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Reliable Solution to Dynamic Optimization Problems using Integrated

Residual Regularized Direct Collocation

Yuanbo Nie1 and Eric C. Kerrigan2

AbstractÐ Direct collocation (DC) is a widely used method for
solving dynamic optimization problems (DOPs), but its imple-
mentation simplicity and computational efficiency are limited
for challenging problems. For DOPs involving singular arcs, DC
solutions often exhibit significant fluctuations along the singular
arc, accompanied by large residual errors between collocation
points, where the dynamic constraints are enforced as equality
constraints. In this paper, we introduce the direct transcription
method of integrated residual regularized direct collocation
(IRRDC). This approach enforces dynamic constraints using
a combination of point-wise residual constraints (expressed as
either equalities or inequalities) and a penalty term on the
integrated residual error, which helps reduce errors between
collocation points. IRRDC retains the implementation simplicity
of DC while improving both solution accuracy and efficiency,
particularly for challenging problem types. Through the exam-
ples, we demonstrate that for problems where traditional DC
results in excessive fluctuations, IRRDC effectively suppresses
fluctuations and yields solutions with greater accuracy Ð at
least two orders of magnitude lower in various error measures
in relation to the dynamic and path constraints.

I. INTRODUCTION

Optimization problems involving dynamical systems are

crucial aspects of engineering. For practical dynamic opti-

mization problems (DOPs), numerical approaches are com-

monly employed. The direct transcription method is widely

used to convert the infinite-dimensional problems into

finite-dimensional nonlinear programming problems (NLPs),

known as the transcription process.

For DOPs in model predictive control (MPC), the tran-

scription method of multiple shooting is very popular [1].

For longer horizon optimal control problems and DOPs with

highly nonlinear path constraints, the transcription method of

the direct collocation (DC) method is generally considered

to be preferable thanks to its well-rounded balance between

computational complexity and solution accuracy [2].

The direct collocation (DC) framework enforces dynamic

constraints at selected points on a discretized mesh. Efficient

software toolboxes [3], [4] have been developed based on

this approach and are widely adopted within the engineering

field. However, certain categories of DOPs, particularly those

involving singular arcs and high-index differential-algebraic

equations (DAEs), present challenges for DC [2, Sec 4.14].

The development of integrated residual methods (IRM),

such as the Quadrature Penalty Method (QPM) [5]±[7] and

1Yuanbo Nie is with the School of Electrical & Electronic
Engineering, University of Sheffield, S1 3JD Sheffield, U.K.
y.nie@sheffield.ac.uk

2Eric C. Kerrigan is with the Department of Electrical & Electronic
Engineering and Department of Aeronautics, Imperial College London,
London SW7 2AZ, U.K., e.kerrigan@imperial.ac.uk

Direct Alternating Integrated Residuals (DAIR) [8], present

alternatives to traditional DC by focusing on an integrated

residual error (IRE) rather than point-wise residual measures.

IRMs tend to handle challenging problems more reliably.

By reliability, we refer to the ability to obtain solutions

without prior knowledge of potential problem difficulties,

e.g. reducing the likelihood of spurious solutions with large

fluctuations. However, this increased flexibility comes at a

cost: IRMs typically require greater expertise and care to

configure the transcription process appropriately.

Users familiar with DC may find it challenging to adopt

IRM effectively. For instance, both QPM and DAIR can

produce solutions that deviate significantly from those re-

ported in the literature if the trade-offs between competing

dynamic constraints are not properly specified. As a result,

DC remains the go-to numerical method for solving a general

DOP with limited prior knowledge.

Starting with an overview of existing approaches in Sec-

tion II, this paper investigates how the core framework of

DC can be largely preserved while integrating insights and

techniques from IRM to better handle challenging problems.

We introduce this hybrid approach, termed integrated resid-

ual regularized direct collocation (IRRDC), in Section III.

In IRRDC, dynamic constraints are enforced through a

combination of explicit point-wise constraints, inherited from

DC, and a penalty term on the IRE, inspired by IRMs.

We also provide a rationale for why this seemingly simple

combination yields practical benefits. Section IV presents

numerical examples that demonstrate the advantages of the

proposed method.

