 200th cycles,
and the corresponding hysteresis loops to be modeled by (b) the mem-dashpot for the inter-cycle,
and (c) the enriched Masing model for the intra-cycle responses resulted from decomposing the
measured strain time history. The 1st, 11th, and 200th cycles are highlighted in cyan, blue, and dark
blue, respectively.
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Figure A4. For Test 2 of the soil data: The first 11 intra-cycle hysteresis loops with one loop highlighted
at a time following (a–k) to reveal the virgin loading curve and minor loop closures using Masing
model concepts. The virgin loading curve, 1st and 11th intra-cycles, and other intra-cycles in-between
are colored in baby blue, cyan, blue, and red, respectively.
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Figure A5. For Test 2 of the soil data: The two parameters, yield strength σu (a,c) and initial stiffness
E (b,d), as affected by generalized momentum pσ (a,b) and absement aε

M (c,d) for the first 200 intra-
cycles. These intra-cycles are to be modeled by a mem-spring, the enriched Masing model. The 1st,
11th, and 200th intra-cycles are colored in cyan, blue, and dark blue, respectively.
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Figure A6. For Test 2 of the soil data: the strain decomposition scheme leading to Figures A1–A5
and A7 using the first 11 cycles for illustration. (a) The measured hysteresis loops, and the corre-
sponding hysteresis loops to be modeled by (b) the mem-dashpot for the inter-cycle, and (c) the
enriched Masing model for the intra-cycle responses resulted from the strain decomposition. The
virgin loading curve, 1st and 11th intra-cycles are colored in baby blue, cyan, and blue, respectively.
The identified minor loop closure points are marked with red diamonds.
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Figure A7. For Test 2 of the soil data: (a) the integrated full time history of pσ, (b) the approximated
full time history of xd, and (c) the approximated one-to-one mapping Fd(pσ).
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Figure A8. For Test 2 of the soil data: An alternative strain decomposition scheme leading to
the results in [9] using the first 11 cycles for illustration. The measured hysteresis loops, and the
corresponding hysteresis loops to be modeled by (b) the mem-dashpot for the inter-cycle, and (c) the
enriched Masing model for the intra-cycle responses resulted from the strain decomposition. The 1st
and 11th intra-cycles are colored in cyan and blue, respectively. The identified minor loop closure
points are marked with red diamonds.
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