II. NUMERICAL SOLUTION OF DYNAMIC OPTIMIZATION

Optimization-based control often requires the solution of

DOPs expressed in the general Bolza form:

min
x(·),u(·)

t0,tf

V (x(t0), x(tf ), t0, tf )+

∫ tf

t0

ℓ(x(t), u(t), t)dt (1a)

subject to

f(ẋ(t), x(t), u(t), t) = 0, ∀t ∈ [t0, tf ], (1b)

g(ẋ(t), x(t), u(t), t) ≤ 0, ∀t ∈ [t0, tf ], (1c)

b(x(t0), x(tf ), u(t0), u(tf ), t0, tf ) ≤ 0, (1d)

with the state trajectory of the system x : R → R
n and

the control input trajectory u : R → R
m,. The initial and

terminal time are t0 and tf . Other elements include the

Mayer cost V , the Lagrange cost ℓ, the dynamic constraint f

containing nf equality constraints, the path constraint g



containing ng inequality constraints, and the boundary con-

straint b.

A. Direct Transcription Method

To yield a practical approach to solve the infinite-

dimensional continuous-time DOP numerically, direct tran-

scription methods transcribe the DOP into finite-dimensional

NLPs. In this transcription process, the state and input

trajectories x(·) and u(·) are approximated by parameterised

approximation functions x̃(·) and ũ(·), respectively. A pop-

ular choice [2] is to define x̃(·) and ũ(·) as piece-wise

functions based on a time mesh with K intervals, with the kth

interval denoted as Tk := [sk, sk+1]. Time instances sk
represent the interval boundaries between intervals of the

time mesh t0 = s1 < · · · < sK+1 = tf .

Under this setting, the trajectory for state variables inside

each interval k can be approximated as

x(k)(t) ≈ x̃(k)(t) :=

N(k)
∑

i=1

χ
(k)
i β

(k)
i (t), (2)

with β
(k)
i (·) a basis function and χ

(k)
i the corresponding

coefficient. A commonly adopted approach Ð also used in

this work Ð is to employ interpolating polynomials as basis

functions. A key advantage of this choice is that there exist

N (k) time instances sk ≤ d
(k)
1 < · · · < d

(k)

N(k) ≤ sk+1 at

which χ
(k)
i = x̃(k)(d

(k)
i ) ∈ R

n for all i ∈ IN(k) , with the

index set defined as IN(k) = {1, . . . , N (k)}. In this case, the

unknown coefficients χ
(k)
i are sampled points of the approx-

imate state trajectory, enabling convenient implementation.

The corresponding time instances d
(k)
i are referred to as the

data sampling instances. The input can be parameterized

similarly with υ
(k)
i = ũ(k)

(

d
(k)
i

)

∈ R
m. Additionally,

we let χ := [χ(1), . . . , χ(K)]⊤, χ(k) = [χ
(k)
1 , . . . , χ

(k)

N(k) ]
⊤,

υ := [υ(1), . . . , υ(K)]⊤, υ(k) = [υ
(k)
1 , . . . , υ

(k)

N(k) ]
⊤ for ease

of presentation. As χ(k) and υ(k) fully determine x̃(k)(·)
and ũ(k)(·), they also define the values of the approximation

functions at instances beyond the data sampling instances.

A general formulation for the NLP with static decision

variables (χ, υ, t0, tf ) is therefore:

min
χ,υ,t0,tf

V
(

χ
(1)
1 , χ

(K)

N(K) , t0, tf

)

+

K
∑

k=1

Q(k)

∑

i=1

w
(k)
i ℓ

(

x̃(k)(q
(k)
i ), ũ(k)(q

(k)
i ), q

(k)
i

)

(3a)

subject to, for all k ∈ IK ,

ψ
(

χ(k), υ(k), t0, tf

)

= 0, (3b)

γ
(

χ(k), υ(k), t0, tf

)

≤ 0, (3c)

and for some ki ∈ IK and kj ∈ IK ,

ϕ
(

χ(ki), χ(kj), υ(ki), υ(kj), t0, tf

)

≤ 0. (3d)

The functions ψ, γ and ϕ contain discretized forms of f , g

and b, along with other transcription-specific constraints. For

instance, continuity constraints for the state and input trajec-

tories could also be incorporated into (3d). The formulation

of (3b)±(3d) may vary depending on the transcription scheme

used, with further details provided in next subsection for

the handling of dynamic constraints. To approximate the

integral of the Lagrange cost inside an interval k, numerical

integration with a Q(k)-point quadrature rule [2, Sec. 4.4] is

used, with quadrature weights w
(k)
i and quadrature abscissae

q
(k)
i , for all i ∈ IQ(k) .

Convergence of the NLP (3) to a solution does not fully re-

solve the numerical solution of the DOP (1). This is because,

regardless of the chosen direct transcription method, the

initial discretization mesh may not be suitable for achieving

the desired accuracy. As a result, mesh refinement (MR) may

be required as a subsequent step, based on an assessment of

the errors in the approximate solution obtained from the NLP.

For a given NLP decision variable tuple (χ,υ,t0,tf ), which

fully determines the approximate solution trajectory tuple

(x̃(·),ũ(·),t0,tf ), commonly used error measures include

η := max
k∈I

N(k) , ξ∈Inf

∫

Tk

|r
(k)
ξ (t)| dt, (4)

σ := max
t∈[t0,tf ], ζ∈Ing

gζ( ˙̃x(t), x̃(t), ũ(t), t), (5)

with r
(k)
ξ the ξth element in the residual (also referred to as

the residual error)

r(k)(t) := f( ˙̃x(k)(t), x̃(k)(t), ũ(k)(t), t), (6)

and gζ the ζth element in (1c). In this definition, the

dependencies of r(k) on other variables are omitted for

simplicity in notation. Measures (4) and (5) are referred to

as the maximum absolute local (AL) error and the maximum

constraint violation (CV) error respectively. A scaled version

of (4) is known as the maximum relative local (RL) error [2].

Other forms of IRE exist, such as the mean integrated

residual norm square error (MIRNS), and the mean integrated

residual square error (MIRS), as discussed in [8]. These

error measures provide valuable insights into the necessary

modifications to the discretization mesh for improvements,

such as guiding MR schemes to add mesh nodes at locations

beneficial for error reduction [2].

B. Handling of Dynamic Constraint

Both DC and IRM embed the approximate satisfaction of

the dynamic constraints (1b) within the formulation of the

NLP; however, the formulation details differ.

1) Dynamic relationships as equality constraints: From

the weighted residuals method for the numerical solution

of differential equations [9], the satisfaction of the dynamic

equations requires
∫

Tk

ϖ(k)(t)r
(k)
ξ (t) dt = 0, ∀ξ ∈ Inf

, (7)

to hold for all test functions ϖ(k) that make (7) integrable,

which can only be true if the residual is zero. In practice,

the goal is to select finite sets of test functions that would

approximately solve the differential equation, with different



choices of test functions leading to various popular weighted

residual methods, including the Galerkin, collocation, and

least-squares methods. These different choices result in vary-

ing accuracy and computational complexity characteristics,

making the selection of test functions problem-specific [9].

The collocation method uses Dirac delta functions as test

functions ϖ(k) in (7). With the isolation property of Dirac

delta functions [8], (7) will become a system of equations

that requires the local residual (6) to be zero at the data

sampling instances, also known as the collocation points. In

DC, the equation system obtained from the weighted residual

method of collocation is implemented in (3b) as

f
(

˙̃x(k)(d
(k)
i ), x̃(k)(d

(k)
i ), ũ(k)(d

(k)
i ), d

(k)
i

)

= 0, (8)

for all i ∈ IN(k) , k ∈ IK . Such a formulation can be made

computationally efficient, because the weighted residual inte-

gration (7) is not needed, and the derivative information can

be easily computed. This aspect contributes to the popularity

of the DC approach in developing general-purpose DOP

solvers Ð the benefit of using a more sophisticated setting,

e.g. the Galerkin method, can only be exploited if the nature

of the dynamical system is known beforehand.

2) Dynamic relationships as penalty terms or as inequality

constraints: The drawback of only forcing the residual

to be zero at the collocation points is that large errors

could still arise between the collocation points [8]. In the

implementation of the DOP solution, the trajectories are

forward integrated, leading to the accumulation of errors.

This accumulation results in constraint violations and dete-

rioration in solution optimality.

The IRM addresses the challenge by working with the

integrated form of the residuals, namely

R̂(k)(x̃(k), ũ(k), t0, tf ) :=

∫

Tk

∥α ◦ r(k)(t)∥22 dt. (9)

with ◦ representing the Hadamard product (component-wise

multiplication), and α ∈ R
nf being additional weighting

parameters, e.g. to account for differences in the numerical

range of variables and constraints. In practice, this integration

could be approximated by a quadrature rule similar to the

discrete approximation of the Lagrange cost in (3a), as

R (χ, υ, t0, tf , w, q) :=

K
∑

k=1

Q(k)

∑

i=1

w
(k)
i

∥

∥

∥α ◦ r(q
(k)
i )

∥

∥

∥

2

2
. (10)

where w := [w
(1)
1 , . . . , w

(K)

Q(K) ]
⊤ and q := [q

(1)
1 , . . . , q

(K)

Q(K) ]
⊤.

For commonly used state and input trajectory parame-

terisations, approximation errors are inevitable [8]. Hence,

an NLP with (10) forced to zero with an arbitrary design

of the quadrature rule may not always be feasible except

in a few special cases; one such special case is to select

a quadrature rule such that the quadrature abscissae q
(k)
i

match the collocation points d
(k)
i , which recovers the DC

scheme [8].

In other words, with a quadrature rule of sufficiently high

order to capture the error behavior inside the interval, (10)

cannot be reduced to zero in general. The QPM minimizes

the integrated residuals via an additional penalty term, being

min
χ,υ,t0,tf

Jh (χ, υ, t0, tf ) +
1

2ρ
R (χ, υ, t0, tf , w, q) (11)

subject to (3c) and (3d). Jh is the original objective as

in (3a) and ρ > 0 is the regularization weight of the penalty

term. In contrast, the direct alternating integrated residuals

(DAIR) approach solves the problem by alternating between

the minimization of the integrated residuals (10) and the

minimization of the original objective subject to inequality

constraints on the MIRS error for each dynamic equation.

Other benefits of working with the residual error in its

integrated form, beyond the aspects discussed in this paper,

are covered in previous work [5], [8].

III. INTEGRATED RESIDUAL REGULARIZED DIRECT

COLLOCATION

The development of IRRDC aims to bring the benefit

of integrated residual approaches in handling challenging

problems to the DC framework, while maintaining DC’s ease

of implementation and computational efficiency as much as

possible.

The NLP formulation arising from IRRDC uses the objec-

tive formulation from QPM and the constraint formulation

from DC, i.e.:

min
χ,υ,t0,tf

Jh (χ, υ, t0, tf ) +
1

2ρ
R (χ, υ, t0, tf , w, q) (12)

subject to (8) and (3c) for all k ∈ IK and i ∈ IN(k) , and (3d)

for some ki ∈ IK and kj ∈ IK .

For DOPs with consistent overdetermined constraints [6],

[8], use of (8) may result in an infeasible NLP. Relaxing (8)

to

−ϵ ≤ f
(

˙̃x(k)(d
(k)
i ), x̃(k)(d

(k)
i ), ũ(k)(d

(k)
i ), d

(k)
i

)

≤ ϵ, (13)

is generally not recommended for DC, as it is very difficult

to find a vector of constants ϵ that is large enough to make

the NLP feasible but small enough to ensure a sufficiently

accurate solution. In contrast, IRRDC has a second mech-

anism where the IRE is penalized, thus alleviating the risk

that ϵ is chosen too large. In the extreme case, IRRDC is

equivalent to QPM.

The choice of ρ in IRRDC can be seen as a mechanism

for balancing solution accuracy and optimality for a given

discretization mesh design. A large value of ρ drives the

solution of (III) towards the DC solution, prioritizing the

reduction of the original objective. However, as later shown

in Figure 2 with the example problem, a low objective

value reported by the NLP solver may be misleading. As ρ

decreases, the method can automatically converge to a more

accurate solution when multiple solutions exist with minimal

or negligible differences in nominal cost. Further reduction

of ρ leads to a solution that is heavily biased towards higher

accuracy, albeit at the cost of a higher objective value.

Although IRRDC may seem like a simple blend of DC and

IRM, it stands out as a method that explicitly handles residual



error through both point-wise and integral measures, whereas

previous methods focus on only one of the two. The method

addresses several practical implementation challenges and

offers additional benefits.

A. Benefits of IRRDC against DC

By forcing the residual to be zero only at collocation

points, DC relies on posterior error analysis and MR to

address the challenge of errors arising between collocation

points. This works well except for DOPs with singular arcs

or high-index DAEs, where excessive fluctuations can occur

in the solution. These fluctuations makes MR inefficient and

ineffective in reducing the errors.

To suppress the fluctuations in practice, it is common to

introduce regularization terms in the objective to penalize

control actions [10] (with
∫ tf

t0
u⊤(t)Ru(t) dt where R is a

positive-definite weighting matrix, referred to later as control

regularization, or CR) or to penalize the control rate. For

DOPs with a large number of input variables and complex

structures, managing the regularization to limit its impact on

solution optimality can be challenging.

In the development of IRM, it was found that minimizing

the IRE automatically suppresses the singular arc fluctuations

in the solution [8], [11]. For solving DOPs numerically on

a discretization mesh, trading off solution optimality with

accuracy, as in IRRDC, is a better and more justifiable

approach compared to the trade-off between optimality and

control magnitudes, as seen in DC with CR.

B. Benefits of IRRDC against other IRM Schemes

The addition of point-wise residual constraints (8) or (13)

in IRRDC helps reduce the need for carefully tuning of con-

figuration and scaling parameters. For DOPs with state vari-

ables spanning vastly different numerical ranges, appropriate

constraint scaling in the computation of (10) can be critical.

Section IV-A illustrates such an example, highlighting how

improper trade-offs in the accuracy of different dynamic

equations can lead to erroneous solutions. In IRRDC, the

risk of certain dynamic equations being overshadowed is

significantly reduced, since each dynamic relationship must

independently satisfy the respective point-wise constraint.

While DAIR faces a similar challenge, it is less sensitive to

constraint scaling. However, DAIR requires users to specify

the desired MIRS error for each dynamic equation, which

makes it more complicated to configure than IRRDC.

In QPM, balancing the progress in minimizing the original

objective with maintaining dynamic feasibility Ð primarily

through careful selection of the penalty parameter ρ Ð is

both critical and challenging. Therefore, the scheme prefers

an NLP solver that handles both terms in the objective (11)

separately. Additionally, it is unlikely that the integrated

residual would vanish to zero at the converged solution,

making the direct use of NLP solvers that handle equality

constraints through quadratic penalty terms also unsuitable.

These factors make QPM prefer tailored solvers [12]. In

contrast, IRRDC enforces dynamic constraints primarily

through (8) or (13), while the penalty term allows further

improvements to solution accuracy where degrees of freedom

remain. As a result, IRRDC works well with standard off-the-

shelf NLP solvers, without the need to distinguish between

the two terms in the objective (12). Furthermore, due to the

use of both mechanisms, IRRDC can often employ a lower

sampling of quadrature points compared to QPM and DAIR,

leading to reduced computational cost. If desired, the penalty

term can even be introduced only in the later stages of the

iteration process, once the solution is nearly converged. This

allows IRRDC to take advantage of many inexpensive DC

iterations early in the optimization.

IV. EXAMPLE PROBLEMS

Here, we present two example problems to demonstrate the

main advantages of the IRRDC. Both DOPs are transcribed

using ICLOCS2 [13], and numerically solved to a tolerance

of 10−9 with NLP solver IPOPT [14] (version 3.12.9).

A. Singular Control Example: Goddard Rocket

The Goddard rocket problem [15] is a frequently used

example for the analysis of optimal control problems with

singular arcs. Here, we implement the Goddard rocket prob-

lem as described in [2, Ex. 4.9] with a solution structure of

bang-singular-bang. We use Hermite-Simpson discretisation

with 100 equispaced mesh nodes, unless stated otherwise.

1) Suppression of singular arc fluctuations: Using DC, it

is known for the solution to be oscillatory on the singular

arc if no special treatment is implemented. To remove the

singular arc oscillations, a multiphase formulation is typi-

cally used with additional constraints known as singular arc

conditions imposed specifically for the second phase, which

corresponds to the one with singular control.

In [8], the ability of the IRM of DAIR to alleviate the

oscillations on the singular arc has been demonstrated on

a fixed equidistant discretization mesh as a single-phase

problem. The IRRDC method yields similar improvements

to the results: the large fluctuations on the singular arc have

been suppressed (Figure 1).

2) Comparison with DC and other IRM schemes: Table I

demonstrates that the IRRDC solution achieves significantly

higher accuracy across all metrics compared to DC. In fact,

for DC to produce a solution with maximum AL and RL

errors lower than those of the IRRDC solution using 100

equispaced nodes, DC requires a much denser mesh of 1310

equispaced nodes (denoted as DC-D). Even then, the dense

mesh solution still exhibits pronounced fluctuations along the

singular arc and large CV errors.

As shown in Table II, the computation time for IRRDC

is higher than DC when using the same mesh size, pri-

marily due to the denser sampling of quadrature points and

more complicated derivative computations using spares finite

difference. However, when comparing solutions of similar

accuracy, IRRDC is more than 10 times faster than the

DC-D approach. This highlights the efficiency advantage

of IRRDC and underscores the importance of comparing

numerical methods based on equivalent accuracy levels rather

than identical mesh sizes.



(a) State trajectories

(b) Input trajectories

Fig. 1: Numerical solution to the Goddard rocket problem.

TABLE I: Comparison of error measures (maximum error)

AL Error RL Error CV Error MIRNS Error

DC 3.6e-01 1.1e-04 24.1 1.4e-03

DC-Da 2.2e-03 8.9e-07 24.1 8.7e-06

DAIRb 1.1e-02 7.2e-06 2.4e-01 1.8e-06

QPM-Sc, d 1.3e-02 8.8e-06 2.2e-01 3.2e-06

IRRDCc 2.4e-03 3.1e-06 4.4e-05 2.8e-07

[a] This is a DC solution with a dense mesh of 1310 equispaced nodes.
[b] Requested MIRS error being 10

−2, 10−4 and 10
−8 for the three

dynamic constraints respectively.
[c] A fixed ρ = 10

−6 used.
[d] Scaling of [1 4.76 11900] used for the three dynamic constraints.

When compared to QPM, the addition of point-wise resid-

ual constraints in IRRDC alleviate the need for constraint

scaling in (10). Even without constraint scaling, the IRRDC

solution closely matches the reference solution from the

literature [2], whereas the QPM solution differs as seen in

Figure 1. The erroneous solution is obtained because the

altitude state equation with large amplitude overshadows the

mass equation. Hence the dynamic relationship for mass

contains larger errors, resulting in a lower mass reduction.

This error propagates through the dynamic relationship with

the QPM solution showing the rocket reaching a much

higher, but physically unachievable altitude.

For QPM to yield a more accurate solution, constraint

scaling is needed, with the solution shown as QPM-S. DAIR

manages such trade-offs through the specification of the

requested MIRS error for each dynamic constraint separately,

making its configuration also more complicated than IRRDC.

In terms of computational performance, although the compar-

ison in Table II may not be very representative (see footnotes

of the table), the reduction in the number of quadrature points

needed within each interval already suggests that IRRDC is

computationally lighter than QPM and DAIR.

3) Comparison with other commonly used regularization

mechanisms: Figure 2a compares the NLP solution of the IR-

RDC transcription against DC with CR. The comparison with

TABLE II: Comparison of computational performance

Quadrature NLP Derivatives Solver

Pointsa Iterations Comp. Timeb Time

DC 2 119 1.54 s 0.58 s

DC-D 2 357 19.96 s 18.51 s

DAIR 8 49 + 92c 63.61 se 0.78 s

QPM-Sd 8 311 149.46 se 1.03 s

IRRDC 4 42 3.08 s 0.24 s

[a] Inside each mesh interval.
[b] Derivatives are computed using sparse finite difference.
[c] DAIR solves 2 NLPs in sequence.
[d] QPM prefers a tailored solver, so using IPOPT is not recom-
mended. For a more representative comparison of computational
performance with DC, please refer to [6].
[e] Obtained using an older non-optimised code-base (efficient
computations learned from IRRDC development not yet back
implemented to other IRM schemes in ICLOCS).

(a) Solver reported objectives from the NLP solutions

(b) Actual objectives from the simulation of the solutions

Fig. 2: IRRDC compared to DC with CR for the suppression

of singular arc fluctuations when using different regulariza-

tion weights. Reference objective is -18550.9 from [2, Ex.

4.9]. LF indicates large fluctuations can be visually observed

in the solution trajectories. SF indicates the fluctuations has

been suppressed Ð some minor ones may still be seen where

control switches, but not inside the singular arc.

input rate regularization yields similar conclusions hence

not included for better clarity. It can be seen in the figure

that many of the solutions with singular arc fluctuations

report lower objective values in comparison to that of a high

accuracy solution [2, Ex. 4.9]. This highlights an important

point of caution when comparing numerical DOP solutions:

the lower objective values obtained by solutions with higher

errors may be misleading.

For a proper comparison, we obtained the actual objective

by implementing the numerical DOP solutions through high-

accuracy simulations (with instead and present the results

in Figure 2b. Both regularization schemes demonstrate the

following trade-off behaviors:

• With a small penalty on the control action or on the

integrated residuals, large fluctuations may occur in



the numerical solution, reducing its accuracy. Such

solutions will result in significantly higher cost when

implemented, compared to the values reported by the

NLP solver, making them undesirable.

• As the penalty increases, the fluctuations will be sup-

pressed leading to an increase in solution accuracy.

Such solutions are the desirable ones with low objective

values that are realistically achievable.

• With a further increase in penalty, the bias between the

original objective and the regularization cost shifts. The

solutions will become increasingly suboptimal with a

higher nominal cost (1a).

Secondly, we compare the solution optimality in the

multi-objective sense, focusing on solutions where singular

arc fluctuations are suppressed (i.e. solutions in Figure 2b

marked with SF). It is observed that the solution obtained by

IRRDC is the preferred one, as it simultaneously achieves the

lowest objective and the lowest error compared to the other

regularization alternatives. This is because IRRDC penalizes

the IRE, rather than the inputs. Hence, IRRDC will not

discriminate against large inputs that may be required in the

optimal solution, as long as the errors are low.

B. Algebraic Constraint Example: Ventilator Control

In the second example, we focus on demonstrating the

benefit of the IRRDC in handling problems with additional

algebraic constraints, and on offering insights regarding the

role of the regularization weights in IRRDC. The problem

presented is the ventilator control problem introduced in [16].

The IRM’s effectiveness in enhancing the precision of

algebraic constraints with a very coarse discretization mesh

(3 intervals, each with a middle point) was shown in [16]

for illustration. Figure 3 reproduces these solutions together

with the solution with IRRDC under different choices of ρ.

Firstly, the figure provides a graphical illustration of the

residual errors that arise between collocation points, a key

consideration motivating the development of IRM as well as

IRRDC. Secondly, it can be observed from the figure that

as ρ decreases, the IRRDC solution improves compared to

the DC solution and tends toward the DAIR solutions.

V. CONCLUSIONS

With the proposed integrated residual regularized direct

collocation (IRRDC) method for the numerical solution

of dynamic optimization problems, the residual errors of

dynamic constraints are handled both through point-wise and

integral measures. In comparison to the widely used direct

collocation method, which only enforces point-wise dynamic

constraints, IRRDC greatly improves the method’s solution

accuracy and reliability for challenging problems, such as

those involving singular arcs. In comparison to integrated

residual approaches, IRRDC provides an easy-to-configure

framework that retains the simplicity and computational

efficiency of DC. Future work could focus on compatibility

of IRRDC with other aspects of the numerical framework,

such as mesh refinement, to further assess its limitations and

potential.

Fig. 3: Comparison of residual error for the algebraic con-

straint in the ventilator control problem
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